
ar
X

iv
:1

70
9.

06
48

3v
2

 [
ph

ys
ic

s.
co

m
p-

ph
]

 2
8

M
ar

 2
01

8

Magnus integrators on multicore CPUs and

GPUs

N. Auer, L. Einkemmer, P. Kandolf, and A. Ostermann
Department of Mathematics, University of Innsbruck, Austria

March 29, 2018

Abstract

In the present paper we consider numerical methods to solve the
discrete Schrödinger equation with a time dependent Hamiltonian
(motivated by problems encountered in the study of spin systems).
We will consider both short-range interactions, which lead to evolu-
tion equations involving sparse matrices, and long-range interactions,
which lead to dense matrices. Both of these settings show very dif-
ferent computational characteristics. We use Magnus integrators for
time integration and employ a framework based on Leja interpolation
to compute the resulting action of the matrix exponential. We con-
sider both traditional Magnus integrators (which are extensively used
for these types of problems in the literature) as well as the recently
developed commutator-free Magnus integrators and implement them
on modern CPU and GPU (graphics processing unit) based systems.

We find that GPUs can yield a significant speed-up (up to a factor
of 10 in the dense case) for these types of problems. In the sparse case
GPUs are only advantageous for large problem sizes and the achieved
speed-ups are more modest. In most cases the commutator-free vari-
ant is superior but especially on the GPU this advantage is rather
small. In fact, none of the advantage of commutator-free methods on
GPUs (and on multi-core CPUs) is due to the elimination of com-
mutators. This has important consequences for the design of more
efficient numerical methods.

1

http://arxiv.org/abs/1709.06483v2

1 Introduction

To numerically solve the Schrödinger equation with a time-dependent Hamil-
tonian

i
dψ

dt
= H(t)ψ(t), ψ(0) = ψ0, (1)

is a problem of significant interest in various fields of quantum mechan-
ics. Applications range from discrete spin systems to (continuous) models
of atom-laser interaction. Therefore, it is important to have both, good nu-
merical algorithms, as well as an efficient implementation on state of the art
computer hardware of these algorithms at one’s disposal.

Magnus integrators are used in many such applications (see, for exam-
ple, [9, 20, 22, 23, 25]). The implementation of these Magnus integrators
(which constitute a subclass of exponential integrators; for more details see
[9, 17, 21]) requires the computation of the action of matrix exponentials
in an efficient and stable manner. For some problems, e.g. if the continu-
ous Schrödinger equation is used to model atom-laser interaction, this can
be done using fast Fourier techniques. However, for many other interest-
ing problems this is not possible. For the latter case a number of approaches
have been proposed in the literature (see, for example, [4, 10, 14, 18, 19, 21]).
Most of them are based on polynomial interpolation. In [10, 11] it was shown
that interpolation at Leja points is a very efficient way of performing this ap-
proximation for the Schrödinger equation. This algorithm interpolates the
exponential function and thus reduces the task of computing the action of
a matrix exponential to the task of computing a sequence of matrix-vector
products. Let us also note that, in addition to the Schrödinger equation
considered in this paper, Magnus integrators have been successfully applied
to many related problems.

In addition to the matrix exponential, traditional Magnus integrators of
higher order require the computation of matrix commutators (see, for exam-
ple, [8, 9, 21]). In time dependent problems (as those considered here) these
matrix commutators have to be computed once every time step. Thus, espe-
cially for large problem sizes the corresponding cost can outweigh the cost of
the matrix-vector products. Recently, commutator-free Magnus integrators
have been developed [5, 7]. They eliminate commutators but usually require
additional matrix-vector products.

Due to the trend towards CPUs with more and more cores as well as
the trend towards GPUs, providing an efficient implementation of numerical
algorithms on modern multi-core CPUs and GPUs is of great practical im-
portance. Some preliminary work on implementing exponential integrators

2

[13] and matrix functions [14] has been conducted on GPUs (with generally
promising results). The purpose of the present work is to investigate the
performance of both commutator-free and traditional Magnus integrators.
This is done in the context of multi-core CPUs and GPUs. Although from
a computational complexity point of view, one might conjecture that com-
puting the commutators will dominate the total computational cost, this is
not necessarily true in an actual implementation. In particular, on GPUs
matrix-matrix products (necessary for computing the commutators) can op-
erate close to peak efficiency while this is usually not the case for matrix-
vector products. The comparison will be performed in the context of both
short-range interactions (which lead to sparse Hamiltonians H(t)) and long-
range interactions (which lead to dense Hamiltonians H(t)) to ascertain in
which situations GPUs result in a significant gain in performance.

This paper is based, in part, on the thesis [6] and is structured as follows.
In section 2 we provide an introduction to Magnus integrators and specify the
numerical methods used in the subsequent sections. Section 3 then details
the numerical approximation and the implementation. The numerical results
are presented and discussed in section 4. Finally, we conclude in section 5.

2 Magnus integrators

The solution of the linear differential equation

Y ′(t) = A(t)Y (t), Y (0) = Y0, (2)

can be expressed as

Y (t) = exp (Ω(t)) Y0, (3)

where the difficulty lies in finding a suitable matrix Ω(t). In [24] Magnus
used the ansatz of differentiating (3) to find an expression for Ω(t). This
results in

Y ′(t) =
d

dt
exp(Ω(t))Y0 = dexpΩ(t)(Ω

′(t)) exp(Ω(t))Y0, (4)

where the operator dexp is defined as

dexpΩ(C) =
∞
∑

k=0

1

(k + 1)!
adk

Ω(C) = ϕ1(adΩ)(C), (5)

see [17]. Here the operator adk
Ω(C) is the iterated commutator and recursively

defined as

adj
Ω(C) =

[

Ω, adj−1
Ω (C)

]

, j ≥ 1,

3

and ad0
Ω(C) = C. Comparing (2) and (4) leads to

A(t) = dexpΩ(t)(Ω
′(t)), Ω(0) = 0. (6)

By applying the inverse of the derivative of the matrix exponential we obtain
a differential equation for Ω. In fact, when ‖Ω(t)‖ < π the operator dexpΩ(t)

is invertible and has the convergent series representation

dexp−1
Ω(t)(A(t)) =

∞
∑

k=0

βk

k!
adk

Ω(t)(A(t)),

where βk denote the Bernoulli numbers. As a result we obtain an explicit
differential equation for Ω(t) as

Ω′(t) = dexp−1
Ω(t)(A(t))

= A(t)− 1

2
[Ω(t), A(t)] +

1

12
[Ω(t), [Ω(t), A(t)]] + · · · .

(7)

Equation (7) can be integrated by Picard iteration and this leads to the
so-called Magnus expansion,

Ω(t) =

∫ t

0

A(t1)dt1 −
1

2

∫ t

0

[
∫ t1

0

A(t2)dt2, A(t1)

]

dt1

+
1

4

∫ t

0

[
∫ t1

0

[
∫ t2

0

A(t3)dt3, A(t2)

]

dt2, A(t1)

]

dt1

+
1

12

∫ t

0

[
∫ t1

0

A(t2)dt2,

[
∫ t1

0

A(t2)dt2, A(t1)

]]

dt1 + · · · .

(8)

To derive numerical methods from the Magnus expansion we assume a con-
stant time step size τ and thus the solution after one time step is

Y (tn + τ) = exp(Ω(tn + τ))Y (tn), (9)

resulting in the numerical scheme

Yn+1 = exp(Ωn)Yn, (10)

for a suitable approximation Ωn of Ω(tn + τ). One way of deriving a formula
for Ωn is to approximate the integrals in (8) by quadrature rules.

In the following we will introduce the three traditional Magnus integrators
that are used for the numerical experiments in Section 4.

4

Method 1 (M2). The first example is the simplest method, which is obtained
by truncating the series (8) after the first term and approximating the integral
by the midpoint rule. This yields

Ωn(τ) = τA
(

tn +
τ

2

)

as an approximation of Ω(tn + τ). The corresponding numerical scheme is
the exponential midpoint rule

Yn+1 = exp
(

τA
(

tn +
τ

2

))

Yn,

which is of order two.

Method 2 (M4). The second example is a scheme of order four. The Magnus
series (8) is truncated after the second term and the integrals are approxi-
mated by the two-stage Gauss quadrature rule with weights b1 = b2 =

1
2
and

nodes c1 =
1
2
−

√
3
6
, c2 =

1
2
+

√
3
6
. We obtain

Yn+1 = exp

(

τ

2
(A1 + A2) +

√
3τ 2

12
[A2, A1]

)

Yn,

where A1 = A(tn + c1τ) and A2 = A(tn + c2τ).

Method 3 (M6). As a third example, we consider the following scheme of
order six:

Yn+1 =exp

(

B1 +
1

2
B3

+
1

240

[

− 20B1 −B3 + [B1, B2], B2 −
1

60

[

B1, 2B3 + [B1, B2]
]

]

)

Yn,

where Ai is an approximation of A (tn + ciτ) for

c1 =
1

2
−

√
15

10
, c2 =

1

2
, c3 =

1

2
+

√
15

10
,

and

B1 = τA2, B2 =

√
15

3
τ(A3 −A1), B3 =

10

3
τ(A3 − 2A2 + A1).

5

As has been discussed in the introduction, the (nested) commutators
arising in methods 2 and 3 can be expensive to compute. Thus, in addition,
we consider commutator free Magnus methods (see [7]). To achieve this our
aim is to find an approximation of the form

Y (tn + τ) ≈ Yn+1 = exp
(

Ω(1)
n

)

exp
(

Ω(2)
n

)

· · · exp
(

Ω(s)
n

)

Yn,

with

Ω(i)
n = τ

J
∑

j=1

αijAj, for i = 1, . . . , s.

Here Ai = A(tn + ciτ) again denotes the evaluation of the matrix A at a

certain time. More precisely, the goal is to find Ω
(1)
n , . . . ,Ω

(s)
n such that

exp
(

Ω(1)
n

)

exp
(

Ω(2)
n

)

· · · exp
(

Ω(s)
n

)

= exp(Ωn) +O
(

τS+1
)

by determining s, J and αij for i = 1, . . . , s and j = 1, . . . , J . The matrix
Ωn ≈ Ω(tn + τ) is the matrix at time step n of an Sth order Magnus method
given as in (10). In the numerical experiments we will use the following two
numerical methods that have been derived in [7] and [5].

Method 4 (Cf4). For c1 =
1
2
−

√
3
6
, c2 =

1
2
+

√
3
6
, as well as α1 =

3−2
√
3

12
, and

α2 =
3+2

√
3

12
a commutator-free method of order 4 is given by

Yn+1 = exp
(

Ω(1)
n

)

exp
(

Ω(2)
n

)

Yn

= exp
(

τ(α1A1 + α2A2)
)

exp
(

τ(α2A1 + α1A2)
)

Yn.

Method 5 (Cf4:3). This is an optimized commutator-free method of order 4
that uses three exponentials (see [5, Sect. 5.2]). Let Ai be an approximation
of A (tn + ciτ) for

c1 =
1

2
−

√
15

10
, c2 =

1

2
, c3 =

1

2
+

√
15

10
,

and

α =









(

37
240

− 10
√
15

261

)

− 1
30

(

37
240

+ 10
√
15

261

)

− 11
360

23
45

− 11
360

(

37
240

+ 10
√
15

261

)

− 1
30

(

37
240

− 10
√
15

261

)









.

6

Then, the Cf4:3 method is given by

Yn+1 =exp
(

Ω(1)
n

)

exp
(

Ω(2)
n

)

exp
(

Ω(3)
n

)

Yn

=exp
(

τ(α11A1 + α12A2 + α13A3)
)

exp
(

τ(α21A1 + α22A2 + α23A3)
)

exp
(

τ(α31A1 + α32A2 + α33A3)
)

Yn.

10−2 10−1
10−15

10−12

10−9

10−6

time step size τ

er
r

M2 M4 M6 Cf4 Cf4:3 τ 2 τ 4 τ 6

Figure 1: Order plot for the methods M2 (blue with dots), M4 (green with
squares), M6 (orange with triangles), Cf4 (brown with diamonds), and CF4:3
(red with star). For Example 1 with N = 210 and varying time step size τ .

In Figure 1 we show the error as a function of the time step size. This
serves to check the order of the five methods discussed in this section and
helps in validating our implementation. We also note that the Cf4 method
requires two matrix exponentials but no commutator and is somewhat more
accurate compared to the M4 method (which requires only a single matrix
exponential but the computation of one-commutator). Furthermore, we can
see that Cf4:3, which requires three matrix exponentials, has the same order
as the other fourth order methods but a smaller error constant. In fact, in
this experiment the error is even below or on the same level as the order six
method.

7

3 Numerical approximation and implementa-

tion

So far we have not discussed how to approximate the action of the matrix
exponential. That is, how to compute

Yn+1 = exp(Ωn)Yn.

It is not viable to compute exp(Ωn) and then apply it to the vector Yn.
Furthermore, if Ωn is sparse, this is, in general, not the case for exp(Ωn) and
thus a significant penalty in terms of memory is implied. However, a number
of approaches to efficiently compute the action of a matrix exponential have
been developed in the literature. Probably the most prominent are Krylov
subspace methods, interpolation at Chebyshev points, the truncated Taylor
method, and interpolation at Leja points. For all of these methods the main
cost to approximate Yn+1 are matrix-vector products.

In the numerical results presented in the next section we will exclusively
use interpolation at Leja point (the method described in [11]). This method
is favorably compared to interpolation at Chebyshev points as the order of
the interpolation polynomial can be chosen adaptively. In addition, it has
been shown in [10] that interpolation at Leja points can be superior to using
Krylov methods. In addition, in contrast to Krylov subspace methods, only
few vectors have to be kept in memory. This reduces the memory footprint
of the Leja interpolation which is especially helpful for the GPU implementa-
tion, where memory is a more scarce resource compared to traditional CPU
systems.

The main idea of the Leja method is to approximate the exponential
by an interpolation polynomial. The interpolation nodes ξ0, . . . , ξm for a
polynomial of degree m are chosen to be Leja points (see [11], for a precise
definition). The corresponding interpolation polynomial is expressed in New-
ton form and therefore the main cost of the algorithm is contained in a short
term recurrence formula that performs matrix-vector products.

Let pm(A)v be the interpolation polynomial of degree m that approxi-
mates the action of the exponential of the matrix A applied to the vector v.
Furthermore, we denote by di := exp[ξ0, ξ1, . . . , ξi] the divided differences of
order i. Then Leja interpolation has the form

exp(A)v ≈ pm(A)v =
m
∑

i=0

di

i−1
∏

j=0

(A− ξjI)v,

and can be implemented by the following code fragment

8

Input: v, A
Output: w

1: w = v

2: p = d0v

3: for i = 1: m do

4: w = Aw − ξi−1w

5: p = p+ diw

6: end for

The control structures are executed in sequence (on the CPU), while the
vector and matrix operations (lines 1, 2, 4, and 5) are parallelized. The
actual implementation is more involved. It makes sure that the backward
error of the interpolation is below a user specified tolerance (up to the unit
round-off). Furthermore, an early termination criterion is implemented to
reduce the cost further. For more details we refer the reader to [11].

It should be noted that the Leja method is not entirely matrix-free. In fact
the matrix itself is required for estimating the necessary parameters of the
interpolation (i.e. an estimate on the spectrum of the matrix). Nevertheless,
we can think of these parameters as fixed and therefore the performance of
the method breaks down to performing the above code fragment as fast as
possible.

The speed of the numerical method is highly dependent on the under-
lying implementation of matrix-vector products (to compute the Leja inter-
polation) and matrix-matrix products (to compute the commutators). The
Leja interpolation routines are implemented as part of the expleja project1

in a generic fashion. That is, for all of the implementations the core Leja
algorithm is the same. We use the preprocessor to switch out the calls to
the matrix-vector and matrix-matrix product routines. Thus, the library is
designed in such a way that it is easy to include your favorite library dealing
with matrices, vectors, and most importantly the matrix-vector and matrix-
matrix products.

In this paper we are concerned with traditional CPUs and GPUs as well
as dense and sparse matrices. In the numerical experiments in the next sec-
tion, we use the standard BLAS2 and Intel Math Kernel Library (MKL)3 [1]
routines for dense matrices on the CPU, SuiteSparse4 [12] and Intel MKL
for spare matrices on the CPU, and the CUDA libraries cuBLAS and cuS-
PARSE5 [2, 3] for dense and sparse matrices, respectively, on the GPU.

1see https://bitbucket.org/expleja/expleja
2Version: gcc 4.8.4, libblas-dev: 1.2.20110419-7
3Version: icc 15.0.0 20140723, MKL 2017.0.098
4Version: gcc 4.8.4, libsuitesparse-dev: 1:4.2.1-3ubuntu1
5Version: nvcc 7.0.27, CUDA Toolkit 7.5

9

https://bitbucket.org/expleja/expleja

The probably most widely used sparse matrix storage scheme is the com-
pressed sparse row (CSR) format (see, for example, [3]). This format can
store arbitrary sparse matrices and is extensively used in a range of appli-
cations. In addition, the CSR format enjoys universal support from almost
all sparse matrix libraries. It should be noted, however, that specific sparse
matrix formats have been developed that allow for a more favorable memory
access pattern and consequently improved performance on GPUs. However,
as recent research [15, 16, 26] shows the potential improvement compared to
a well implemented CSR algorithm is at best 60 %. In addition, the magni-
tude of improvement is highly problem dependent. Due to this and due to
ubiquity of the CSR format we will make exclusive use of it in the present
paper.

To allow a fair comparison and to enable other scientists to take advantage
of our implementation the code is available via the expleja project.

Let us further note that in the case of the GPU implementation we make
sure that we move data from the CPU to the GPU (or in the other direction)
only if necessary. More specifically, we transfer all input data at the beginning
of the computation, perform all the numerical computation on the GPU, and
finally only the output data is transferred back to the CPU. Consequently, in
all instances the data transfer from and to the GPU takes only a negligible
amount of time.

The following hardware is used in all of the experiments

CPU

• 2× Intel Xeon E5-2630 CPU

• 2× 8 cores

• 32GB Ram

GPU

• Tesla K80

• 4992 CUDA Cores

• 2× 12 GB RAM

Before proceeding, it is instructive to discuss the performance character-
istics of the two main ingredients in the Magnus integrator. Namely, the
matrix-vector products required for the Leja interpolation and the matrix-
matrix products required for assembling the matrix (the latter are only re-
quired for the Magnus integrators that involve commutators). Since the
matrix is time dependent we have to assemble the matrix (and thus compute
the commutators) in every time step. A straightforward complexity analysis
leads us to conclude that the matrix-matrix products dominate the run time
of the algorithm. In fact, this is consistent with what we will observe in
the next section for the sequential version of the code. Since for traditional
higher order Magnus integrators the number of required commutators can be

10

quite large, research has been conducted in both reducing [8] and completely
eliminating (commutator-free approach) [7] commutators from the numerical
method.

However, this analysis is too simplistic to accurately reflect the perfor-
mance of the numerical method in an actual implementation. The first point
to make here is that potentially a large number of matrix-vector products
are needed in each time step. This is in particular true for matrices with
large eigenvalues in the left half of the complex plane (i.e. for stiff problems).
This behavior alone is sufficient to make a purely theoretical analysis diffi-
cult. However, there is a second aspect that needs to be taken into account
on modern computer hardware (both on multi-core CPUs and on GPUs).
Namely, that the matrix-matrix products constitute a compute bound prob-
lem and thus can be parallelized very efficiently, while matrix-vector products
are memory bound and are thus limited by the (much slower) memory band-
width.

To be more specific let us consider the dense case. We have implemented a
test case for both the matrix-vector as well as matrix-matrix products. The
parallel implementation using Intel MKL on the CPU saturates with only
4 cores (although 16 are available on above mentioned system; a behavior
that is characteristic for memory bound problems) achieving approximately
10 GFlop/s. This constitutes approximately 70 % of the theoretical memory
bandwidth but only a small fraction of the GFlop/s that are available on that
system. On the other hand, the parallel implementation of the matrix-matrix
products using Intel MKL yields approximately 150 GFlop/s. Thus, while
the computational complexity of the matrix-matrix products is far worse, in
a parallel setting, the constants are potentially much smaller. To conclude
this section let us note that essentially the same behavior occurs on the GPU
and that we will revisit this issue again in the next section when we discuss
the numerical results.

4 Numerical experiments

In the following discussion “host” refers to the CPU and “device” refers to
the GPU. For the Intel MKL implementation on the CPU we tested various
number of threads and used the configuration that gives the best perfor-
mance. The time of the computation is measured by taking the difference of
calling clock() before and after the time integration. The result is converted
to seconds. For all of the experiments we compute a reference solution on
the GPU with the method M6 and a fixed time step size of τ = 10−5. If
not specified explicitly, the Leja method is used with a relative and absolute

11

tolerance of 10−10 and the early termination criterion is activated.
In order to illustrate the behavior of the considered Magnus integrators

and their corresponding implementation we consider the discrete Schrödinger
equation

i∂tψ(t) = H(t)ψ(t), ψ(0) = ψ0

with the Hamiltonian in the form H(t) = H1+ h(t)H2. More specifically, we
consider a Heisenberg model. This model is often used in quantum mechanics
to describe the spins of a magnetic system. A spin describes a magnetic
dipole, where the direction of the spin corresponds to the magnetic moment.

We investigate the performance for both sparse and dense matrices H(t).
Physically, this corresponds to a short-range (sparse) and long-range (dense)
interaction. We will refer to these situations as the local and non-local model,
respectively. As each spin is described by a two dimensional (complex) vector
the resulting Hamiltonian H(t) is described by a 2n × 2n complex matrix,
where n corresponds to the amount of spins in the model. In the following,
we use the notation N = 2n.

We discuss the particular shape of the two models used in the correspond-
ing examples. Both rely on the three Pauli matrices

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

and σz =

(

1 0
0 −1

)

. (11)

Furthermore we define

σα
j = (⊗j−1

i=1I)⊗ σα ⊗ (⊗n
i=j+1I), (12)

for α ∈ {x, y, z}, where ⊗ denotes the tensor product. As initial value
ψ0 ∈ C2n , we use

ψ0 =
(

1 0, 0 1, ψ5
0 ψ6

0 , ψ7
0 . . .

)T
, (13)

where the entries ψ5
0 to ψ

N
0 are chosen randomly such that

∥

∥

(

ψi
0 ψi+1

0

)
∥

∥

2
= 1

for i odd. The initial value is chosen such that the spins 1 and 2 are in a
defined state (up and down, respectively). Due to the coupling with the
other spins these two spins will leave this pure state and move into a neutral
position. This behavior can be observed in the numerical experiments.

In all of our experiments we split up the matrix H(t) as H(t) = H1 +
h(t)H2 where the matrices H1 and H2 are computed before the actual time
integration on either the host or the device. This form of the Hamiltonian
means that the H(t), for a specific t, can be assembled relatively quickly

12

(compared to the computational cost of performing the Leja interpolation).
We expect that the performance results presented here generalize to other
problems where this is the case. Note that for the GPU implementation the
matrix H(t) is formed on the device without transferring any data from the
host. Furthermore, the commutators required for the various tested Magnus
integrators are computed directly on the device as well.

As an example, the following pseudocode illustrates the implementation
of one time step of the M4 scheme

Input: Yn, H1, H2, tn, τ
Output: Yn+1

1: d1 = h(tn + c1τ)
2: d2 = h(tn + c2τ)
3: A1 = H1 + d1H2

4: A2 = H1 + d2H2

5: A3 = 1
2
τ(A1 + A2)

6: A4 = A2A1

7: A5 = A1A2

8: A6 =
√
3

12
τ 2(A4 − A5)

9: A7 = A3 + A6

10: Yn+1 = Leja(A7,Yn)

where the function Leja approximates the action of the matrix exponential
(the pseudocode is given in section 3). Lines 1 and 2 (which are computa-
tional extremely cheap) are computed sequentially (on the CPU), while the
remainder of the algorithm consists of matrix operations that are all executed
in parallel (either on the CPU or on the GPU). Note that the variables A1

to A7 are introduced in the above code fragment for clarity. In the actual
implementation variables are reused whenever possible in order to decrease
the amount of storage required.

Example 1 (Dense matrix case). For the dense case, we use a non-local
Heisenberg model, where all spins are coupled. This results in a dense matrix.
With the help of the Pauli matrices and σα

j , see (11) and (12), we state the
non-local Heisenberg model

H(t) = −
n
∑

i=1

n
∑

j=1

j 6=i

Jijσ
z
i σ

z
j −

n
∑

i=1

h(t)σx
i ∈ C

2n×2n ,

where Jij =
1

|i−j| and h(t) = sin(ωt) with ω = 1. The initial value ψ0 ∈ C2n is

given by (13). We note that the matrix H(t) consists of two time independent
parts that are coupled by h(t). In particular we have H(t) = H1 + h(t)H2,

13

for

H1 = −
n
∑

i=1

n
∑

j=1

j 6=i

Jijσ
z
i σ

z
j and H2 = −

n
∑

i=1

σx
i .

We exploit this structure in our implementation by assembling the matrices
H1 and H2 before the actual time integration. This allows us to considerably
reduce the computational cost.

In the experiments illustrated in Figures 2 and 3 we fix the time step size
to τ = 10−3 and vary the size of the matrices from N = 26 to N = 213.

In the first experiment we take a look how the parallelization influences
the method. In Figure 2 we can observe that for large enough matrices all
methods benefit from GPU acceleration. Where exactly this benefit kicks in
depends on the method. One would assume that the speed-up is most pro-
nounced for methods M4 and M6 that need the computation of matrix com-
mutators. However, since these schemes also profit the most from CPU par-
allelization, the relative gain of the GPU implementation is actually smaller
compared to M2, Cf4, and Cf4:3.

In Figure 3 we show how the five different methods compare on the same
hardware. If we first focus on the single core implementation (top) we can see
that M2 has the least computational cost. In fact the cost grows as O(N2)
which roughly corresponds to the cost of the matrix-vector products in the
Leja interpolation. This is also the case for the Cf4/Cf4:3 methods, where
no commutator is required but two/three matrix exponentials have to be
computed. As a result the method needs more time per time step compared
to M2 but has approximately the same growth rate. The methods M4 and
M6 grow with order three, corresponding to the cost of the matrix-matrix
products arising in the commutators.

By using 4 cores (middle) we can see that the cost of the methods move
together. M2 and M4 need about the same, M6 slightly more, Cf4 is even
more expensive, and Cf4:3 turns out to be the most expensive method (per
time step). In general, we observe a growth rate of about O(N2) for all
methods as the matrix-matrix products can be parallelized very efficiently.

If we move to the GPU (bottom) we observe that the growth for all
methods is linear until about 210 where full capacity of the GPU is reached.
After this we observe that the different methods start to behave similar as
for the single CPU, but they are much faster.

In our final experiment we change the setup. This time we fix the matrix
size to N = 212, prescribe a certain tolerance, and compare the cost of each
method, for each of the parallelization techniques, to achieve the specified

14

tolerance. The matrix size is chosen such that a GPU parallelization makes
sense. We note that in all cases the Leja method with the prescribed tolerance
divided by 10 is used (that is, a more accurate approximation is used for
the polynomial interpolation compared to the time integrator). The results
can be found in Figure 4. In the plot the line style corresponds to the
different parallelizations; full for single-core CPU, dashed for multi-core CPU,
and dotted for the GPU implementation. The marker shape and the color
correspond to the different methods used; blue circles for M2, green squares
for M4, orange triangles for M6, brown diamonds for Cf4 and red stars for
Cf4:3.

From this plot we can see that the GPU implementation is highly bene-
ficial. For all methods the GPU achieves a speed-up of roughly 10 compared
to the multi-core, and about 20 compared to the single-core implementation.
Furthermore, we can observe that overall the Cf4:3 method is the most ef-
ficient method in terms of accuracy versus computation time (although, for
tolerances above 10−8 the performance of Cf4 is identical to the performance
of Cf4:3). On the other hand it is clear that for high accuracy the M2 method
is not favorable. This is due to the fact that this method is only second order
accurate.

For the GPU implementation the methods M4, M6, Cf4, and Cf4:3 are
separated by no more than a factor of 4. For the parallel CPU implemen-
tations this is different. Here Cf4:3 is clearly the fastest and the difference
to M4 and M6 is approximately a factor of 5 and 10 for the multi- and
single-core CPU implementation, respectively.

An important point to make here is that the majority of the compu-
tational advantage of the Cf4 and Cf4:3 methods for multi-core CPUs and
GPUs is due to its increased accuracy (see Figure 1) and not due to any
advantage in cost per time step. In fact, Figure 3 shows that almost all of
the advantage in cost (which is clearly significant in the sequential case) is
lost once we consider the multi-core CPU or GPU implementation.

Example 2 (Sparse matrix case). For the sparse case we use a local Heisen-
berg model. Here only neighboring spins are coupled and therefore the cor-
responding matrix is sparse. With the help of the Pauli matrices, see (11)
and (12), we state the local Heisenberg model

H(t) = −1

2

n
∑

j=1

(Jxσ
x
j σ

x
j+1 + Jyσ

y
jσ

y
j+1 + Jzσ

z
jσ

z
j+1 + h(t)σz

j) ∈ C
2n×2n,

where Jx, Jy, Jz ∈ C and h(t) = sin(ωt) with ω = 1. The initial value is given
in (13). For the numerical tests we chose Jx = 1, Jy = 2, and Jz = 3.

15

Again we note that the matrix H(t) consists of two time independent
parts that are coupled by h(t). We split-up the equation in a similar fashion
as for the dense model in order to save computational cost.

In the experiments illustrated by Figures 5, 6, and 7 we fix the time step
size to τ = 10−3 and vary the size of the matrices from N = 26 to N = 214.

In the first experiment, illustrated in Figure 5, we take a look on how the
parallelization influences the performance of the methods. Here the GPU
implementation does not achieve as high speed-ups as we observed for the
dense case. Only for the M6 method we can observe a significant gain for
medium sized matrices. In this case we need to compute nested commutators
for which the GPU acceleration is highly beneficial. In all other cases the
GPU is only favorable once we employ 212 or more degrees of freedom. For
small matrices the parallel CPU implementations are clearly faster compared
to the GPU implementations.

The second experiment, in Figure 6, compares how the methods perform
in terms of cost per timestep for each implementation. The M6 method is
clearly outperformed by the four other methods, regardless of the implemen-
tation. We remark, however, that for the GPU implementation this gap in
performance is significantly smaller.

As a consistency check, we show that even though the parallelization of
the sparse matrices is not as beneficial, compared to the dense case, overall
sparse algorithms still pay off significantly. This can be clearly seen in Fig-
ure 7. Note, however, that the difference between the two implementations
is significantly smaller for the GPU implementation compared to both CPU
implementations. Of course, a further advantage of the sparse algorithms are
that they consume less memory and we are thus able to solve larger problems.

Finally, we compare the cost of each method, for each of the parallelization
techniques, to achieve a specified tolerance. The matrix size is fixed to N =
212. The results are shown in Figure 8. We observe that in this situation the
CPU implementation of the Cf4:3 method gives the best result overall. It is
also interesting to note that the performance of Cf4 and M4 are very similar
for the GPU implementation.

5 Conclusion

In this work we have investigated whether parallelization on GPUs is a viable
option for Magnus integrators based on Leja interpolation. The numerical
solutions have been computed in the context of the Schrödinger equation us-
ing a local and a non-local Heisenberg model. Implementing these algorithms
on modern multi-core CPU and GPU systems shows that in the dense case

16

the GPU implementation is able to achieve speed-ups of up to a factor of 10.
In the sparse case only very large problems benefit from GPU acceleration
and the achieved speed-ups are more modest.

From a numerical analysis point of view, we observe that the commutator-
free fourth order method (Cf4 and, in particular, Cf4:3) is usually the best
choice. Although for both multi-core CPUs and GPUs the traditional fourth
order exponential integrator (M4) is usually quite competitive. This is in
stark contrast to the sequential case, where M4 is significantly slower com-
pared to the Cf4 method. This behavior is due to the fact that the matrix-
matrix products required to compute the commutators can be more efficiently
parallelized. In fact, the per time step cost of Cf4 and Cf4:3 is even larger
compared to M4. That is, the increased efficiency is due to the increased ac-
curacy (and certainly not due to a decrease in cost, which is often given as a
motivation for constructing such methods) This has important implications
for future research in constructing more efficient Magnus type integrators,
as modern hardware calls into question the design philosophy of eliminating
matrix-matrix products at all costs (at least this is true for the problem sizes
currently accessible on a workstation).

Acknowledgement

This work was supported by the Tiroler Wissenschaftsfonds (TWF) under
grant number UNI-0404/1531.

References

[1] Intel MKL Library: documentation.
https://software.intel.com/en-us/intel-mkl/documentation,
2016. Accessed: 25 October 2016.

[2] cuBLAS Library: documentation. http://docs.nvidia.com/cuda/cublas/,
2016. Accessed: 25 October 2016.

[3] cuSPARSE Library: documentation.
http://docs.nvidia.com/cuda/cusparse/, 2016. Accessed: 25
October 2016.

[4] A.H. Al-Mohy and N.J. Higham. Computing the action of the matrix
exponential, with an application to exponential integrators. SIAM J.
Sci. Comput., 33(2):488–511, 2011.

17

https://software.intel.com/en-us/intel-mkl/documentation
http://docs.nvidia.com/cuda/cublas/
http://docs.nvidia.com/cuda/cusparse/

[5] A. Alvermann and H. Fehske. High-order commutator-free exponential
time-propagation of driven quantum systems. J. Comput. Phys., 230
(15):5930–5956, 2011.

[6] N. Auer. Magnus integrators on graphics processing units. Master’s
thesis, University of Innsbruck, 2016.

[7] S. Blanes and P.C. Moan. Fourth- and sixth-order commutator-free
Magnus integrators for linear and non-linear dynamical systems. Appl.
Numer. Math., 56(12):1519–1537, 2006.

[8] S. Blanes, F. Casas, and J. Ros. Improved high order integrators based
on the Magnus expansion. BIT Numerical Mathematics, 40(3):434–450,
2000.

[9] S. Blanes, F. Casas, J. A. Oteo, and J. Ros. The Magnus expansion and
some of its applications. Phys. Rep., 470(5–6):151–238, 2009.

[10] M. Caliari, P. Kandolf, A. Ostermann, and S. Rainer. Comparison of
software for computing the action of the matrix exponential. BIT Nu-
merical Mathematics, 54(1):113–128, 2014.

[11] M. Caliari, P. Kandolf, A. Ostermann, and S. Rainer. The Leja method
revisited: backward error analysis for the matrix exponential. SIAM J.
Sci. Comput., 38(3):A1639–A1661, 2016.

[12] T.A. Davis. Direct methods for sparse linear systems, volume 2 of Funda-
mentals of Algorithms. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2006.

[13] L. Einkemmer and A. Ostermann. Exponential integrators on graphic
processing units. In High Performance Computing and Simulation
(HPCS), 2013 International Conference on, pages 490–496. IEEE, 2013.

[14] M.E. Farquhar, T.J. Moroney, Q. Yang, and I.W. Turner. GPU accel-
erated algorithms for computing matrix function vector products with
applications to exponential integrators and fractional diffusion. SIAM
J. Sci. Comput., 38(3):C127–C149, 2016.

[15] J.L. Greathouse and M. Daga. Efficient sparse matrix-vector multipli-
cation on GPUs using the CSR storage format. In Proceedings of the
International Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 769–780. IEEE Press, 2014.

18

[16] D. Guo, W. Gropp, and L.N. Olson. A hybrid format for better perfor-
mance of sparse matrix-vector multiplication on a GPU. Int. J. High
Perform. Comput. Appl., 30(1):103–120, 2016.

[17] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integra-
tion. Structure-preserving algorithms for ordinary differential equations.
Springer, Berlin, second edition, 2006.

[18] N.J. Higham. Functions of matrices: theory and computation. SIAM,
2008.

[19] M. Hochbruck and C. Lubich. On Krylov subspace approximations to
the matrix exponential operator. SIAM J. Numer. Anal., 34(5):1911–
1925, 1997.

[20] M. Hochbruck and C. Lubich. On Magnus integrators for time-
dependent Schrödinger equations. SIAM J. Numer. Anal., 41(3):945–
963, 2003.

[21] M. Hochbruck and A. Ostermann. Exponential integrators. Acta Nu-
mer., 19:209–286, 2010.

[22] K. Kormann, S. Holmgren, and H.O. Karlsson. Accurate time propa-
gation for the Schrödinger equation with an explicitly time-dependent
Hamiltonian. J. Chem. Phys., 128(18):184101, 2008.

[23] T.V. Laptyeva, E.A. Kozinov, I.B. Meyerov, M.V. Ivanchenko, S.V.
Denisov, and P. Hänggi. Calculating Floquet states of large quan-
tum systems: A parallelization strategy and its cluster implementation.
Comput. Phys. Commun., 201:85–94, 2016.

[24] W. Magnus. On the exponential solution of differential equations for a
linear operator. Comm. Pure Appl. Math., 7:649–673, 1954.

[25] H. De Raedt and K. Michielsen. Computational Methods for Simulat-
ing Quantum Computers. Handbook of Theoretical and Computational
Nanotechnology (American Scientific Publishers), 2008.

[26] J. Zhang, J. Wan, F. Li, J. Mao, L. Zhuang, J. Yuan, E. Liu, and
Z. Yu. Efficient sparse matrix–vector multiplication using cache obliv-
ious extension quadtree storage format. Future Gener. Comput. Syst.,
54:490–500, 2016.

19

101
102
103
104

M2

ti
m
e
(s
ec
on

d
s)

1 core 4 cores GPU

101
102
103
104

M4

ti
m
e
(s
ec
on

d
s)

101
102
103
104

M6

ti
m
e
(s
ec
on

d
s)

101
102
103
104

Cf4

ti
m
e
(s
ec
on

d
s)

26 27 28 29 210 211 212 213

101
102
103
104

Cf4:3

degrees of freedom

ti
m
e
(s
ec
on

d
s)

Figure 2: Computational cost vs. degrees of freedom for three different par-
allelizations of the five integrators M2, M4, M6, Cf4, and CF4:3, grouping
by the different methods. The data correspond to Example 1 (dense matrix)
with fixed time step size τ = 10−3 for computing ψ(1).

20

101

102

103

104
1 core

ti
m
e
(s
ec
on

d
s)

M2 M4 M6 Cf4 Cf4:3

101

102

103

104
4 cores

ti
m
e
(s
ec
on

d
s)

26 27 28 29 210 211 212 213

101

102

103

104
GPU

degrees of freedom

ti
m
e
(s
ec
on

d
s)

Figure 3: Computational cost vs. degrees of freedom for three different par-
allelizations of the five integrators M2, M4, M6, CF4, and Cf4:3, grouping
by different parallelizations. The data correspond to Example 1 with fixed
time step size τ = 10−3 for computing ψ(1).

21

1 core 4 cores GPU M2 M4 M6 Cf4 Cf4:3

10−13 10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5 10−4

100

101

102

103

104

105

accuracy

ti
m
e
(s
ec
on

d
s)

Figure 4: Accuracy vs. computational cost for the five integrators M2, M4,
M6, Cf4, and Cf4:3 when using different parallelization techniques. The data
correspond to Example 1 with fixed matrix dimension N = 212. For a fixed
step size τ the error at ψ(1) is measured.

22

101
102
103
104

M2

ti
m
e
(s
ec
on

d
s)

1 core 2 cores GPU N2

101
102
103
104

M4

ti
m
e
(s
ec
on

d
s)

101
102
103
104

M6

ti
m
e
(s
ec
on

d
s)

101
102
103
104

Cf4

ti
m
e
(s
ec
on

d
s)

26 27 28 29 210 211 212 213 214

101
102
103
104

Cf4:3

degrees of freedom

ti
m
e
(s
ec
on

d
s)

Figure 5: Computational cost vs. degrees of freedom for three different par-
allelizations of the five integrators M2, M4, M6, Cf4, and Cf4:3, grouping
different parallelizations. The data correspond to Example 2 with fixed time
step size τ = 10−3 for computing ψ(1).

23

101

102

103

104
1 core

ti
m
e
(s
ec
on

d
s)

M2 M4 M6 Cf4 Cf4:3

101

102

103

104
2 cores

ti
m
e
(s
ec
on

d
s)

26 27 28 29 210 211 212 213 214

101

102

103

104
GPU

degrees of freedom

ti
m
e
(s
ec
on

d
s)

Figure 6: Computational cost vs. degrees of freedom for three different par-
allelization of the five integrators M2, M4, M6, Cf4, and Cf4:3, grouping
different methods. The data correspond to Example 2 with fixed time step
size τ = 10−3 for computing ψ(1).

24

1 core multi core GPU dense sparse

26 27 28 29 210 211 212 213 214

101

102

103

104
M4

degrees of freedom

ti
m
e
(s
ec
on

d
s)

Figure 7: Computational cost vs. degrees of freedom for three different im-
plementations of the integrator M4. The data correspond to Example 2 the
solid lines correspond to the sparse implementation and the full lines to the
dense representation of the sparse matrix. The time step size is fixed to
τ = 10−3 for computing ψ(1). The dense computation stops at 212 due to
storage limitations.

25

1 core 2 cores GPU M2 M4 M6 Cf4 Cf4:3

10−13 10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5
10−1

100

101

102

103

accuracy

ti
m
e
(s
ec
on

d
s)

Figure 8: Accuracy vs. computational cost for the five integrators M2, M4,
M6, Cf4, and Cf4:3 when using different parallelization techniques. The date
corresponds to Example 2 with fixed matrix dimension N = 212. For a fixed
step size τ the error of ψ(1) is measured.

26

	1 Introduction
	2 Magnus integrators
	3 Numerical approximation and implementation
	4 Numerical experiments
	5 Conclusion

