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In the present paper, we present an efficient continuous-time quantum Monte Carlo impurity
solver with high acceptance rate at low temperature for multi-orbital quantum impurity models with
general interaction. In this hybridization expansion impurity solver, the imaginary time evolution
operator for the high energy multiplets, which decays very rapidly with the imaginary time, is
approximated by a probability normalized δ-function. As the result, the virtual charge fluctuations
of fn → fn±1 are well included on the same footing without applying Schrieffer-Wolff transformation
explicitly. As benchmarks, our algorithm perfectly reproduces the results for both Coqblin-Schriffeer
and Kondo lattice models obtained by CT-J method developed by Otsuki et al. Furthermore, it
allows capturing low energy physics of heavy-fermion materials directly without fitting the exchange
coupling J in the Kondo model.

I. INTRODUCTION

Due to the rapid development of hybridization expan-
sion continuous-time quantum Monte-Carlo (CT-HYB)1

method, an efficient solver for quantum impurity models,
substantial progress has been achieved in the electronic
structure studies of strongly correlated materials within
the framework of density functional theory (DFT) im-
plemented with dynamical mean-field theory (DMFT)2.
However, CT-HYB is insufficient for the studies of low
temperature (∼O(10)K) properties of heavy fermion ma-
terials in the Kondo regime, where the itinerant s, p, d
electrons co-exist and interact with the localized f elec-
trons caused by the large Coulomb repulsion U among
them. The failure of CT-HYB lies in its algorithm con-
struction where configurations with large charge fluctu-
ations are frequently proposed in the process of Monte
Carlo updates, resulting in small acceptance rates in the
Kondo regime where the charge fluctuations are nearly
frozen. With the decrement of temperature T, CT-HYB
method becomes increasingly inefficient because with the
longer imaginary time β = 1/kBT , configurations with
large charge fluctuation are more and more likely to be
proposed during the sampling process, which has very
small acceptance rate.

One way to solve the above problem is to perform
Schrieffer-Wolff transformation (SWT)3 to single impu-
rity Anderson model (SIAM) in the strong coupling limit
and one gets effective low energy s-d exchange model
in which local charge fluctuations are projected out and
only virtual processes are considered. The well-known
Coqblin-Shrieffer(CS)4 model and Kondo model5 are two
typical SW transformed models. CT-J 6 algorithm is
developed to simulate such models by expanding parti-
tion function in term of s-d exchange terms. With much
higher efficiency, CT-J can be applied to study Kondo
physics within the two localized models down to much

lower temperature. Based on the corresponding Kondo
lattice model, Matsumoto et al. have performed DMFT
calculations for Ce-122 compounds and successfully re-
produced the general trend of antiferromagnetic transi-
tion temperature around the magnetic quantum critical
point7. In their approach, they first calculated hybridiza-
tion function between the conduction bands and the 4f
electrons by DFT+DMFT with Hubbard-I approxima-
tion as an impurity solver and then constructed the ef-
fective CS model afterward by estimating s-d exchange
parameter J obtained by SWT. However, such construc-
tion process neglects the fact that J has momentum and
orbital dependence. Furthermore, once the realistic in-
teractions (not the density-density type) among the f -
electrons have been considered, the SWT will become
enormously tedious and complicated8. As a result, CT-J
is not the best practical choice for the calculations of the
realistic heavy fermion materials.

In CT-HYB, the local trace part in the partition func-
tion can be viewed as contributions from the various
“evolution paths”9 among different atomic multiplets
{Γ} which can be grouped into high energy states {Γh}
and low energy states {Γl} according to their atomic
eigenenergy EΓ. In Kondo regime, it is assumed that
{Γl} are configurations with occupancy n, and {Γh} are
of occupancy n±1 with n being an non-zero integer. Fur-
thermore, it is also assumed that EΓh � EΓl as schemat-
ically shown in Fig. 1(a). In this condition, if one takes
snapshots of the dynamics of electrons on the impurity
site, atomic states would keep most time on low energy
configurations for most of the time, as shown in Fig. 1(c).
The lower the energy is, the longer time it will spend on
correspondingly. The imaginary-time evolution operator
of the high energy states, e−EΓh

τ , decays much faster
than that of Γl as illustrated in Fig. 1(b). As EΓh in-
creases, the sharply decaying e−EΓh

τ can be well approx-
imated by the δ-functions centered at time zero, assuming
that Γh appears only in the range of τ ∈ [0,∼ 0+). Based
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on the above assumption, in the present paper we in-
troduce a new impurity solver by approximating e−EΓh

τ

with a probability normalized δ-function. With this new
method, we are able to take into account all the vir-
tual processes that involve the charge fluctuations from
Γl to Γh states without explicitly applying SWT which
is difficult for the realistic materials. Furthermore, the
approximation does not depend on the details of local
interaction and thus can be easily used for the DMFT
calculations of the heavy fermion materials.

The rest of the paper is organized as follows. In the
second section, we first summarize the CT-HYB method
and then introduce the cutoff of the local Hilbert space.
After that, we propose our approximations to the local
trace part in the partition functions for quantum impu-
rity models under the Kondo limit. In Section III, we
introduce how to design Monte-Carlo updates to sample
the partition functions under the approximation men-
tioned above for both general and density-density type
interactions. Finally, the benchmarks of our new impu-
rity solver are shown in section IV on both CS and Kondo
models. The summary of the paper is then given in sec-
tion V.

II. METHOD

A. Hybridization Expansion

Let us begin with the multi-band single impurity An-
derson model (SIAM), which reads

HSIAM = Hloc +Hhyb +Hbath, (1)

where

Hloc =
∑
αβ

εαβf
†
αfβ +

∑
αβδγ

Uαβδγf
†
αf
†
βfγfδ, (2)

Hhyb =
∑
kνα

V αkνc
†
kνfα + h.c., (3)

Hbath =
∑
kν

εkνc
†
kνckν . (4)

The Greek letters α, β, δ, γ denote N0 localized spin-
orbital index, and p ≡ kν denotes the conduction band
(bath) electron with momentum k and spin-orbital index
ν.

The configuration space of hybridization expansion al-
gorithm is given by the set of imaginary times {τ} and
corresponding orbital indices {α}:

C = {{τ1, · · · , τ ′k; fα1 , · · · , f†αk}|k = 0, 1, · · · } (5)

Integrating out the bath operators cp(τ), the partition
function Z reads (detailed derivations are given in Ap-

pendix A and Ref. [1])

Z = Zbath

∞∑
k=0

∫ β

0

dτ1 · · ·
∫ β

τk−1

dτk

∫ β

0

dτ ′1 · · ·
∫ β

τ ′k−1

dτ ′k

×
∑

α1···αk

∑
α′1···α′k

wloc(Ck)wdet(Ck),

(6)
where wloc(Ck) is the so-called local trace part

wloc(Ck) = Trf [Tτe−βHlocfαk(τk)f†α′k
(τ ′k) · · · fα1

(τ1)f†α′1
(τ ′1)],

(7)
and wdet(Ck) is the so-called determinant part

wdet(Ck) = det ∆(Ck). (8)

∆(Ck) is a k × k matrix with its elements being anti-

periodic hybridization functions ∆
(Ck)
ij = ∆αiα′j

(τi − τ ′j),

∆αiα′j
(τ) =

∑
p

V αip V
α′j∗
p

1 + e−εpβ
×

{
eεp(τ−β), 0 < τ < β

−eεpτ , −β < τ < 0
,

(9)
here τ ≡ τi − τ ′j . ∆ can be reduced to a block-diagonal
matrix if the coupling to the bath is diagonal in spin-
orbital indices, and in this case we have det ∆(Ck) =∏
α det ∆

(Ck)
α . We make this assumption of diagonal hy-

bridization throughout the rest of this paper. In practice,

the inverse of ∆
(Ck)
α denoted by M(Ck)

α = [∆
(Ck)
α ]−1 is

more convenient to be saved and used in the fast-update
formula10.

When the interaction among f -electrons is density-
density type, the wloc(Ck) can be easily evaluated by seg-
ment algorithm11. When the interaction term is the gen-
eralized type, the local Hamiltonian Hloc is more com-
plicated and the atomic eigenstates are no longer Fock
states. In this case, the evaluation of the local trace part
wloc(Ck) becomes very time consuming and can be ex-
pressed in terms of the atomic eigenstates as

ωloc(Ck) = sTτ ·
∑

Γ1Γ2···Γ2k

e−(β−τk)EΓ1 〈Γ1|fαk |Γ2k〉

× e−(τk−τ ′k)EΓ2k 〈Γ2k|f†α′k |Γ2k−1〉 · · · 〈Γ3|f†α′1 |Γ2〉

× e−(τ ′1−τ1)EΓ2 〈Γ2|fα1
|Γ1〉e−(τ1−0)EΓ1 ,

(10)
where sTτ is the sign determined by the time-ordering
of the fermionic operators. Each term in Eq. (10) can
be diagrammatically illustrated as an evolution path9 of
{Γ}, e.g.

β ` Γ1

fαk (τk)
←−−−−− Γ2k

f†
α′
k

(τ ′k)

←−−−−− · · ·
f†
α′1

(τ ′1)

←−−−−− Γ2

fα1 (τ1)
←−−−−− Γ1 a 0,

(11)
which means that the local configuration evolves from Γ1

at τ = 0 to other multiplets successively by annihilation
or creation of electrons and finally returns back to Γ1 at
τ = β.
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B. Truncation of the Hilbert space

For the sake of simplicity, {Γ} can be divided into two
classes, high energy states {Γh} and low energy states
{Γl}. In the Kondo limit, the average occupation number
for the f -orbitals is very close to an integer, n, which nat-
urally defines the low energy atomic states with nf = n.
The rest of the atomic states have much higher charging
energy about several times of Hubbard U in difference
comparing to the low energy states. In the CS trans-
formation, these high energy atomic states are treated
as virtual processes, which lead to exchange interaction
between the localized f-electrons and itinerant electrons
in the s, p, d bands. For instance, in Cerium compounds
low energy states are nf = 1, and both the nf = 0 and
nf = 2 states are treated as virtual processes. There-
fore for general SIAM with strong Coulomb repulsion and
deep local impurity level, the states {Γh} = {fn±1} are
included as the virtual states. Now after the first step
the local Hilbert space considered in our approach has
been truncated to

{Γ} = {Γl|NΓl = n}
⋃
{Γh|NΓh = n± 1}. (12)

{Γh} are still rarely visited in MC sampling whose energy
difference to {Γl} is about several eV, which is one or
two orders of magnitude larger than the typical Kondo
temperature. In other words, the time evolution func-
tion, which determines the appearance probability of spe-
cific atomic configurations in the MC processes, satisfies
e−τEΓh � e−τEΓl especially at low temperature. When
Hloc is in density-density form and segment picture is
adopted, this implies the overlapping segments or anti-
segments are very short.

The above truncation requires that evolution paths
with non-zero contributions to wloc(Ck) are those alter-
nating {Γh} and {Γl} since

|{Γh|NΓh = n+ 1}〉 ← f†α|{Γl|NΓl = n}〉,
|{Γh|NΓh = n− 1} ← fα|{Γl|NΓl = n}〉,

|∅〉 ← f†α|{Γh|NΓh = n+ 1}〉,
|∅〉 ← fα|{Γh|NΓh = n− 1}〉.

(13)

wloc(Ck) can be split into two parts according to the en-
ergy hierarchy of the head/tail state {Γ1}. The part
which starts from and ends in {Γh1} is generally much
smaller, since it contains more time evolution of the high
energy states and thus can be reasonably neglected, es-
pecially at very low temperature. Thus, we obtain

wloc(Ck) ≈ sTτ
∑

Γl1Γh1 ···ΓlkΓhk

e
−(β−τk)E

Γl1 〈Γl1|fαk |Γhk〉

× e−(τk−τ ′k)EhΓk 〈Γhk |f
†
α′k
|Γlk〉 · · · 〈Γl2|f

†
α′1
|Γh1 〉

× e−(τ ′1−τ1)E
Γh1 〈Γh1 |fα1 |Γl1〉e

−(τ1−0)E
Γl1 ,

(14)
which evolves in {Γl} ← {Γh} · · · {Γl} ← {Γh} ← {Γl}.

FIG. 1. (Color online). Approximations made to CT-HYB in
Kondo regime. (a) Energy of atomic multiplets Γ as a function
of occupation number, in Kondo regime there is EhΓ � ElΓ.

(b) Schematic plot of e−Γτ as a function of τ . e−Γhτ decays

much faster than e−Γlτ . (c) Schematic plot of the impurity
site hybridizing with the heat bath. In the simplest case of
the single orbital model, impurity site spend most of the time
on two low energy single occupied states, | ↑〉 and | ↓〉, than on
two high energy states, unoccupied |〉 and double occupied | ↑↓
〉 (adapted from Ref. [12]). (d) Sharply decaying imaginary
time evolution operator of high energy states is approximated
by a normalized Delta function, leading to virtual processes
included in X matrix. Left panel, τi > τ ′i ; right panel, τi < τ ′i .

C. Energy shift

Eigenvalues of Hloc, {EΓ}, can be negative or positive,
therefore e−τEΓ(τ > 0) is either monotonically increasing
or decreasing function, respectively. However, it is the
relative difference between {EΓh} and {EΓl} that mat-
ters in Monte Carlo simulations. Then it is convenient
to make a shift to {EΓ} such that the time evolution
functions appearing in our simulations are always mono-
tonically decreasing. To realize that, we shift the zero of
the energy to E0, where E0 = min{EΓl},

EΓ → E′Γ = EΓ − E0 ≥ 0. (15)

The transformation is equivalent to multiply a positive
factor eβE0 to wloc(Ck)

ωloc(Ck)→ ω′loc(Ck) = ωloc(Ck)× eβE0 , (16)

and partition function is changed to

Z → Z ′ = Z × eβE0 . (17)
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Please note that the expectation value of an operator will
not be modified by the above transformation,

〈Ô〉Z′ =

∫
dCw′(C)O(C)

Z ′
=

∫
dCw(C)eβE0O(C)
Z × eβE0

=

∫
dCw(C)O(C)

Z
= 〈Ô〉Z .

(18)

Prime ′ is omitted for E′Γ, Z ′, etc. hereafter for the sake
of simplicity.

D. Approximations in Kondo limit

Two typical fragments of evolution paths appearing
in wloc(Ck) in Eq. (14) are schematically depicted in
Fig. 1(d) where each high energy state is sandwiched be-
tween one creation and one annihilation operators. Here
we focus on the left panel where τi > τ ′i . In the limit
of EΓhi

→ +∞, the probability of finding a configuration

with finite τ = τi − τ ′i > 0 approaches 0 due to the ex-

ponentially decreasing factor e
−(τi−τ ′i)EΓh

i , which means
that excitations to high energy states are instantaneous,
i.e. τi− τ ′i = 0+, in the Kondo limit. Integrating over τ ′i ,
we obtain∫ τi

τi−1

e
−(τi−τ ′i)EΓh

i dτ ′i · · · = · · ·
1

EΓhi

· · · |E
Γh
i
→+∞, (19)

where 1
E

Γh
i

indicates total probability for this particular

type of virtual processes. Then in the Kondo limit, where
all the high energy local atomic states can be treated as
the virtual processes, the sharply decreasing time evolu-
tion can be well approximated by a probability normal-
ized delta function

e
−(τi−τ ′i)EΓh

i → 1

EΓhi

δ(τi − τ ′i − 0+). (20)

This approximation is getting better and better when
the charging energy EΓh is approaching infinity, which is
very suitable for the heavy fermion systems at the Kondo
limit. The above approximation has the following advan-
tages. 1) By neglecting the time dependence of the local
propagator for the high energy atomic states, the charge
fluctuations to these high energy atomic states will be
treated as the virtual processes, which induce an effec-
tive exchange coupling among the conduction electrons
and the low energy atomic states. For simple model sys-
tem, i.e. the single orbital Anderson impurity model, it

can automatically obtain the exact same coupling terms
as the SWT. 2) This approximation can be easily applied
to more realistic models generated during the process of
LDA+DMFT, the coupling terms between the f-electrons
and conduction electrons have the momentum and orbital
dependence, which make SWT very difficult.

Replacing all e−τ ·EΓh with 1
E

Γh
δ(τ − 0+) and integrat-

ing over all {τ ′i}, we find that a creation operator and an
annihilation operator always appear in adjacent pairs.
The configuration space now reads

C = {{}, {τ1; s1fα1f
†
α1
}, · · · ,

× {τ1, · · · , τk; s1fα1
f†α′1

, · · · , skfαkf
†
α′k
}, · · · },

(21)

where

sifαif
†
α′i
|si=1 ≡ fαif

†
α′i
→ τi = τ ′i + 0+,

sifαif
†
α′i
|si=−1 ≡ f†α′ifαi → τi = τ ′i − 0+.

(22)

Summation over {Γh} can be written in a compact form
by defining two types of X-matrices labelled by s

X
siαiα

′
i

Γli+1Γli
|si=1 ≡

∑
Γhi

〈Γli+1|fαi |Γhi 〉
1

EΓhi

〈Γhi |f
†
α′i
|Γli〉,

(23)
which describes virtual charge excitations fn → fn+1

and

X
siαiα

′
i

Γli+1Γli
|si=−1 ≡

∑
Γhi

〈Γli+1|f
†
α′i
|Γhi 〉

1

EΓhi

〈Γhi |fαi |Γli〉,

(24)
which describes virtual charge excitations from fn →
fn−1 . Finally one obtains the partition function

Z ≈ Zbath

∞∑
k=0

∫ β

0

dτ1 · · ·
∫ β

τk−1

dτk
∑

α1···αk
α′1···α

′
k

sTτ

× wloc(Ck)
∏
α

det(M(kα)
α )−1,

(25)

where the local trace is reformulated in terms of X-
matrices as

wloc(Ck) =
∑

Γl1···Γlk

e
−(β−τk)E

Γl1X
skαkα

′
k

Γl1Γlk
e
−(τk−τk−1)E

Γl
k

× · · ·Xs2α2α
′
2

Γl3Γl2
e
−(τ2−τ1)E

Γl2X
s1α1α

′
1

Γl2Γl1
e
−(τ1−0)E

Γl1 .

(26)
An example of third order configuration C3 is schemati-
cally shown in Fig. 2(a) and its determinant part is

wdet(C3) =

∣∣∣∣∣∣
4α′1α1

(0−) 4α′1α2
(τ1 − τ2) 4α′1α3

(τ1 − τ3)
4α′2α1

(τ2 − τ1) 4α′2α2
(0+) 4α′2α3

(τ2 − τ3)
4α′3α1

(τ3 − τ1) 4α′3α2
(τ3 − τ2) 4α′3α3

(0−)

∣∣∣∣∣∣ , (27)
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which can be expanded into 3! = 6 terms as schematically
represented in Fig. 2(b-g).

FIG. 2. (Color online) Schematic plot of a third order config-
uration in the approximated partition function Eq. (25). (a),
The evolution of low energy states (Γli, labelled by horizontal
solid colored lines) by means of virtual processes. Two adja-
cent vertical solid black lines are to denote the creation and
annihilation operator pair in an X matrix. ± in X±i is to de-
note the type (si = ±1) of X matrices defined in Eq. (23, 24).
(b-g), Illustration of the hybridizations determinant, Eq. (27),
by arrowed dashed red lines starting from a annihilation op-
erator and ending at a creation operator. For a three order
term, there are 3! = 6 terms in the determinant.

III. MONTE CARLO SAMPLING

Before introducing the detail of the Monte Carlo sam-
pling, we first divide the different pair operators into the
following types

• pure-pair: αi = α′i, sfαif
†
αi ,

• mix-pair: αi 6= α′i, sifαif
†
α′i

.

An k-th order configuration Ck consists of time-ordered
pure-pairs and mix-pairs

β ` skfαkf
†
α′k

(τk)− · · · − s1fα1
f†α′1

(τ1) a 0. (28)

Ck contains an equal number of creation and annihilation
operators for each flavor by construction. With fixed
{τi} and fixed number of single-particle operators of each
flavor, Ck is mathematically an element in the set of direct
products of operators permutations P,

{Cki} = {P{fαk , · · · , fα1
}
⊗

P{f†α′k , · · · , f
†
α′1
}⊗ k∏

i=1

P{fαi , f
†
α′i
}}.

(29)

Based on the fact that any permutation can be expressed
as the product of transpositions, we design updates which
keep diagram order as the following,

• left-exchange: exchange annihilation operators of
two adjacent pairs,

• right-exchange: exchange creation operators of two
adjacent pairs,

• in-pair swap: si → −si.

Ergodicity can be satisfied by the above updates together
with insertion and removal of pure-pairs at random times
which change expansion order by 1, since any Cki can be
generated from an list of pure pairs by successive trans-
positions. Updates which shift pair-operators is not nec-
essary but is useful to increase sampling efficiency.

Metropolis-Hastings algorithm is used to sample con-
figuration space C according to the configuration weight

w(Ck) = wloc(Ck)
∏
α det(M(Ck)

α )−1dτk. The random
walk in C must satisfy detailed balance condition and
ergodicity.

In the following, we first discuss the update scheme
for general interaction and then for density-density iter-
ation. The main difference between the two is the way
to calculate local trace.

A. General interactions

As shown in Eq. (26), the calculation of local trace re-
quires multiplication of matrices and is time-consuming.
We can take advantages of symmetries of Hloc and divide
the full Hilbert space of Hloc into much smaller subspaces
labeled by some good quantum numbers (GQNs)13, such
as the total particle number Ntot, the total Spin z-
component Sztot, the total angular momentum Jz, etc.
Single particle creation and annihilation operators are
therefore in block diagonal form, which speeds up the
calculation. Further speed-up can be achieved by using
the divide-and-conquer9 trick based on the fact that di-
agrammatic configurations are modified locally in each
update.

1. Pure-pair insertion/removal

To insert a pure-pair in configuration Ck, we pick a ran-
dom flavor α, a random pair with type s, and a random
time τ in (0, β). In the corresponding removal process,
we simply delete one of the existing pure-pairs among
kα+1 pairs. The ratio of the transition probabilities can
be calculated for the inserting case as

p(kα → kα + 1)

p(kα + 1→ kα)
=
wloc(Ck+1) det(M(Ck+1)

α )−1

wloc(Ck) det(M(Ck)
α )−1

× 2β

kα + 1
,

(30)
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where wloc(Ck+1) is the local trace and (M(Ck+1)
α )−1 is the

hybridization matrix of the new configuration at order
k + 1.

2. Left/right-exchange

In the left-exchange update, we randomly pick a

pair operator sifαif
†
α′i

together with its left neighbor

si+1fαi+1
f†α′i+1

and exchange their annihilation operators

if αi 6= αi+1

· · · − si+1fαi+1
f†α′i+1

(τi+1)− sifαif
†
α′i

(τi)− · · ·

⇓

· · · − si+1fαif
†
α′i+1

(τi+1)sifαi+1
f†α′i

(τi)− · · · .
(31)

If i = k, the right-most pair is selected as the left neigh-
bor of k-th pair(k ≥ 2). It is equivalent to two successive
shifts: fα from τi+1 to τi and fαi+1

from τi to τi+1. Using
Metropolis-Hasting algorithm we obtain

p(k)′

p(k)
=
wloc(C′k)

wloc(Ck)
× det(M(C′k)

αi )−1

det(M(Ck)
αi )−1

×
det(M(C′k)

αi+1)−1

det(M(Ck)
αi+1)−1

,

(32)

where (M(C′k)
α )−1 (α = αi, αi+1) is the new hybridization

matrix of flavor α with shifted fα compared with original

(M(Ck)
α )−1.

The right-exchange updates works quite similar to left-
exchange except that it operates on creation operators,
and the detailed balance condition is of the form of
Eq. (32) where (M(C′k)

α )−1 is hybridization matrix with
f†α being shifted.

3. Swap

The ith pair is randomly selected, and we flip its type
from si to −si. Swap update is very important for satis-
fying ergodicity since it switches virtual charge fluctua-
tions between fn → fn−1 and fn → fn+1. Pure-pair will
not be selected since the swap of pure-pair can be done

by removal of sifαif
†
α′i

and insertion of −sifαif
†
α′i

at τi
successively. The ratio of the transition probabilities is

p(k)′

p(k)
=
wloc(C′k)

wloc(Ck)
, (33)

The reason why M−1 is not involved in Eq. (33) is that
it’s block diagonal in spin-orbitals.

B. Density-Density interactions

IfHloc commutes with the occupation number operator
of each orbital, the eigenstates of Hloc are Fock states.

For each orbital, creation operator has to be followed by
an annihilation operator for all valid configurations(we
refer it as NN-Rule). The weighting factor of the allowed
configuration Ck can then be expressed as

wloc(Ck) = sTτ · e
−(β−τk)E

Γl1X
skαkα

′
k

Γl1Γlk
e
−(τk−τk−1)E

Γl
k · · ·

×Xs2α2α
′
2

Γl3Γl2
e
−(τ2−τ1)E

Γl2X
s1α1α

′
1

Γl2Γl1
e
−(τ1−0)E

Γl1 .

(34)
To propose valid configurations, updates should be care-
fully designed to satisfy the NN-Rule.

1. Pure-pair insertion/removal

The main difference with the general interaction case is
that the pair type s can not be randomly selected. For a
given configuration, if the orbital α is occupied (unoccu-
pied) in the Fock state spanning τ , only the insertion of
f†αfα(fαf

†
α) at τ is allowed. When it comes to pure-pair

removal, we correspondingly delete f†αfα (f†αfα) away
from τ . The condition for detail balance reads

p(kα → kα + 1)

p(kα + 1→ kα)
=
wloc(Ck+1) det(M(Ck+1)

α )−1

wloc(Ck) det(M(Ck)
α )−1

× β

kα + 1
.

(35)

2. Left/right-exchange and swap

Exchange process which violate the NN-Rule will be
directly rejected. Swap updates will not violate the rule
since only mix-pairs are swapped. The conditions for the
detailed balance are same with those of general interac-
tions except for the calculations of local trace. While
left/right-exchange is equivalent to shift of segments,
swap is equivalent to switch between infinitesimal small
segment and anti-segment.

IV. MEASUREMENTS

The most important observable for QMC impurity
solvers is the finite temperature imaginary-time Green’s

function defined by Gfαα′(τ) = −〈Tτfα(τ)f†α′(0)〉. The
single particle green’s function, in general, includes high
energy process that involve states with different occupa-
tion numbers. Such process, however, are missing in our
approximated parition function, Eq. (25), in the Kondo
limit, where charge fluctuations are projected out com-
pletely. Nevertheless, we can still measure the low-energy

contributions to Gfαα′(τ), which correspond to the quasi-
particle part in the single-particle excitations. Here, we

give a brief descriptions of how to measure Gfαα′(τ). The
step by step derivation of the measurement formula is
given in Appendix B.
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In the CTQMC, the diagrams contributing to Gfαα′(τ)
can be generated from diagrams in Z: One chooses an
arbitrary pair of creation and annihilation operators in
a given configuration Ck, and removes the correspond-

ing contributions to the determinant ∆
(Ck)
α . Within the

approximation applied to the partition function, only a
specific pairs of creation and annihilation operators have

contributions to Gfαα′(τ). A pair of operators that be-
long to different X matrices does contribute, while those
on the same X matrix do not. Those diagrams are illus-
trated in Fig. 3(b) and Fig. 3(c), respectively.

The measurement formula is thus given by

Gfαα′(τ) = −〈 1
β

k∑′

m,n=1

δαm,αδα′n,α′δ
−[τ−(τm−τn)]M(Ck)

nm 〉Z ,

(36)
where ′ stands for the resctriction of summations to m 6=
n ( m and n are one different X matrices). The function
δ− is defined by δ−(τ − τ ′) = δ(τ − τ ′) for τ > 0, and
δ−(τ − τ ′) = −δ(τ − τ ′ − β) for τ < 0. After the Fourier
transform, we obtain

Gfαα′(iωl) = −〈 1
β

k∑′

m,n=1

δαm,αδα′n,α′M
(Ck)
nm eiωl(τm−τn)〉.

(37)

FIG. 3. (Color online) Schematic plot of a third order configu-
ration for measurement of Green’s function in Kondo regime.
(a) Local trace part of Green’s function Gfαα(τ), which is the
same as that of Z shown in Fig. 2(a). (b) An example of
allowed (marked by X) measurement for Gfαα(τ). Two oper-
ators from two different X matrices [here fα3(τ3) of pair X3

and f†
α′2

(τ2) of pair X2] are identified as operators in Gfαα(τ).

In upper and lower panels, we plot existing hybridization lines
which do not connect between the selected operators. (c) An
example of forbidden (marked by 7) measurement in Gfαα(τ).
Two operators belonging to the same X matrix are not al-
lowed to be chosen in measurement.

We can compare the present measurement formula,
Eq. (36), with that for the of t-matrix in the CS model,
Eq. (9) in Ref. [6]. They are related by t(τ) = V 2G(τ) if
there is no k dependence in Vk.

The asymptotic behavior of G(iωn) is iωn ∗

G(iωn)|n→∞ = z with z < 1 being the quasi-particle
weight in the Kondo limit.

The measurement formula for the two particle correla-
tion function bear exactly the same form as Eq. (11)-(13)
of Ref. [6], which are not mentioned here.

V. BENCHMARKS

While Coqblin-Shrieffer(CS) model is a low energy ef-
fective Hamiltonian of ASIM in large U limit in which
only virtual excitations f1 → f0 survive, Kondo model
incorporates both f1 → f0 and f1 → f2 by assuming
deep impurity level εf and large U . Both the two models
can be derived by SWT from SIAM with density-density
interaction shown below

H =
∑
kα

εkc
†
kαckα +

j∑
α=−j

εαnα + U
∑
α<α′

nαnα′ ,

+
∑
αk

[V αk f
†
αckα + V α∗k c†kαfα],

(38)

with N = 2j + 1. A constant density of states ρ(ε) =
1

2D θ(D − |ε|) with D = 1 is chosen for conduction elec-
trons. Both the CS and Kondo models are derived from
SIAM under certain conditions. Therefore the compari-
son between the Monte Carlo simulations on these models
using CT-J method and directly on SIAM using our new
method proposed in this paper can be used as the bench-
mark. For sake of simplicity, our CT-QMC formalism for
partition function (25) is referred as CT-X, where “X”
refers to X-matrices.

A. CS model

The CS model reads

H0 =
∑
kα

εkc
†
kαckα +

∑
α

(εα + Jαα)|α〉〈α|, (39)

H1 =
∑
αα′

Jαα′ |α〉〈α′|(−cαc†α′), (40)

where cα = N
−1/2
0

∑
k ckα, with N0 being number of sites

and α denotes the spin/orbital indices. Partition function
of CS model in CT-J can be obtained by applying the
following restrictions to Eq. (24) and Eqs. (25)–(26):

• V αk = V α∗k = V α, since exchange parameters in CS
model can be chosen as momentum independent;

• Jαα′ ≡ VαVα′
−min{εα} , where EΓh = −min{εα} is the

shifted energy of f0 state;

• X−1,αα′ has only one none-zero element X−1,αα′

|α〉|α′〉 =
1

−min{εα} |α〉〈α
′|.
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To simulate the CS model, we should put an additional
restriction to Ck with {si = −1|i = 1, · · · , k}, which
means that only pair operators describing f1 → f0 enters
in Ck. Furthermore, intra-pair swap update is forbidden
since it gives rise to virtual excitation f1 → f2 which is
absent in the CS model.

1. t-matrix

To test CT-X, we calculate t-matrix with N = 8 and
compare it with the results obtained by CT-J. We choose

the exchange parameter J = V 2

−εf to be 0.075 and tem-

perature T = 0.001D. The results obtained by CT-X
and CT-J are plotted together in FIG. 4, which show
excellent agreement.

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

 0  5  10  15  20  25  30

-t
(τ

)

τ

CT-J 
CT-X

FIG. 4. The impurity t-matrix tα(τ) in the imaginary-time
domain for N = 8, J = 0.075 and T = 0.001. Datas of CT-J
is obtained from Fig. 7 in Ref. [6].

2. static susceptibility

The static susceptibility is evaluated by integrating dy-
namical susceptibility χ(τ) as introduced in detail in sec-
tion 2.3 of Ref. [6]. The results obtained by CT-X and
CT-J are shown in FIG. 5. Again they match each other
very well.

B. Kondo model

The Kondo model is given by

H =
∑
kσ

εkc
†
kσckσ + JS · σc. (41)

where S =
∑
αβ f

†
ασαβfβ and σc =

∑
σσ′ c

†
σσσσ′cσ′ de-

noting the spin operators of the local moments and itiner-
ant electrons respectively. The spin-spin exchange terms

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.001  0.01  0.1  1

χ
(T

)

T

CT-J 
CT-X

FIG. 5. Temperature dependence of the static susceptibility χ
for N=8 and J=0.075. Datas of CT-J is obtained from Fig. 6
in Ref. [6].

can be obtained by considering both of the two virtual
processes f1 → f0 and f1 → f2. With the particle-hole

symmetry, we set U = −2εf thus J = V 2

−εf = V 2

U+εf
.

To simulate the Kondo model by our CT-X method, all
types of pair operators are allowed to appear in the MC
configurations.

As a benchmark, we calculated the t-matrix with
J=0.3 and T=0.001 by CX-T and compare it with the re-
sults obtained by CT-J In FIG. 6. Again the results from
CT-X and CT-J agree very well indicating that CT-X can
treat two types of virtual charge fluctuations well. With
the particle-hole symmetry of Kondo model, the real part
of t(iωn) is zero and hence not plotted in FIG. 6.

-0.65

-0.60

-0.55

-0.50

-0.45

-0.40

-0.35

-0.30

-0.25

-0.20

 0  5  10  15  20  25  30  35  40

Im
 t

(i
ω
n
)

n

CT-J 
CT-X

FIG. 6. Imaginary part of the impurity t-matrix t(iωn) of the
Kondo model in the imaginary-frequency domain for N=2 and
J=0.300. Note: datas of CT-J in this figure is collected by
means of WebPlotDigitizer14 from Fig. 11. in Ref. [6].
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C. Kondo lattice model (KLM)

KLM reads

H =
∑
kσ

εkc
†
kαckα + J

∑
i

Si · σi. (42)

To further test this new impurity solver, we perform
DMFT calculations on KLM in the infinite-dimension
hyper-cubic lattice with the density of states ρc(ω) =

D−1
√

2/πexp(−2ω2/D2). We set D = 1 and fix the
conduction-electron density per site as nc = 0.9 as that
in Ref. [15]. The DMFT is iterated on conduction-
electron self-energy Σc(iωn), which is related to the cav-
ity Green function G0

c and the measured impurity t-
matrix by Dyson equation Σc(iωn)−1 = t(iωn)+G0

c (iωn).
For sake of benchmark, we calculate the momentum dis-
tribution of conduction electrons:

nc(κ) = 〈c†kσckσ〉 = T
∑
n

Gc(κ, iωn)eiωn0+

, (43)

where κ ≡ εk and Gc is the conduction-electron Green
function in the KLM, Gc(κ, iωn) = [iωn − κ + µ −
Σc(iωn)]−1. FIG. 7 shows the temperature dependence
of nc(κ) at T=0.0050, 0.0025 and 0.0010 and well repro-
duces the evolution of Fermi surface as shown in FIG. 4
of Ref. [15]. For comparison, we plot in FIG. 8 the re-
sults computed by CT-X together with results computed
by CT-X at T=0.001. Once again it demonstrates that
CT-X can treat two types of virtual charge fluctuations
well.

 0

 0.2

 0.4

 0.6

 0.8

 1

-1.5 -1 -0.5  0  0.5  1  1.5

n
c
(κ

)

κ

T=0.0050
  0.0025
  0.0010

 0

 0.05

 0.1

 0.15

 0.6  0.8  1

FIG. 7. (Color online). Temperature dependence of momen-
tum distribution nc(κ) computed by CT-X for J=0.3 and
nc=0.9. The vicinity of the large Fermi surface is enlarged in
the inset.

VI. DISCUSSION AND CONCLUSION

We have proposed a new CTQMC method called CT-
X, which can simulate the SIAM in the Kondo limit by

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1.5 -1 -0.5  0  0.5  1  1.5

n
c
(κ

)

κ

CT-J 
CT-X

FIG. 8. (Color online). Momentum distribution nc(κ) at
T=0.001 and comparison with the CT-X. Datas of CT-J is
obtained from Fig. 74 in Ref. [15].

projecting out local charge fluctuations, not in the ef-
fective Hamiltonian but each diagram sampled by the
MC procedure. This is done by approximating the high-
energy states’ imaginary-time evolution operators which
are sharply decreasing by a probability normalized δ
function. This approximation is equivalent to apply SWT
for each particular diagrams.

Benchmarks of CT-X on CS model, Kondo model
and Kondo lattice model with previously proposed CT-
J method show that CT-X method works very well
for these model systems. However, since in the CT-X
method the SWT type approximation is applied to each
particular Feynman diagrams in Monte Carlo procedure,
it can be easily applied to more general quantum impu-
rity models that describe realistic materials. Realistic
models contain a generalized form of interaction, gener-
alized occupation number and generalized crystal field,
which is difficult for the method based on effective model
approach such as the CT-J method. Therefore the CT-
X method developed in the present paper can become a
very good impurity solver for DMFT to study strongly
correlated systems such as the heavy fermion materials.
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Appendix A: Partition function

In this appendix, we derive the starting expression for Z in Eq. (6). First, Z = Tr[e−βH ] is perturbatively expanded
in terms of H1 as

Z = Tr[e−βH0Tτe−
∫ β
0
H1(τ)dτ ] =

∞∑
n=0

(−1)n
1

n!

∫ β

0

dτ1 · · ·
∫ β

0

dτnTr[Tτe−βH0H1(τ1) · · ·H1(τk)], (A.1)

where H0 = Hloc + Hbath, H1 ≡ Hhyb = V + V † with V ≡
∑
p V

α
p c
†
pfα and p ≡ kν. Particle number conservation

requires that the terms with the non-zero contribution to Z must contain an equal number of V and V †. In other
words, n needs to be even. By denoting n = 2k, we have

Z =

∞∑
k=0

1

(2k)!

∫ β

0

dτ1 · · ·
∫ β

0

dτ2kTr[Tτe−βH0H1(τ1) · · ·H1(τ2k)]. (A.2)

There are Ck2k different ways to divide 2k H1 terms into two groups and pick V part from the first group and V † part
from the other. To label the i-th configuration, we introduce an integer set with k elements, Si, to mark the group
of H1 terms from which the V terms have been picked. These integers ranging from 1 to 2k are pairwise distinct and
arranged in ascending order. If we shift number of k V to the left side, there will be no additional sign created since
V and V † are bosonic operators

Z =

∞∑
k=0

1

(2k)!

∫ β

0

dτ1 · · ·
∫ β

0

dτ2k

Ck2k∑
i=1

Tr[Tτe−βH0

k∏
j=1

V (τSij )

k∏
j=1

V †(τ
Sij

)], (A.3)

where Si is used to denote the complement set of Si in set {1, 2, · · · , 2k}. All these Ck2k terms contribute equally to
Z because of unconstrained integrals and bosonic feature of V and V †. Then we have

Z =

∞∑
k=0

Ck2k
(2k)!

∫ β

0

dτ1 · · ·
∫ β

0

dτ2kTr[Tτe−βH0V (τ1) · · ·V (τk)V †(τk+1) · · ·V †(τ2k)]

=

∞∑
k=0

1

(k!)2

∫ β

0

dτ1 · · ·
∫ β

0

dτk

∫ β

0

dτ ′1 · · ·
∫ β

0

dτ ′kTr[Tτe−βH0V (τ1) · · ·V (τk)V †(τ ′1) · · ·V †(τ ′k)]

=

∞∑
k=0

∫ β

0

dτ1 · · ·
∫ β

τk−1

dτk

∫ β

0

dτ ′1 · · ·
∫ β

τ ′k−1

dτ ′kTr[Tτe−βH0V (τ1) · · ·V (τk)V †(τ ′1) · · ·V †(τ ′k)]

(A.4)

where {τk+1, · · · , τ2k} is renamed as {τ ′1, · · · , τ ′k} in the second step, while the unconstrained integrals are replaced
by the constrained ones in the third step. Plugging the explicit forms of V and V † into Z, we obtain

Z =

∞∑
k=0

∫ β

0

dτ1 · · ·
∫ β

τk−1

dτk

∫ β

0

dτ ′1 · · ·
∫ β

τ ′k−1

dτ ′k
∑

α1···αk
α′1···α

′
k

∑
p1···pk
p′1···p

′
k

V α1
p1
· · ·V αkpk V

α′1
p′1
· · ·V α

′
k

p′k

× Tr[Tτe−βH0c†p1
(τ1)fα1

(τ1) · · · c†pk(τk)fαk(τk)f†α′1
(τ ′1)cp′1(τ ′1) · · · f†α′k(τ ′k)cp′k(τ ′k)].

(A.5)

If we move all the conduction electrons’ operators in Tr[Tτe−βH0 · · · ] to the left side without altering their numer-
ical orders, an extra sign s relating to such manipulation will arise since we are dealing with fermionic operators.
Fortunately, s turns out to be 1

s = (−1)k · (−1)
∑2k
i=1(i−1) = (−1)2k2

= 1, (A.6)

resulting in

Tr[Tτe−βH0c†p1
(τ1)fα1

(τ1) · · · c†pk(τk)fαk(τk)f†α′1
(τ ′1)cp′1(τ ′1) · · · f†α′k(τ ′k)cp′k(τ ′k)]

=Tr[Tτe−βH0c†p1
(τ1) · · · c†pk(τk)cp′1(τ ′1) · · · cp′k(τ ′k)fα1(τ1) · · · fαk(τk)f†α′1

(τ ′1) · · · f†α′k(τ ′k)].
(A.7)
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Separating the bath and impurity operators, we obtain

Z =

∞∑
k=0

∫ β

0

dτ1 · · ·
∫ β

τk−1

dτk

∫ β

0

dτ ′1 · · ·
∫ β

τ ′k−1

dτ ′k
∑

α1···αk
α′1···α

′
k

∑
p1···pk
p′1···p

′
k

V α1
p1
· · ·V αkpk V

α′1
p′1
· · ·V α

′
k

p′k

× Trc[Tτe−βHbathc†p1
(τ1) · · · c†pk(τk)cp′1(τ ′1) · · · cp′k(τ ′k)]

× Trf [Tτe−βHlocfα1(τ1) · · · fαk(τk)f†α′1
(τ ′1) · · · f†α′k(τ ′k)].

(A.8)

According to Eq. (A.8), configuration space of Z is given by sets of imaginary times and corresponding orbitals

C = {{τ1, · · · , τk, τ ′1, · · · , τ ′k}, {α1, · · · , αk, α′1, · · · , α′k}|k = 0, 1, · · · }, (A.9)

with τ1 < · · · < τk and τ ′1 < · · · < τ ′k. Furthermore, we introduce the definition of hybridization determinant for
configuration Ck as

det ∆(Ck) ≡ det

 4α′1α1
(τ ′1 − τ1) · · · 4α′1αk(τ ′1 − τk)
...

. . .
...

4α′kα1
(τ ′k − τ1) · · · 4α′kαk(τ ′k − τk)


=

1

Zbath

∑
p1···pk
p′1···p

′
k

V α1
p1
· · ·V αkpk V

α′1
p′1
· · ·V α

′
k

p′k
Trc[Tτe−βHbathc†p1

(τ1)cp′1(τ ′1) · · · c†pk(τk)cp′k(τ ′k)]

=
∑
p1···pk
p′1···p

′
k

V α1
p1
· · ·V αkpk V

α′1
p′1
· · ·V α

′
k

p′k
Trc[Tτe−βHbathc†p1

(τ1) · · · c†pk(τk)cp′1(τ ′1) · · · cp′k(τ ′k)]

× (−1)
∑k
i=1(i−1),

(A.10)

where we define the bath partition function

Zbath = Trce
−βHbath , (A.11)

and the hybridization function

4α′iαj (τ
′
i − τj) =

∑
p′ipj

V
α′i∗
p′i

V αjpj Trc[e
−βHbathc†pj (τj)cp′i(τ

′
i)]. (A.12)

With the above defined determinant det ∆(Ck), the partition function Z can be written as

Z = Zbath

∞∑
k=0

∫ β

0

dτ1 · · ·
∫ β

τk−1

dτk

∫ β

0

dτ ′1 · · ·
∫ β

τ ′k−1

dτ ′k
∑

α1···αk
α′1···α

′
k

(−1)
∑k
i=1(i−1) det ∆(Ck)

× Trf [Tτe−βHlocfα1(τ1) · · · fαk(τk)f†α′1
(τ ′1) · · · f†α′k(τ ′k)].

(A.13)

Contribution of configuration Ck to Z can be expressed as

wZ(Ck) = Zbath

k∏
i=1

dτidτ
′
i(−1)

∑k
i=1(i−1) det ∆(Ck)

× Trf [Tτe−βHlocfα1
(τ1) · · · fαk(τk)f†α′1

(τ ′1) · · · f†α′k(τ ′k)].

(A.14)

Z is just the summation over configuration space

Z =
∑
k

∑
Ck

wZ(Ck). (A.15)
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Appendix B: Green’s function

In this appendix, we present a derivation of the measurement formula for Gfαα′(τ) in Eq. (36). As in the partition
function Z, we perform an expansion with respect H1 as follows:

Gαα′(τ, τ
′) ≡ Gfαα′(τ, τ

′) = −〈Tτfα(τ)f†α′(τ
′)〉

= − 1

Z
Tr[Tτe−βH0e−

∫ β
0
H1(τ̃)dτ̃fα(τ)f†α′(τ

′)]

= − 1

Z

∞∑
k=0

1

(k!)2

∫ β

0

dτ1 · · ·
∫ β

0

dτk

∫ β

0

dτ ′1 · · ·
∫ β

0

dτ ′kTr[Tτe−βH0V (τ1) · · ·V (τk)V †(τ ′1) · · ·V †(τ ′k)fα(τ)f†α′(τ
′)]

= − 1

Z

∞∑
k=0

1

(k!)2

∫ β

0

dτ1 · · ·
∫ β

0

dτk

∫ β

0

dτk+1

∫ β

0

dτ ′1 · · ·
∫ β

0

dτ ′k

∫ β

0

dτ ′k+1

∑
αk+1

∑
α′k+1

δαk+1αδα′k+1α
′

× Tr[Tτe−βH0V (τ1) · · ·V (τk)V †(τ ′1) · · ·V †(τ ′k)fαk+1
(τk+1)f†α′k+1

(τ ′k+1)]δ(τ − τk+1)δ(τ ′ − τ ′k+1).

(B.1)

Because V and V † are essentially bosonic, it results in no sign by shifting fαk+1
(τk+1) and f†α′k+1

(τ ′k+1) over V (τi) or

V †(τ ′i). There are (k + 1)2 different ways to move fαk+1
(τk+1) to other positions among the V (τ1) · · ·V (τk) terms

and f†α′k+1
(τ ′k+1) to other positions among V †(τ ′1) · · ·V †(τ ′k) terms. And since the integral is unconstrained, all these

(k+1)2 terms are actually equal to each other. For each of those (k+1)2 situations , we can reindex (2k+2) operators

with fαk+1
(τk+1) being located at the m-th location among V (τ1) · · ·V (τk) while f†α′k+1

(τ ′k+1) being located at the

n-th location among V †(τ ′1) · · ·V †(τ ′k)

Gαα′(τ, τ
′) = − 1

Z

∞∑
k=0

1

(k!)2

[
1

(k + 1)2

k+1∑
m,n=0

]∫ β

0

dτ1 · · ·
∫ β

0

dτk+1

∫ β

0

dτ ′1 · · ·
∫ β

0

dτ ′k+1

× δ(τ − τm)δ(τ ′ − τ ′n)
∑
αm

∑
α′n

δαmαδα′nα′

Tr[Tτe−βH0V (τ1) · · ·V (τm−1)fαm(τm)V (τm+1) · · ·V (τk+1)

× V †(τ ′1) · · ·V †(τ ′n−1)f†α′n(τ ′n)V †(τ ′n+1) · · ·V †(τ ′k+1)].

(B.2)

Changing the unconstrained integrals to the constrained ones and plugging in explicit forms of V and V † into Green’s
function, we obtain

Gαα′(τ, τ
′) = − 1

Z

∞∑
k=0

k+1∑
m,n=0

∫ β

0

dτ1 · · ·
∫ β

τk

dτk+1

∫ β

0

dτ ′1 · · ·
∫ β

τ ′k

dτ ′k+1δ(τ − τm)δ(τ ′ − τ ′n).

×
∑

α1···αk+1

α′1···α
′
k+1

δαmαδα′nα′
∑

p1···pm−1pm+1···pk
p′1···p

′
n−1p

′
n+1p

′
k

V α1
p1
· · ·V αm−1

pm−1
V αm+1
pm+1

· · ·V αk+1
pk+1

V
α′1
p′1
· · ·V α

′
n−1

p′n−1
V
α′n+1

p′n+1
· · ·V α

′
k+1

p′k+1
Tr[Tτe−βH0

× c†p1
(τ1)fα1

(τ1) · · · c†pm−1
(τm−1)fαm−1

(τm−1)fαm(τm)c†pm+1
(τm+1)fαm+1

(τm+1) · · · c†pk+1
(τk+1)fαk+1

(τk+1)

× f†α′1(τ ′1)cp′1(τ ′1) · · · f†α′n−1
(τ ′n−1)cp′n−1

(τ ′n−1)f†α′n(τ ′n)f†α′n+1
(τ ′n+1)cp′n+1

(τ ′n+1) · · · f†α′k+1
(τ ′k+1)cp′k+1

(τ ′k+1)]

(B.3)
If we shift all conduction electron’s operators to the left side and then separate bath and impurity operators, there
will be a sign, s, relating to such manipulation as

s = (−1)
∑m−1
i=1 (i−1) · (−1)

∑k+1−m
i=1 (i−1+m) · (−1)

∑n−1
i=1 (i+k+1) · (−1)

∑k+1−n
i=1 (i+k+1+n)

= (−1)2+3k+2k2−m−n = (−1)k+m+n.
(B.4)
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As a result,

Gαα′(τ, τ
′) = − 1

Z

∞∑
k=0

k+1∑
m,n=0

∫ β

0

dτ1 · · ·
∫ β

τk

dτk+1

∫ β

0

dτ ′1 · · ·
∫ β

τ ′k

dτ ′k+1δ(τ − τm)δ(τ ′ − τ ′n) · (−1)k+m+n

×
∑

α1···αk+1

α′1···α
′
k+1

δαmαδα′nα′
∑

p1···pm−1pm+1···pk+1

p′1···p
′
n−1p

′
n+1p

′
k+1

V α1
p1
· · ·V αm−1

pm−1
V αm+1
pm+1

· · ·V αk+1
pk+1

V
α′1
p′1
· · ·V α

′
n−1

p′n−1
V
α′n+1

p′n+1
· · ·V α

′
k+1

p′k+1

× Trc[Tτe−βHbathc†p1
(τ1) · · · c†pm−1

(τm−1)c†pm+1
(τm+1) · · · c†pk+1

(τk+1)

× cp′1(τ ′1) · · · cp′n−1
(τ ′n−1)cp′n+1

(τ ′n+1) · · · cp′k+1
(τ ′k+1)]

× Trf [Tτe−βHlocfα1
(τ1) · · · fαk+1

(τk+1)f†α′1
(τ ′1) · · · f†α′k+1

(τ ′k+1)].

(B.5)
According to Eq. (A.10), we have

1

Zbath

∑
p1···pm−1pm+1···pk+1

p′1···p
′
n−1p

′
n+1p

′
k+1

V α1
p1
· · ·V αm−1

pm−1
V αm+1
pm+1

· · ·V αk+1
pk+1

V
α′1
p′1
· · ·V α

′
n−1

p′n−1
V
α′n+1

p′n+1
· · ·V α

′
k+1

p′k+1
Trc[Tτe−βHbath

×c†p1
(τ1) · · · c†pm−1

(τm−1)c†pm+1
(τm+1) · · · c†pk+1

(τk+1)cp′1(τ ′1) · · · cp′n−1
(τ ′n−1)cp′n+1

(τ ′n+1) · · · cp′k+1
(τ ′k+1)]

=(−1)
∑k
i=1(i−1)∆

(Ck+1)
(HHn,m)

(B.6)

where ∆
(Ck+1)
(HHn,m) is obtained from ∆(Ck+1) by deleting n-th row and m-th colum. Green’s function now reads

Gαα′(τ, τ
′) = −Zbath

Z

∞∑
k=0

k+1∑
m,n=0

∫ β

0

dτ1 · · ·
∫ β

τk

dτk+1

∫ β

0

dτ ′1 · · ·
∫ β

τ ′k

dτ ′k+1δ(τ − τm)δ(τ ′ − τ ′n)

×
∑

α1···αk+1

α′1···α
′
k+1

δαmαδα′nα′ det ∆
(Ck+1)
(HHn,m) · (−1)

∑k
i=1(i−1) · (−1)k+m+n

× Trf [Tτe−βHlocfα1(τ1) · · · fαk+1
(τk+1)f†α′1

(τ ′1) · · · f†α′k+1
(τ ′k+1)].

(B.7)

Configuration spaces of Green’s function at k-th order can be represented by those of partition function at k+1 order,
CGk ≡ Ck+1, which contribute to Green’s function with the weight

wG(Ck+1) =− Zbath

k+1∏
i=1

dτidτ
′
i

k+1∑
m,n=0

δαmαδα′nα′ det ∆
(Ck+1)
(HHn,m) · (−1)

∑k
i=1(i−1) · (−1)k+m+n

× δ(τ − τm)δ(τ ′ − τ ′n)Trf [Tτe−βHlocfα1
(τ1) · · · fαk+1

(τk+1)f†α′1
(τ ′1) · · · f†α′k+1

(τ ′k+1)].

(B.8)

For the sake of convenience, we here give the contribution of configuration Ck+1 to Z

wZ(Ck+1) = Zbath

k+1∏
i=1

dτidτ
′
i(−1)

∑k+1
i=1 (i−1) det ∆(Ck+1)

× Trf [Tτe−βHlocfα1(τ1) · · · fαk+1
(τk+1)f†α′1

(τ ′1) · · · f†α′k+1
(τ ′k+1)].

(B.9)

The measurement of Green’s function is

Gαα′(τ, τ
′) =

1

Z

∞∑
k=0

∑
Ck+1

wG(Ck+1)

wZ(Ck+1)
wZ(Ck+1) = 〈wG(Ck+1)

wZ(Ck+1)
〉Z

= 〈−
k+1∑
m,n=0

δαmαδα′nα′δ(τ − τm)δ(τ ′ − τ ′n) ·
(−1)m+n det ∆

(Ck+1)
(HHn,m)

det ∆(Ck+1)
〉Z

= 〈− 1

β

k+1∑
m,n=0

δαmαδα′nα′δ(τ − τ
′, τm − τ ′n)M(Ck+1)

mn 〉Z .

(B.10)
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whereM(Ck+1) = [∆(Ck+1)]−1. The arguments, τ and τ ′, are in [0, β] as a priori. Actually, Gαα′(τ, τ
′) is a β-antiperiodic

function of τ − τ ′. To restore β-antiperiodicity, δ(τ) is replaced by Dirac comb defined as

δ−(τ) ≡
∑
l∈Z

(−1)lδ(τ − lβ). (B.11)

Using the translational invariance

Gαα′(τ − τ ′) =
1

β

∫ β

0

dsGαα′(τ + s, τ ′ + s) (B.12)

we finally get the measurement formula for Green’s function

Gαα′(τ − τ ′) = −〈 1
β

k+1∑
m,n=1

δαm,αδα′n,α′δ
−[τ − τ ′ − (τm − τ ′n)]M(Ck+1)

nm 〉Z . (B.13)

Replacing k + 1 by k ( since we typically call “current” configuration as Ck), we have

Gαα′(τ − τ ′) = −〈 1
β

k∑
m,n=1

δαm,αδα′n,α′δ
−[τ − τ ′ − (τm − τ ′n)]M(Ck)

nm 〉Z . (B.14)

Eq. (B.14) is just the measurement formula of Green’s function for CT-HYB.

We emphasize that the local trace, Trf [· · · ], is completely canceled in 〈wG(Ck+1)
wZ(Ck+1) 〉Z of Eq. (B.10), which means that

the measurement formula of Green’s function in CT-X has the same form to that in CT-HYB since approximations
in CT-X are only made to the local trace. However, one has to reinterpret the configuration spaces: under the
approximations made in CT-X, 2k separated operators form number of k pair-operators as encoded in the definition
of X matrices, Eq. (23-24). As a result, summation over separated creation (

∑
n) and annihilation (

∑
m) operators

in CT-HYB is reinterpreted as summation over pair-operators: fαm is from the m-th X-matrix located at τm while

f†α′n is from the n-th X-matrix located at τn ≡ τ ′n. Last but not the least, we have to discard summands with m = n

which are from high energy processes. Finally, we arrive at the measurement formula of Green’s function in CT-X

Gαα′(τ) = −〈 1
β

k ′∑
m,n=1

δαm,αδα′n,α′δ
−[τ − (τm − τn)]M(Ck)

nm 〉Z . (B.15)
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