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Abstract

Computational simulations of blood flow contribute to our understanding of the interplay between 

vascular geometry and hemodynamics. With an improved understanding of this interplay from 

computational fluid dynamics (CFD), there is potential to improve basic research and the targeting 

of clinical care. One avenue for further analysis concerns the influence of time on the vascular 

geometries used in CFD simulations. The shape of blood vessels changes frequently, as in 

deformation within the cardiac cycle, and over long periods of time, such as the development of a 

stenotic plaque or an aneurysm. These changes in the vascular geometry will, in turn, influence 

flow within these blood vessels. By performing CFD simulations in geometries representing the 

blood vessels at different points in time, the interplay of these geometric changes with 

hemodynamics can be quantified. However, performing CFD simulations on different discrete 

grids leads to an additional challenge: how does one directly and quantitatively compare 

simulation results from different vascular geometries? In a previous study, we began to address 

this problem by proposing a method for the simplified case where the two geometries share a 

common centerline. In this companion paper, we generalize this method to address geometric 

changes which alter the vessel centerline. We demonstrate applications of this method to the study 

of wall shear stress in the left coronary artery. First, we compute the difference in wall shear stress 

between simulations using vascular geometries derived from patient imaging data at two points in 

the cardiac cycle. Second, we evaluate the relationship between changes in wall shear stress and 

the progressive development of a coronary aneurysm or stenosis.
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1. Introduction

Recent advancements in biomedical imaging have led to profound interest in performing 

computational fluid dynamics (CFD) simulations in patient-specific geometries derived from 

medical imaging data. CFD simulations have been shown to be effective for measuring 

patient-specific hemodynamic risk factors for clinical use, such as fractional flow reserve in 

the coronary arteries, by using geometries reconstructed from medical imaging data [1]. 

Likewise, CFD simulations in image-derived geometries have also been used to understand 

biophysical mechanisms at play in vascular anomalies, such as a relationship between wall 

shear stress and aneurysm development [2]. Wall shear stress – the tangential force along the 

vessel wall caused by blood flow – is an important factor for the biophysical function of the 

endothelial cells which comprise the vessel wall and has been connected to the formation of 

atherosclerotic lesions in the coronary arteries [3]. Hemodynamic parameters computed in 

patient-specific CFD simulations can therefore be used to guide clinical practice and to 

perform basic biomedical research. One avenue for improving the state of current 

simulations is to systematically account for patient data collected at multiple time points. 

The purpose of this study is to provide a tool for comparing and distinguishing the 

differences between CFD simulations in vascular geometries derived from patient imaging 

data at multiple time points. We illustrate the application of this framework to study wall 

shear stress in the left coronary artery.

The dominant factor in determining wall shear stress in the coronary arteries is vessel 

geometry [4]. However, the shape and position of coronary arteries change over a range of 

timescales. Located on the surface of the heart, the coronary arteries are translated and 

deformed with each heartbeat. While CFD simulations typically use the position of the 

coronary arteries at a single point in the cardiac cycle, the dynamic motion of the coronary 

arteries can influence hemodynamic factors. Indeed, CFD studies of a single branch in the 

right coronary artery have shown that vessel deformation due to the cardiac cycle may 

significantly influence wall shear stress [5, 6]. In contrast, the formation of atherosclerotic 

plaques in arteries progressively creates stenoses – narrowings in the effective channel for 

blood flow – over months or years. Similarly, the development of aneurysms – localized 

dilatations in the blood vessel walls – involves the blood vessel expanding slowly over a 

long period of time. Both vascular abnormalities are strongly associated with 

hemodynamics. For stenoses, the association of atherosclerosic progression with wall shear 

stress is well established in the coronary arteries [7, 3]. Likewise, CFD study of coronary 

aneurysms associated with Kawasaki disease has shown a drastic decrease in wall shear 

stress within the aneurysm [8]. Therefore, clear applications exist for comparing CFD results 

in geometries corresponding to multiple points in the cardiac cycle or to different stages in 

the development of vascular abnormalities.

Comparisons of hemodynamics in vascular geometries at different time points require some 

commonality between the compared objects. To compare CFD results at a given position on 

two geometries, a method is required to define this same (or, ‘homologous’) position on both 

geometries. However, by definition, a naive direct comparison is precluded when the 

simulations are conducted on different 3D geometries and on different discrete 

computational grids. Two general approaches to this problem seem to exist. In the first 
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approach, the complexity of the comparison may be reduced by selecting a subset of 

locations - e.g., a series of cross-sectional slices along both geometries - and comparing 

hemodynamic factors only at these locations (e.g., [9, 10, 11, 12]). This approach is 

effective, but inherently limits the detail of the comparison. For the case of cross-sectional 

slices, for example, the CFD results along the 2D surface of the geometry are reduced to a 

set of 1D comparisons. In the second approach, vascular registration algorithms may be used 

to align the geometries. Registration using rigid-body rotation has been used to align 

intracranial aneurysms taken from the same patient at different time points and estimate the 

displacement between them [13, 14, 2]. Further, vascular image registration methods that 

incorporate local deformations have also been developed; see the review in [15]. 

Registration itself is not sufficient for a direct comparison: a rule for determining 

homologous points must still be defined to determine how simulation results at a given 

location change between the two geometries. Boussel et al. reasonably addressed this 

problem by assuming that displacement between the registered geometries occurs only in the 

radial direction [14]. However, to the best of our knowledge, a more general transform for 

quantitatively comparing simulation results between two registered geometries does not 

exist.

In a previous companion paper [16], we proposed a method to address the idealized case of a 

comparison between two vascular geometries with identical centerlines. We extended [14] 

by defining a general framework for identifying homologous vertices on the geometries and 

demonstrated the comparison could be effected to study the relationship of wall shear stress 

with an aortal stenosis and an aortal aneurysm. In this work, we significantly improve this 

method to incorporate different centerlines and, therefore, support the local deformations 

and rotations which may occur as vascular geometries change over time. The capability of 

our method is demonstrated by application to study the influence of vascular shape changes 

on CFD results in the left anterior descending (LAD) branch of the left coronary artery. We 

focus on wall shear stress defined on the surface of the blood vessel, though similar 

applications could potentially be made for variables like velocity that are defined throughout 

the vessel volume.

The remainder of the paper is organized as follows: Sections 2.1 and 2.2 provide details 

about the image segmentation and computational hemodynamics solver used in this study, 

respectively. Section 2.3 presents the proposed mapping between vascular geometries taken 

from medical imaging data of the same patient at two time points. Three applications of this 

mapping are then presented in section 3. Section 3.1 applies the mapping to exhibit the 

differences between flow simulations in the LAD at different points in the cardiac cycle. 

Sections 3.2 and 3.3 employ the mapping to compare flow simulations at multiple points in 

the development of an aneurysm and stenosis.

2. Methods

2.1. Vascular geometry preparation

The vascular geometries used in this study are derived from computed tomography 

angiography (CTA) scans of a left coronary artery. The imaging data was acquired from 

Brigham and Women’s Hospital (Boston, MA) with appropriate IRB approval. The raw 
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DICOM image files were segmented using Materialise Mimics (Materialise, Leuven, 

Belgium) using the coronal, sagittal, and axial views. Two segmentations were performed, 

during the systolic and diastolic phases of the cardiac cycle, to produce a pair of vascular 

geometries. The geometry files were exported from Mimics as surface meshes in the 

stereolithography (STL) format. We will focus this study on the left anterior descending 

(LAD) artery and its branches, as shown in figure 1. For the sake of simplicity, the resulting 

LAD geometries from the two points in the cardiac cycle will be referred to hereafter as the 

systolic and diastolic geometries. The vessel centerlines for both LAD geometries were 

computed with Materialise Mimics.

Additional geometries were created to represent the development of a stenosis or aneurysm 

in the diastolic LAD geometry. We use the mesh software Blender (Blender Institute, 

Amsterdam, Netherlands) to narrow or widen one region of the geometry to artificially 

introduce stenoses and aneurysms, respectively. The area surrounding the artificially 

narrowed or widened region was smoothed, in order to create a natural transition, leading to 

modifications in the geometry which extend beyond the stenosis or aneurysm itself. Further, 

vessel centerlines in all branches were recomputed with Mimics for each new stenosed or 

aneurysmal geometry. Stenosis or aneurysm degree is measured by the ratio of the cross-

sectional area of the stenosis or aneurysm to the normal cross-sectional area of the branch. 

Stenoses of 25%, 50%, and 75% were created, along with aneurysms of 125%, 150%, and 

175%. The stenosis and aneurysm location is shown in figure 2, along with comparison 

images of the geometries.

2.2. Computational fluid dynamics simulations

We perform flow simulations in the left coronary arteries using HARVEY, a parallel CFD 

application focused on hemodynamics [17]. HARVEY implements the lattice Boltzmann 

method, a weakly compressible Navier-Stokes solver. Using in vitro experimental data, the 

application has been validated for Newtonian flow in a patient-specific vascular geometry 

[9]. Details of the numerical implementation and parallel performance may be found in our 

previous work [18, 16].

The regular Cartesian grid used by the lattice Boltzmann method in HARVEY is based on 

the STL files generated from segmentation. Surface hemodynamic factors, such as wall 

shear stress, are output over the region of the Cartesian grid adjacent to the vessel wall. For 

the purpose of analysis, we project surface hemodynamic factors from the simulation 

domain back onto the surface STL file. As a result, the methods presented in this paper are 

not tied to a computational fluid dynamics solver with a Cartesian grid and would work 

similarly if a finite element or finite volume flow solver were employed.

Simulations in HARVEY were conducted using 32 cores on Intel Xeon E5-2699V4 

processors of the Duke Compute Cluster. The resolution of the simulations was 75μm, based 

on a convergence study in coronary geometries derived from CTA imaging data. We use a 

steady inflow with a Poiseuille profile and a maximum velocity of 0.4m/s, and run the 

simulation until an approximate steady-state is achieved. This steady inflow is a reasonable 

approximation of the maximum inflow to the left coronary artery during diastole. For the 
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sake of simplicity, a simple fixed pressure condition is enforced at the outlet. Likewise, flow 

was assumed to be Newtonian with a dynamic viscosity of 4 cP [19].

2.3. Mapping between vascular geometries

Two basic characteristics of vascular geometries are their tree-like structures and their 

locally tubular shapes within a branch of the tree. For different timepoints from the same 

patient, the vessels will have the same branching structure, but will differ in several respects. 

First, variations can be introduced by the imaging or segmentation modalities [20, 21]. 

Segmentations of multiple datasets could lead to different positioning and orientation of the 

geometries, though this can be substantially mitigated with rigid-body registration [15]. 

Furthermore, manual aspects of the segmentation process have the potential to introduce 

segmentation bias and inter-observer differences. Additionally, features of the imaging 

modality and process – including acquisition angle, patient movement, resolution, and the 

timepoint in the cardiac cycle – influence imaging data quality. These features may also lead 

to small side branches of large blood vessels appearing shorter or longer in certain 

reconstructions. Second, substantive differences will appear in the geometries due to the 

times at which the data was collected. The length and curvature of branches may change 

between scans taken at different points in the cardiac cycle. Likewise, the development of 

vascular abnormalities, such as aneurysms or stenoses, will lead to local changes in 

curvature and diameter. Our purpose in this work is to build upon rigid-body registration by 

developing a mapping which attempts to control for inherent changes due to imaging and 

segmentation while retaining the important biophysical differences.

To represent the tree-like structure, we use the vessel centerlines computed from the 

segmentation software Mimics. Centerline extraction from imaging data or segmented 

vascular geometries is a standard component of segmentation methods (e.g., [22]) and CFD 

analysis (e.g., [23]). As indicated in figure 3, the centerlines represent each branch by a set 

of points along the approximate center of the vessel and are connected to other centerlines at 

the vessel bifurcations.

The first step in mapping between the two geometries involves establishing a mapping 

between centerlines in each branch, based on the raw centerline data from Mimics. For 

notational simplicity, we shall refer to the domain geometry as X and the co-domain 

geometry as Y . Therefore, we aim to establish a one-to-one mapping f for each branch ,

f :CX(𝔅) CY(𝔅) (1)

between centerpoint sets CX and CY in the domain and co-domain, respectively. Further, the 

set of points c ∈ CX( ) are required to lie in the same normalized position along the branch 

 as f(c) ∈ CY ( ). Computing the new centerpoints that satisfy this mapping requires 

linear or spline interpolation of the raw centerline data to determine homologous 

centerpoints in the same normalized position along the vessel.
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However, the determination of branch length requires special treatment. For branches that 

are fully represented in the vessel geometry – from base to bifurcation – we assume that any 

difference between the branch lengths computed from the raw centerlines data is due to 

stretching or compression. However, for branches which might have been truncated by the 

limitations of the imaging or segmentation process, we truncate the longer branch to match 

the length of the shorter branch. In either case, the result of this process is that a bijective 

mapping f trivially exists between the new sets of centerline points for each branch  of the 

vessel geometries.

The second step in developing a mapping between the two geometries is to associate the 

vertices of each geometry to the centerlines of the nearest branch. For each vertex s of the 

domain geometry SX, we determine the branch  to which the vertex sX belongs. Further, 

within this branch, we find the centerpoint c ∈ CX( ) which is nearest to the vertex sX in 

terms of Euclidean distance. Using this association of each vertex with a branch and a 

centerpoint within that branch, the set of vertices SX is consequently grouped into subsets 

TX( i, cj) corresponding to branch i and centerpoint cj within this branch. These subsets 

form a partition of SX:

∪
i, j

TX(𝔅i, c j) = SX ∩
i, j

TX(𝔅i, c j) = ∅

Associated with each vertex s ∈ TX( i, cj) is a vector v(s, cj ), which is computed as the 

normalized unit vector in the direction from vertex s to centerpoint cj . Assuming the branch 

geometry is locally convex with respect to the centerline, this vector will be unique over the 

set TX( i, cj ). With the exception of certain saccular (or ‘berry’) aneurysms, such as may 

occur in the cerebral vasculature, this convexity assumption is reasonable for almost all 

vascular geometries.

The final step is to use the mapping between centerlines as the basis for mapping between 

the vascular geometries themselves. In this mapping g, we seek to identify a homologous 

vertex h in the co-domain for each vertex s in the domain:

g:SX SY . (2)

We assume that the vertices s and h in the co-domain must be associated with the same 

branch i and centerpoint cj within this branch. In the absence of rotation, we define the 

homologous vertex h as that which maximizes the cosine similarity between the unit vectors 

v(s, cj) and v(h, cj ):

max v(h, c j) · v(s, c j) for h ∈ TY(𝔅i, c j) (3)

for a given s ∈ TX( i, cj ). However, as the centerline orientation can change, the local 

rotation matrix R(cj) between the centerline tangent vectors t(cj) is computed using 

Rodrigues’ rotation formula. The homologous vertex h is then identified by
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max v(h, c j) · R(c j) · v(s, c j) (4)

over the same conditions as above. For each vertex on the domain SX, a homologous vertex 

on the co-domain SY is therefore identified by this mapping. However, the identified vertex 

in the co-domain is not unique and may represent the homologous vertex for multiple 

vertices in the domain. As a result, the mapping is not bijective and the reverse mapping of 

the domain onto the co-domain will not necessarily identify the same homologous vertex.

The resulting mapping between the domain and co-domain vessel geometries has 

applications for topological and hemodynamic analysis. First, the mapping can also be used 

to project hemodynamic factors from simulations in the co-domain vessel geometry onto the 

domain geometry. In this way, the difference between hemodynamic factors in the domain 

and co-domain geometries is computed on a per-vertex basis. As discussed in the subsequent 

application sections, this per-vertex comparison facilitates quantitative comparisons of CFD 

results while limiting data reduction. Second, the approximate displacement of each vertex 

from domain to co-domain is computed from the difference in magnitude of the 

unnormalized vectors v(s, cj) and v(h, cj ). Displacement between homologous vertices is 

therefore defined as the change in distance to the ‘common’ point on the centerline. This 

local displacement can be used to help quantify the development of a vascular abnormality, 

such as an aneurysm growth, or the diameter change of a blood vessel over the cardiac cycle.

We note that other methods for computing local vascular displacement exist, such as local 

Hausdorff distance [2, 16]. Defined as the minimum distance between this vertex and any 

vertex on the other geometry, local Hausdorff distance is obtained from the Part Comparison 

Analysis tool in Materialise 3-matic (Materialise, Leuven, Belgium). To evaluate the 

possible disagreement between these two metrics, we compute displacement between the 

original diastolic and the 25% stenosis geometries in the stenosis region indicated by the 

inset in figure 2. Figure 4 compares per-vertex displacement computed by the distance 

between homologous vertices with local Hausdorff distance. We observe a strong correlation 

between the two metrics (R2 = 0.96). Further, the 95% confidence interval from Bland-

Altman analysis is less than 0.1mm, which is reasonable for the displacement magnitude 

observed here. In the upper right of figure 4, the distance between homologous vertices does 

meaningfully exceed the local Hausdorff distance. For this small set of vertices, local 

Hausdorff distance identifies a nearest vertex on a different branch of the other geometry, the 

distance to which is smaller than the distance to the homologous vertex. Therefore, the 

displacement metric from our mapping agrees very well overall with a standard metric like 

local Hausdorff distance.

3. Results

3.1. Shape and position within the cardiac cycle

For blood flow simulations in the coronary arteries, geometries are typically derived from 

segmenting patient-imaging data at a single timepoint in the cardiac cycle. Many coronary 

artery hemodynamic simulations assume the vessel walls to be rigid and, consequently, the 
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entire cardiac cycle is simulated in the position and shape of the coronary arteries at this 

single instant. Among simulations with deformable vessel walls, the motion of the wall over 

the cardiac cycle is usually determined by the interaction with the fluid (e.g., [24]). In 

contrast, the work of Torii et al. introduced a method for the dynamic vessel motion of a 

right coronary over the course of a cardiac cycle [5, 6]. Their work generates a single, time-

dependent and deformable mesh from different points in the cardiac cycle and the mesh 

triangulation does not change in time. However, the more common use case involves meshes 

segmented at different points in the cardiac cycle with independent triangulations, requiring 

the identification of homologous vertices. Therefore, to determine whether the fidelity of 

these computational models could be improved by taking into account multiple timepoints in 

the cardiac cycle, an analysis framework to determine the influence hemodynamic factors of 

interest, such as wall shear stress, is required.

In this section, we apply the mapping procedure developed in the section 2.3 to illustrate 

how flow simulations conducted in geometries corresponding to different points in the 

cardiac cycle might be compared. Figure 5 displays results from simulations for wall shear 

stress in the diastolic and systolic coronary geometries. The significance of the changes in 

wall shear stress at the two cardiac cycle time points is most easily evaluated with a common 

frame of reference. In figure 6, the mapping is used to subtract systolic wall shear stress 

from the diastolic values at homologous vertices. As a result, we are able to compute the 

change in wall shear stress over the entire surface of the geometry. For this study, we focus 

on 4 regions near the bifurcation of the LAD and diagonal arteries, denoted as regions A–D 

in figure 6. For the two regions (A, D) in the diagonal, wall shear stress is significantly 

higher in the diastolic geometry, even distal to the bifurcation. Conversely, much lower 

changes in wall shear stress are observed within the two regions (B, C) in the LAD, where 

the average change is nearer to zero.

As the simulations in the systolic and diastolic geometries purport to study the same quantity 

– wall shear stress in the same locations on the LAD coronary artery – we use Bland-Altman 

analysis to determine the significance of the wall shear stress change. Figure 7 shows the 

Bland-Altman analysis for regions C and A. Each datapoint corresponds to a single vertex 

on the diastolic geometry. Within region C, the bias is minimal (0.1 Pa) and the 95% 

confidence interval is about 0.5Pa, which falls within many ranges for physiological 

classification of high or low wall shear stress [25]. Conversely, for region A, both the bias 

and 95% confidence interval are very large relative to these standard wall shear stress 

classification ranges.

Therefore, this analysis allows for the determination of whether simulations in the systolic 

and diastolic geometries under consideration lead to physiologically different wall shear 

stress results. In this simple test case, wall shear stress measured with CFD in the two 

geometries leads to a significant disagreement in some regions. By allowing for Bland-

Altman analysis to be performed on a per-vertex basis, we allow for a more complete and 

targeted characterization than with reduced data, such as comparing circumferentially 

averaged data on homologous slices.
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3.2. Progressive development of a stenosis

Effective comparisons between simulation results conducted in vascular geometries derived 

from patient imaging data at different time points are also interesting over much longer time 

scales than the cardiac cycle. Vascular abnormalities, such as a stenosis related to 

atherosclerosis, develop over periods of months or years. While the risk to the patient 

remains low, the abnormality is monitored by clinicians but surgical intervention is unlikely 

to occur. Clinical care could be improved by methods that would help identify vascular 

abnormalities with the potential to significantly worsen. Hemodynamic factors derived from 

patient-specific simulations, such as wall shear stress, are indicators of possible disease 

progression [7, 3, 26]. Our framework attempts to quantitatively assess the correlation 

between anatomical changes over a period of time and the wall shear stress obtained from 

CFD analysis.

To study the influence of a stenosis on surface hemodynamics, we conduct flow simulations 

in the three stenosed geometries from section 2.1 and compare the results with the normal 

diastolic geometry. A stenosis will generally expected to significantly increase wall shear 

stress due to the increased velocity in the narrowed region. However, changes in wall shear 

stress in a patient-specific geometry can be more challenging to predict, as regions of low 

wall shear stress may develop beyond the stenosis. Simulation results from the diastolic 

geometry are mapped onto each of the stenosed geometries to facilitate a direct comparison. 

As shown in figure 8 for the 75% stenosis geometry, this allows for the displacement and the 

difference in wall shear stress, both relative to the diastolic geometry, to be computed over 

the surface of the stenosed geometry. We observe that the expected large increase in wall 

shear stress is not limited to the stenosis, but continues until the bifurcation, while also 

decreasing wall shear stress in small regions after the stenosis.

To quantify these differences in wall shear stress, we compute the proportion of vessel 

surface area around the stenosis with given changes in wall shear stress. For this region, 

figure 8 shows how the distribution of the proportion of surface area with a given wall shear 

stress change evolves from the 25% to the 50% and 75% stenoses. As the stenosis 

percentage increases above 25%, we note significant portions of surface area have very high 

increases in wall shear stress. Further, the regions of potentially relevant decreases in wall 

shear stress also expand with stenosis development. Therefore, a stenosis percentage in the 

range of 25% to 50% may indicate a critical threshold for wall shear stress change in this 

patient geometry.

3.3. Progressive development of an aneurysm

The developed framework also provides a method for investigating the relationship of 

hemodynamic parameters with morphological change in an aneurysm. Development of 

aneurysms in the coronary arteries is associated with Kawasaki disease [27]. Previous 

computational studies have established that these coronary aneurysms are associated with 

abnormal flow patterns, including substantially decreased wall shear stress [8]. Patient-

specific flow simulations have the potential to improve predictions of the risk of thrombosis 

associated with a patient’s aneurysm [28]. These studies could be extended to investigate 
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whether low wall shear stress is associated with further aneurysm development, as 

hypothesized for cerebral aneurysms [14, 29].

Flow simulations are conducted in the three aneurysmal geometries from section 2.1 to show 

how the mapping introduced here could be applied to quantitatively study a hypothetical 

relationship between aneurysm development and low wall shear stress. Simulation results 

from the diastolic geometry are mapped on the aneurysmal geometries to show how wall 

shear stress changes. For each successive degree of aneurysm expansion, figure 9 shows how 

the change in wall shear stress is distributed over the surface area of the aneurysm. As 

expected, we find that larger decreases in wall shear stress occur over the progression of 

aneurysm development.

Further, the new tool provides a platform for investigating the relationship between 

displacement and the change in wall shear stress. Figure 9 plots the change in wall shear 

stress as a function of displacement over the aneurysm surface. The R2 values for the best 

linear fit lines are 0.419, 0.560, and 0.537 for the 25%, 50%, and 75% aneurysms, 

respectively. For this artificial example, we can conclude that there is some relationship 

between aneurysm development and decreasing wall shear stress. Therefore, the method for 

mapping simulation results allows for investigating whether changes in the wall shear stress 

distribution are associated with morphological changes and, potentially, indicative of future 

aneurysm progression.

4. Conclusions

In this paper, we have presented a framework for comparing CFD simulation results in 

patient-specific geometries corresponding to different time points. This framework uses the 

centerlines of the geometries to represent the tree-like structure of the vascular geometries 

and systematically divides the vascular geometries into branches. Within each branch, the 

centerline forms the basis of a mapping which identifies homologous positions on the 

surface of the two geometries. The identification of homologous positions allows for 

simulation results from two different geometries to be mapped onto a single geometry, 

enabling the difference in hemodynamic factors to be directly computed at a given position. 

The resulting framework is sufficiently general to handle the complexity of most vascular 

geometries and, as a post-processing tool, is not limited to use with a specific CFD solver.

We have presented a set of representative application cases for an LAD coronary artery. 

First, we considered the difference between simulation results in two LAD geometries, 

segmented during the systolic and diastolic phases of the cardiac cycle. Second, we 

considered the development of a stenosis and an aneurysm in the LAD. In each case, the 

mapping was used to put CFD simulation results from the multiple geometries on a common 

frame of reference to facilitate analysis. We believe that such an analysis tool will expand 

the utility of patient-specific CFD simulations. Further applications could be made to clarify 

how data from different imaging modalities influences CFD simulations in reconstructed 

geometries, as in [11].
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Figure 1. 
Patient CTA data is segmented at diastolic (top row) and systolic (bottom row) phases of the 

cardiac cycle to reconstruct two left coronary artery (LCA) models. We focus on the left 

anterior descending (LAD) artery, with the centerline structure shown at right.
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Figure 2. 
(Top) From left to right, stenoses of 75%, 50%, and 25%. (Middle) From left to right, 

aneurysms of 25%, 50%, and 75%. (Bottom) Full diastolic LAD geometry with location of 

stenosis or aneurysm marked. The gray overlay indicates the original diastolic geometry.
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Figure 3. 
Centerlines for the LAD during the systolic and diastolic phases, colored by branch.
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Figure 4. 
Bland-Altman analysis for displacement between the original diastolic and the 25% stenosis 

geometries in the stenosis region. Each datapoint corresponds to a single vertex on the 

diastolic geometry. The reproducibility coefficient is 0.07.
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Figure 5. 
Wall shear stress results from flow simulations in diastolic (left) and systolic (right) 

geometries.
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Figure 6. 
Change in wall shear stress from systolic to diastolic geometry, plotted over the surface of 

the diastolic geometry (left) and binned according to the percentage of surface area with the 

observed change in wall shear stress in the four denoted regions (right).
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Figure 7. 
Bland-Altman analysis for regions C (top) and A (bottom) from figure 6. The reproducibility 

coefficients are 0.48 and 4.7, respectively.
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Figure 8. 
(Top left) Wall shear stress for 75% stenosis. (Top right) Normal wall shear stress for normal 

geometry, mapped onto geometry with 75% stenosis. (Bottom left) Change in wall shear 

stress between normal and 75% stenosis geometries. (Bottom right) Percentage of surface 

area with the given binned change in wall shear stress from the diastolic geometry to the 

stenosed geometry, over the region of the stenosis.
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Figure 9. 
(Left) Percentage of surface area with the given binned change in wall shear stress from the 

diastolic geometry to the aneurysmic geometry, over the region of the aneurysm denoted in 

figure 8. (Right) Change in wall shear stress as a function of vertex displacement, where 

positive and negative displacement indicate expansion and compression, respectively.
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