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Abstract

A highly adaptive load balancing algorithm for parallel simulations using particle methods, such as molecular dynamics
and smoothed particle hydrodynamics (SPH), is developed. Our algorithm is based on the dynamic spatial decomposition
of simulated material samples between Voronoi subdomains, where each subdomain with all its particles is handled by
a single computational process which is typically run on a single CPU core of a multiprocessor computing cluster.

The algorithm displaces the positions of neighbor Voronoi subdomains in accordance with the local load imbalance
between the corresponding processes. It results in particle transfers from heavy-loaded processes to less-loaded ones.
Iteration of the algorithm puts into alignment the processor loads. Convergence to a well-balanced decomposition from
imbalanced one is improved by the usage of multi-body terms in the balancing displacements.

The high adaptability of the balancing algorithm to simulation conditions is illustrated by SPH modeling of the
dynamic behavior of materials under extreme conditions, which are characterized by large pressure and velocity gradi-
ents, as a result of which the spatial distribution of particles varies greatly in time. The higher parallel efficiency of our
algorithm in such conditions is demonstrated by comparison with the corresponding static decomposition of the com-
putational domain. Our algorithm shows almost perfect strong scalability in tests using from tens to several thousand
processes.

Keywords: Voronoi dynamic domain decomposition, load balancing, particle methods, massive parallel computing

1. Introduction

The unsteady motion of materials in extreme condi-
tions is characterized by significant pressure and velocity
gradients, as well as the occurrence of free surfaces and
contact density discontinuities. Efficient parallel model-
ing of such motion encounters a problem of load balancing
between computational resources in use. Algorithms us-
ing a static spatial decomposition of the computational
domain cannot provide fair parallel efficiency, since the
distribution of the workload, determined by the computa-
tional time required for calculating the motion, is not tied
to the unsteady material flow. The existing load balancing
algorithms discussed below are also inadequate to adapt
to rapid changes in spatial distribution of material.

This work aims to develop a highly adaptable load
balancing algorithm which can be utilized in a parallel
program designed for multiprocessor computing clusters.
The efficient program must be able to load available pro-
cessors with useful work evenly and maximally, thereby
ensuring the high parallel efficiency of hydrodynamics sim-
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ulation of high-rate processes and high-speed motion pro-
duced in materials under extreme conditions. Such con-
ditions are realized in impact on heterogeneous obstacles,
shock wave propagation in mesostructures of porous mate-
rial, and other challenging problems which call for efficient
parallel codes.

Efficient parallel modeling of detonation of explosives
with pores and/or inert additives, splitting and merging
of droplets in high-speed flows, impact fragmentation of
brittle materials and high-speed collision of bodies is also
demanded. The computational challenge of simulating
such processes can be naturally addressed by employing
meshless particle methods, such as molecular dynamics
(MD) and smoothed particle hydrodynamics (SPH) meth-
ods, implemented in efficient parallel programs.

To model the processes listed above the meshless SPH
method [1] is preferable to the grid methods that encounter
great difficulties in the exact resolution of shock fronts,
contact surfaces and free boundaries (for the Euler formal-
ism) and the construction of movable adaptive grids under
the Lagrangian representation of continuum. In this paper
a further description is based on our experience in devel-
oping a massively parallel program for the contact SPH
method (CSPH) utilizing the Riemann solver [2] for in-
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terparticle interaction. However, an algorithm of dynamic
domain decomposition described below is quite universal
and can be applied not only for SPH, but it is suitable for
any other particle method with a finite radius of interac-
tion between particles; for example, for the direct Monte-
Carlo, particle in cell (PIC) and MD methods.

The optimal distribution of computational loads be-
tween threads, computational processes or processor cores
on a computing cluster is the cornerstone of efficient par-
allel program architecture. For the hydrodynamic mod-
eling, the problem of load assignment reduces to a parti-
tioning of samples, i.e., to the decomposition of simulated
material in samples between computational processes. An
even decomposition is necessary, but not a sufficient condi-
tion for optimality, since the data exchange between pro-
cesses is determined by numbers of interacting particles
that are found in different processes. These particles are
distributed in the boundary layers between the processes if
the spatial decomposition on subdomains among the pro-
cesses is used. The exchange of information on boundary
particles is required to support interaction between neigh-
boring subdomains that belong to different processes.

As it is shown in [3], the spatial decomposition al-
gorithms for MD method are optimal among other con-
cepts of decomposition (in comparison with decomposition
by particle numbers [3] or decomposition of a matrix of
forces [4, 5]), as they allow not only to equalize the work-
load between processes, but also to minimize the data ex-
change between them. An extensive data exchange, which
is required in the decomposition by particle numbers for
taking into account interaction of particles randomly dis-
tributed in the samples, does not allow achieving the high
computational efficiency on large clusters with limited net-
work bandwidth.

The most straightforward method of spatial decompo-
sition is a partitioning of a computational domain into
equal rectangular subdomains [6, 7]. In the context of
spatial nonuniformity of particle concentration, the parti-
tioning can be performed recursively, using the orthogonal
recursive bisection (ORB) method. General issues of ap-
plying this approach to particle methods with a finite in-
teraction radius were considered in [8], the specific case of
its application to SPH was presented in [9, 10]. The idea
of the technique is simple: a rectangular area is recur-
sively divided into two parts along the long side so that an
equal number of particles are found in each. The bound-
aries between rectangular subdomains are planes that are
parallel to coordinate axes. Balancing is carried out via
mobility of the planes separating those subdomains. But
with re-balancing, the connectivity between processes can
change significantly. Since subdomains have different num-
bers of neighbors, a reorganization of the decomposition
requires the extensive particle exchanges. This decom-
position method also does not take into account particle
mixing during their motion. All this, taken together, in-
creases the calculation time due to extensive particle data
exchanges in the boundary layers between the processes.

An approach that uses decomposition based on rect-
angles generated not from a large scale to a smaller one
like it is done by ORB, but from a small scale to a larger
scale is also possible. The computational domain can be
decomposed by a Cartesian grid into small cells, and the
decomposition is performed by distributing the groups of
microcells among the processes [11, 12]. Microcells of one
process must form a simply connected region. Microcells
can migrate between processes, but the connectivity of the
macro-regions remains constant. Such a limitation is a sig-
nificant drawback for our problems, where the particles can
significantly change the spatial arrangement because the
undesirable additional particle data exchanges between the
processes are required due to the migration of microcells
mentioned above.

The third, more complex type of decomposition is the
generation of an auxiliary grid in the computational do-
main, the cells of which, together with the particles in cells,
are distributed among the computational processes [13,
14]. Load balancing is possible throughout the mobility of
grid nodes, the connectivity of which is usually assumed
to be fixed. During the calculation, the grid nodes are
shifted towards the “load center” of the cells that have
this node in the vertex list. The load center is approx-
imated, for example, by the center of mass of the cells
containing particles. To save the grid structure, the global
decomposition adjustment algorithm is used. The main
disadvantage of this decomposition method in application
to our problems is that the grid cells can become signifi-
cantly deformed, which increases the exchange of particles
due to the lengthening of the cell boundaries and growth
of the contact surface of neighboring cells.

Many works were presented in an attempt to find the
most efficient technology of particle redistribution. The pro-
cedure for updating the decomposition should be consis-
tent with the load balancing data. It is stated [15, 16,
17] that the ideal decomposition algorithm must be of
diffusion type: the computational load should be redis-
tributed in a manner similar to the heat conduction pro-
cess. The workload is measured either proportionally to
a number of particles in the computational subdomains [7,
10, 12], or, more naturally, by the time spent on compu-
tations [6, 8, 18, 19].

The algorithm we propose is designed for massively
parallel systems with distributed memory. It uses the idea
of dynamic Voronoi decomposition [18, 19, 20], which is
combined with some load auto-balancing algorithm. In
accordance with [15, 16, 17], the load can be measured as
a ratio of the useful calculation time to the total wall clock
time required to accomplish a simulation step. We use this
definition of load and adopt the method of load balancing
for the Voronoi dynamic domain decomposition VD3 ini-
tially proposed for MD method in [18]. Another definitions
of load can be also utilized, in particular the number of
inter-particle interactions calculated in each Voronoi do-
main or the number of sent/received data, but aligning
such loads may not correlate with the real processor loads
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in highly inhomogeneous flows.
Voronoi decomposition is uniquely defined by a set of

generator points of the Voronoi diagram, where each point
is associated with its cell and handled by a single process.
The particles nearest to the Voronoi cell generator point
are stored in memory and updated by a corresponding
process. The mobility of the Voronoi diagram is realized
through a mobility of the point generators because their
positions are bound to movement of their own particles.
The process load for each Voronoi cell can vary in time,
which is caused by the following factors. First, the num-
ber of particles in the cell can vary due to algorithmic
reasons (splitting and merging of particles, correction of
the boundaries of the diagram due to displacements of the
centers of the diagram), as well as to physical reasons in-
cluding changes of density distribution and/or disruption
of the continuity in media surrounding generator point.
Secondly, the physical processes inside all particle are lo-
cal, and therefore can be calculated by their own algo-
rithms for different times. The above factors lead to the
fact that sets of SPH particles in each Voronoi subdomain
are processed for different times, which means an uneven
load of processes. Therefore, the positions of the point
generators are further adjusted by the balancing displace-
ments resulting in particle transfer from heavily load cells
to lesser load cells, which balances the process loads.

The balancing displacement can be expressed in vari-
ous ways, but the known formulations utilize only the two-
body terms describing the pair contributions of neighbor
Voronoi subdomains [18, 19, 20]. Such displacement based
merely on two-body contributions does not take into ac-
count the presence of other neighbor subdomains. In other
words any two-body displacement is a rough approxima-
tion of the best balancing displacement which must depend
on all Voronoi subdomains involved in decomposition.

Here we propose a new expression for balancing dis-
placement using the angle-dependent multi-body terms,
which speed up the convergence to a well-balanced de-
composition. It includes the two-body terms and either
the tree-body terms for plane decomposition or the four-
body terms for volumetric decomposition.

This multi-body auto-balancing algorithm for the VD3

combined with the SPH method is implemented in our par-
allel CSPH code, which is proved to be highly efficient in
several tests. The used algorithm for VD3 makes it possi-
ble to take into account the redistribution of masses within
a computational domain in a natural way during model-
ing. The algorithm is able to adapt to arbitrary mass flows
with minimal exchange of particles between cells without
requiring the preservation of connectivity between the di-
agram generators. The data exchange between pairs of
processes/cells of the diagram is always local. The load
balancing is fully adaptive, and it is not necessary to re-
build it from scratch to maximize the parallel efficiency of
simulation. The cell boundaries through which the par-
ticle exchange is performed usually have less area than
in the methods with block/rectangle decomposition of the

Figure 1: The schematic traces (1 and 2) of the parallel processes
arranged by the useful times utilized for specific SPH calculations,
shown by green lines, within a simulation step and the corresponding
distributions of the number of processes as functions of the useful
time. Load balancing 1→ 2 leads to a narrower distribution, which
in turn results in shorter waiting times and faster simulation. Here
the sum of useful times and exchange times spent by all processes is
assumed fixed for simplicity. In real conditions, the exchange times
are usually reduced with balancing.

computational domain.
The Voronoi decomposition with this load balancing

does not have disadvantages typical for the decomposi-
tion methods listed above. Our computational experience
shows that the geometry of cells tends to a honeycomb
structure that has the minimum volume of cell boundary
layers. It maximizes the loads by reduction of the number
of particles to be exchanged. The Voronoi subdomains also
tend to have an equal number of neighboring subdomains
while the connectivity of subdomains is not fixed and can
change following the material motion. The changes of the
connectivity remain local in this case, that does not re-
quire massive communications between all processes be-
cause communications between subdomains are carried out
only within the circle of the nearest neighborhood. Thus,
despite the fact that the Voronoi decomposition is more
difficult for programming than the methods mentioned
above, it has undeniable advantages in the parallel mod-
eling of complex flows triggered by extreme conditions.

2. Simulation time minimization by load balancing

Once all particles of simulated samples are distributed
among the processes following the Voronoi subdomains,
simulation of particle motion starts. Each process that
handles particles is hereinafter called as a worker. Prepa-
ration of neighbors list and calculating the interaction of
particles are necessary parts in any particle method im-
plementation, so their execution should be considered as
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a useful work utilized locally by each computational pro-
cess/worker. However, the parallel algorithms have to
carry out additional work on data exchange, which can
be also considered as a necessary work. Having a well-
optimized useful and necessary work controlled essentially
by a total number of particles, the simulation performance
can be improved only by minimizing the times when pro-
cesses stay in the idle state while waiting for necessary
data from other processes. Such minimization of the wait-
ing times leads to reduction of the elapsed wall clock time
of simulation.

Let te be an elapsed time used for one simulation step,
which can be easily evaluated in a program. It is deter-
mined by the barrier synchronization between all worker
processes, that is the workers cannot proceed to the next
step until all workers complete the current step. This
unavoidable synchronization results in the following state
∀k : tek = te.

It is also easy to measure the useful time tuk spent by
a worker k to perform the inter-particle interactions during
one simulation step. The remaining time txk is determined
through the difference between the elapsed time per step te

and the useful time:

te = tuk + txk. (1)

In general, the communication time txk can be split into
the idle or waiting time twk and the data exchange time texk ,
which gives

te = tuk + texk + twk , (2)

Such simplified partitioning the elapsed time is used in
Fig. 1 where the schematic traces of many parallel pro-
cesses are presented.

The parallel modeling efficiency of a worker k can be
characterized by a normalized load:

Lk =
tuk
tek
, 0 < Lk < 1,

which is called hereafter as a load of worker k.
In practice the several programs executed simultane-

ously on same node may compete for CPU resources. Nev-
ertheless, it is usually possible to count the processor-
dependent time which is exclusively spent by CPU on ex-
ecution of a particular nonparallel code. Then the useful
work, which usually is the most resource intensive part,
can be evaluated as an elapsed useful time tu or as a use-
ful CPU-time tuCPU. The fraction fp = tuCPU/t

u defines the
utilized part of computational resource. It can be used to
improve the definition of worker load in a competitive ex-
ecution environment as:

Lk =
tuk
fpk t

e
k

.

This formula can be also applied to take into account
the different computational performances of various CPUs
in use, say in the computational grid environments [18].

We assume that the program exclusively runs on a ho-
mogeneous computing cluster without other competing tasks,
so ∀k fpk = 1. The relation (2) can be rewritten by aver-
aging with the number of workers:

te = 〈tu〉+ 〈tex〉+ 〈tw〉.

The total useful work executed on all involved processes
Np is almost fixed and determined by a total number of
particles involved into particular simulation, so the aver-
age useful time 〈tu〉 =

∑
k t

u
k/Np = const does not de-

pend on the distribution of SPH particles among the pro-
cesses. The simulation performance can reach its maxi-
mum if both 〈tw〉 and 〈tex〉 are minimized.

Any spatial decomposition algorithm should aim to
minimize the waiting time 〈tw〉 and exchange time 〈tex〉.
The exchange time depends on the number of particles to
be exchanged and the network bandwidth, as well as on
the network latency, but the latter is assumed to be short
enough and not taken into account in this work. Let us
assume that the exchange time is a monotonic function
of the number of particles in each process, and the total
exchange time is a constant: 〈tex〉 =

∑
k t

ex
k /Np = const.

Thus the shortest wall-clock time for one step is equal
to 〈tu〉+ 〈tex〉, which corresponds the optimal load for all
workers L∗k = 〈tu〉/(〈tu〉 + 〈tex〉), which can be reached
at ∀k twk ≈ 0. Now it is clear that the net efficiency of
parallel modeling increases with reduction of the time gap
between the heavily loaded workers and a medium-loaded
one. To do this, it is necessary to transfer particles from
the heavily loaded processes to the less loaded ones in order
to make the distribution of processes over the useful time
narrower, as illustrated by Fig. 1, which leads to 〈tw〉 → 0
and makes the corresponding distributions of both waiting
and exchange times narrower as well.

In practice, it is difficult to determine which time is
spent for waiting of data transfer, and which for data ex-
change itself, especially if non-blocking communications
are used. The nonblocking communications makes possi-
ble to mask the waiting time for data transfer: calculation
of all particle pairs pertaining to a process can be per-
formed while this process is waiting for receiving particles
from other processes, see the following Sections 4.2, 4.3.
Thus, in contrast to exchange and waiting times, the us-
age of useful time, which is measured easily, for definition
of load by the ratio (2) is reasonable.

To equalize the loads of all workers involved in mod-
eling we propose the new multi-body algorithm for the
balancing displacements of Voronoi diagram.

3. Autobalancing Voronoi dynamic domain decom-
position

3.1. Voronoi domain decomposition

The Voronoi diagram according to [21] is a decompo-
sition of a closed subspace Ω̄ ∈ Rn (a modeled volume
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Figure 2: Displacement of the Voronoi generator for each subdo-
main is determined by a weighted sum of its material flow movement
for a simulation step and balancing displacements for pairs with
surrounding Voronoi subdomains to equalize the loads of the cor-
responding processes.

or a computational domain in an n-dimensional space) be-

tween NV̂ subdomains {Vk}NV̂

k=1 based on distance to a spe-

cific set of Voronoi generators {Gk}NV̂

k=1 points:

V̂k = {x ∈ Ω : |x− gk| < |x− gl|, l = 1, . . . , NV̂ , l 6= k},
(3)

where gk is a radius-vector of the point Gk. The defini-
tion (3) states that a single Voronoi subdomain is a convex
polytope which contains all points that are closest to its
generator with respect to any other generator. The Voronoi

diagram is unique for a given set {Gk}NV̂

k=1.
Suppose there is a material sample or a set of sam-

ples represented by material particles in a computational
domain, and a job with Np parallel processes can be sub-
mitted on a computing cluster. Let each k-process op-
erates one Voronoi subdomain V̂k. A set of generator

points {Gk}Np

k=1 can be placed someway in this domain,
and a peer-to-peer connection between running processes k =
1, 2, . . . , Np is established. Then all particles of the sam-
ples can be assigned to different processes according to
the particle positions. That is the data structures describ-
ing particles in the subdomain V̂k is stored in the memory
of the process k. If a particle locates exactly on a boundary
between V̂k and V̂l, then it is associated with the subdo-
main V̂min{k,l}.

The VD3 algorithm for SPH proposed in this paper al-
lows a generator to move following the local material flow
of the SPH particles assigned to the corresponding subdo-
main, while the balancing algorithm corrects the displace-
ments of generators to achieve a load balance between sub-
domains (i.e., between the corresponding processes), as it
was suggested in [18] and is illustrated by Fig. (2). Once
the new boundaries for new generator positions are found,
new assignment of particles is realized by sending all par-
ticles located beyond the boundaries to the corresponding
subdomains/processs using the definition (3).

The information only about neighboring Voronoi sub-
domains, that are located within a lookup radius Rk >
|gk − gl|, l 6= k, is required for V̂k to organize a proper
particle re-assignment. By exchanging particles with all
adjacent subdomains/processes, the V̂k gets all particles
located within its boundaries and gives away all that are
not. Using the distance Rk for determining the subdomain
neighborhood is necessary because a mixing of subdomains
is expected and Voronoi diagram connectivity may change.
To reduce the number of interprocess communications it
is appropriate to choose Rk large enough to ensure that
all neighbors are listed.

The accuracy of simulation in a large computational
domain, where particle coordinates vary in several orders
of magnitude, is subjected to truncation errors in the cal-
culation of interparticle distances. To reduce these errors,
the different local coordinate systems for each Voronoi sub-
domain V̂k are used instead of a global computational do-
main system. A good choice for an origin of a local coordi-
nate system is a geometrical center of Nk particles inside
domain:

rc,k =
1

Nk

Nk∑
i=1

ri. (4)

Then the values of particle coordinates are restricted by
subdomain dimensions. However, the truncation errors
may appear if this center moves with particles and also
after particle transfer between different subdomains. To
avoid the effect of coordinate system change the origins
of local systems are assigned to the nearest mesh site in
which the mesh size equals the unit of length in use. Thus,
the coordinate of a particle experiences occasionally an in-
teger shift without truncation error, when the origin ob-
tains a new mesh position or the particle is transferred be-
tween subdomains. Generator coordinates are not rounded
to the mesh size, i.e., they remain in the global computa-
tional domain system.

3.2. Load balancing via two-body displacements of diagram
generators

The simplest load balancing formula appears as a vec-
tor sum of two-body displacements which linearly depend
on pairwise load imbalances between neighbor Voronoi sub-
domains [18]:

∆gk =

Mk∑
l

∆gk,l =

Mk∑
l

Dsh
k,l

Lk − Ll

Lk + Ll

gkl

|gkl|
, (5)

where Dsh
k,l is a half width of layer to send/receive parti-

cles introduced further in Section 4.3, Mk is the number
of neighbor subdomains of V̂k. The length factor Dsh

k,l is
chosen empirically to provide the two-body displacements
be within the thickness of boundary layer in order to keep
the overhead time required for particle exchange between
subdomains small enough.
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(a) L0 = Lh, L1,2 = Ll < Lh (b) ∆g0 ∼ 2(Lh − Ll),
∆g1,2 ∼ (Lh − Ll)

(c) α1,2 ∼ (Lh − Ll),
α0 ∼ 0

(d) L0 = L1 = L2

Figure 3: Two-body and three-body balancing displacements for the simplest three subdomain decomposition of material disk. The special
initial decomposition (a) with severe imbalance is chosen to illustrate the failure of mere two-body displacements (b) to reach the best decom-
position (d). Dashed lines indicate the final boundaries between Voronoi subdomains after many iterations. Pure rotation of the generator
points around the common point O012 of Voronoi subdomains leads to a better balanced decomposition (c). Only combination of two- and
three-body terms results in the best decomposition (d) with the minimal length of subdomain boundaries.

This two-body algorithm (5) works very well if the local
load imbalance is modest, because the sum of small two-
body displacements gives a good approximation of the un-
known perfect balancing displacement in such conditions.
Here this algorithm is improved for the severe local im-
balance by taking into account three-body terms in 2D
decomposition and four-body terms in 3D one.

3.3. Three-body correction of balancing displacement for
2D Voronoi diagram

The usage of two-body load balancing displacements (5)
may require many iterations in order to reach a good lo-
cal balance, if a significant imbalance appears between the
neighbor subdomains as a result of the bad initial decom-
position or abrupt changes of mass distribution in the sim-
ulated material flow. The latter can be produced by shock
compression, jet collisions, void formation and other high-
rate processes which are typically produced by the extreme
conditions. To speed up the convergence of balancing it-
erations a higher approximation to the best balancing dis-
placement depending on whole Voronoi diagram should be
taken into account. Since the expression for such displace-
ment is unknown we consider here the simplest decom-
position to deduce a form of three-body term which can
improve the load balance for a shorter time.

Let us consider a 2D decomposition of a uniform ma-
terial disk between three Voronoi subdomains as shown
in Fig. 6(a). Here the initial decomposition is chosen to
gives the large difference ∆L = Lh − Ll ≈ Ll ≈ 0.25 be-
tween the low load Ll ≈ 0.25 and the high load Lh ≈ 2Ll ≈
0.5, which are assumed to be proportional to the corre-
sponding subdomain areas within the disk area of unity.
It is clear that the usage of two-body formula (5) alone
requires many iterations to reach a good balance but will
never lead to the perfect decomposition with the shortest
subdomain boundaries shown in Fig. 6(d). The parallel
displacements of all three subdomains are responsible for
such inappropriate behavior.

To improve the balancing algorithm we suggest to use
rotations around the common point O012 of three contact-
ing subdomains as shown in Fig. 6(c). Such rotations are
definitely required to push the subdomain positions in di-
rection toward the best decomposition. To realize such
rotations the three-body terms are added to the two-body
balancing displacement (5) as follows

∆gk = (1− σ)
∑
l

∆gk,l + σ
∑
l

∑
m

∆gk,l,m, (6)

where the three-body terms are

∆gk,l,m = −ck + M (ck × cm, αm) M (ck × cl, αl) ck,

cp = gp − oklm, p = k, l,m. (7)

Here the M(a, α) matrix is a rotation matrix which gen-
erates in-plane rotation by the angle α around the nor-
mal a at the common point Oklm. The forms of an-
gles αl = π/3 · (Ll − Lk)/(Lk + Ll + Lm) and αm =
π/3(Lm − Lk)/(Lk + Ll + Lm) are chosen to provide the
rotation resulting in the best angle of 120◦ between the
three subdomains shown in Fig. 6d after single iteration.
The parameter σ is a weight of three-body terms. The vec-
tor oklm is a radius-vector to position of Oklm, which is
actually the center of circumcircle touching the generator
points Gk, Gl, Gm. Such three-body correction in multi-
subdomain decomposition can be applied for all triplets
of contacting subdomains having the common point. To
stabilize the balancing shift part

∑
l

∑
m ∆gk,l,m we limit

its length to maxl=1,...,Mk
Dsh

k,l in dynamic simulations as
a change in the diagram connectivity can make the shift
too large, which is undesirable as it causes extra useless
particle exchanges.

The relation (6) can be generalized to obtain four-body
displacements ∆gk,l,m,n for balance correction in 3D dia-
gram. The 3D rotation is performed on a circumsphere of
four generator points of contacting subdomains V̂k, V̂l, V̂m,
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V̂n having a common point (normally four subdomains are
in contact in 3D diagrams). To illustrate the improvement
of load balancing by the multi-body terms we present only
the tests of three-body correction for 2D diagrams in this
work, see Section 5.

3.4. The cumulative movement of Voronoi subdomain

A new position ĝk of k-generator can be defined as
a weighted summation of average movement of all particles
within V̂k during a short period of time and the balancing
displacement ∆gk as follows:

ĝk = (1− θ)(gk + γ∆gk) + θ(rc,k + ∆rc,k), (8)

where gk is the previous position of generator and rc,k the
previous geometrical center of the subdomain (4), ∆rc,k
is a current average Lagrangian displacement vector of
those particles, and θ ∈ [0, 1] is a parameter specifying
whether the Voronoi subdomain movement is preferably
determined by the movement of particles (4) or by the load
balancing mechanism (6). The adding of the geometrical
center of all particles rc,k in the cumulative Voronoi sub-
domain movement (8) makes it responsive to any particle
exchange between subdomains even in static samples with
material at rest. It drives the subdomain shapes to more
regular forms, which minimizes the total length of sub-
domain boundaries. As a result the balance convergence
is accelerated and the overall parallel performance is im-
proved.

A simplified diagram shown in Fig. 2 illustrates the lin-
ear combination of the balancing displacement, material
movement and redistribution between subdomains. Static
spatial decomposition is realized by γ = θ = 0. If θ = 1
there is no balancing displacements and the evolution of
VD3 is exclusively controlled by the material motion. The-
oretically, the choice of θ = 0 provides the maximal con-
vergence rate but it is inadequate for simulation of fast
material motion as it leads to irregular subdomain shapes
and large jitter of their positions, which results in exten-
sive data exchange overheads. The parameter θ should be
chosen empirically to provide a shorter simulation time on
a specific cluster, because it depends on the bandwidth
of internode fabric in use. The θ = 0.25 is used in test
modelings that we discuss below in Sections 6 and 7.

The presented load balancing strategy results in that
a heavy-loaded worker attracts less-loaded neighbors and
distributes its excess particles among them. The process
is running iteratively, reducing the communication wait-
ing time and achieving the better parallel efficiency step
by step. To reduce the computational overheads for re-
balancing at each simulation step, the load balancing al-
gorithm is executed once per a time interval consisting
of Nupd simulation steps in our code. During this inter-
val, the SPH particles are not allowed to be reassigned
between subdomains.

(a) (b)

Figure 4: (a) Interaction of the central particle i with neighboring
particles j in the SPH method. (b) SPH with the incorporated Rie-
mann problem solution. Interparticle interaction is approximated
with Riemann problem solution at the interface between a pair of
particles.

4. Application of VD3 to contact SPH

4.1. Smoothed particle hydrodynamics with incorporated
interparticle Riemann problem solution

The Voronoi auto-balancing decomposition algorithm
is suitable for any numerical method that represents mate-
rial as a set of discrete objects interacting by short-range
forces. In SPH, each particle interacts only with those par-
ticles that are within the smoothing kernel W (|rij |, hij) of
support area, where hij is a smoothing length between
the particles i and j (see Fig. 4a). The limited interaction
radius makes it possible to take into account the inter-
action of SPH particles only within the Voronoi cell and
with other cells’ bordering particles in the zone determined
by the radius of the smoothing kernel. In this case, load
balancing can be efficiently performed by particle transfer
between adjacent Voronoi cells.

Interaction of particles in CSPH [2, 22] is provided by
the Riemann solver applied for each pair i–j of interacting
particles i and j, as illustrated by Fig. 4b. The velocity
components vRi = vi ·eR, vRj = vj ·eR of the particles i and

j are used as left and right state velocities, where eR =
(rj − ri)/|rj − ri| is a direction vector. Then, the velocity
υ∗Rij and pressure P ∗ij can be obtained by the Riemann
solver. CSPH-approximations of conservation laws can be
found as:

dρi
dt

= 2ρi
∑
j

mj

ρj
(vRi − v∗Rij )eR · ∇iWij (9)

dvi

dt
= − 2

ρi

∑
j

mj

ρj
P ∗ij∇iWij . (10)

Here rij = |ri− rj |, Wij = W (rij/hij) is a smoothing ker-
nel between particles i and j, hij is a smoothing length.
The kernel gradient equals to ∇iWij = −eRW ′ij . Un-
like [2], our code uses a conservative formulation of the en-
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Figure 5: A uniform cubic lattice with cell size Dc is constructed
in a Voronoi subdomain corresponding to the generator point Gk.
The green-colored Voronoi subdomain is surrounded by the gray zone
that belongs to the neighbor subdomains. Zone width and alien
particles within are synchronized with the neighbor subdomains at
a neighbor list update. The darker green area is a part of Voronoi
subdomain Vk, information about which the process k provides to
its neighbors. The area Bi of the linked list for the SPH particle i is
shown in the left inset.

ergy conservation law:

dEi

dt
= − 2

ρi

∑
j

mj

ρj
P ∗ijv

∗R
ij eR · ∇iWij , (11)

where the total energy Ei = ei +v2i /2 is the sum of the in-
ternal and kinetic energies of a unit mass in i-particle.

The high energy density physics usually addresses the prob-
lems where the SPH particles can contract or expand eas-
ily, so the variability of the smoothing length is signifi-
cant. The particle size is defined as di = 3

√
mi/ρi. To

ensure the pair symmetry of interparticle interaction, it is
necessary to specify the symmetric smoothing distance:

hij = (di + dj) /2. (12)

The interaction distance of the particles depends on a cho-
sen smoothing kernel, and generally W (rij/hij) > 0 for
|rji| < κ hij , where κ is a radius of smoothing kernel. All
results presented in Sections 6 and 7 are obtained using
the Wendland kernel C2 [23] with the radius of κ = 1.936.

4.2. Neighbor particle lists used in Voronoi subdomains

For the direct search of neighboring particles, theO(N)
operations are required to find all particles j interacting
with a chosen central particle i ∈ [1, N ]. The search for
all interacting pairs requires O(N2) operations. Given the
finite interaction radius, the number can be reduced to
O(N) using a list of neighbor particles.

Generation of a neighbor list for particles within each
Voronoi subdomain takes a considerable amount of time.
Moreover, the neighbor list which includes “alien” parti-
cles from adjacent boundary layers with each surrounding
Voronoi subdomains is required to find all neighbor par-
ticles. To reduce the computational overheads for neigh-
bor list generation the list can be updated once in several

time steps by utilizing the Verlet approach [24]. The idea
is that neighbors of an individual particle are considered
within a sphere which includes not only interacting par-
ticles but also ones in a buffer shell with a large enough
horizon radius Rhrz which is larger than an interaction
radius. During several simulation steps this buffer may
provide particles for the further interaction without up-
date of the neighbor list. Such an enhanced neighbor list
is called as the Verlet list (VL). The “alien” particles are
also included in the VL for several steps Nupd between the
list updates. The list of neighbors is updated after each
rebalancing of Voronoi decomposition, when boundary lay-
ers may change and the transfer of particles between the
processes is allowed.

The efficiency of using the VL depends much on the
buffer size and number of simulations steps which may
proceed without the list update. In compressible SPH it
is convenient to consider neighbors of a particle i in the
individual sphere of the horizon radius Rhrz

i = Rint
i +Rbuf

i ,
where Rint

i is a maximal local interaction distance, Rbuf
i =

βRint
i is a buffer size with the parameter β > 0. If the

buffer size is too small (β → 0) the neighbor list must be
constructed at each simulation step to be sure that inter-
particle interaction is calculated properly. The number of
neighbors within Rhrz grows as (1 + β)3, thus a larger β
results in greater memory consumption and necessity to
check distances with very many particles at each step that
also increases computing time. Then an optimal β and
a number of steps between updates Nupd can be found in
a few trial tests. We use Nupd = 10÷15 and β = 0.3÷0.6
depending on specific simulation scenario.

To avoid calculation of O(N2
k ) iterparticle distances in

order to construct the VL, all particles are associated with
cubic cells of a mesh, which covers a Voronoi subdomain
together with its “alien” particles in surrounding boundary
layers as shown on Fig. 5. The two biggest particles with
diameters dmax

1 and dmax
2 should be found in the Voronoi

subdomain and boundary layers to define the cell size Dc

Dc =
1

2
(1 + β)κ(dmax

1 + dmax
2 ). (13)

where κ is determined in section 4.1. Such cell size defini-
tion guarantees that all “native” and “alien” neighbors of
a central particle are allocated within 33 = 27 cells around
it. This region is denoted as Bi in Fig. 5.

Indices of particles within all cells of the mesh are
stored in a linked list (LL) having a form of integer vector,
which size is equal to number of all Nk particles within
a given Voronoi subdomain. To keep entry indices for LL
a 3D integer array with dimensions corresponding to the
mesh is allocated. If a cell is not occupied by particles the
corresponding element of this 3D array is marked as zero.
Otherwise, the index of first particle found in each cell is
stored in the 3D array. This index points to the address of
LL element where a next particle index in the same cell is
allocated, as it is described in [24]. This linked procedure
continues until the particle index points to a LL element
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Algorithm 1 Data exchange and decomposition update after Nupd simulation steps

1: procedure
2: . /*Update Voronoi decomposition for all k-processes*/
3: Make balancing shift Gk using Eq. (8) from subsection 3.1.
4: Reassign particles between V̂k and its neighbors V̂l using definition (3) from subsection 3.1.
5: Calculate exchange layer width Dsh

k,l from Eq. (16) from subsection 4.3.

6: Send lists of “native” particles in the exchange boundary layers to V̂l.
7: Obtain lists of “alien” particles in the exchange layers from neighbors V̂l.
8: Build two separate Verlet lists for “native” and “alien” particles in V̂k.
9: . /*Perform next Nupd simulation steps*/

10: for i = 1 to Nupd do
11: request for information about “alien” particles;
12: do SPH calculations of interaction between “native” particles and “natives”;
13: get information about “alien” particles;
14: do SPH calculations of interaction between “native” particles with “aliens”;
15: renew particle positions and states and make global synchronization of SPH time step;
16: count the useful time tuk;
17: end for
18: Count the elapsed time tek to evaluate a new load Lk, and repeat this procedure.
19: end procedure

containing zero, which ends the particle list for the cell.
Using the linked list, the Verlet list can be generated per-
forming O(Nk) calculations of distances between particles
located only in surrounding 33 cells.

A list of particles within Bi obtained from the LL is
used to determine the maximal interaction distance Rint

i

for i-particle as follows:

Rint
i =

1

2
κ
(
di + max

j 6=i∈Bi

dj

)
, (14)

and then the horizon radius is given:

Rhrz
i = (1 + β)Rint

i , (15)

which is definitely smaller than Dc from Eq. (13). Such
extended lists of neighbor particles for all Bi are used to
build the VL containing only neighbors indices of particles
which are placed within Rhrz

i .
Since modern computing systems have several levels

of the memory hierarchy (from fast low-level CPU cache
to slow RAM), simulation can be accelerated by increas-
ing the probability of cache hits. To do so the particles,
which spatially close to each other in simulation domain,
should have the closer addresses in a linear RAM space.
Then the calculation of their interactions is likely to be
executed with using particle coordinates allocated in fast
CPU cache. To utilize this idea the re-numbering and
memory reallocation of neighbor particles using the Verlet
list is performed from time to time. This procedure helps
to decrease the cache missing rate, which is specifically
amplified by extensive particle exchange between Voronoi
subdomains, at which the arrived particles got new indices
leading to the wide spread of particle indices in the Verlet
lists. If the number of particles per a core is not too small

and the particle exchange involves a significant number
of particles at each step, the re-numbering may provide
a speedup up to 2 times with respect to a simulation in
which such memory re-ordering of particles is not used.

4.3. Adjusting interprocess data exchange for SPH

It is clear that the minimal width of boundary layer
should be chosen to include all interacting particles near
the boundary between Voronoi subdomains. As soon as
we use the Verlet neighbor list it is necessary to acquire
information about “alien” particles within a surrounding
lookup area at every time step. Then for all pairs of con-
tacting Voronoi subdomain k and l the width of boundary
layer Dsh

k,l must be determined. Using the maximal horizon

radii in the Voronoi subdomains V̂k and V̂l we determine
a layer width Dsh

k,l in a symmetric pairwise form as follows:

Dsh
k,l = max

[
max
i∈V̂k

Rhrz
i , max

i∈V̂l

Rhrz
i

]
. (16)

That definition guarantees that the buffer zone with hori-
zon radius Rhrz

i for each particle near the boundary is
correctly filled with the “alien” particles. It is required
to generate the identical lists of interactive “native–alien”
particle pairs in both contacting Voronoi subdomains.

The boundary layer width (16) is then directly linked
to the particles buffer size Rbuf. By varying parameters
β and Nupd, one may get not only optimal neighbor list
length but also minimize the amount of data transfers and
reduce both the exchange and elapsed times. It is possible
to develop an algorithm for dynamic adjustment for β and
Nupd during simulation aiming to reduce the elapsed time
depending on simulation conditions, but this question is
beyond the scope of this paper.
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It should be noted that each process associated with
Voronoi subdomain does not calculate “alien–alien” inter-
action. It receives the updated particles lists from its sub-
domain neighbors at each simulation step and handles only
“native–native” and “native–alien” interactions. The code
for these two parts can be executed separately, that pro-
vides the opportunity to mask waiting for “alien” particles
by using asynchronous non-blocking MPI-communications
and get them during calculation of “native–native”.

The pseudocode listed in Algorithm 1 summarizes all
parts of the VD3 and the auto-balancing algorithm de-
scribed in the above subsections of this section 3.

5. Convergence of balancing algorithm with differ-
ent displacements

The cumulative movement of Voronoi subdomain (8)
depends on the material motion, the shift of geometrical
center due to particle exchange between the subdomains,
and the balancing displacement. The latter consists of
two-body and three-body terms (6). The convergence with
using these terms is tested by simulations of a simple sys-
tem similar to that discussed above in subsection 3.3.

A disk of material at rest with the height of 0.1 m and
radius of 0.45 m is represented by uniformly distributed
127 230 SPH particles. Initially the disk is decomposed
between three subdomains as shown in Fig. 6a. Then this
imbalanced decomposition is used as a starting point in
four convergence tests to obtain the maximal difference of
loads as a function of iteration number. Figure 6 shows
the frames with decomposition at the iteration numbers
for which the following convergence condition is met for
the first time:

3∑
k=1

|ĝk − gk| < 0.01. (17)

The convergence of the load difference obtained by
the different balancing algorithms is presented in Fig. 7.
The goal is to check convergence to the best decomposi-
tion in given test, which consists of three equal subdomains
having the common point at the disk center. Such decom-
position has also the minimal length of subdomain bound-
aries which provides the smallest data exchange between
the corresponding processes.

The mere two-body displacements are realized by the
parameters σ = θ = 0 and γ = 1 in Eqs. (6) and (8). Such
algorithm cannot change the angles between subdomains
as their movements are oriented to the single heavy loaded
subdomain, which preserves the initial decomposition ge-
ometry as seen in Fig. 6b. As a result, this two-body
algorithm gives the slowest convergence and fails to reach
the best decomposition in the given test.

By contrast, the mere three-body displacements (at
σ = 1, θ = 0 and γ = 1) are able to rotate the subdo-
mains and reach the better angle between them as shown
in Fig. 6c. However this algorithm cannot move a common
point of three contacting subdomains. It leads to a slow

convergence and the best decomposition cannot be reached
again.

The combination of two- and three-body terms (σ =
0.5, θ = 0 and γ = 1) accelerates the convergence notice-
ably as seen in Fig. 7. Such fast convergence can be even
faster if the balancing algorithm utilizes Eq. (8) for cumu-
lative movement of Voronoi diagram is applied. It leads to
the best decomposition shown in Fig. 6e for several itera-
tions.

6. Parallel performance in static tests

The primary goal of the VD3 with load balancing algo-
rithm is to reduce a wall clock time required for simulation
of nonuniform flow of materials. But first we have to check
the strong scalability of VD3 in static tests where material
stays at rest all the simulation time, and only the num-
ber of CPU cores and positions of Voronoi generators can
change. That allows testing the strong scalability in ideal
conditions, without an effect of material motion on the re-
alignment of decomposition. Dynamic testing the adaptive
behavior of the algorithm under conditions of high-rate
mass redistribution is discussed in the next Section 7.

All static and dynamical tests were performed on our
institute-wide 96 node cluster connected by InfiniBand
(4X FDR) fabric with 56 Gb/s bandwidth. Each node
is equipped by two 8-cores CPU Xeon E5-2670 operated
at 2.6 GHz.

The static tests with a steady sample are performed
to trace the rearrangement of the initial decomposition to
a well-balance one using the balancing algorithm and the
dependence of calculation speedup on a number of pro-
cesses involved. 2D decomposition is applied to a quasi-
two-dimensional sample for clarity of decomposition vi-
sualization. A thin square plate of material with sizes
Lx = Ly = 1 m, Lz = 0.015 m is considered at rest.
The periodical boundary conditions (PBC) are imposed
along all axes. The material is represented by about 52
millions of SPH particles. The number of particles remains
constant in all static tests in order to check the strong
scalability of our code, that is, the growth of calculations
speedup with the increase of CPU cores Np involved in
decomposition.

Initially the load imbalance is introduced to the system
by splitting each quarter of square sample by Voronoi sub-
domains in proportions 3Np/8, Np/4, Np/4, Np/8 of total
Np MPI-processes as shown on Fig. 8a. To initiate the
decomposition rearrangement inside those quarters, small
random shifts to initial Voronoi generator positions were
applied. Due to memory limitation in a computing node
of the used computing cluster, Np is only varied from 32
to 1024.

Initial imbalance results in that almost half of the elapsed
simulation time is spent on waiting for heavily loaded pro-
cesses handling Np/8 Voronoi subdomains to accomplish
their useful calculations. That involves Voronoi genera-
tors of less loaded subdomains into movement toward the
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(a) Initial state (b) σ = 0, θ = 0,
21 VD3 iterations

(c) σ = 1, θ = 0,
21 VD3 iterations

(d) σ = 0.5, θ = 0,
17 VD3 iterations

(e) σ = 0.5, θ = 0.25,
11 VD3 iterations

Figure 6: Decompositions attainable from an initial bad one (a) by the different balancing algorithms using: (b) the two-body terms only,
(c) the three-body terms only, (d) the combined two- and three-body balancing displacements, and (e) the cumulative Voronoi movements
by Eq. (8), which leads to the perfect decomposition. Simulations were performed with material disk at rest. The shown frames correspond
to the iteration numbers when the convergence condition (17) is satisfied for the first time. The corresponding load balances as functions of
iteration number are presented in Fig. 7.
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Figure 7: Convergence of different balancing algorithms starting from
an imbalanced decomposition shown in Fig. 6a. A well-balanced de-
composition is not established for the mere two-body displacements,
see the corresponding frames in Fig. 6(b–e). The fastest convergence
is realized by the cumulative movement formula (8).

adjacent heavy loaded ones, which leads to transfer of par-
ticles among them. After some balancing iterations, the
decomposition reaches a well-balanced geometry. At this
moment both the waiting time for communication between
the neighboring Voronoi subdomains and the elapsed time
per a simulation step reaches their minima (Fig. 8b). In
such state, the numbers of particles in all subdomains are
almost equal.

Figure 8c shows the evolution of the calculation speedup
defined as a ratio of the wall clock elapsed time t∞32 per
a step in a well-balanced final decomposition with 32 pro-
cesses to the elapsed times measured during simulations
using from 32 to 1024 processes. It is clear that the con-
verging to a well-balanced state takes more iterations for
a larger number of Np. The reason is that two types of
Voronoi subdomains are initially generated in the test:
those located near the boundary between the quarters where
they are subjected to significant load imbalance with sub-
domains from other quarters, and the subdomains located
inside each quarter, which are in a good balance with sur-
roundings. For a larger number ofNp, a ratio of the bound-
ary subdomains to the inner ones becomes smaller, and

more iterations are required to involve the internal subdo-
mains in the balancing process.

It is worth to note that the Voronoi subdomain shapes
transform to hexagonal during load balancing. It is be-
cause the hexagon has the lowest number of neighbors and
a ratio of its perimeter to area is the smallest among reg-
ular polygons, which allows to minimize the number of
alien particles in boundary layers and thereby to reduce
data transfer and communications between subdomains.

Final speedup that is shown in Fig. 8d is measured
for well-balanced decompositions with using 32, 64, 128,
256, 512, and 1024 CPU cores. One can notice, that the
speedup is almost linear up to 1024 cores. Final devi-
ation from the perfect linear speedup for 1024 cores is
caused by the increased ratio between the time required
for data exchange and the useful time for particle simula-
tion. The reason for it is the growth of particle numbers
in boundary layers between subdomains, which leads to
a growth of data exchange per a simulation step. With
the increase of boundary layer area and the corresponding
decrease of inner area of subdomains, the data exchange
masking by “natives”–“natives” calculations gets less effi-
cient with Np.

7. Parallel performance in dynamic tests with ma-
terials in extremes

In this section, the performance of auto balancing al-
gorithm is checked in the modeling of complex material
motion produces by extreme conditions, which leads to
high-rate deformations and discontinuities in material, and
thereby inhomogeneous spatial distribution of particles. In
order to demonstrate the obtained results clearly the two-
dimensional rather than three-dimensional Voronoi decom-
position is used as in the previous section.

For the first dynamic test of the auto-balancing algo-
rithm, the ejection from a rough metal surface produced
by shock wave arrival is chosen [25, 26, 27, 28]. Surface
grooves on metal may have small sizes of the order of 10–
100 µm depending on experimental setup. After reflection
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Figure 8: Stationary thin plate of sizes Lx = Ly = 1 m, Lz = 0.15 m consisting of 52 millions of particles is used for static tests of VD3 and
autobalancing algorithm. Tests run on 32, 64 128, 256, 512, 1024 CPU cores with initial imbalance introduced into system. Fig. (a) shows
initial imbalanced Voronoi diagram, where one quarter of the sample consists of Np/8 Voronoi subdomains, one consists of 3Np/8 and two—of
Np/4. Transition from initial to well-balanced decomposition with 256 cores is demonstrated on the Figs. (a) and (b). Increase of speedup
with iterations in transition from unbalanced to balanced decomposition is shown in the Fig. (c). Elapsed time per a step in well-balanced
system is denoted as t∞. Final speedup as a function of CPU core number is almost linear for well-balanced decomposition as shown in the
Fig. (d).

of a flat shock from such surface, the microscopic cumu-
lative jets are formed, which may move with a speed of
several km/s.

The explosion of a metal wire caused by fast energy de-
position through the ohmic heating is considered in the sec-
ond dynamic test. The magnetic field produced by a high
current flowing in the wire keeps it from the thermal ex-
pansion. The external magnetic pressure is balanced by
the equal internal pressure of several GPa until the current
cutoff. Heating is accompanied by wire material evapora-
tion increasing with temperature growth. At some mo-
ment the electric breakdown of surrounding vapor hap-
pens, which results in switching of the current into the coro-
nal plasma. After the current cutoff in the wire, the mag-
netic pressure disappears, and the highly-pressurized ma-
terial of wire begins to expand freely. To perform an SPH
simulation test for this expansion stage only, we use the ini-
tial conditions provided by magnetohydrodynamic model-
ing of an aluminum wire [29].

Tremendous deformation and fragmentation of sam-
ples, observed in experimental conditions discussed above,
challenges the adaptability of any load-balancing algorithm
with domain decomposition.

To close the system of equations (9)–(11), the well-
known Mie–Gruneisen equation of state is used to model
materials in extreme states:

P − Pr(ρ) = Γρ[e− er(ρ)], (18)

where ρ is the density of material, P is the pressure, Pr(ρ)
is the reference pressure, e is the specific internal energy
per unit mass, er(ρ) is the reference specific internal en-
ergy, Γ is the Gruneisen parameter. We choose a simple
linear approximation of the shock Hugoniot in the us−up
plane, where us is a shock wave velocity and up is a particle
velocity behind the shock front :

us = ca + saup, (19)

where ca and sa are the fitting parameters, which together
with Γ characterize the specific material. Then this rela-
tion can be used to derive the reference curves for pressure
and internal energy as follows:

Pr(x) = ρ0ca
2 1− x

[1− sa(1− x)]2
(20)

er(x) =
ca

2

2

(1− x)2

[1− sa(1− x)]2
(21)

where ρ0 is the initial density and x = ρ0/ρ = 1 − up/us
is a compression ratio.

7.1. Test 1: ejecta from grooved metal surface

The ejection of a cumulative jet from a shock-loaded
grooved metal surface is simulated for a lead sample with
a 90-degree opening angle of a groove as illustrated by
Fig. 9. The periodic boundary conditions are imposed
along the axes Oy and Oz. The period (wavelength) of
the grooves λ is set to 40 µm, the sample width is 2 µm
along z, and the length is 140 µm. The size of SPH par-
ticles is set to 0.08 µm, so the number of particles in this
modeling is 20.8 millions. Parameters for the equation of
state (18) are: ρ0 = 11.35 g/cc, ca = 2.58 km/s, sa = 1.26,
and Γ = 1.7.

Initially, all particles are set to velocity up = 1 km/s
along the direction x toward a steady piston in the form of
a flat rigid wall. It results in the collision with the piston,
which stops the particles at the wall and generates a shock
wave propagating with the velocity of us−up in the chosen
coordinate system in which the piston/wall is at rest.

Figure 10 shows the evolution of mass distribution with
the corresponding Voronoi diagram in simulation on 256
processor cores. During the shock compression, the ar-
eas of Voronoi subdomains becomes smaller. The jet for-
mation is accompanied by an inflow of Voronoi subdo-
mains into the jet. During rarefaction, there appear dense
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Figure 9: Geometry of lead sample used in simulation of ejecta from
a grooved surface. PBC are imposed along y- and z-axes. Impact on
a rigid wall with an initial particle velocity −up generates a shock
wave propagating with velocity us−up in the chosen reference system
toward the grooved surface.

and low-density regions in the material sample, which are
appropriately covered by the Voronoi diagram. Darker
regions with larger numbers of particles are covered by
smaller Voronoi subdomains, while the regions with lesser
dense material are covered by larger subdomains. The sim-
ulation speedup with the increase of processor number re-
mains almost linear despite large variations of mass distri-
bution during the test.

To test the strong scalability, simulations are performed
using 128, 256, 384 and 512 processor cores. The plot of
the obtained speedup is shown in Fig. 10 on the right.
The wall clock elapsed time required for one simulation
step decreases with the increase of the number of processes.

To demonstrate the advantages of dynamic Voronoi de-
composition, a comparison with a static domain decompo-
sition is performed as shown in Fig. 11. To do this, 255
rectangular subdomains are placed to cover a large com-
putational domain, which size is determined by possible
material motion during simulation of ejecta. The initial
sample occupies less than half of these steady subdomains,
which leads to an increase in the elapsed time required for
one simulation step due to uneven distribution of compu-
tational loads between processes, see Fig. 11. After forma-
tion of a jet and expansion of the sample toward the unoc-
cupied subdomains, the elapsed time per a step decreases.

The neighborhood reassignment of Voronoi subdomains
is always performed after each balancing iteration in a dy-
namical decomposition mode of our code. Since the bal-
ancing displacement is limited by the minimal subdomain
size the neighbor subdomain lists do not change much after
each iteration and the reassignment takes a short time re-
quired for communications only between a central Voronoi
subdomain and subdomains in the first and second coordi-
nate sphere surrounding the central one. In a static decom-
position mode the neighbor subdomain lists are prepared
only once at the initial decomposition procedure. Also
our code skips the balancing calculations in the static de-
composition mode. Thus the code in this mode avoids
the procedures required for the dynamical decomposition

mode.
Turned off balancing means that θ = 1 in Eq. (8),

at which the Voronoi diagram generators coincide with
the corresponding geometric centers Eq. (4). By contrast,
both dynamic decompositions with and without load bal-
ancing maintain this time per a step at nearly the same
level during the entire simulation. But the usage of load
balancing results in lesser total simulation time.

It is worth noting that the described algorithm real-
izes the local load balancing strategy only. In modeling
of a system where a large elongation happens, such as in
jetting, the connectivity of the individual parts of the di-
agram decreases to one or two links per a Voronoi subdo-
main. Then it takes a long time to transfer information
about long-range imbalances in the diagram to push addi-
tional worker processes to the highly loaded subdomains.
As a result, many balancing iterations can be required to
establish a global well-balanced decomposition.

To reduce a global load imbalance faster, some global
balancing algorithm must be utilized. In particular, the use
of a guided drift of Voronoi generators in the direction to-
ward the most overloaded subdomain makes it possible to
improve the global load balance for a shorter time. This
approach can also help if a large number of particles is
created in some subdomain during the simulation. Such
global balancing algorithm using the drift displacement in
addition to the locally determined displacements demon-
strate a notable acceleration of balance convergence in our
preliminary tests, but it still requires the fine adjustment
to minimize the undesired interference with the local bal-
ancing algorithm.

7.2. Test 2: explosion of aluminum wire

To test how the auto balancing algorithm copes with
the fast two-dimensional expansion of material the explo-
sion of aluminum wire is simulated by our SPH code. At
the beginning a cylinder of radius R = 6 µm and height
hz = R/3 is assembled using 3.6 millions of aluminum
SPH-particles with the size of di = 40 nm. The cylinder
surface of wire remains free in the x–y plane, and periodic
boundary conditions are imposed along the Oz axis.

The reference curves which are used in the shock Hugo-
niot for aluminum (20), are given in accordance with the
molecular dynamics data [30]: ρ0 = 1.593 g/cc, ca =
3 km/s, sa = 1.85, Γ = 1.5. Magnetohydrodynamic mod-
eling [29] of the aluminum wire demonstrated that because
of the ohmic heating the material melts and expands much,
but the external magnetic pressure of P = 2.8 GPa stops
this expansion until the electric current cutoff happens.
The cutoff time is used as an initial zero time in the SPH
simulation. The density of ρ0 = 1.593 g/cc and tempera-
ture of 4000 K established at this moment are used as the
initial conditions in this SPH simulation test. The tensile
strength of σc in the hot molten aluminum turned out to be
equal to 1.9 GPa, which corresponds to the density drop to
ρ = 0.9ρ0 according to the results of MD simulation [30].
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Figure 10: Maps of Voronoi subdomain boundaries and mass distributions in ejecta obtained in simulation using the VD3 on 256 processors
is shown on the left, where the darker blue color corresponds to higher particle density. The relative speedups 〈te128〉/teNp

as functions of

simulation step in modeling the same problem with 128, 256, 384, and 512 cores are presented on the right. Averaged elapsed time per step
in modeling with 128 cores 〈te128〉 is used for evaluation of the relative speedup.
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Figure 11: Maps of subdomain boundaries obtained in simulations of ejecta on 256 cores using the static rectangular decomposition, dynamic
Lagrangian without balancing and VD3 with load balancing, from left to right respectively. Shades of gray are used to distinguish different
subdomains only. The right plot shows the corresponding elapsed times per a step during simulation.

Figure 12, on the left, shows evolution of mass distri-
bution and Voronoi decomposition in the cross-section of
wire during its expansion in SPH simulation using VD3 on
96 processor cores (1 master process for input-output and
95 workers). With time t > 0, a rarefaction wave moves
radially from the cylinder surface to the wire axis. During
the convergence of the rarefaction wave to the axis, the ma-
terial density drops below the break condition ρ < 0.9ρ0 at
the depth of 1 µm from the wire surface, at which the in-
teraction between SPH-particles is ceased, and many small
voids appear within a central part of the wire. As a re-
sult of simultaneous void formation at the same depth of
1 µm, a dense liquid shell with this thickness is detached
from the wire, while the internal part of wire undergoes
farther expansion and fragmentation.

The elapsed times per a simulation step are tracked in
SPH simulations of wire explosion using 32, 64, 96 and
128 processor cores to calculate the performance speedup.
The reference elapsed time is assume to be an averaged
time per a step 〈te32〉 obtained for entire simulation using
32 cores. Then the relative speedup 〈te32〉/teNp

as function
of simulation step is plotted for all used Np on the right
of Fig. 12.

Initially, all Voronoi subdomains cover equal parts of
the wire in terms of the number of particles. During expan-
sion, a region of low density is formed in the central part

of the exploding wire, and the balancing algorithm drives
most of the Voronoi subdomains to the dense shell. The in-
ner part of the wire is covered by the large Voronoi sub-
domains in accordance with the low particle density there.
However there is an opposite geometrical constrain which
requires to cover whole expanding cylinder by Voronoi sub-
domains involved in simulation. As a result the number
of subdomains covering the thin dense shell begins to de-
crease when more subdomains need to be used to cover
the huge area of the expanding inner part. Then the loads
of shell subdomains start to increase slowly, while the load
of inner subdomains decreases. The balancing algorithm
with the fixed number of subdomains cannot improve the
imbalance produced by such geometrical constrain. As
a result, the elapsed time grows slowly at later times of
wire explosion.

Comparison of static rectangular and dynamical Voronoi
decompositions without load balancing and with balancing
with 96 processor cores are presented in Fig. 13. Static de-
composition is prepared at the initial decomposition with
Voronoi generators located on a regular mesh. The rectan-
gular size is chosen to cover a large area which has enough
room for the expanded wire material at the end of simula-
tion. The time for calculating one simulation step for all
decomposition types is shown on the left frame in Fig. 13.

Only 24 cores/subdomains from 95 are filled by parti-
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simulation step in modeling the same problem with 32, 64, 96, and 128 cores are presented on the right. Averaged elapsed time per step in
modeling with 32 cores 〈te32〉 is used for evaluation of the relative speedup.
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Figure 13: Maps of subdomain boundaries obtained in simulations of wire explosion on 96 cores using the static rectangular decomposition,
dynamic Lagrangian without balancing and VD3 with load balancing, from left to right respectively. Shades of gray are used to distinguish
different subdomains only. The right plot shows the corresponding elapsed times per a step during simulation. The areas of Voronoi subdomains
become smaller on a liquid cylindrical shell with the highest density to reduce the computational loads in VD3 with load balancing.

cles at the beginning of simulation using the static decom-
position. As a result, here the elapsed time is five times
longer than it is obtained in simulations using the dynam-
ical Voronoi decompositions, where all 95 subdomains are
filled by particles. With expansion of wire the SPH par-
ticles begin to enter into other rectangles of the static de-
composition, which results in a more even distribution of
the load, so the elapsed time decreases. However, this
time is still greater than the times from the both Voronoi
decompositions. Decomposition without load balancing
has less mobile Voronoi subdomains striving to preserve
their areas, which deteriorates the load balance with ex-
pansion. Thus, the dynamic Voronoi decomposition with
load balancing is superior to other decompositions in this
test. Moreover, it provides a stable elapsed time per a step
throughout the entire simulation due to a more even use
of all processors.

For the dynamic decomposition without the usage of
balancing displacements (θ = 1 in Eq. (8)), the Voronoi
generators are strictly set to subdomain geometric cen-
ters (4). Such decomposition results in less mobile Voronoi
subdomains, which increases the elapsed time of simula-
tion as seen in Fig. 13. Both dynamic Voronoi decompo-

sitions give a stable time step throughout the simulation
due to the more even use of the resources of all processors,
but the usage of load balancing results in the better posi-
tions of Voronoi subdomains, providing the shortest time
for a single step.

This 2nd test of the VD3 algorithm applied for an ex-
ploding wire shows not only better parallel efficiency in
comparison with the static decomposition method, but
also a strong linear scalability shown on Fig. 14. This Fig-
ure also demonstrates the superlinear speedup which can
be achieved in this test in contrast to the speedup obtained
in the 1st ejecta test. We think that the additional ac-
celeration is caused by transition from a two-dimensional
initial decomposition to a quasi-one-dimensional decom-
position of the thin dense shell which is seen in Fig. 12.
The Voronoi subdomains on the shell have the most occu-
pied boundary layers only with two neighbor subdomains,
which minimizes the particle data exchange and makes
more efficient data exchange masking.
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Figure 14: Strong scalability for 1st and 2nd dynamic tests of
the load balancing algorithm. Here the wall clock elapsed times te128
and te32 of entire modeling are chosen as reference values, for the 1st
test with ejecta and the 2nd test with wire explosion respectively.
The strong scalability is close to the perfect linear speedup in both
test, but the 2nd test demonstrates a slightly superlinear speedup be-
cause the major part of wire mass happens to be allocated in a thin
shell during the explosion, which corresponds to transition from 2D
to 1D decomposition for larger numbers of processes Np involved.

8. Conclusion

When using particle methods for modeling phenom-
ena specific for high energy density physics, the variety
of particles representing the material samples can evolve
from an initially homogeneous distribution (for example,
a set of regularly packed particles equal in mass and vol-
ume) into a highly heterogeneous one varied in the spatial
arrangement and the particle characteristics. The major
reasons for such evolution are:

• particle compression in shock waves and expansion
in rarefaction waves;

• nonuniform acceleration of material flow by nonpla-
nar compression and rarefaction waves;

• collision between material flows and formation of cu-
mulative jets;

• formation of cavities and free boundaries of complex
shape if material is fragmented;

• adaptive merging or splitting of particles to improve
the accuracy of modeling.

All listed reasons cause the significant load imbalance
and reduce the computational efficiency of parallel mod-
eling of material motion. To address this issue, we have
developed the efficient automatic load balancing algorithm
for parallel modeling on the large computing clusters with
distributed memory. It is based on the spatial dynamic
decomposition of simulated samples between Voronoi sub-
domains, where each subdomain is handled by a single

computational process. Voronoi subdomains are allowed
to gradually change their shape and position in order to re-
duce the local imbalance of computational loads via the re-
balancing transfer and redistribution of particles between
the neighbor processes.

Adaptive load balancing and high computational ef-
ficiency are the main advantages of this algorithm. Since
the generators of Voronoi subdomains can move freely, the
resulting well-balanced Voronoi diagram provides the most
computationally attractive coverage for the simulated sam-
ples. The evolution of the diagram during simulation is
guided by the natural Lagrangian motion of material com-
bined with the load balancing displacements. The algo-
rithm demonstrates fast convergence in static tests of a sta-
tionary sample with load imbalance imposed initially and
almost linear strong scalability for processor core numbers
from tens to several thousand.

Parallel efficiency of our code is illustrated by model-
ing materials in extreme conditions characterized by large
pressure and velocity gradients, at which the spatial distri-
bution of particles can vary greatly in time. In such condi-
tions, our algorithm performs as efficiently as in the static
tests and provides the similar strong scalability. The achieved
parallel efficiency is superior to that provided by static de-
composition algorithm in all dynamic tests.

Our algorithm is recommended to be used in simula-
tions of material samples with essentially dynamic bound-
aries, flows with large relative velocities, and particles de-
scribed by physical models with notably different compu-
tational costs, where the automatic balancing with the sta-
ble high load of all processes is required during simulation.
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[10] G. Oger, D. L. Touzé, D. Guibert, M. de Leffe, J. Biddis-
combe, J. Soumagne, J.-G. Piccinali, On distributed memory
mpi-based parallelization of SPH codes in massive HPC con-
text, Computer Physics Communications 200 (2016) 1 – 14.
doi:https://doi.org/10.1016/j.cpc.2015.08.021.
URL http://www.sciencedirect.com/science/article/pii/

S0010465515003070

[11] N. Sato, J. M. Jezequel, Implementing and evaluating an effi-
cient dynamic load-balancer for distributed molecular dynam-
ics simulation, in: Proceedings 2000. International Workshop
on Parallel Processing, 2000, pp. 277–283. doi:10.1109/ICPPW.
2000.869113.

[12] A. Ferrari, M. Dumbser, E. F. Toro, A. Armanini, A new 3D
parallel SPH scheme for free surface flows, Computers & Fluids
38 (6) (2009) 1203 – 1217. doi:https://doi.org/10.1016/j.

compfluid.2008.11.012.
URL http://www.sciencedirect.com/science/article/pii/

S0045793008002284

[13] Y. Deng, R. F. Peierls, C. Rivera, An adaptive load balancing
method for parallel molecular dynamics simulations, Journal of
Computational Physics 161 (1) (2000) 250 – 263. doi:http:

//dx.doi.org/10.1006/jcph.2000.6501.
URL http://www.sciencedirect.com/science/article/pii/

S002199910096501X

[14] C. Begau, G. Sutmann, Adaptive dynamic load-balancing with
irregular domain decomposition for particle simulations, Com-
puter Physics Communications 190 (2015) 51 – 61. doi:https:
//doi.org/10.1016/j.cpc.2015.01.009.
URL http://www.sciencedirect.com/science/article/pii/

S0010465515000181

[15] G. Cybenko, Dynamic load balancing for distributed memory
multiprocessors, Journal of Parallel and Distributed Comput-
ing 7 (2) (1989) 279 – 301. doi:http://dx.doi.org/10.1016/

0743-7315(89)90021-X.
URL http://www.sciencedirect.com/science/article/pii/

074373158990021X

[16] M. H. Willebeek-LeMair, A. P. Reeves, Strategies for dynamic

load balancing on highly parallel computers, IEEE Trans. Paral-
lel Distrib. Syst. 4 (9) (1993) 979–993. doi:10.1109/71.243526.
URL http://dx.doi.org/10.1109/71.243526

[17] Y. F. Hu, R. J. Blake, D. R. Emerson, An optimal migration
algorithm for dynamic load balancing, Concurrency: Practice
and Experience 10 (6) (1998) 467–483. doi:10.1002/(SICI)

1096-9128(199805)10:6<467::AID-CPE325>3.0.CO;2-A.
URL http://dx.doi.org/10.1002/(SICI)1096-9128(199805)

10:6<467::AID-CPE325>3.0.CO;2-A

[18] V. Zhakhovskii, K. Nishihara, Y. Fukuda, S. Shimojo,
T. Akiyama, S. Miyanaga, H. Sone, H. Kobayashi, E. Ito,
Y. Seo, M. Tamura, Y. Ueshima, A new dynamical domain
decomposition method for parallel molecular dynamics simula-
tion, in: CCGrid 2005. IEEE International Symposium on Clus-
ter Computing and the Grid, 2005., Vol. 2, 2005, pp. 848–854
Vol. 2. doi:10.1109/CCGRID.2005.1558650.

[19] J.-L. Fattebert, D. Richards, J. Glosli, Dynamic load balanc-
ing algorithm for molecular dynamics based on Voronoi cells
domain decompositions, Computer Physics Communications
183 (12) (2012) 2608 – 2615. doi:https://doi.org/10.1016/

j.cpc.2012.07.013.
URL http://www.sciencedirect.com/science/article/pii/

S0010465512002524

[20] R. Koradi, M. Billeter, P. Gntert, Point-centered domain de-
composition for parallel molecular dynamics simulation, Com-
puter Physics Communications 124 (2) (2000) 139 – 147. doi:

http://dx.doi.org/10.1016/S0010-4655(99)00436-1.
URL http://www.sciencedirect.com/science/article/pii/

S0010465599004361

[21] Q. Du, V. Faber, M. Gunzburger, Centroidal Voronoi tessella-
tions: Applications and algorithms, SIAM Rev. 41 (4) (1999)
637–676. doi:10.1137/S0036144599352836.
URL http://dx.doi.org/10.1137/S0036144599352836

[22] X. Zhang, H. Tian, L. Kuo, W. Chen, A contact SPH method
with high-order limiters for simulation of inviscid compressible
flows, Communications in Computational Physics 14 (02) (2013)
425–442. doi:10.4208/cicp.141211.260912a.

[23] W. Dehnen, H. Aly, Improving convergence in smoothed particle
hydrodynamics simulations without pairing instability, Monthly
Notices of the Royal Astronomical Society 425 (2) (2012) 1068–
1082. doi:10.1111/j.1365-2966.2012.21439.x.
URL http://dx.doi.org/10.1111/j.1365-2966.2012.21439.x

[24] M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids,
Clarendon Press, New York, NY, USA, 1987.
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