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asasim: Adaptive Sampling for Electromagnetic Simulations

Kristian Tølbøl Sørensena,∗

aDTU Nanotech, Technical University of Denmark, Ørsteds Plads building 345C, 2800 Kgs.
Lyngby, Denmark.

Abstract

For simulations of electromagnetic resonance spectra, where the locations of spectral
features are unknown, and for wide-band simulations in general, a substantial number
of wavelengths must be simulated for acceptable resolution, increasing computation
time. This problem is exacerbated for spectra containing narrow-band features, as a
high spectral resolution is required to even detect them. To address this challenge,
a heuristic algorithm is presented for electromagnetic simulations, which adaptively
refines the local resolution of spectral features during a simulation. The method
supports parallel processing and plugs in with existing simulation systems, such as
rigorous coupled-wave analysis (RCWA). It can routinely reduce the computational
load by two orders of magnitude.
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PROGRAM SUMMARY
Program Title: asasim

Program Files doi: http://dx.doi.org/10.17632/d6gty7kr2x.1

Licensing provisions: CC By 4.0

Programming language: MATLAB

Nature of problem: Simulations are challenging when information is needed both on a

long scale (broad interval) and on a short scale (high local resolution), such as wide-band

electromagnetic spectra containing narrow-band features. When resolution is insufficient,

narrow-band features may be downright absent from the spectrum, if neighboring points

are simulated on either side of a narrow peak. When local resolution is sufficient, it will

necessarily be excessive in flat regions, wastefully increasing computation time.

Solution method: The presented method enables adaptive resolution, which ensures that
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all peaks of a given minimum width are always detected and maximally resolved, while

feature-less regions remain minimally resolved. An optimum point spacing is derived for

lorentzian peaks (descriptive of optical resonances) and is applied to optimize computation

time.
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1. Introduction

The ability to accurately simulate light-matter interactions in nanostructures has
enabled breakthroughs in areas as diverse as optical biosensors [1], pigment-free col-
oration [2], and solar cells [3]. Rigorous coupled-wave analysis (RCWA) is a popular
semi-analytical method for electromagnetic simulations originally described by Mo-
haram and Gaylord in 1981 [4]. However, the method is computationally demand-
ing, and this can be a limitation for high-resolution, wide-band simulations. This
can be particularly problematic for optimization methods, such as particle swarm
optimization [5] or genetic algorithms [6], where an extensive number of simulations
in a many-dimensional parameter space should be performed. Such endeavors would
benefit from increased simulation efficiency.

The challenges of multiscale simulations have similarly been encountered in other
fields, where more intricate schemes have been demonstrated, e.g., for elastodynamic
shock propagation[7] or particle–particle interactions[8].
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Figure 1: Illustration of detection problem. At insufficient resolution, the peak at 547 nm is not
registered at all, as two neighboring points may randomly fall on either side of it. The much wider
peak at 553 nm is certain to be detected at this resolution, but it is still poorly resolved.

Simulation time can be reduced by simply reducing the spectral resolution. How-
ever, when simulation resolution becomes too low, narrow peaks may not even be
detected, as illustrated in figure 1. Depending on whether a data point happens to
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fall on the narrow peak, it may or may not register as a bump, but there will be
a risk that the peak is completely absent from the simulation, which can be quite
misleading.

As also illustrated in figure 1, peaks of sufficient width will surely be detected,
as at least one point will always fall on the peak. However, resolution may still
be too low to properly resolve its lineshape, which is commonly a simulation goal.
An obvious solution is to increase the spectral resolution of the simulation, propor-
tionally increasing simulation time, but this would result in an unnecessarily high
resolution in the flat parts of the spectrum. Figure 2A illustrates this central issue,
i.e., spectrally flat regions are over-emphasized, whereas regions with features are
under-emphasized. Ideally, an initial simulation should only be fine-grained enough
that the presence of a peak would always be detected, and peak regions should then
be further resolved to the desired resolution.
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Figure 2: The same peak simulated with 309 points using a) static resolution, and b) adaptive
resolution. The static method yields a high information density off-peak, whereas the adaptive
method emphasizes the peak region.

Here, a heuristic MATLAB-algorithm is demonstrated for achieving adaptive
resolution in electromagnetic simulations. This effectively reverses the information
emphasis to lay on the spectral features rather than the background, as illustrated
in figure 2b. Furthermore, optimal parameters are derived, and the speed of the
method is evaluated.

2. Examples and installation

At its core, the asasim algorithm simply replaces the per-wavelength for-loop
of a typical electromagnetic simulation system. Thus, instead of statically looping
over all wavelengths in an interval with identical spacing, as is the common approach,
asasim evaluates which regions to refine during runtime, thereby only refining regions
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where features are present. Therefore, in principle, any script that calls a simulation
function from a for-loop can be integrated with asasim. The system performs best
for “needle-in-a-haystack”-type simulations, where narrow-band features are found
in a broad interval. As this is common for electromagnetic resonance spectra, these
are the focus of this paper, although the system will likely also be applicable to
many other topics of simulation. This section explains how asasim is integrated
with existing simulation systems in MATLAB 2016b, running on a MacBook Pro
(2.4 GHz Intel Core i5, 8 GB 1600 MHz DDR3 RAM).

2.1. A simple test
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Figure 3: Output of example script, which imitates an electromagnetic simulation at a random
position a) within a wide interval, with b) narrow line width. The resolution varies from 4.6 pm
on the peak, to 4.6 nm in the flat parts of the spectrum. Achieving the same resolution with static
spacing would require 370× as many points.

As actual electromagnetic simulations can be complex to set up and time-consuming
to run, a test-function was written that imitates an actual simulation function, but
returns values from an analytical evaluation of lorentzians. The script
asasim Example 1 Imitator.m exemplifies how the asasim method may be inte-
grated with an arbitrary simulation function. A lorentzian of narrow line width
(0.5 nm) is simulated at a random location within the broad interval 300–1100 nm,
on a slightly sloped background, given by a broad lorentzian. The time to run is
∼1 second, and figure 3 shows the results.

2.2. Photonic crystal slab sensor at varying angles of incidence

GD-Calc is a MATLAB-package for RCWA, which can be downloaded from
http://kjinnovation.com/GD-Calc.html and installed as per the instructions given
on the website. The workhorse of the GD-Calc package is the function gdc.m, which
takes three inputs: a Grating-struct with the relevant optical grating parameters and
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Figure 4: Example simulation of PCS sensor at varying angles of incidence. Each simulation has a
variable resolution between 2 pm and 2342 pm depending on the local region.

geometric layout, an IncField-struct with information about the incoming field, and
an order-matrix, specifying the diffraction orders to be used in the calculations. The
function gdcWrapper has been written to interface asasim with GD-Calc. It defines
these necessary three inputs and calls gdc.m to get a reflectivity value R at the given
input wavelength w. An additional FullOutput struct contains all diffraction effi-
ciencies. asasim uses this reflectivity value R to evaluate whether points neighboring
w should be further resolved. The asasim system was recently used with RCWA to
substantiate experimental observations of waveguide core swelling [9] in a photonic
crystal slab (PCS) sensor. Here, the simulation parameters describe a linear grating
of period 368 nm, duty cycle 50% and grating height 100 nm, illuminated at an angle
θ. The model incorporates refractive index dispersion data for all three materials
constituting the sensor, namely a cladding layer of Efiron PC409AP (Luvantix, Ko-
rea), a nano-structured core layer of HI01XP (micro resist technologies, Germany)
and water as superstrate. In the example given here, simulations are performed in a
broad wavelength interval of 450–850 nm, with angles of incidence in steps of 0.02 rad
between 0 and 0.1 rad. The full example code is given in asasim Example 2 GDC.m,
and the result is shown in figure 4. It should be noted that asasim is incapable of
displaying a progress bar during runtime due to parallel processing working asyn-
chronously, and because the wavelengths to simulate are being refined adaptively,
and are thus not known a priori. Instead, the total number of points calculated is
displayed for each round to indicate progress. On the computer used here, the total
run time for all 6 angles is ∼10 min.
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2.3. Scattering cross section of plasmonic nanoparticles
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Figure 5: Simulation performed using the mnpbem-package. a) Using the default static spacing places
200 points, many of them off-peak. b) With adaptive resolution, the peaks are better resolved using
only 165 points.

To demonstrate the versatility of asasim, it was also integrated with the excellent
class mnpbem[10], available at http://cpc.cs.qub.ac.uk/summaries/AEKJ v3 0.html,
which is used for calculating scattering cross sections of plasmonic nanoparticles near
surfaces. An example script, based the demonstration demospecstat1.m of that tool-
box, is given in asasim Example 3 MNP.m. Here, the per-wavelength for-loop is quite
simply replaced by a call to asasim using mnpWrapper, which is functionally three
lines long. As mentioned in section 2.4, the wrapper must take two inputs and return
two outputs, and it serves as an example of how simply a wrapper function can be
written. The resulting graph is shown in figure 5, and although there is perhaps
limited gain from using asasim for simulating such wide peaks in a limited interval,
the example illustrates how additional simulation systems can be interfaced using a
wrapper function. The code has a typical runtime of ∼3 seconds.

2.4. Installation

The contents of asasim.zip should be decompressed to a folder on the MATLAB
search path, such as MATLAB/Toolboxes/asasim. With the MATLAB-folder as the
working directory, scripts should always contain the command addpath(genpath(pwd))

in order to add all files in all subfolders to the search path. This line is included in
all example files.

The main system for adaptive resolution is now installed, and is ready to be
interfaced with an existing simulation system. In general, conversion of a simulation
script (listing 1) into a version utilizing adaptive resolution (listing 2), is a three-step
operation:
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Listing 1: Original code

1 dx = 1 ; % d e s i r e d x−a x i s r e s o l u t i o n
2 x = 400 : dx : 7 0 0 ;
3 f o r i x = 1 : numel ( x )
4 y ( ix ) = simulateR ( x ( ix ) , input1 , input2 , input3 ) ;
5 end
6 p l o t (x , y ) ;

Listing 2: asasim-implementation, illustrating how a wrapper-function may be defined.

1 minHalfWidth = 0 . 1 ;
2 dy = 0 . 0 1 ; % d e s i r e d y−a x i s r e s o l u t i o n
3 dx = opt imalLorentz ianSpac ing ( minHalfWidth , dy ) ;
4 x I n i t i a l = 400 : dx : 7 0 0 ;
5 wrapFunction = @(x , S) simulateR (x , S . in1 , S . in2 , S . in3 ) ;
6 SimInput = s t r u c t ( ' in1 ' , input1 , ' in2 ' , input2 , ' in3 ' , input3 ) ;
7 [ x , y ] = asasim ( x I n i t i a l , dy , wrapFunction , SimInput ) ;
8 p l o t (x , y ) ;

1. Define wrapper. Copy the contents of the per-wavelength for-loop into a
wrapper function.

2. Determine initial point spacing. For peaks described as lorentzians ranging
from 0 to 100% intensity, the optimal point spacing can be calculated auto-
matically using the optimalLorentzianSpacing function.

3. Replace the per-wavelength for-loop by a call to asasim.

Each of these steps will be elaborated next in the context of concrete application
examples.

The purpose of the wrapper function is to bridge the simulation system with
asasim, and must take two inputs, namely the simulation coordinate x (e.g., wave-
length) and a struct of additional parameters. The wrapper function passes these
parameters on to the simulation function(s), using the specific syntax of that simu-
lation system. In general, the content of a per-wavelength for-loop can often just
be excised and placed in a wrapper function, and the for-loop itself is then replaced
by a call to asasim. This was first exemplified in the simple case above, where
only a single hypothetical function simulateR was called from within the for-loop.
Subsequent examples demonstrated how more involved cases could be handled.

For simulations where the peak-shape resembles a lorentzian with a maximum
intensity of 100%, the optimum initial point spacing dx can be calculated by calling
optimalLorentzianSpacing, where minHalfWidth is the minimum lorentzian half-
width to be detected, and yRes is the desired y-axis resolution. Using this point
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spacing, a vector of points to be calculated initially is then defined as xInitial

= x1:dx:x2, where x1 and x2 represent the extremes of the interval to simulate.
Alternatively, if the spectrum does not contain lorentzian peaks at 100% maximum,
arbitrary values for dy and xInitial can be defined manually, using a custom point
spacing dx. The following section explains how and why an optimal point spacing is
found.

3. Background

Rough simulation
at Δλmax spacing

Choose 
next point

Is resolution
better than ΔRmax? Subdivide

Completed

Has symmetry 
been checked?

Are all points
fully resolved?

Yes

Yes

No

YesNo

No

Calculate optimal 
spacing Δλmax

Figure 6: Working principle behind the algorithm. An optimal point spacing is calculated us-
ing equation 5, and an initial rough simulation is performed in order to detect all relevant fea-
tures. Then, each peak is further resolved by adaptive subdivisioning until the desired resolution
is achieved. At this point, a symmetry-check is performed in order to ensure that two points with
similar values are not just placed symmetrically around a peak.

A simplified illustration of the working principle is presented in figure 6, with the
goal of producing a (λ,R)-spectrum using ∆Rmax (goal resolution) and γmin (mini-
mum peak half-width) as input parameters. First, an optimum initial point spacing
∆λmax is automatically calculated, such that any peak of a given minimum half-
width γmin is certain to cause a perturbation exceeding the threshold ∆Rmax within
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the interval, flagging the region for further refinement. Then, a rough simulation is
performed, with the purpose of detecting all spectral features of interest.

After each round of simulations, the difference ∆R between neighboring points
is evaluated, to identify regions that exceed ∆Rmax. These will be further refined by
subdivisioning. New points inherit the ∆R-value of its parent in that round, such
that subdivisioning does not continue indefinitely.

When a point no longer exceeds ∆Rmax, it is subdivided one last time as a
symmetry-check. It is entirely possible for two points to be placed symmetrically
around a peak, in which case their difference ∆R could be zero, without the upper
part of the peak having been resolved. The symmetry-check safe-guards against
this. If the difference still does not exceed ∆Rmax, the region is considered fully
resolved. Thus, once a peak is detected, i.e., at least one point satisfies the criterion
∆R > ∆Rmax, the entire peak always becomes fully resolved.

For the sake of argument, consider a lorentzian at an arbitrary location, i.e.,
λ0 = 0, normalized so that R(λ0) = 100%:

R(λ) =
1

1 + λ2

γ2

(1)

λ =

√
γ2

(
1

R
− 1

)
(2)

Because of the subdivisioning-scheme employed, whenever a peak is detected,
it is certain to come out fully resolved. Detection in this context entails that the
perturbation from a peak causes two neighboring points, spaced apart by ∆λ on
the first axis, to have a sufficient difference on the second axis, ∆R > ∆Rmax. The
narrowest peak of half-width γ that is certain to be detected is then a peak that is
so narrow, that its perturbation only just causes ∆R between any two neighboring
points to exceed ∆Rmax, even when the peak is placed right between those two
neighboring points, such as points a and b in figure 7. In this case, ∆R is zero
between them, so for detection, the difference to the next neighbor (point c) must
instead satisfy ∆R > ∆Rmax. If the distance from the peak center to the first
symmetrically placed neighbor (point b) is λ1 = ∆λ/2, then the distance to its next
neighbor (point c) must be 3λ1. Thus,

∆R = R1 −R2 (3)

=
1

1 +
λ21
γ2

− 1

1 + (3λ1)2

γ2

(4)

9



This does not have a simple solution for the optimal point spacing ∆λ = 2λ1, but it
can be isolated as

∆λ =


2

3

√
γ2(4− 5∆R) + 2

√
2
√
γ4(2∆R2 − 5∆R + 2)

∆R


 (5)
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Figure 7: Illustration of points placed in the first three rounds of simulations. a-d) An initial
rough-simulation is performed in order to detect all relevant features. e-g) A symmetry-check is
performed in order to ensure that two points with similar values are not just placed symmetrically
around the peak (like points a and b). h-j) Peak refinement continues until a desired resolution is
achieved. Note that here, the spectrum beyond λ > 531.3 nm is therefore not refined after round
two.

4. Discussion

The optimum ratio between the parameters ∆λmax and ∆Rmax for a given γmin

is given by equation 5, and shown in figure 8. Parameter-sets below the curve are
sub-optimal in the sense that they cause more simulation points to be calculated
than necessary, wastefully increasing computation time. Sets above the curve will
only serendipitously resolve peaks of a given half-width γmin. As an example, if a
simulation is to be performed with a 5% resolution on the y-axis, and the expected
minimum half-width γmin is 1 nm, the optimum spacing on the x-axis is 8.2 nm. At a
resolution of 0.5%, the spacing can be 26.6 nm, while still detecting the perturbation
from the narrow peak.
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Decreasing ∆Rmax causes more points to be calculated on the R-axis, but this
also increases ∆λmax, reducing the number of points to be calculated initially on the
λ-axis. In the simplest possible model, consider a spectrum only containing a single
lorentzian peak with a half-width of γ. The number of points simulated on the fully
resolved peak is NR = 2/∆R, and the number of points to be simulated statically
across the spectrum is Nλ = (λmax − λmin)/∆λ. The total number of points to be
simulated adaptively is

N =
2

∆Rmax

+
λmax − λmin

∆λmax

(6)

Using this equation for estimating the number of simulation points, the two methods
were compared for speed as shown in figure 9. It is clear that the adaptive method
is generally a couple of orders of magnitude faster than the static method. The
figure also illustrates the computational optimum (curve minimum) for the ∆R and
thus ∆λ parameters, which depend on the minimum necessary peak half-width γmin.
Time-optimal parameters could be determined by combination of equations 5 and 6
and solving dN

d∆Rmax
= 0, but this becomes rather unwieldy. As figure 9 indicates, the

total number of simulated points does not vary steeply for similar values of ∆R, and
so the choice of resolution is perhaps more a question of preference.

For comparison, in order to achieve the same R-axis resolution with static sam-
pling as with adaptive sampling, the static first-axis point spacing must equal the
smallest distance between two points separated by ∆Rmax on the second axis. For
example, to resolve a peak of half-width γ = 0.5 nm at ∆R = 1% resolution on the
steepest part in an 800 nm interval, the adaptive resolution varies between 0.0046
nm and 4.6 nm, depending on the local spectral features. To achieve a static res-
olution of 0.0046 nm, more than 170,000 points would be required. With adaptive
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resolution, the same is achieved with 468 points, making the simulation 374× faster.

0 5 10 15 20 25
Resolution, R [%]

102

104

106

108

N
um

be
r 

of
 p

oi
nt

s,
 N

=0.50

Static spacing
Dynamic spacing

Figure 9: Number of points simulated as function of R-axis resolution.

Apart from reducing computation time, a main advantage of asasim is the de-
creased amount of a priori information needed. As spectrally flat regions are com-
puted very fast, the precise spectral positions of features need not be known before-
hand in order to simulate the narrow region of relevance. Furthermore, whereas one
might have to iteratively adjust first-axis resolution in order to achieve the desired
second-axis resolution, with this method, resolution is decided for the second-axis
directly.

While the amount of necessary a priori information is reduced, a rough estimate
of the smallest realistic half-width is still required. The consequences of choosing a
poor value for this parameter was discussed in section 4. For very dense spectra, e.g.,
containing many closely spaced peaks such as interference patterns, the same amount
of points may end up being simulated as using static spacing. Furthermore, when the
background is strongly sloped, e.g., the resonance peak of interest resembles a bump
on a larger and much broader peak, the background also becomes highly resolved.
This is partially the case in figure 5.

Because the x-axis resolution varies across all spectra, direct comparison between
spectra or presentation of data as an image will require interpolation. This is quite
simply achieved using the built-in MATLAB-function interp1, as exemplified below.

5. Summary

In summary, the presented method allows high-speed, high-resolution simulation
of narrow-band spectral features in a broad range, with no a priori information about
the location of spectral features. In one example, the number of points necessary
to simulate was reduced from >170,000 to 468, with an accompanying reduction in
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Listing 3: Interpolation

1 dx = 0.01; % desired x-axis resolution

2 interpolatedX = min([Sim.xs]):dx:max([Sim.xs]);

3 interpolatedY = zeros(numel(Sim),numel(

interpolatedX));

4 for iSim = 1:numel(Sim)

5 interpolatedY(iSim ,:) = interp1(Sim(iSim).xs,

Sim(iSim).ys,interpolatedX ,'linear ');
6 end

7 imagesc(interpolatedX ,1: numel(Sim),interpolatedY);

computation time from ∼20 hours to ∼3 minutes. The solution is tailored to sim-
ulations of electromagnetic spectra containing lorentzian features, but can trivially
be adapted to other simulation functions and other lineshapes. The solution easily
plugs into existing simulation systems, and interfacing to three different simulation
systems was demonstrated by examples.
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