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Abstract

We provide the C++ tool BSMPT for calculating the strength of the electroweak phase
transition in extended Higgs sectors. This relies on the loop-corrected effective potential
at finite temperature including daisy resummation of the bosonic masses. The program
allows to compute the vacuum expectation value (VEV) v of the potential as a function
of the temperature, and in particular the critical VEV vc at the temperature Tc where the
phase transition takes place. In addition, the loop-corrected trilinear Higgs self-couplings are
provided. We apply an ’on-shell’ renormalization scheme in the sense that the loop-corrected
masses and mixing angles are required to be equal to their tree-level input values. This
allows for efficient scans in the parameter space of the models. The models implemented
so far are the CP-conserving and the CP-violating 2-Higgs-Doublet Models (2HDM) and
the Next-to-Minimal 2HDM (N2HDM). The program structure is such that the user can
easily implement further models. Our tool can be used for the investigation of electroweak
baryogenesis in models with extended Higgs sectors and the related Higgs self-couplings. The
combination with parameter scans in the respective models allows to study the impact on
collider phenomenology and to make a link between collider phenomenology and cosmology.
The program package can be downloaded at: https://github.com/phbasler/BSMPT.
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1 Introduction

The observed baryon asymmetry of the Universe (BAU) [1] is one of the unsolved puzzles within
the Standard Model (SM). Electroweak (EW) baryogenesis provides a mechanism to generate the
BAU dynamically in the early Universe during a first order EW phase transition (EWPT) [2–10]
provided all three Sakharov conditions [11] are fulfilled. Although in the SM all three conditions
can in principle be fulfilled, the phase transition (PT) is not of strong first order [10, 12, 13],
so that new physics extensions are required that provide additional sources of CP violation as
well as further scalar states triggering a first order EWPT. The investigation of the PT requires
the computation of the loop-corrected Higgs potential at finite temperature, in order find the
vacuum expectation value (VEV) vc at the critical temperature Tc. The latter is defined as the
temperature where two degenerate global minima exist. A value of ξc = vc/Tc > 1 indicates a
strong first order PT [5,14].

In this paper we present the program package BSMPT - ’Beyond the Standard Model Phase
Transitions’:

A C++ tool for the calculation of the loop-corrected effective potential at finite temperature
[15–17] including the daisy resummation for the bosonic masses [18]. The latter is included
in two different approximations for the treatment of the thermal masses, the Parwani [19]
and the Arnold-Espinosa method [20], where the Arnold-Espinosa method is set as the
default one. The renormalization of the potential is based on physical conditions. These
are ’on-shell’ conditions in the sense that the loop-corrected masses and mixing angles
extracted from the effective potential are forced to be equal to their tree-level input values.

The package can be used for:

- The calculation of the EWPT: For a given point in the parameter space, it calculates
the global minimum of the potential at a given temperature and determines the critical
temperature Tc where the phase transition takes place together with the corresponding
VEV, vc.

1 These two values are then used to compute the strength of the PT, parametrized
by ξc = vc/Tc.

- The calculation of the evolution of the VEV(s)2 with the temperature.

- The calculation of the global minimum of the 1-loop corrected potential at zero tempera-
ture.

- The calculation of the loop-corrected trilinear Higgs self-couplings in the on-shell scheme.

For the combined investigation of the PT through EW baryogenesis together with collider phe-
nomenology it is recommended to use input parameter points that already fulfill all relevant
experimental and theoretical constraints in order to pin down the viable parameter space as
much as possible. Our chosen on-shell renormalization has the advantage to allow for efficient
scans in the parameter space of the investigated models and simultaneously take into account
all relevant theoretical and up-to-date experimental constraints. For sample applications, see

1Note, that we do not consider the possibility of a 2-state PT [5,14] in our models.
2In extended Higgs sectors we have several VEVs, which, at zero temperature, combine to the total VEV

v ≈ 246.22 GeV.
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Refs. [21] and [22] in the CP-conserving and CP-violating 2-Higgs Doublet Model (2HDM), re-
spectively.

The program was developed and tested on an OpenSuse 42.2, Ubuntu 14.04, Ubuntu 16.04
and Mac 10.13 system with g++ v6.2.1 and g++ v.7.2.1. The package can be downloaded at:

https://github.com/phbasler/BSMPT

The outline of the paper is as follows. In Section 2 we present our calculation which also serves
to set our notation. The models that are already implemented in the package are introduced in
Section 3. In Section 4 we explain how to install and run the program. Section 5 describes the
available executables and their corresponding output files. Section 6 explains with the help of
a toy model how a new model can be added to the program package. The summary is given in
Section 7.

2 Calculation

In order to investigate the properties of the EWPT, the loop-corrected effective potential V at
finite temperature T has to be computed. In terms of the static field configuration ω and the
temperature T the potential

V = V (ω, T ) (2.1)

develops a minimum for the ground state ω = v(T ). In case v = 0 we are in the symmetric
phase of the model, for v 6= 0, we are in the broken phase. Starting with the symmetric vacuum
in the early universe, the EWPT is defined as the point in the evolution of the potential, where
a second minimum with non-zero VEV vc developed at the critical temperature Tc, for which

V (v = 0, Tc) = V (v = vc, Tc) . (2.2)

The thermal evolution of the ground state of the potential is an important criterion to judge
the fulfillment of the Sakharov criteria. In order to be a possible candidate for electroweak
baryogenesis the EWPT has to be of strong first order, defined as [5, 14]

ξc ≡
vc
Tc

> 1 . (2.3)

Because of the rich structure of the electroweak potential the calculation of vc and Tc is not
possible in an analytic way and we therefore present this program which calculates vc and Tc
numerically.

The loop-corrected effective potential at finite temperature T as function of the classical
constant field configuration, generically denoted by ω, reads

V (ω, T ) = V (ω) + V T (ω, T ) ≡ V (0)(ω) + V CW(ω) + V CT(ω) + V T (ω, T ) . (2.4)

In V (ω) we summarize the contributions that do not depend explicitly on the temperature T .
These are the tree-level potential V (0), the Coleman-Weinberg potential V CW and the counter-
term potential V CT. The thermal corrections at finite temperature T are given by V T (ω, T ).

2
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2.1 Notation

We use the notation of Ref. [23]3 in which the tree-level Lagrangian, relevant for the effective
potential, can be cast into the form

−LS = LiΦi +
1

2!
LijΦiΦj +

1

3!
LijkΦiΦjΦk +

1

4!
LijklΦiΦjΦkΦl (2.5)

−LF =
1

2
Y IJkΨIΨJΦk + c.c. (2.6)

LG =
1

4
GabijAaµA

µ
bΦiΦj , (2.7)

for every model applied in the code. Here and in the following we adopt the Einstein convention
and sum over repeated indices if one is up and the other down, otherwise not. In this description
the scalar multiplets are decomposed into nHiggs real scalar fields Φi, with i = 1, . . . , nHiggs. The
fermion multiplets are represented through nfermion Weyl spinors ΨI , with I = 1, . . . , nfermion.
The gauge bosons are given by the four-vectors Aaµ. The gauge group index a runs over ngauge
gauge bosons in the adjoint representation of the gauge group. The extended Higgs potential is
given by −LS and is described through the tensors Li, Lij , Lijk, Lijkl and the real scalar fields
Φi (i, j, k, l = 1, . . . , nHiggs). The interactions between the scalar fields and the fermions ΨI are
described by the tensor Y IJk (I, J = 1 . . . nfermion). The interactions between the scalars and
the gauge bosons Aaµ are given by Gabij (a, b = 1 . . . ngauge). After symmetry breaking the scalar
fields Φi are expanded around a classical constant field configuration ωi as

Φi(x) = ωi + φi(x) , (2.8)

where the φi(x) describe the quantum scalar field fluctuations. After inserting Eq. (2.8) in
Eqs. (2.5)-(2.7), they can be rewritten as

−LS = Λ + Λi(S)φi +
1

2
Λij(S)φiφj +

1

3!
Λijk(S)φiφjφk +

1

4!
Λijkl(S) φiφjφkφl (2.9)

−LF =
1

2
M IJΨIΨJ +

1

2
Y IJkΨIΨJφk + c.c. (2.10)

LG =
1

2
Λab(G)AaµA

µ
b +

1

2
Λabi(G)AaµA

µ
b φi +

1

4
Λabij(G)AaµA

µ
b φiφj , (2.11)

where

Λ = V (0)(ωi) = Liωi +
1

2!
Lijωiωj +

1

3!
Lijkωiωjωk +

1

4!
Lijklωiωjωkωl (2.12)

Λi(S) = Li + Lijωj +
1

2
Lijkωjωk +

1

6
Lijklωjωkωl (2.13)

Λij(S) = Lij + Lijkωk +
1

2
Lijklωkωl (2.14)

Λijk(S) = Lijk + Lijklωl (2.15)

Λijkl(S) = Lijkl (2.16)

Λab(G) =
1

2
Gabijωiωj (2.17)

Λabi(G) = Gabijωj (2.18)

3The additional terms appearing in [23] do not exist in our models and are therefore omitted here.
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Λabij(G) = Gabij (2.19)

ΛIJ(F ) = M∗ILM J
L = Y ∗ILkY Jm

L ωkωm , with (2.20)

M IJ = Y IJkωk . (2.21)

Using this notation4 one only needs to provide ωi, L
i, Lij , Lijk, Lijkl, Gabij and Y IJk to the

program.

2.2 The Coleman-Weinberg Potential

The temperature-independent one-loop corrected effective potential in the Landau gauge is given
by the Coleman-Weinberg [15] contribution as

V CW(ω) =
ε

4

∑
X=S,G,F

(−1)2sX (1 + 2sX) Tr

[(
Λxy(X)

)2(
log

(
1

µ2
Λxy(X)

)
− kX

)]
, (2.22)

where sX denotes the spin of the particle described by the field X and

ε ≡ 1

(4π)2
. (2.23)

The indices xy relate to the scalar indices ij, the gauge indices ab and the fermion indices IJ for
X = S,G and F , respectively. Note that the sum over X has to be performed over all degrees of
freedom including the color degrees of freedom for the quarks. The scalar tensor Λij(S), the gauge

tensor Λab(G) and the fermion tensor ΛIJ(F ) are given by Eq. (2.14), Eq. (2.17) and Eq. (2.20),

respectively. The potential is renormalized in the MS scheme, i.e. the default values for the
renormalization constants are

kX =

{
5
6 , for gauge bosons
3
2 , otherwise

(2.24)

In the program they are set in the file ClassPotentialOrigin.h and named C CWcbFermion,
C CWcbGB and C CWcbHiggs for the fermions, gauge bosons and scalars, respectively. The
renormalization scale µ is by default set to the VEV at T = 0, µ = v(T = 0) ≈ 246.22 GeV.

2.3 The Counterterm Potential

The masses and mixing angles of the various involved particles are derived from the loop-
corrected potential and differ from the values extracted from the tree-level potential. The tests
for the compatibility of the investigated model with the experimental constraints have to im-
plement these corrections. For an efficient scan over the - often large - parameter space of the
models it is therefore more convenient to directly use loop-corrected masses and angles as input.
This is achieved by modifying the MS renormalization of the Coleman-Weinberg potential and
applying the renormalization prescription by which the one-loop masses and mixing angles are
enforced to be equal to their values at tree-level. In practice, we add the counterterm potential

4For further details, we refer to [23].
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VCT implementing the corresponding renormalization conditions. After replacing the bare pa-
rameters p(0) of the tree-level potential V (0) by the renormalized ones, p, and the counterterms
δp, it is given by

V CT =

np∑
i=1

∂V (0)

∂pi
δpi +

nv∑
k=1

δTk (φk + ωk) , (2.25)

where np is the number of parameters of the potential. The δTk denote the counterterms of
the tadpoles Tk obtained from the minimum conditions of the potential for the nv directions
in field space in which we allow for the development of a non-zero vacuum expectation value.
Note, that nv ≤ nHiggs. In Sec. 3, we give some explicit examples for counterterm potentials.
The explicit forms of the finite counterterms are obtained from the renormalization conditions.
Applying our renormalization prescription to the one-loop contribution of the effective potential
at T = 0, i.e. to V CW + V CT, yields the equations (i, j = 1, . . . , nv)

0 = ∂φi
(
V CW + V CT

)∣∣
ω=ωtree

(2.26)

0 = ∂φi∂φj
(
V CW + V CT

)∣∣
ω=ωtree

, (2.27)

where ωtree is the minimum of the tree-level potential and ω stands generically for the nv values
ωi. The solution of the renormalization conditions Eqs. (2.26) and (2.27) requires the first and
second derivatives of the Coleman-Weinberg potential. The corresponding formulae have been
derived in [23] and have been implemented in the code. When a new model is added they can be
obtained by calling the functions WeinbergFirstDerivative and WeinbergSecondDerivative.
If no shifts to the finite parts are needed, i.e. if the MS scheme is applied, the program will treat
the finite parts of the counterterms as zero in the new class corresponding to the new model.

2.4 The Thermal Corrections

The temperature dependent potential V (T ) is given by [16,17]

V T (ω, T ) =
∑

X=S,G,F

(−1)2sX (1 + 2sX)
T 4

2π2
J±

(
Λxy(X)/T

2
)
, (2.28)

with the functions J− for bosons and J+ for fermions, respectively, reading

J±

(
Λxy(X)/T

2
)

= Tr

 ∞∫
0

dk k2 log
[
1± exp

(
−
√
k2 + Λxy(X)/T

2
)] . (2.29)

Furthermore we have to calculate the daisy corrections [18] Πij
(S) and Πab

(G) to the masses of the
scalars and gauge bosons, respectively. They are given by

Πij
(S) =

T 2

12

[
(−1)2sS (1 + 2sS)

nHiggs∑
k=1

Lijkk + (−1)2sG (1 + 2sG)

ngauge∑
a=1

Gaaij

+ (−1)2sF (1 + 2sF )
1

2

nfermion∑
I,J=1

(
Y ∗IJjY j

IJ + Y ∗IJiY j
IJ

) (2.30)
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Πab
(G) =T 2 2

3

(
ñH
8

+ 5

)
1

ñH

nHiggs∑
m=1

Λaamm(G) δab , (2.31)

where only the longitudinal modes of the gauge bosons get the daisy corrections and ñH ≤ nHiggs

is the number of Higgs fields coupling to the gauge bosons. The tensors Lijkk, Y IJi and Gaaij

have been introduced in Eq. (2.5), Eq. (2.6) and Eq. (2.7), respectively. The tensor Λaamm(G) has

been defined in Eq. (2.19). There are two methods to evaluate these corrections.

• According to the Arnold-Espinosa method [20] one makes the replacement

V T (ω, T )→ V T (ω, T ) + Vdaisy(ω, T ) , (2.32)

Vdaisy(ω, T ) = − T

12π

[nHiggs∑
i=1

(
(m2

i )
3/2 − (m2

i )
3/2
)

+

ngauge∑
a=1

(
(m2

a)
3/2 − (m2

a)
3/2
)]

(2.33)

where m2
i ,m

2
i ,m

2
a,m

2
a are the eigenvalues of Λij(S),Λ

ij
(S) + Πij

(S),Λ
ab
(G),Λ

ab
(G) + Πab

(G). Remark,

that only the longitudinal modes of the gauge bosons get the thermal corrections Πab
(G).

Note also that V T (ω, T ) only depends on masses excluding the thermal corrections.

• In the Parwani method [19], on the other hand, one replaces

Λij(S) → Λij(S) + Πij
(S) (2.34)

in Eq. (2.22) and Eq. (2.28) and also

Λab(G) → Λab(G) + Πab
(G) (2.35)

for the longitudinal modes. The Debye corrected masses are hence also used in V CW.

2.5 Treatment of J±

The numerical evaluation of5

J±(x2) =

∞∫
0

dk k2 log
[
1± exp

(
−
√
k2 + x2

)]
(2.36)

is very time consuming and therefore we use the series expansions in small x2 = m2/T 2,

J+,s(x
2, n) =− 7π4

360
+
π2

24
x2 +

1

32
x4
(
log x2 − c+

)
− π2x2

n∑
l=2

(
− 1

4π2
x2
)l (2l − 3)!!ζ (2l − 1)

(2l)!! (l + 1)

(
22l−1 − 1

)
(2.37)

J−,s(x
2, n) =− π4

45
+
π2

12
x2 − π

6

(
x2
)3/2 − 1

32
x4
(
log x2 − c−

)
+ π2x2

n∑
l=2

(
− 1

4π2
x2
)l (2l − 3)!!ζ (2l − 1)

(2l)!! (l + 1)
, (2.38)

5For a recent C++ library for the computation of these functions, see [24].
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with

c+ =
3

2
+ 2 log π − 2γE (2.39)

c− = c+ + 2 log 4 , (2.40)

where γE denotes the Euler-Mascheroni constant, ζ(x) the Riemann ζ-function and (x)!! the
double factorial. For large x2 we use

J±,l(x
2, n) = − exp

(
−
(
x2
)1/2)(π

2

(
x2
)3/2)1/2 n∑

l=0

1

2ll!

Γ (5/2 + l)

Γ (5/2− l)
(
x2
)−l/2

. (2.41)

With

x2+ = 2.2161 , δ+ = −0.015603 , (2.42)

x2− = 9.4692 , δ− = 0.0063109 , (2.43)

we then calculate J± as

J+(x2) =

{
−J±,l(x2, 3) x2 ≥ x2+
−
(
J+,s(x

2, 4) + δ+
)

x < x2+
(2.44)

J−(x2) =

{
J±,l(x

2, 3) x2 ≥ x2−
J−,s(x

2, 3) + δ− x2 < x2−
. (2.45)

The shifts δ± arise because we choose the intersection point of Js and Jl to be such that
the derivatives are continuous, and these shifts then enforce the functions themselves to be
continuous. In the course of the scan over the parameter space it can happen that the bosonic
masses become negative, so that J−(x2) will be called for x2 < 0. In this case, only the real
part of the function is taken [25]. In practice, the integral is evaluated numerically from x2 = 0
down to x2 = −3000 in steps of 1. In the minimization procedure the result obtained from the
linear interpolation between these points is then used.

In Fig. 1 (upper) we show the series expansion around the transition point x2− (x2+) for J−
(J+) on the left (right) side compared to the numerical evaluation of J− (J+). The plots in
the lower row show the relative difference between the series expansion S and the numerical
evaluation I, (S− I)/I in per cent. As can be inferred from Fig. 1 (c), it does not exceed 1% in
case of bosons, and for fermions it exceeds 1% only around the transition point, cf. Fig. 1 (d).

2.6 The Minimization of the Effective Potential

For the EWPT to be considered of strong first order, the ratio of the VEV vc at the critical
temperature Tc has to fulfill vc/Tc > 1. The value v of the VEV at a given temperature T is
obtained as

v(T ) =

(
ñH∑
k=1

ω̄2
k

) 1
2

. (2.46)

Here, ñH means that the sum is performed over all directions in field space in which we allow for
the development of a non-zero electroweak VEV, i.e. the VEV for fields that couple to the EW

7
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(a) The integral J− for the bosons and x2 ≥ 0.
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(b) The integral J+ for the fermions.
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(c) The relative difference in J− for the series ex-
pansion (S) and the numerical evaluation (I).
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(d) The relative difference in J+.

Figure 1: Comparison between the numerical integration and the series expansion of J±(x2) around x2
±.

gauge bosons. We hence do not include here the VEV that a gauge singlet field (as it appears for
example in the Next-to-2HDM) develops. The ω̄k denote the field configurations that minimize
the loop-corrected effective potential. Therefore, Eq. (2.46) is the VEV that coincides at T = 0
with v = 246.22 GeV. The critical temperature Tc is the temperature where two degenerate
minima of the potential exist. In order to determine Tc the effective potential including the
counterterm potential, cf. Eq. (2.4), is minimized numerically at a given temperature T . In
case of a first order EWPT the VEV jumps from v = vc at the temperature Tc to v = 0 at
T > Tc. For the minimization we use the algorithm CMAES as implemented in libcmaes [26],
which finds the global minimum of a given function. As termination criterion we require the
relative tolerance of the value of the effective potential between two iterations to be below 10−5.
For the determination of Tc we employ a bisection method in the interval T ∈ [0, 300] GeV until
the interval containing Tc is smaller than 10−2 GeV. The temperature Tc is then set to the
lower bound of the final interval. We exclude parameter points for which the individual VEVs
obtained from the next-to-leading order (NLO) potential at T = 0 deviate by more than 1 GeV
from their input values as well as parameter points where no PT is found for T ≤ 300 GeV.
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3 Implemented Models

In this section we provide the tree-level potentials as well as the counterterms for the already
implemented models. For all implemented models the code expects an input file that presents the
input parameters in the same way the program code ScannerS [27,28] writes them into its default
output files. ScannerS is a program that allows to perform extensive scans in the parameter
space of multi-Higgs models and checks for compatibility with theoretical and experimental
constraints. The viable parameter points can then be fed in our program to investigate the
compatibility with a strong first order EWPT e.g.. So far, we have applied our code for such
an analysis in the CP-conserving or real 2HDM (R2HDM) [21], the CP-violating or complex
2HDM (C2HDM) [22] and the Next-to-2HDM (N2HDM) [29].

3.1 The CP-Conserving 2HDM

The tree-level Higgs potential of the CP-conserving 2HDM [30, 31] with a softly broken Z2

symmetry, under which the two SU(2)L Higgs doublets Φ1 and Φ2,

Φ1 =

(
φ+1
φ01

)
and Φ2 =

(
φ+2
φ02

)
, (3.47)

transform as Φ1 → Φ1, Φ2 → −Φ2, reads

V (0) = m2
11Φ
†
1Φ1 +m2

22Φ
†
2Φ2 −m2

12

(
Φ†1Φ2 + h.c.

)
+
λ1
2

(
Φ†1Φ1

)2
+
λ2
2

(
Φ†2Φ2

)2
+λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+
λ5
2

[(
Φ†1Φ2

)2
+ h.c.

]
. (3.48)

The mass parameters m2
11, m

2
22 and m2

12 as well as the quartic couplings λ1...λ5 are real. The
parameters m2

12 and λ5 can be complex in the CP-violating 2HDM. After EWSB the two Higgs
doublets acquire VEVs ω̄ ∈ R about which the Higgs fields can be expanded in terms of the
charged field components ρi and ηi and the neutral CP-even and CP-odd fields ζi and ψi (i =
1, 2),

Φ1 =
1√
2

(
ρ1 + iη1

ζ1 + ω̄1 + iψ1

)
(3.49)

Φ2 =
1√
2

(
ρ2 + ω̄CB + iη2

ζ2 + ω̄2 + i (ψ2 + ω̄CP)

)
. (3.50)

In order to be as general as possible we also allow for CP-violating (ω̄CP) and charge-breaking
(ω̄CB) VEVs although the latter obviously is unphysical. Note that without loss of generality
we have rotated the complex part of the VEVs to the second doublet exclusively. We denote
the VEVs of our present vacuum by (i = 1, 2,CP,CB)

vi ≡ ω̄i|T=0 , (3.51)

with

vCP = vCB = 0 , (3.52)

while the remaining two VEVs are related to the SM VEV v ≈ 246.22 GeV through

v21 + v22 = v2 . (3.53)
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u-type d-type leptons

Type I Φ2 Φ2 Φ2

Type II Φ2 Φ1 Φ1

Lepton-Specific Φ2 Φ2 Φ1

Flipped Φ2 Φ1 Φ2

Table 1: The four Yukawa types of the softly broken Z2-symmetric 2HDM.

By introducing the angle β as

tanβ =
v2
v1

(3.54)

we have

v1 = v cosβ and v2 = v sinβ . (3.55)

The mixing angle β is the rotation angle from the gauge to the mass eigenstates in the charged
and in the CP-odd sector, respectively, while we call the mixing angle in the CP-even sector α,(

G±

H±

)
= R(β)

(
φ±1
φ±2

)
,

(
G0

A

)
= R(β)

(
ψ1

ψ2

)
,

(
H
h

)
= R(α)

(
ζ1
ζ2

)
, (3.56)

with

R(x) =

(
cosx sinx
− sinx cosx

)
. (3.57)

We have five physical mass eigenstates, the light and heavy CP-even Higgs bosons h and H,
the pseudoscalar A and a charged Higgs pair H±, while G0 and G± represent the neutral and
charged massless Goldstone bosons. The counterterm potential is given as

V CT =δm2
11Φ
†
1Φ1 + δm2

22Φ
†
2Φ2 − δm2

12

(
Φ†1Φ2 + Φ†2Φ1

)
+
δλ1
2

(
Φ†1Φ1

)2
+
δλ2
2

(
Φ†2Φ2

)2
+ δλ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ δλ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+
δλ5
2

[(
Φ†1Φ2

)2
+
(

Φ†2Φ1

)2]
+ δT1 (ζ1 + ω1) + δT2 (ζ2 + ω2) + δTCP (ψ2 + ωCP) + δTCB (ρ2 + ωCB) . (3.58)

In order to avoid flavour-changing neutral currents (FCNC) at tree level, the Z2 symmetry can
also be extended to the Yukawa sector [32,33]. With four possible Z2 charge assignments there
are four different types of 2HDMs as summarized in Table 1.

The on-shell renormalization that we apply leads to the conditions

∂φiV
CT
∣∣
φ=〈φc〉T=0

= − ∂φiV CW
∣∣
φ=〈φc〉T=0

(3.59)

∂φi∂φjV
CT
∣∣
φ=〈φc〉T=0

= − ∂φi∂φjV CW
∣∣
φ=〈φc〉T=0

, (3.60)

where

φi ≡ {ρ1, η1, ρ2, η2, ζ1, ψ1, ζ2, ψ2} (3.61)
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and 〈φc〉T=0 denotes the field configuration in the minimum at T = 0,

〈φc〉T=0 = (0, 0, 0, 0, v1, 0, v2, 0) . (3.62)

These conditions yield the counterterms

δm2
11 =

1

2
HCW
ζ1,ζ1 +HCW

ψ1,ψ1
− 5

2
HCW
ρ1,ρ1 +

1

2

v2
v1

(
HCW
ζ1,ζ2 −HCW

η1,η2

)
+ tv22 (3.63)

δm2
22 =

1

2

(
HCW
ζ2,ζ2 − 3HCW

η2,η2

)
+

1

2

v1
v2

(
HCW
ζ1,ζ2 −HCW

η1,η2

)
+
v21
v22

(
HCW
ψ1,ψ1

−HCW
ρ1,ρ1

)
+ v21t (3.64)

δm2
12 = HCW

η1,η2 +
v1
v2

(
HCW
ψ1,ψ1

−HCW
ρ1,ρ1

)
+ v1v2t (3.65)

δλ1 =
1

v21

[
2HCW

ρ1,ρ1 −HCW
ζ1,ζ1 −HCW

ψ1,ψ1

]
− v22
v21
t (3.66)

δλ2 =
1

v22

[
HCW
η2,η2 −HCW

ζ2,ζ2

)
+
v21
v42

(
HCW
ρ1,ρ1 −HCW

ψ1,ψ1

)
− v21
v22
t (3.67)

δλ3 =
1

v1v2

(
HCW
η1,η2 −HCW

ζ1,ζ2

)
+

1

v22

(
HCW
ρ1,ρ1 −HCW

ψ1,ψ1

)
− t (3.68)

δλ4 = t (3.69)

δλ5 =
2

v22

(
HCW
ψ1,ψ1

−HCW
ρ1,ρ1

)
+ t (3.70)

δT1 = HCW
η1,η2v2 +HCW

ρ1,ρ1v1 −NCW
ζ1 (3.71)

δT2 = HCW
η1,η2v1 +HCW

η2,η2v2 −NCW
ζ2 (3.72)

δTCP =
v21
v2
HCW
ζ1,ψ1

+HCW
ζ1,ψ2

v1 −NCW
ψ2

(3.73)

δTCB = −NCW
ρ2 , (3.74)

where we used

NCW
φ = ∂φV

CW
∣∣
φ=〈φc〉T=0

(3.75)

HCW
φ1,φ2 = ∂φ1∂φ2V

CW
∣∣
φ=〈φc〉T=0

. (3.76)

Having less renormalization constants than renormalization conditions, the system of equations
is overconstrained. Its consistent solution is given by the following identities

0 = HCW
η1,η1 −HCW

ρ1,ρ1 (3.77)

0 = HCW
η1,η2 −HCW

ρ1,ρ2 (3.78)

0 = HCW
η2,η2 −HCW

ρ2,ρ2 (3.79)

0 = HCW
ψ1,ψ2

−HCW
η1,η2 +

v1
v2

(
HCW
ψ1,ψ1

−HCW
ρ1,ρ1

)
(3.80)

0 = HCW
ψ2,ψ2

−HCW
η2,η2 +

v21
v22

(
HCW
ρ1,ρ1 −HCW

ψ1,ψ1

)
, (3.81)

leading to a one-dimensional solution space parametrized by the parameter t ∈ R. In the code
t is chosen such that

δλ4 = 0 . (3.82)
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Note that the renormalization constants δTCP and δTCB always turn out to be zero as we do
not have CP violation6 nor charge breaking.

For the eight parameters of the Higgs potential we can either choose a more ’physics’ inspired
set involving the masses of the physical Higgs bosons or a pure ’parametric’ input set. The code
requires the ’parametric’ input based on λ1...5,m

2
12 and tanβ7, which has to be given in the

order

type , λ1 , λ2 , λ3 , λ4 , λ5 , m
2
12 , tanβ . (3.83)

The user furthermore has to specify through type = 1, ..., 4 the type of the 2HDM to be applied,
as given in Table 1 where type = 1, ..., 4 corresponds to type I, type II, lepton-specific and flipped.
Note that the minimum conditions of the potential lead to the following relations among the
parameters

m2
11 = m2

12

v2
v1
− v21

2
λ21 −

v22
2

(λ3 + λ4 + λ5) (3.84)

m2
22 = m2

12

v1
v2
− v22

2
λ22 −

v21
2

(λ3 + λ4 + λ5) . (3.85)

3.2 The CP-violating 2HDM

Incorporating the softly broken Z2 symmetry to avoid FCNC at tree-level (implying the same
four different types of 2HDM as in the CP-conserving case, cf. Table 1), the tree-level Higgs
potential of the C2HDM [34]8 reads

V (0) = m2
11Φ
†
1Φ1 +m2

22Φ
†
2Φ2 −

[
m2

12Φ
†
1Φ2 + h.c.

]
+

1

2
λ1(Φ

†
1Φ1)

2 +
1

2
λ2(Φ

†
2Φ2)

2

+ λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1) +

[
1

2
λ5(Φ

†
1Φ2)

2 + h.c.

]
.

(3.86)

In contrast to the CP-conserving 2HDM, the two parameters m2
12 and λ5 can now be complex.

If arg(m2
12) = arg(λ5) the complex phases of these two parameters can be absorbed by a basis

transformation. If additionally the VEVs of the doublets are assumed to be real, we have the
real 2HDM. Otherwise, we are in the C2HDM. In the following, we will adopt the conventions
of [35]. After EWSB the two Higgs doublets develop VEVs and allowing for the most general
vacuum configuration, the expansion about the minimum reads

Φ1 =
1√
2

(
ρ1 + iη1

ζ1 + ω̄1 + iψ1

)
(3.87)

Φ2 =
1√
2

(
ρ2 + ω̄CB + iη2

ζ2 + ω̄2 + i (ψ2 + ω̄CP)

)
. (3.88)

After introducing

ζ3 = −ψ1 sinβ + ψ2 cosβ (3.89)

6We set the CKM matrix to unity and hence do not have explicit CP violation in the model.
7The eighth parameter is the SM VEV v that is hard-coded in the program.
8For recent phenomenological analyses, see [35–37].
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the neutral mass eigenstates Hi (i = 1, 2, 3) are obtained from the C2HDM basis ζ1, ζ2 and ζ3
through the rotation  H1

H2

H3

 = R

 ζ1
ζ2
ζ3

 . (3.90)

The mass matrix R can be parametrized in terms of three mixing angles αi (i = 1, 2, 3) with
−π/2 ≤ αi < π/2 as

R =

 c1c2 s1c2 s2
−(c1s2s3 + s1c3) c1c3 − s1s2s3 c2s3
−c1s2c3 + s1s3 −(c1s3 + s1s2c3) c2c3

 . (3.91)

All neutral Higgs bosons mix and have no definite CP quantum number. The masses are
obtained from the diagonalization of the mass matrix, derived from the Higgs potential, and the
conventions are such that mH1 ≤ mH2 ≤ mH3 . The charged sector does not change with respect
to the CP-conserving 2HDM, and the mixing angle diagonalizing the charged mixing matrix is
given by β.

The counterterm potential reads

V CT =δm2
11Φ
†
1Φ1 + δm2

22Φ
†
2Φ2 −

(
δRe(m2

12) + iδIm(m2
12)
)

Φ†1Φ2 −
(
δRe(m2

12)− iδIm(m2
12)
)

Φ†2Φ1

+
δλ1
2

(
Φ†1Φ1

)2
+
δλ2
2

(
Φ†2Φ2

)2
+ δλ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ δλ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

1

2
(δRe(λ5) + iδIm(λ5))

(
Φ†1Φ2

)2
+

1

2
(δRe(λ5)− iδIm(λ5))

(
Φ†2Φ1

)2
+ δT1 (ζ1 + ω1) + δT2 (ζ2 + ω2) + δTCP (ψ2 + ωCP) + δTCB (ρ2 + ωCB) . (3.92)

Using

φi ≡ {ρ1, η1, ρ2, η2, ζ1, ψ1, ζ2, ψ2} (3.93)

the ’on-shell’ renormalization conditions yield

∂φiV
CT
∣∣
φ=〈φc〉T=0

= − ∂φiV CW
∣∣
φ=〈φc〉T=0

(3.94)

∂φi∂φjV
CT
∣∣
φ=〈φc〉T=0

= − ∂φi∂φjV CW
∣∣
φ=〈φc〉T=0

, (3.95)

with

〈φc〉T=0 = (0, 0, 0, 0, v1, 0, v2, 0) , (3.96)

and lead to the counterterms

δm2
11 =

1

2

[
HCW
ζ1,ζ1 − 2HCW

ψ1,ψ1
−HCW

η1,η2

v2
v1

+HCW
ζ1,ζ2

v2
v1
−HCW

ρ1,ρ1

]
+ v22t (3.97)

δm2
22 =

[
−1

2

v1
v2

(
HCW
η1,η2 −HCW

ζ1,ζ2

)
+
v21
v22

(
HCW
ρ1,ρ1 −HCW

ψ1,ψ1

)
− 3

2
HCW
η2,η2 +

1

2
HCW
ζ2,ζ2

]
+ v21t

(3.98)

δRe(m2
12) =

[
HCW
η1,η2 −

v1
v2
HCW
ψ1,ψ1

+
v1
v2
HCW
ρ1,ρ1

]
+ v1v2t (3.99)
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δλ1 =
1

v21

[
HCW
ψ1,ψ1

−HCW
ζ1,ζ1

]
− v22
v21
t (3.100)

δλ2 =
1

v22

[
HCW
η2,η2 −HCW

ζ2,ζ2 +
v21
v22

(
HCW
ψ1,ψ1

−HCW
ρ1,ρ1

)]
− v21
v22
t (3.101)

δλ3 =
1

v1v2

[
HCW
η1,η2 −HCW

ζ1,ζ2 +
v1
v2

(
HCW
ψ1,ψ1

−HCW
ρ1,ρ1

)]
− t (3.102)

δλ4 =
2

v22

[
HCW
ρ1,ρ1 −HCW

ψ1,ψ1

]
+ t (3.103)

δRe(λ5) = t (3.104)

δIm(λ5) = − 2

v22
HCW
ζ1,ψ1

(3.105)

δIm(m2
12) = −

[
HCW
ζ1,ψ2

+ 2
v1
v2
HCW
ζ1,ψ1

]
(3.106)

δT1 = HCW
η1,η2v2 +HCW

ρ1,ρ1v1 −NCW
ζ1 (3.107)

δT2 = HCW
η1,η2v1 +HCW

η2,η2v2 −NCW
ζ2 (3.108)

δTCP =
v21
v2
HCW
ζ1,ψ1

+HCW
ζ1,ψ2

v1 −NCW
ψ2

(3.109)

δTCB = −NCW
ρ2 , (3.110)

where we used the abbreviations Eqs. (3.75) and (3.76). Again, the system of equations is
overconstrained. Its one-dimensional solution space is parametrized by t ∈ R which we have
chosen such that

δλ4 = 0 . (3.111)

With this choice Eqs. (3.97)–(3.104) simplify to

δm2
11 =

1

2

[
HCW
ζ1,ζ1 + 2HCW

ψ1,ψ1
− v2
v1

(
HCW
η1,η2 −HCW

ζ1,ζ2

)
− 5HCW

ρ1,ρ1

]
(3.112)

δm2
22 =

1

2

[
v1
v2

(
HCW
ζ1,ζ2 −HCW

η1,η2

)
− v21
v22

(
HCW
ρ1,ρ1 −HCW

ψ1,ψ1

)
− 3HCW

η2,η2 +HCW
ζ2,ζ2

]
(3.113)

δRe(m2
12) =

v1
v2

(
HCW
ψ1,ψ1

−HCW
ρ1,ρ1

)
+HCW

η1,η2 (3.114)

δλ1 =
1

v21

(
2HCW

ρ1,ρ1 −HCW
ψ1,ψ1

−HCW
ζ1,ζ1

)
(3.115)

δλ2 =
1

v22

[
v21
v22

(
HCW
ρ1,ρ1 −HCW

ψ1,ψ1

)
+HCW

η2,η2 −HCW
ζ2,ζ2

]
(3.116)

δλ3 =
1

v1v22

[(
HCW
ρ1,ρ1 −HCW

ψ1,ψ1

)
v1 +

(
HCW
η1,η2 −HCW

ζ1,ζ2

)
v2
]

(3.117)

δλ4 = 0 (3.118)

δRe(λ5) =
2

v22

(
HCW
ψ1,ψ1

−HCW
ρ1,ρ1

)
, (3.119)

where we have applied the identities needed for the consistent solution,

0 = HCW
η1,η1 −HCW

ρ1,ρ1 (3.120)
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0 = HCW
η1,η2 −HCW

ρ1,ρ2 (3.121)

0 = HCW
η2,η2 −HCW

ρ2,ρ2 (3.122)

0 = HCW
ψ1,ψ2

−HCW
η1,η2 +

v1
v2

(
HCW
ψ1,ψ1

−HCW
ρ1,ρ1

)
(3.123)

0 = HCW
ψ2,ψ2

−HCW
η2,η2 +

v21
v22

(
HCW
ρ1,ρ1 −HCW

ψ1,ψ1

)
(3.124)

0 = HCW
ζ1,ψ2

v2 + v1H
CW
ζ1,ψ1

v1 +NCW
ψ1

(3.125)

0 = HCW
ρ1,η2 −HCW

ζ1,ψ2
− v1
v2
HCW
ζ1,ψ1

(3.126)

0 = HCW
ζ1,ψ2

+HCW
η1,ρ2 +

v1
v2
HCW
ζ1,ψ1

(3.127)

0 = HCW
ψ1,ζ2 +HCW

ζ1,ψ2
(3.128)

0 =
v21
v22
HCW
ζ1,ψ1

+HCW
ζ2,ψ2

. (3.129)

Note that δTCB related to the charge breaking VEV turns out to be zero as we do not have a
charge-breaking vacuum.

The C2HDM is parametrized by nine independent parameters. In a physics-inspired basis the
masses are part of the input, in the ’parametric’ basis, used in the code, the input parameters in
addition to the SM VEV hard-coded in the program, are, in the order required by the program,

type , λ1 , λ2 , λ3 , λ4 , Reλ5 , Im(λ5) , Re(m2
12) , tanβ . (3.130)

By setting type = 1, 2, 3 or 4, the user chooses the C2HDM type. The parameters m2
11,m

2
22 and

Im(m2
12) are obtained from the minimum conditions

m2
11 = Re(m2

12)
v2
v1
− v21

2
λ21 −

v22
2

(λ3 + λ4 + Re(λ5)) (3.131)

m2
22 = Re(m2

12)
v1
v2
− v22

2
λ22 −

v21
2

(λ3 + λ4 + Re(λ5)) (3.132)

Im(m2
12) =

v1v2
2

Im(λ5) . (3.133)

3.3 The N2HDM

The N2HDM is built from the CP-conserving 2HDM with a softly broken Z2 symmetry upon
extension by a singlet field ΦS . If the latter does not acquire a VEV, we have a dark matter
candidate [38]. Here, we let the singlet field have a non-vanishing VEV. (For the phenomenology
of the N2HDM with a singlet VEV, see [39] with and [37,40] without any approximations. The
NLO electroweak corrected N2HDM and in particular its renormalization has been presented
in [41].) The tree-level potential of the N2HDM is given by

V (0) = m2
11Φ
†
1Φ1 +m2

22Φ
†
2Φ2 −m2

12

(
Φ†1Φ2 + Φ†2Φ1

)
+
λ1
2

(
Φ†1Φ1

)2
+
λ2
2

(
Φ†2Φ2

)2
+λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+
λ5
2

[(
Φ†1Φ2

)2
+
(

Φ†2Φ1

)2]
+

1

2
m2
SΦ2

S +
λ6
8

Φ4
S +

λ7
2

(
Φ†1Φ1

)
Φ2
S +

λ8
2

(
Φ†2Φ2

)
Φ2
S , (3.134)
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where the first two lines describe the 2HDM part of the N2HDM and the last line is the con-
tribution of the singlet field ΦS . The potential obeys two Z2 symmetries. The first one, named
Z2, is the trivial generalization of the usual 2HDM Z2 symmetry to the N2HDM,

Φ1 → Φ1 , Φ2 → −Φ2 , ΦS → ΦS , (3.135)

and is softly broken by the term proportional to m2
12. Its extension to the Yukawa sector ensures

the absence of FCNC and implies different types of N2HDM that are the same as in the 2HDM,
summarized in Table 1. The second one, named Z′2, is given by

Φ1 → Φ1 , Φ2 → Φ2 , ΦS → −ΦS , (3.136)

and is not explicitly broken. For a non-vanishing VEV of ΦS as allowed here, there is mixing
among all CP-even neutral scalars. This is also the case if m2

12 = 0, which will not be considered
here, however. After EWSB, the doublets and the singlet field acquire VEVs about which
they can be expanded as (allowing for the most general vacuum configuration with CP- and
(unphysical) CB-violating VEVs),

Φ1 =
1√
2

(
ρ1 + iη1

ζ1 + ω̄1 + iψ1

)
(3.137)

Φ2 =
1√
2

(
ρ2 + ω̄CB + iη2

ζ2 + ω̄2 + i (ψ2 + ω̄CP)

)
(3.138)

ΦS = ω̄S + ρS . (3.139)

The diagonalization of the mass matrix of the neutral scalar fields, obtained after EWSB from
the second derivative of the potential with respect to these fields, leads to three neutral physical
Higgs states, H1, H2 and H3 that are ordered by ascending mass, i.e. mH1 ≤ mH2 ≤ mH3 . The
CP-odd and the charged sector do not change with respect to the real 2HDM, and we have a
pseudoscalar Higgs A and two charged Higgs states H±. The N2HDM counterterm potential
reads

V CT = δm2
11Φ
†
1Φ1 + δm2

22Φ
†
2Φ2 − δm2

12

(
Φ†1Φ2 + Φ†2Φ1

)
+
δλ1
2

(
Φ†1Φ1

)2
+
δλ2
2

(
Φ†2Φ2

)2
+δλ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ δλ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+
δλ5
2

[(
Φ†1Φ2

)2
+
(

Φ†2Φ1

)2]
+

1

2
δm2

SΦ2
S +

δλ6
8

Φ4
S +

δλ7
2

(
Φ†1Φ1

)
Φ2
S +

δλ8
2

(
Φ†2Φ2

)
Φ2
S

+δT1(ζ1 + ω1) + δT2(ζ2 + ω2) + δTCP(ψ2 + ωCP)

+δTCB(ρ2 + ωCB) + δTS(ρS + ωS) . (3.140)

Using

φi ≡ {ρ1, η1, ρ2, η2, ζ1, ψ1, ζ2, ψ2, ρS} (3.141)

the ’on-shell’ renormalization conditions yield

∂φiV
CT
∣∣
φ=〈φc〉T=0

= − ∂φiV CW
∣∣
φ=〈φc〉T=0

(3.142)

∂φi∂φjV
CT
∣∣
φ=〈φc〉T=0

= − ∂φi∂φjV CW
∣∣
φ=〈φc〉T=0

, (3.143)
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with

〈φc〉T=0 = (0, 0, 0, 0, v1, 0, v2, 0, vS) , (3.144)

and lead to the counterterms

δm2
11 =

1

2

[
vs
v1
HCW
ρ1,ρS

+
v2
v1

(
HCW
ρ1,ρ2 −HCW

ψ1,ψ2

)
+ 2HCW

ψ1,ψ1
− 5HCW

ψ1,ψ1
+HCW

ρ1,ρ1

]
+ tHv

2
2 (3.145)

δm2
22 =

1

2

[
vs
v2
HCW
ρ2,ρS

+HCW
ρ2,ρ2 − 3HCW

ψ2,ψ2
+
v1
v2

(
HCW
ρ1,ρ2 −HCW

ψ1,ψ2

)
+ 5

v21
v22

(
HCW
ψ1,ψ1

−HCW
ψ1,ψ1

)]
+ tHv

2
1

(3.146)

δm2
12 = HCW

ψ1,ψ2
+
v1
v2

(
HCW
ψ1,ψ1

−HCW
ψ1,ψ1

)
+ tHv1v2 (3.147)

δλ1 =
1

v21

(
2HCW

ψ1,ψ1
−HCW

ψ1,ψ1
−HCW

ρ1,ρ1

)
− tH

v22
v21

(3.148)

δλ2 =
1

v22

(
HCW
ψ2,ψ2

−HCW
ρ2,ρ2

)
+ 2

v21
v42

(
HCW
ψ1,ψ1

−HCW
ψ1,ψ1

)
− tH

v21
v22

(3.149)

δλ3 =
1

v22

(
HCW
ψ1,ψ1

−HCW
ψ1,ψ1

)
+

1

v1v2

(
HCW
ψ1,ψ2

−HCW
ρ1,ρ2

)
− tH (3.150)

δλ4 = tH (3.151)

δλ5 =
2

v22

(
HCW
ψ1,ψ1

− 2HCW
ψ1,ψ1

)
+ tH (3.152)

δm2
S =

1

2

(
HCW
ρS ,ρS

+
v2
vs
HCW
ρ2,ρS

+
v1
vs
HCW
ρ1,ρS

− 3

vS
NCW
ρS

)
− tS

3

2vs
(3.153)

δλ6 =
1

v3s

(
NCW
ρS
− vsHCW

ρS ,ρS

)
− tS

1

v3s
(3.154)

δλ7 = − 1

vsv1
HCW
ρ1,ρS

(3.155)

δλ8 = − 1

vsv2
HCW
ρ2,ρS

(3.156)

δT1 = HCW
ψ1,ψ1

v1 +HCW
ψ1,ψ2

v2 −NCW
ρ1 (3.157)

δT2 =
v21
v2

(
HCW
ψ1,ψ1

−HCW
ψ1,ψ1

)
+HCW

ψ1,ψ2
v1 +Hψ2,ψ2v2 −NCW

ζ2 (3.158)

δTS = tS (3.159)

δTCP =
v21
v2
HCW
ρ1,ψ1

+HCW
ρ1,ψ2

v1 −NCW
ψ2

(3.160)

δTCB = −NCW
ζ2 , (3.161)

where we used the abbreviations Eqs. (3.75) and (3.76). The overconstrained system of equations
leads to a two-dimensional solution space parametrized by tH , tS ∈ R that we set in the code to

tH = tS = 0 . (3.162)

The identities to be applied to solve the system of equations are the same as in the R2HDM
and given by

0 = HCW
η1,η1 −HCW

ρ1,ρ1 (3.163)
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0 = HCW
η1,η2 −HCW

ρ1,ρ2 (3.164)

0 = HCW
η2,η2 −HCW

ρ2,ρ2 (3.165)

0 = HCW
ψ1,ψ2

−HCW
η1,η2 +

v1
v2

(
HCW
ψ1,ψ1

−HCW
ρ1,ρ1

)
(3.166)

0 = HCW
ψ2,ψ2

−HCW
η2,η2 +

v21
v22

(
HCW
ρ1,ρ1 −HCW

ψ1,ψ1

)
. (3.167)

As a charge-breaking vacuum is unphysical, δTCB always turns out to be zero as it should. The
program code requires (in addition to the SM VEV that is hard-coded) the ’parametric’ input
parameters for the N2HDM to be given in the order

type , λ1 , λ2 , λ3 , λ4 , λ5 , λ6 , λ7 , λ8 , vS , tanβ , m2
12 . (3.168)

In the first entry, the user has to specify the N2HDM type. Note that the minimum conditions
lead to the following relations among the parameters

v2
v1
m2

12 −m2
11 =

1

2
(v21λ1 + v22λ345 + v2Sλ7) (3.169)

v1
v2
m2

12 −m2
22 =

1

2
(v21λ345 + v22λ2 + v2Sλ8) (3.170)

−m2
S =

1

2
(v21λ7 + v22λ8 + v2Sλ6) , (3.171)

with

λ345 ≡ λ3 + λ4 + λ5 . (3.172)

4 Installation

Download The program can be downloaded from https://github.com/phbasler/BSMPT .
After extracting the zip archive in the directory chosen by the user, to which we will from now
on refer as $BSMPT, there will be several subfolders. These are:

docs The docs folder contains the documentation as html.

example Here we put sample input files as well as the corresponding results produced
by the different executables (see below).

manual This subfolder contains a copy of this paper which is kept up to date
with changes in the code. Additionally, we include the changelog

file documenting corrected bugs and modifications of the program.

sh Here we put the script to install the libraries and to create the makefile. Here
we also provide the python files prepareData XXX.py (XXX= R2HDM,
C2HDM, N2HDM) that can be used to order the data sample accordingly to
the input requirements.

src This subfolder contains the source files of the code and is structured in three
subfolders.
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The subfolders of src contain the following files:

src/minimizer Here the source files for the minimization routines are stored.
src/models This directory contains the implemented models.

If a new model is added it must be placed in this folder.
There is also a template class with instructions on how
to add a new model. Furthermore, there is the file
SMparam.h with the Standard Model parameters.

src/prog This directory contains the source code for the executables.

Required libraries For BSMPT to work the following three libraries are needed:

∗ The GNU Scientific Library (GSL) [42] is assumed to be installed in PATH. GSL is re-
quired for the calculation of the Riemann-ζ functions, the double factorial and for the
minimization.

∗ The Eigen3 library [43] is downloaded during the installation process of BSMPT. Eigen3 is
used for all the matrix calculations.

∗ The libcmaes library [26] is required for the minimization and is installed during the
installation process.

Compilation The compilation requires a C++ and C compiler that support the C++11 stan-
dard. For the C++ compiler we recommend g++-79 and for the C compiler we recommend

gcc-7. After that, the following steps have to be performed:

1. Go to the folder $BSMPT/sh and call

./InstallLibraries.sh --lib=PathToYourLib --CXX=C++Compiler --CC=CCompiler

where ’PathToYourLib’, is the absolute path in which Eigen3 and libcmaes will be in-
stalled by this script.

2. To generate the Makefile in the $BSMPT folder call

./autogen.sh --lib=PathToYourLib --CXX=C++Compiler

3. Go back to $BSMPT and call

make

which will generate the executables BSMPT, CalcCT, NLOVEV, TripleHiggsNLO and VEVEVO.

After that go to the folder PathToYourLib/libcmaes and check if there is either the folder lib
or lib64. Then

9Although earlier compiler versions can also be used, we strongly recommend to use g++-7 as it significantly
reduces the computation time.
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export LD LIBRARY PATH=$LD LIBRARY PATH:PathToYourLib/libcmaes/LIB

has to be executed where ’LIB’ is either lib64 or lib, depending on which folder exists in
PathToYourLib/libcmaes. This can also be added to bashrc so that it is loaded automatically
with every new terminal that is opened.

5 Executables

In this section we will briefly describe the executables that are generated by the makefile. We
begin with the definition of the input parameters that are used by all executables:

• Model is the parameter by which the model is selected. The CP-violating 2HDM (0), the
CP-conserving 2HDM (1) and the CP-conserving N2HDM (2), as introduced in Section 3,
are already implemented.

• Inputfile sets the path and the name of the input file. In the input file, the programs expect
the first line to be a header with the column names. Every following line then corresponds
to the input of one particular parameter point. The parameters are required to be those
of the Lagrangian in the interaction basis. If a different format for the input parameters
is desired one needs to adapt the function ReadAndSet in the corresponding model file in
$BSMPT/src/models. For the format of the input files of the already implemented models,
we refer to the corresponding subsections in Sec. 3. Note, that the program expects the
input parameters to be separated by a tabulator. In the folder $BSMPT/sh/, we provide
python scripts that prepare the data accordingly.

• Outputfile sets the path and the name of the generated output file. We note, that the
program does not create new folders so that it has to be made sure that the folder for the
output file already exists.

If in the thermal corrections the Parwani method Eqs. (2.34), (2.35), should be used instead of
the Arnold Espinosa method, Eqs. (2.32), (2.33), the variable ’C UseParwani’ in line 132 of the
file $BSMPT/src/models/ClassPotentialOrigin.h has to be changed to ’true’. Afterwards, in
$BSMPT the commands ’make clean’ and subsequently ’make’ have to be executed.

5.1 BSMPT

BSMPT is the executable of the main program. It calculates the EWPT for the parameter point(s)
given in the input file. It is executed through the command line

BSMPT

./bin/BSMPT Model Inputfile Outputfile LineStart LineEnd

The user has to specify the model, the name and path of the input file and the name and
path of the output file through Model, Inputfile and Outputfile, respectively. By LineStart and
LineEnd the numbers of the lines in the input file are specified where the set of parameter points
starts and ends for which the program performs the calculations. Each line corresponds to one
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parameter point. Note that the first line of your data (the line with the legend) has the number
1. The code reads in a line from the input file, calculates the EWPT for this parameter point
and then writes out the line in the output file, i.e. the information on the parameter point, and
appends the results of the calculations. These are vc, Tc, vc/Tc and the individual VEVs at Tc,
i.e., ω̄k(Tc) (k = 1, ..., nv). It also extends the legend from the input file by adding the entries
for the output.

Only results for those points are written out for which vc/Tc > 1. If the check should not be
against 1 but against a different value the constant ’C PT’ in line 154 of the file
$BSMPT/src/model/ClassPotentialOrigin.h has to be changed to the desired value. After-
wards, in $BSMPT the commands ’make clean’ and subsequently ’make’ have to be executed.

5.2 CalcCT

CalcCT is the executable for the calculation of the counterterms for a given parameter point. It
is executed through the command line

CalcCT

./bin/CalcCT Model Inputfile Outputfile LineStart LineEnd

in which the user first has to specify the model, the name and path of the input file and the name
and path of the output file through Model, Inputfile and Outputfile, respectively. Furthermore,
the line numbers of the start and end parameter point have to be specified. For each line, i.e. each
parameter point, the various counterterms of the model are calculated. They are written out in
the output file which contains a copy of the parameter point and appended to it in the same line
the results for the counterterms. The first line of the output file contains the legend describing
the entries of the various columns.

5.3 NLOVeV

NLOVeV is the executable calculating the global minimum of the loop-corrected effective potential
at T = 0 GeV for every point between the lines LineStart and LineEnd to be specified in the
command line for the execution of the program:

NLOVeV

./bin/NLOVeV Model Inputfile Outputfile LineStart LineEnd

The model, the name and path of the input file and the name and path of the output file are set
through Model, Inputfile and Outputfile, respectively. The output file contains the information
on the parameter point to which the computed values at zero temperature of the NLO VEVs (in
GeV) are appended in the same line, namely v(T = 0) and the individual VEVs ω̄k(T = 0) ≡ vk
(k = 1, ..., nv). The first line of the output file again details the entries of the various columns.
Note, that it can happen that the global minimum v(T = 0), that is obtained from the NLO
effective potential, is not equal to v = 246.22 GeV any more. By writing out also v(T = 0) the
user can check for this phenomenological constraint.
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5.4 TripleHiggsCouplingsNLO

TripleHiggsCouplingsNLO is the executable of the program that calculates the triple Higgs
couplings, derived from the third derivative of the potential with respect to the Higgs fields, for
every point between the lines LineStart and LineEnd to be specified in the command line:

TripleHiggsCouplingsNLO

./bin/TripleHiggsNLO Model Inputfile Outputfile LineStart LineEnd

The model, the name and path of the input file and the name and path of the output file are
set through Model, Inputfile and Outputfile, respectively. The output file contains the trilinear
Higgs self-couplings derived from the tree-level potential, the counterterm potential and the
Coleman-Weinberg potential at T = 0 for all possible Higgs field combinations. The total NLO
trilinear Higgs self-couplings are then given by the sum of these three contributions. The first
line of the output file describes the entries of the various columns.

5.5 VEVEVO

VEVEVO is the executable of the program that calculates the temperature evolution of the VEVs
for a given parameter point. It is performed through the command line

VEVEVO

./bin/VEVEVO Model Inputfile Outputfile Line Tempstart Tempstep Tempend

Again, the model, the name and path of the input file and the name and path of the output file
have to be specified through Model, Inputfile and Outputfile, respectively. Furthermore,

• Line is the line number of the parameter point for which the evolution shall be calculated.

• Tempstart is the starting value of the temperature in GeV.

• Tempstep is the step size of the temperature evolution for which the VEVs are to be
calculated.

• Tempend is the end value of the temperature interval, in which the potential should be
minimized.

The output file contains the data for T and the corresponding values of v and of the individual
VEVs, i.e. ω̄k(T ) (k = 1, ..., nv). The first line of the output file is devoted to the legend that
specifies the entries of the various columns. Note, that the program does not check whether the
individual VEVs at the various temperatures are positive or not but just writes out the results
of the numerical minimizer, and therefore the signs of the individual VEVs can flip.

An example for the temperature evolution of a specific parameter point in the C2HDM,
described in section 3.2, is depicted in Fig. 2. The parameter point is given by the input values

type = 1 tanβ = 6.94743
λ1 = 1.2248193823 λ2 = 0.299419454432
λ3 = −0.514319430337 λ4 = 4.07718269395
Re(λ5) = −3.84704455054 Im(λ5) = −1.0875150879
Re(m2

12) = 8044.09 GeV2 .

(5.173)
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This implies the Higgs boson masses

mH1 = 125.09 GeV mH2 = 236.989 GeV
mH3 = 542.946 GeV mH± = 223.758 GeV .

(5.174)

For the critical temperature Tc, the VEV vc at Tc and ξc we find for this parameter point

Tc = 138.913 GeV , vc = 139.274 GeV , ξc = 1.0026 . (5.175)

The individual doublet VEVs ω̄1 and ω̄2 and the CP- and charge-breaking VEVs ω̄CP and ω̄CB

at Tc are

ω̄1(Tc) = 16.9487 GeV ω̄2(Tc) = 135.556 GeV
ω̄CP(Tc) = 27.1021 GeV ω̄CB(Tc) = 0 GeV .

(5.176)

We observe in Fig. 2 (a) the jump for the symmetric phase to a non-zero VEV with vc =
139.274 GeV at Tc = 138.913 GeV corresponding to a strong first order EWPT with ξc just
above 1, ξc = 1.0026. For the chosen parameter point with tanβ ≈ 7, the non-zero doublet VEV
ω̄2 is much larger than ω̄1, cf Fig. 2 (b). Their squared sum approaches v(T = 0) =

√
ω̄2
1 + ω̄2

2 =
246.22 GeV at zero temperature. As can be inferred from Fig. 2 (c) and (d), at Tc, a CP-violating
phase ω̄3 6= 0 is generated spontaneously at the EWPT. The non-physical charge-breaking VEV
ω̄CB on the other hand remains zero throughout the whole scanned temperature interval, as it
should, cf Fig. 2 (d).

6 How to add a New Model

In this section we describe how a new model can be added to the program. To illustrate this, we
have generated the template class ClassTemplate.cpp, located in the directory BSMPT/src/models/,
in which the functions (according to the given comments) have to be edited. The functions to
be modified are

Class Template

ReadAndSet

addLegendCT

addLegendTemp

addLegendTripleCouplings

addLegendVEV

set gen

set CT Pot Par

write

TripleHiggsCouplings

calc CT
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(c) Evolution of the CP-violating phase tan(ϕ) =
ω̄CP/ω̄2 of the second doublet.
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Figure 2: The temperature evolution obtained by VEVEVO for the C2HDM parameter point Eq. (5.173).

MinimizeOrderVEV

SetCurvatureArrays

CalculateDebyeSimplified

VTreeSimplified

VCounterSimplified

Debugging10

Furthermore, the constant of the new model with which it is selected by the program (through
Model) has to be defined in the file IncludeAllModels.h. After doing so, in the file
IncludeAllModels.cpp the corresponding entry in the function Fchoose has to be added, and

10In fact, the function Debugging is not used by any of the programs and is provided only for the user to
perform some checks.
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the file needs to be extended to include the new model. Additionally, in ClassTemplate.h the
parameters of the model have to be declared. All these files are also located in BSMPT/src/models/.

6.1 Example

As example we take a model with one scalar particle φ which develops a VEV v, couples to one
fermion t with the Yukawa coupling yt, and to one gauge boson A with the gauge coupling g.
The relevant pieces of the Lagrangian are given by (Φ = φ+ v)

−LS =
m2

2
(φ+ v)2 +

λ

4!
(φ+ v)4 (6.177)

−LF = yttLtR (φ+ v) (6.178)

LG = g2A2 (φ+ v)2 . (6.179)

We therefore have i, j, k, l = 1, I, J = 1, 2, a, b = 1 for the tensors defined in Eqs. (2.5), (2.6) and
(2.7). Here I, J = 1, 2 corresponds to tL and tR, the left- and right-handed projections of the
fermion t. The tensors are given by

Li = ∂v (−LS)|φ=0,v=0 = 0 (6.180)

Lij = ∂2v (−LS)
∣∣
φ=0,v=0

= m2 (6.181)

Lijk = ∂3v (−LS)
∣∣
φ=0,v=0

= 0 (6.182)

Lijkl = ∂4v (−LS)
∣∣
φ=0,v=0

= λ (6.183)

Y IJk =

{
0 I = J (I, J = tL, tR)

yt I 6= J (I, J = tL, tR)
(6.184)

Gabij = ∂2A∂
2
v (LG) = 4g2 . (6.185)

The counterterm potential, given by Eq. (2.25), reads

V CT =
δm2

2
(φ+ v)2 +

δλ

4!
(φ+ v)4 + δT (φ+ v) . (6.186)

Application of Eqs. (2.26) and (2.27) yields

δT + vδm2 +
1

6
v3δλ = − ∂φV CW

∣∣
φ=0

(6.187)

δm2 +
v2

2
δλ = − ∂2φV CW

∣∣
φ=0

. (6.188)

The system of equations is overconstrained. Choosing

δT = t , with t ∈ R , (6.189)

we get

δλ =
3t

v3
+

3

v3

(
∂φV

CW
∣∣
φ=0

)
− 3

v2

(
∂2φV

CW
∣∣
φ=0

)
(6.190)

δm2 = − 3

2v

(
∂φV

CW
∣∣
φ=0

)
+

1

2

(
∂2φV

CW
∣∣
φ=0

)
− 3t

2v
. (6.191)

To implement this model, several files need to be changed, as described in the following.
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6.1.1 IncludeAllModels.h, IncludeAllModels.cpp, ClassTemplate.h

In IncludeAllModels.h the constant with which the program selects the new model has to be
set. Please make sure that the new model number is not used already by an implemented model.
The program would then not know which model to select. Choosing for the template model
e.g. 5, this results in adding the line

const int C ModelTemplate=5;

This model selection then has to be entered in IncludeAllModels.cpp by adding to the function
Fchoose the line

else if(choice == C ModelTemplate)
{
return std::unique ptr<Class Potential Origin> { new Class Template };
}

In IncludeAllModels.cpp the new model is included by adding the line

#include “ClassTemplate.h”

In ClassTemplate.h the variables for the potential and for the remaining Higgs coupling pa-
rameters as well as for the counterterm constants have to be added,

double ms, lambda, dms, dlambda, dT, yt, g;

Here ’ms’ denotes the mass parameter squared, m2, and ’dms’, ’dlambda’ are the counterterms
δm2, δλ.

6.1.2 ClassTemplate.cpp

We will not describe here in detail every function in Class Template.cpp that can be modified
as the functions are commented in the code. Instead, we briefly describe here the most essential
parts.

Class Template() The numbers of Higgs particles, potential parameters, counterterms and
VEVs have to be specified in the constructor Class Template() and the variable ’Model’ has to
be set to the selected model. In our simple example, this is
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Model = C ModelTemplate; (6.192)

NNeutralHiggs = 1; (6.193)

NChargedHiggs = 0; (6.194)

nPar = 2; (6.195)

nParCT = 3; (6.196)

nVEV = 1; (6.197)

NHiggs = NNeutralHiggs + NChargedHiggs; (6.198)

When you implement a new model that is not called Template but e.g. NewModel, please
make sure to replace in the corresponding .h and .cpp files the name Class Template by
the name of the newly implemented class. This means that Class Template has to be replaced
by Class NewModel wherever it appears.

ReadAndSet(const std::string& linestr, std::vector<double>& par) In this function
the input parameters of the model are read into the vector ’par’. Each line in the input file
corresponds to a new parameter point. The line to be read in is given by the string ’linestr’. Via
’std::stringstream’ the parameters of each line are read into double variables. In our template
model the input file would contain the parameters ’ms’ and ’lambda’ so that in the program it
would look like this:

std::stringstream ss(linestr);

double tmp;

double lms,llambda;

for(int k=1;k <= 2;k++)

{
ss >> tmp;

if(k==1) lms = tmp;

else if(k==2) llambda = tmp;

}
par[0] = lms;

par[1] = llambda;

set gen(const std::vector<double>& par) Here, the potential parameters are set from
the vector ’par’ read in with the function ReadAndSet(std::string linestr, double* par),
as well as the coupling parameters. In our sample model, the gauge coupling g is given by
the SM gauge coupling, and the Yukawa coupling yt is given in terms of the SM VEV and the
top quark mass. The SM gauge coupling, the SM VEV and the top quark mass are defined in
$BSMPT/src/models/SMparam.h. With the parameters ’ms’ and ’lambda’ this would then look
like:
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ms = p[0];

lambda = p[1];

g = C g;

yt = std::sqrt(2)/C vev0 * C MassTop;

More complicated Higgs sectors require additional parameters. Furthermore, you can set here
the potential parameters that are not read in from the input parameters but are calculated
through the tree-level minimum conditions, like m2

11,m
2
22 and Im(m2

12) in the C2HDM e.g.
This function is also used to define the vectors vevTree and vevTreeMin. The former vector
refers to the complete field configuration appearing in the effective potential. The size of the
vector is hence given by nHiggs (cf. Sec. 2.1). For the (C)2HDM e.g., we would have nHiggs = 8
corresponding to the eight real fields φi in Eq. (3.61) (Eq. (3.93)). The vector vevTreeMin

corresponds to the VEVs at T = 0. Its size is given by the field configurations that develop a
VEV, i.e. nv (cf. Sec. 2.3). This would be nv = 4 in the (C)2HDM, corresponding to the four
VEVs v1, v2, vCP and vCB. In our simple template model nHiggs and nv coincide resulting in two
vectors vevTree and vevTreeMin of dimension 1 each. The value of vevTreeMin is given by the
SM VEV ’C vev0’ that is hard-coded in the program. In our sample model it would look like
this:

vevTreeMin.resize(nVEV) ;

vevTreeMin[0] = C vev0 ;

vevTree.resize(NHiggs) ;

MinimizeOrderVEV(vevTreeMin,vevTree) ;

Additionally, the MS renormalization scale can be changed here through the command

scale = mu;

Here ’mu’ is the chosen value in GeV for the renormalization scale. The default value is ’mu =
C vev0’, i.e. the EW VEV.

MinimizeOrderVEV(const std::vector<double>& vevminimizer,
std::vector<double>& vevFunction) Whenever we deal with the Higgs potential in the
calculation, the dimension of the vector describing the fields is nHiggs. Not all of these fields
develop VEVs, however, so that the vector used in the minimizer only has dimension nv. The
function MinimizeOrderVEV is used to convert the resulting vector from the minimizer to the
vector with the nHiggs entries. In order to do so the field(s) that develop(s) VEV(s) have to be
selected. In the template model we have only one field and it develops a VEV so that we simply
have to set

VevOrder[0] = 0 ;
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In a more complex model with e.g. two fields where only one of them develops a VEV, one would
have to set ’VeVOrder[0] = 0’ if the field developing the VEV is in the first entry of the vector
describing the fields, and ’VeVOrder[0] = 1’ if it is the field in the second entry.

SetCurvatureArrays() The tensors of the Lagrangian of the new model have to be imple-
mented in the function SetCurvatureArrays(). The notation is

Curvature Higgs L1[i] = Li

Curvature Higgs L2[i][j] = Lij

Curvature Higgs L3[i][j][k] = Lijk

Curvature Higgs L4[i][j][k][l] = Lijkl

Curvature Gauge G2H2[a][b][i][j] = Gabij

Curvature Quark F2H1[I][J ][k] = Y IJk .

Technically, one could use ’Curvature Quark F2H1’ to store all quarks and leptons there, but
as they do not mix the program provides besides ’Curvature Quark F2H1’ where I, J run over
all quarks, also the structure ’Curvature Lepton F2H1[I][J][k]’ where I, J run over all leptons.
For our example this would look like

Curvature Higgs L1[0] = 0;

Curvature Higgs L2[0][0] = ms;

Curvature Higgs L3[0][0][0] = 0;

Curvature Higgs L4[0][0][0][0] = lambda;

Curvature Gauge G2H2[0][0][0][0] = 4*std::pow(g,2);

Curvature Quark F2H1[0][0][0] = 0;

Curvature Quark F2H1[1][0][0] = yt;

Curvature Quark F2H1[0][1][0] = yt;

Curvature Quark F2H1[1][1][0] = 0;

set CT Pot Par(const std::vector<double>& par) For the use of the counterterms, the
corresponding vectors for the counterterm potential have to be set. They are named ’Curva-
ture Higgs CT L1’, ’Curvature Higgs CT L2’, ’Curvature Higgs CT L3’ and
’Curvature Higgs CT L4’ and defined analogously to ’Curvature Higgs L1’ to
’Curvature Higgs L4’.

calc CT( std::vector<double>& par) The counterterms are computed numerically in the
function calc CT( std::vector<double>& par). To do so, the user has to implement the
formulae for the counterterms that were derived beforehand analytically in terms of the deriva-
tives of the Coleman-Weinberg potential, cf. Eqs. (6.189), (6.190) and (6.191) for our tem-
plate model. The derivatives of V CW are provided by the program through the function calls
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WeinbergFirstDerivative and WeinbergSecondDerivative. In detail, to calculate the coun-
terterms δm2, δλ and δT of the template model, the following steps have to be performed:

• To calculate the first and second derivative of the Coleman-Weinberg potential call

std::vector〈double〉 WeinbergNabla,WeinbergHesse;
WeinbergFirstDerivative(WeinbergNabla);
WeinbergSecondDerivative(WeinbergHesse);

and to save it in a vector and matrix class use

VectorXd NablaWeinberg(NHiggs);
MatrixXd HesseWeinberg(NHiggs,NHiggs);
for(int i=0;i<NHiggs;i++)
{

NablaWeinberg[i] = WeinbergNabla[i];
for(int j=0;j<NHiggs;j++)
{

HesseWeinberg(i,j) = WeinbergHesse.at(j*NHiggs+i);
}

}

• Implement the previously derived formulae for the counterterms. In our example, these
are Eqs. (6.189), (6.190) and (6.191), where we set t = 0,

dT =0;

dlambda =3.0/std::pow(C vev0,3) * NablaWeinberg[0]

− 3.0/std::pow(C vev0,2) * HesseWeinberg(0,0);

dms =-3.0/(2*C vev0) * NablaWeinberg[0] + 1.0/2.0 *HesseWeinberg(0,0);

• Insert the parameters in the vector ’par’,

par[0] = dT;

par[1] = dms;

par[2] = dlambda;

• Finally call

set CT Pot Par(par);

so that everything is set correctly.
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Afterwards, the values for dT, dmS and dlambda are set from the vector ’par’ by the function
set CT Pot Par(const std::vector<double>& par).

TripleHiggsCouplings() This function provides the trilinear loop-corrected Higgs self-coup-
lings as obtained from the effective potential. They are calculated from the third derivative
of the Higgs potential with respect to the Higgs fields in the gauge basis and then rotated to
the mass basis. Since the Higgs fields are ordered by mass, i.e. we have ascending indices with
ascending mass, and the mass order can change with each parameter point, this implies that for
each parameter point the indices of the vector containing the trilinear Higgs coupling would refer
to different Higgs bosons. Therefore, it is necessary to order the Higgs bosons in the mass basis
irrespective of the mass order. This order is defined through the vector HiggsOrder(NHiggs).

for(int i=0;i<NHiggs;i++)
{

HiggsOrder[i]= value;
}

The number ’value’ is defined by the user according to the ordering that this desired in the mass
basis. Thus HiggsOrder[0] = 5 e.g. would assign the 6th lightest particle to the first position.
The particles can be selected through the mixing matrix elements.

addLegendTripleCouplings() All the following functions addLegend... extend the legends
of the output files by certain variables. The function addLegendTripleCouplings extends the
legend by the column names for the trilinear Higgs couplings derived from the tree-level, the
counterterm and the Coleman-Weinberg potential. In order to do so, the user first has to make
sure to define the names of the Higgs particles of the model in the vector ’particles’. In our
model we only have one Higgs particle that we call H and hence set ’particles[0]=”H”;’.

addLegendTemp() Here the column names for Tc, vc and the VEVs are added to the legend.
The order should be Tc, vc and then the names of the individual VEVs. These VEVs have to
be added in the same order as given in the function MinimizeOrderVEV.

addLegendVEV() This function adds the column names for the VEVs that are given out.
The order has to be the same as given in the function MinimizeOrderVEV.

addLegendCT() In this function, the legend for the counterterms is added. The order of the
counterterms has to be same as the one set in the function set CT Pot Par(par).

VTreeSimplified, VCounterSimplified The functions
VTreeSimplified(const std::vector<double>& v) and
VCounterSimplified(const std::vector<double>& v) can be used to explicitly implement
the formulae for the tree-level and counterterm potential in terms of the classical fields ω, in
our example these are Eqs. (6.177) and Eq. (6.186), respectively, with φ = 0 and v =

∧
ω.

Implementing these may improve the runtime of the programs. An example is given in the
template class.
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CalculateDebyeSimplified(), CalculateDebyeGaugeSimplified() The functions
CalculateDebyeSimplified() and CalculateDebyeGaugeSimplified() can be used to imple-
ment explicit formulae for the daisy corrections to the masses of the scalars, cf. Eq. (2.30), and
gauge bosons, Eq. (2.31), respectively. This is done by setting the vectors ’DebyeHiggs’ and
’DebyeGauge’ and finishing the function with a return true statement.

write() The function write() can be used to give a terminal output of the potential param-
eters. For our example this would be

std::cout << ”The parameters are : ” << std::endl;

std::cout << ”lambda = ” << lambda << std::endl

<< ”\tmˆ2 = ” << ms << std::endl;

std::cout << ”The counterterm parameters are : ” << std::endl;

std::cout << ”dT = ”<< dT << std::endl

<< ”dlambda = ” << dlambda << std::endl

<< ”dmˆ2 = ”<< dms << std::endl;

std::cout << ”The scale is given by mu = ” << scale << ” GeV ” << std::endl;

7 Summary

We have presented the C++ package BSMPT for the investigation of electroweak baryogenesis in
extended Higgs sectors beyond the SM. The package calculates the loop-corrected effective po-
tential at finite temperature including daisy resummations of the bosonic masses. It can be
used for the computation of the VEV as a function of the temperature and in particular for the
determination of ξc = vc/Tc which is related to the strength of the phase transition. Further-
more, the loop-corrected trilinear Higgs self-couplings are given out, allowing to investigate the
interplay between successful baryogenesis and the required size on the Higgs self-interactions.
The chosen ’on-shell’ renormalization scheme enables efficient scans in the parameter scans of
the models and allows for the analysis of the connection between collider phenomenology and
successful baryogenesis, so that a link between collider phenomenology and cosmology can be
made. The already implemented models are the CP-conserving and CP-violating 2HDMs and
the N2HDM. The program structure supports the implementation of new models, and we have
illustrated with the help of a toy model how this can be done. With our new tool at hand,
it is easy to further investigate the possibility of baryogenesis in new physics models, the pos-
sible spontaneous generation of CP-violating phases and make further links between collider
observables and phenomena like e.g. gravitational waves. The program is constantly updated to
include new phenomenologically interesting models. We are grateful for suggestions.
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