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Abstract

The pullback scheme is implemented in the global gyrokinetic particle-in-
cell code ORB5 [S. Jolliet et al, Comp. Phys. Comm., 177, 409 (2007)]
to mitigate the cancellation problem in electromagnetic simulations. The
equations and the discretisation used by the code are described. Numerical
simulations of the Toroidal Alfvén Eigenmodes are performed in linear and
nonlinear regimes to verify the scheme. A considerable improvement in the
code efficiency is observed. For the internal kink mode, it is shown that
the pullback mitigation efficiently cures a numerical instability which would
make the simulation more costly otherwise.
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1. Introduction

Electromagnetic effects are important in fusion plasmas. Alfvén waves,
Magneto-Hydro-Dynamic (MHD) activity, electromagnetic modifications of
the drift waves and the turbulent transport are well-known examples. In
many cases, a combination of the global, electromagnetic and kinetic con-
tributions is essential. Such complexity usually cannot be addressed ana-
lytically and calls for a numerical approach, certainly in realistic magnetic
geometries under realistic fusion plasma conditions.
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Global gyrokinetic particle-in-cell simulations represent such an approach.
In this paper we focus on a particular code of this type, ORB5 [1]. This
code has been intensively used for gyrokinetic turbulence studies, usually
in the electrostatic regime [2]. The electromagnetic simulations have been
inhibited by the so-called cancellation problem [3, 4]. In ORB5, this problem
has been mitigated using the control variate approach [5]. This mitigation
technique has been used for electromagnetic microturbulence simulations [6],
and for the simulations of Toroidal Alfvén Eigenmodes [7, 8]. In this paper
we describe an implementation in ORB5 of another mitigation scheme, the
so-called pullback mitigation [9, 10, 11, 12]. This approach can be used in
combination with the control variate scheme [5]. As a consequence, the code
efficiency improves considerably. Previously, the pullback mitigation has
been implemented in the EUTERPE code [10, 11, 12, 13, 14]. An alternative
approach to the cancellation mitigation has been recently proposed for the
GTC code [15, 16].

In our simulations, we consider the Toroidal Alfvén Eigenmodes [17, 18]
destabilised by the fast particles [19, 20] and the internal kink instability
[21] in tokamak geometry. To our knowledge, this is the first time the in-
ternal kink instability has been simulated using a global fully gyrokinetic
particle-in-cell code in tokamak geometry at a realistic value of plasma β.
For simulations in straight tokamak, see Refs. [22, 23, 24].

The paper is organised as follows. In Sec. 2, the equations solved by ORB5
are presented. In Sec. 3, the discretisation used by the code is discussed.
Simulations using the newly implemented schemes are presented in Sec. 4.
Conclusions are made in Sec. 5.

2. Equations solved by ORB5

The global gyrokinetic particle-in-cell code ORB5 [1] solves the gyroki-
netic Vlasov-Maxwell system of equations [25]. The species distribution
function fs is split into the “background” control variate F0s and the time-
dependent deviation from the control variate δfs so that fs = F0s + δfs.
Here, the subscript s = i, e, f indicates the particle species (bulk plasma ions
and electrons, fast particles). The control variate is usually chosen to be a
Maxwellian. The deviation from the control variate δfs is found from the
gyrokinetic Vlasov equation:

∂δfs
∂t

+ Ṙ · ∂δfs
∂R

∣∣∣
v‖
+ v̇‖

∂δfs
∂v‖

= − Ṙ(1) · ∂F0s

∂R

∣∣∣
ε
− ε̇(1)

∂F0s

∂ε
(1)
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Here, [Ṙ, v̇‖] correspond to the gyrocenter trajectories with [Ṙ(1), ε̇
(1)
‖ ] the

perturbations of the trajectories proportional to the field fluctuations. Note
that the spatial derivative at the right hand side of Eq. (1) is taken at a
constant energy ε = v2‖/2+µB whereas the spatial derivative on the left hand

side of Eq. (1) is taken at a constant parallel velocity v‖. Here, µ = v2⊥/(2B)
is the magnetic moment. The mixed-variable [10] perturbed equations of
motion are

Ṙ(1) =
b

B∗
‖

×∇
〈
φ− v‖A

(s)
‖ − v‖A

(h)
‖

〉
− qs
ms

〈A(h)
‖ 〉 b∗ (2)

v̇
(1)
‖ = − qs

ms

[
b∗ · ∇

〈
φ− v‖A

(h)
‖

〉
+
∂

∂t

〈
A

(s)
‖

〉]

− µ
b×∇B
B∗

‖

· ∇
〈
A

(s)
‖

〉
(3)

Here, φ is the perturbed electrostatic potential, A
(h)
‖ and A

(s)
‖ are the Hamil-

tonian and the symplectic parts [10] of the perturbed magnetic potential,
ms is the mass of the particle, B∗

‖ = b · ∇ × A∗, b∗ = ∇ × A∗/B∗
‖ , A

∗ =
A+(msv‖/qs)b is the modified vector potential, A is the magnetic potential
corresponding to the equilibrium magnetic field, B = ∇ × A, b = B/B
is the unit vector in the direction of the equilibrium magnetic field. The
gyro-averaged potential is defined as usual 〈φ〉 = ∮

φ(R+ ρ)dα/(2π) with ρ

the gyroradius of the particle and α the gyro-phase. Note that some non-
linear terms [11] are not included in Eqs. (2) and (3). These terms will be
considered in Sec. 4.3.

The perturbed electrostatic potential is found from the gyrokinetic quasineu-
trality equation:

−∇ ·







∑

s=i,f

q2sns

Ts
ρ2s



∇⊥φ



 =
∑

s=i,e,f

qsn1s (4)

where n1s =
∫
d6Z δfs δ(R + ρ − x) is the perturbed gyrocenter density,

ρs =
√
msTs/(qsB) is the thermal gyroradius, qs is the charge of the particle,

and d6Z = B∗
‖ dR dv‖ dµ dα is the phase-space volume. The polarization

density is treated in the long-wavelength approximation and finite Larmor
radius (FLR) effects are neglected for electrons. The zeroth-order densities
of the particle species satisfy the quasineutrality equation

∑
s qsn0s = 0 with

s = i, e, f.
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The perturbed energy evolves according to the equation:

ε̇(1) = v‖v̇
(1)
‖ + µṘ(1) · ∇B = − qs

ms


msµ

b×∇B
qsB∗

‖

+
msv

2
‖

qsB∗
‖

(∇× b)


 · ∇〈φ〉 +

qs
ms

v‖


v‖b+msµ

b×∇B
qsB∗

‖

+
msv

2
‖

qsB∗
‖

(∇× b)


 · ∇〈A(h)

‖ 〉+ (5)

qs
ms

µB


∇ · b− mv‖

qB∗
‖

∇×B

B2
· ∇B



〈
A

(h)
‖

〉

The symplectic part A
(s)
‖ of the perturbed magnetic potential is found [10]

from the equation:
∂

∂t
A

(s)
‖ + b · ∇φ = 0 (6)

For the Hamiltonian part A
(h)
‖ , the mixed-variable parallel Ampere’s law is

solved: 

∑

s=i,e,f

βs
ρ2s

−∇2
⊥


A(h)

‖ = µ0

∑

s=i,e,f

j‖1s +∇2
⊥A

(s)
‖ (7)

with j‖1s =
∫
d6Z v‖δfs δ(R+ρ−x) the perturbed parallel gyrocenter current.

The equations are solved employing the mixed-variable pullback algo-
rithm [10]:

1. At the end of each time step, redefine the magnetic potential splitting,
so that the entire instantaneous value of the parallel magnetic potential
A‖(ti) is collected in its ‘symplectic part’:

A
(s)
‖(new)(ti) = A‖(ti) = A

(s)
‖(old)(ti) + A

(h)
‖(old)(ti) (8)

2. As a consequence of the new splitting, Eq. (8), the ‘Hamiltonian’ part
of the vector potential must be corrected:

A
(h)
‖(new)(ti) = 0 (9)

3. For this modified splitting, the new mixed-variable distribution func-
tion must coincide with its symplectic-formulation counterpart. The
symplectic-formulation distribution function is independent on the way
of splitting and can be found invoking the pullback and using the old
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values of the mixed-variable distribution function and the ‘Hamilto-
nian’ part of the parallel vector potential found solving, respectively,
the gyrokinetic equation and Ampere’s law, Eq. (7), at the current time
step ti:

δf
(m)
s(new)(ti) = δf (s)

s (ti) = δf
(m)
s(old)(ti) +

qs 〈A(h)
‖(old)(ti)〉
ms

∂F0s

∂v‖
(10)

Note here that Eq. (10) corresponds to the linearised version of the
pullback transformation. In the fully nonlinear case [11], the orbits of
the markers must be transformed with the marker weights kept fixed
during the transformation. This approach will be considered in Sec. 4.3.

4. Proceed, explicitly solving the mixed-variable system of Eqs. (2)–(7) at
the next time step ti + ∆t in a usual way, but using Eqs. (8)–(10) as
the initial conditions.

This algorithm combined with the usual control variate [5] is the key tech-
nique mitigating the cancellation problem [3] in the electromagnetic gyroki-
netic simulations using ORB5.

It is important to check the energy conservation in simulations. This may
be a complication since, in ORB5, the energy is monitored in the Hamiltonian
(p‖) coordinates whereas the gyrocenter markers are pushed in the mixed-
variable phase space. The evolution of the kinetic energy and the definition
of the field energy depend on the phase-space coordinates used to define
the gyrocenters since this definition includes field terms. To overcome this
complication in ORB5, we transform the mixed-variable distribution function
into the Hamiltonian coordinates:

δf (h)
s (ti) = δf (m)

s (ti)−
qs 〈A(s)

‖ (ti)〉
ms

∂F0s

∂v‖
(11)

We can use then δf (h)
s to compute the particle energy transfer in the usual

way [26, 27]. For the electromagnetic energy, we transform the mixed-variable
perturbed parallel current into the Hamiltonian-variable parallel current:

µ0j
(h)
‖1e = µ0j

(m)
‖1e +

βe
ρ2e
A

(s)
‖ (12)

In this paper, we transform only the electron perturbed current since the
corresponding correction for ions is much smaller, implying j

(h)
‖1i ≈ j

(m)
‖1i . The

5



perturbed gyrocenter density does not need to be transformed, n
(h)
‖1s = n

(m)
‖1s ,

if the background distribution function is a Maxwellian. The perturbed field
energy is then defined in the usual way:

W(field) =
1

2

∑

s=i,e

(
n
(h)
1s φ− j

(h)
‖1sA‖

)
, A‖ = A

(h)
‖ + A

(s)
‖ (13)

These transformations of the distribution function, Eq. (11) and of the cur-
rent, Eq. (12), are applied only for the energy diagnostics and do not disturb
the simulation itself.

3. Discretisation

The deviation of the distribution function fs from the control variate F0s

is discretised in the mixed variable [9, 10] with markers. This discretisation
can formally be written as

δf (m)
s (R, v‖, µ, t) =

Np∑

ν=1

wsν(t)δ(R−Rν)δ(v‖ − vν‖)δ(µ− µν) , (14)

where Np is the number of markers, (Rν , vν‖, µν) are the marker phase space
coordinates and wsν is the weight of a marker. The markers move along the
gyrocenter orbits. The evolution of the marker weights wsν(t) is given by
the gyrokinetic equation (1). An alternative to this is to use the Lagrange
invariance of the full distribution function fs along the gyrocenter orbits
[1]. The pullback step in the algorithm described above modifies the marker
weights according to Eq. (10) at the end of each time steps. The marker
positions do not change during this operation.

The perturbed potentials are discretized with the finite-element method

φ(x, t) =
NFE∑

L̃

φ
L̃
(t)Λ̃

L̃
(x) (15)

A
(s)
‖ (x, t) =

NFE∑

L̃

a
(s)

L̃
(t)Λ̃

L̃
(x) , A

(h)
‖ (x, t) =

NFE∑

L̃

a
(h)

L̃
(t)Λ̃

L̃
(x) (16)

with Λ̃
L̃
(x) the finite elements (tensor product of B splines, see below); NFE

the total number of the finite elements; φ
L̃
, a

(s)

L̃
and a

(h)

L̃
the spline coefficients.

In the weak formulation, the field equations (4), (6) and (7) become the
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linear algebra equations in this discretisation with the differential operators
represented by the matrices. Thus, Eq. (6) for A

(s)
‖ becomes

NFE∑

L̃

B
K̃L̃

da
(s)

L̃

dt
=

NFE∑

R̃

M
(I)

K̃R̃
φ
R̃

(17)

with the mass matrix B
K̃L̃

and the matrix M
(I)

K̃L̃
representing the parallel

derivative:

B
K̃L̃

=
∫

d3xΛ̃
K̃
Λ̃

L̃
, M

(I)

K̃L̃
= −

∫
d3xΛ̃

K̃
b · ∇Λ̃

L̃
(18)

where d3x = J ds dθ dϕ, J(s, θ) is the real-space Jacobian, s =
√
ψ/ψa is the

flux label, ψ is the poloidal magnetic flux, ψa is the poloidal magnetic flux
at the plasma edge, θ is the poloidal angle, and ϕ is the toroidal angle.

Similarly, the term∇2
⊥A

(s)
‖ appearing on the right hand side of the parallel

Ampere’s law, Eq. (7), is discretised in the finite-element representation with
a matrix as follows:

∇2
⊥A

(s)
‖ −→

NFE∑

L̃

M
(II)

K̃L̃
a
(s)

l̃
(t) (19)

M
(II)

K̃L̃
= −

∫

Ω
d3x∇⊥Λ̃K̃

· ∇⊥Λ̃L̃
+
∫

∂Ω
d2σ · Λ̃

K̃
∇⊥Λ̃L̃

(20)

where the second term is a boundary integral coming from integration by
parts. This trick allows to use linear finite elements, whose second derivatives
are singular. For this Laplace matrix, the poloidal-plane approximation for
∇⊥ can be used. In this case, it can be treated in the same way as the
Laplacian appearing on the left hand side of Ampere’s law, Eq. (7), with the

only difference that M
(II)

K̃L̃
is used for the multiplication and does not need,

therefore, to be inverted.
The treatment of the parallel-derivative matrixM

(I)

k̃l̃
is more complicated.

This matrix must be split into two parts corresponding to the poloidal deriva-
tive and the toroidal derivative:

M
(I)

K̃L̃
= −

∫
b · ∇θ Λ̃

K̃

∂Λ̃
L̃

∂θ
d3x−

∫
b · ∇ϕ Λ̃

K̃

∂Λ̃
L̃

∂ϕ
d3x (21)

These two “poloidal” and “toroidal” matrices have to be treated separately
due to the toroidal Fourier transform applied in ORB5 [1, 28] to solve the

7



field Eqs. (4), (6) and (7). Recall that ORB5 solves the gyrokinetic system of
equations in an axisymmetric tokamak geometry where the equilibrium does
not depend on the toroidal angle ϕ.

In the three-dimensional space, one defines the finite elements Λ̃
L̃
as the

tensor products of the usual B splines λj(x), typically cubic:

Λ̃
L̃
(x) = λj(s)λk(θ)λl(ϕ) (22)

Note that we use capital symbols and the tilde notation throughout this paper
in order to indicate the tensor-product nature of both the finite elements Λ̃

L̃

and their indexes L̃ evident from Eq. (22). The integer indexes j, k, and l
of the one-dimensional B splines change from zero to the number of the B
splines used in the respective direction. The perturbed field, for example the
electrostatic potential φ, can be represented in terms of the usual B splines
as follows

φ(s, θ, ϕ) =
Nϕ−1∑

l′=0

∑

j′k′
φj′k′l′λj′(s)λk′(θ)λl′(ϕ) (23)

with Nϕ being the number of the toroidal B splines. The spline coeffi-
cients φj′k′l′ can be Fourier transformed in the toroidal coordinate. The
Fast-Fourier-Transform is used in ORB5 [28]:

φj′k′l′ =
Nϕ−1∑

n=0

φ
(n)
j′k′ exp

[
2πi

Nϕ

nl′
]

(24)

Using this representation, one can write for the toroidal derivative

∂φ(s, θ, ϕ)

∂ϕ
=

Nϕ−1∑

l′=0

Nϕ−1∑

n=0

exp

[
2πi

Nϕ

nl′
]
∂λl′(ϕ)

∂ϕ

∑

j′k′
φ
(n)
j′k′λj′(s)λk′(θ) (25)

In the weak formulation, the finite-element representation of the operator
∂/∂ϕ acting on the perturbed field φ and its toroidal Fourier transform are

represented by the tensors Bjkl and B
(n)
jk as follows:

Bjkl =
∫
∂φ(s, θ, ϕ)

∂ϕ
λj(s)λk(θ)λl(ϕ) J(s, θ) ds dθ dϕ (26)

=
Nϕ−1∑

n=0

B
(n)
jk exp

[
2πi

Nϕ
nl

]

8



Here, the indexes j, k, l and n are integers. Substituting Eq. (25), we can
write

Bjkl =
Nϕ−1∑

l′=0

Nϕ−1∑

n=0

exp

[
2πi

Nϕ
nl′
] 2π∫

0

∂λl′(ϕ)

∂ϕ
λl(ϕ) dϕ (27)

×
∑

j′k′
φ
(n)
j′k′

∫
λj′(s)λk′(θ)λj(s)λk(θ) J(s, θ) ds dθ

For the Fourier coefficients B
(n)
jk , we obtain:

Nϕ−1∑

n=0

B
(n)
jk exp

[
2πi

Nϕ

nl

]
=

Nϕ−1∑

n=0

D(n) exp

[
2πi

Nϕ

nl

]
(28)

×
∑

j′k′
φ
(n)
j′k′

∫
λj′(s)λk′(θ)λj(s)λk(θ) J(s, θ) ds dθ

Thus for the individual toroidal modes, we have to compute

B
(n)
jk = D(n)

∑

j′k′
φ
(n)
j′k′

∫
λj′(s)λk′(θ)λj(s)λk(θ) J(s, θ) ds dθ (29)

One sees that the Fourier transform of the toroidal derivative acting on the
perturbed electrostatic potential φ is constructed from the Fourier transform
of the spline coefficients φ

(n)
j′k′, the two-dimensional mass matrix

∫
λj′(s)λk′(θ)λj(s)λk(θ) J(s, θ) ds dθ (30)

and the quantity D(n) defined by

D(n) exp

[
2πi

Nϕ
nl

]
=

Nϕ−1∑

l′=0

2π∫

0

dϕ
dλl′(ϕ)

dϕ
λl(ϕ) exp

[
2πi

Nϕ
nl′
]

= (31)

= exp

[
2πi

Nϕ
nl

] p∑

k=−p

2π∫

0

dϕ
dλl+k(ϕ)

dϕ
λl(ϕ) exp

[
2πi

Nϕ
nk

]

Here, p is the order of the B splines. Using the periodicity and the symmetry
relations for the B splines and their derivatives:

2π∫

0

λl(ϕ)
∂λl
∂ϕ

dϕ = 0 , λ(x) = λ(−x) (32)

λ′(x) = −λ′(−x) , λ′(x) =
dλ(x)

dx
(33)

9



and introducing the notation ϕ = (2π/Nϕ) x, we can write

D(n) = 2i
p∑

k=1

sin

[
2π

Nϕ
nk

] 2π∫

0

dλl+k(ϕ)

dϕ
λl(ϕ) dϕ

= 2i
p∑

k=1

dk sin

[
2π

Nϕ
nk

]
(34)

Here, we have introduced the notations:

dk =

Nϕ∫

0

dλl+k(x)

dx
λl(x) dx =

p−k∑

j=0

1∫

0

dP
(p)
j+k(x)

dx
P

(p)
j (x) dx ; k = 1, . . . , p (35)

with P
(p)
j the B spline polynomials of the degree p defined within a grid cell

[29]. Summarising, we obtain:

D(n) = 2i
p∑

k=1

dk sin

(
2π

Nϕ

nk

)
, dk =

p−k∑

j=0

1∫

0

P
(p)
j (x)

dP
(p)
j+k(x)

dx
dx (36)

For the linear B splines, p = 1, we obtain

d1 = − 1

2
, D(n) = − i sin

(
2πn

Nϕ

)
(37)

For the quadratic (p = 2) B splines:

d1 = − 5

12
, d2 = − 1

24
, D(n) = i sin

(
2πn

Nϕ

) [
− 5

6
− 1

6
cos

(
2πn

Nϕ

)]
(38)

Finally, for the cubic (p = 3) B splines:

d1 = − 49

144
, d2 = − 7

90
, d3 = − 1

720
(39)

D(n) = i sin

(
2πn

Nϕ

) [
− 61

90
− 14

45
cos

(
2πn

Nϕ

)
− 1

90
cos2

(
2πn

Nϕ

)]
(40)

The poloidal derivative in the finite-element toroidal Fourier representation
must be treated differently:

∂φ(s, θ, ϕ)

∂θ
=

Nϕ−1∑

l′=0

Nϕ−1∑

n=0

exp

[
2πi

Nϕ
nl′
]
λl′(ϕ)

∑

j′k′
φ
(n)
j′k′λj′(s)

∂λk′(θ)

∂θ
(41)
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In the weak formulation, the operator ∂/∂θ acting of φ(x), represented by

the tensors Gjkl and G
(n)
jk , is

Gjkl =
∫ ∂φ(s, θ, ϕ)

∂θ
λj(s)λk(θ)λl(ϕ) ds dθ dϕ

=
Nϕ−1∑

n=0

G
(n)
jk exp

[
2πi

Nϕ
nl

]
(42)

Performing the same manipulations, as above, we obtain

G
(n)
jk =M (n)

∑

j′k′
φ
(n)
j′k′

∫
λj′(s)

∂λk′(θ)

∂θ
λj(s)λk(θ) J(s, θ) ds dθ (43)

One sees that the Fourier transform of the poloidal derivative acting on the
perturbed electrostatic potential φ(x) is constructed from the Fourier trans-

form of the spline coefficients φ
(n)
j′k′, the non-symmetric matrix

∫
λj′(s)

∂λk′(θ)

∂θ
λj(s)λk(θ) J(s, θ) ds dθ (44)

and the new normalisation factors M (n) defined by

M (n) =
2π

Nϕ

{
2

p∑

k=1

ck cos

(
2π

Nϕ
nk

)
+ c0

}
(45)

ck =
p−k∑

j=0

∫ 1

0
dxP

(p)
j (x)P

(p)
j+k(x) , k = 0, . . . , p (46)

Note the dependence on the toroidal mode number for the normalisation
factors M (n) and D(n). The factor D(n) appears in the matrices discretising
the toroidal derivative operator. The factor M (n) is needed in the poloidal
derivative but also in all other operators which do not involve ∂/∂ϕ. The pe-
culiarity of the poloidal derivative operator is that it leads to non-symmetric
matrices. All other matrices used in ORB5 are symmetric.

In explicit terms, the matrix acting on the electrostatic potential in the
equation for A

(s)
‖ , Eq. (17), is given by

NFE∑

L̃

M
(I)

K̃L̃
φ
L̃

=
Nϕ−1∑

n=0

exp

[
2πi

Nϕ
nl

]
(47)

×


M (n)
∑

j′k′
M

(I;θ)
jk;j′k′φ

(n)
j′k′ +D(n)

∑

j′k′
M

(I;ϕ)
jk;j′k′φ

(n)
j′k′




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with the two-dimensional matrices

M
(I;θ)
jk;j′k′ = −

∫
b · ∇θ λj′(s)

∂λk′(θ)

∂θ
λj(s)λk(θ) J(s, θ) ds dθ (48)

M
(I;ϕ)
jk;j′k′ = −

∫
b · ∇ϕ λj′(s)λk′(θ)λj(s)λk(θ) J(s, θ) ds dθ (49)

Precisely these expressions have been implemented in ORB5. The field equa-
tions are solved for each toroidal mode individually [28]. The matrix routines
have been modified in ORB5 to allow for the non-symmetric matrices.

4. Simulations
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Figure 1: Dependence of the linear growth rate and the frequency of the TAE instability
[19, 20] on the fast-ion temperature. Control-Variate (CV) mitigation [5] is compared
with the pullback (PB) mitigation [10]. Drift-kinetic fast ions (DK) are compared with
the gyrokinetic (GK) ones.

4.1. Toroidal Alfvén Eigenmode

For verification of the scheme newly implemented in ORB5, we consider
the reference case of the international cross-code “ITPA-TAE” benchmark
[19, 20]. In this benchmark, the Toroidal Alfvén Eigenmode with the toroidal
mode number n = − 6 and the dominant poloidal mode numbers m = 10
and m = 11 has been considered in the linear regime. The mode has been
studied in tokamak geometry with the small radius ra = 1 m, the large radius
R0 = 10 m, the magnetic field on the axis B0 = 3 T, and the safety factor
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Figure 2: ITPA-TAE benchmark with increased fast-ion density. The TAE growth rate
and the frequency as functions of the time step used by ORB5. The time step can be
considerably increased when using the pullback scheme compared to the control variate
only, which becomes numerically unstable at larger time steps. The time step is measured
in the ion-cyclotron units.

profile q(r) = 1.71 + 0.16(r/ra)
2, where r is the minor radius of the plasma.

The flat background plasma profiles have been chosen with the ion density
ni = 2 × 1019 m−3, the ion and electron temperatures Ti = Te = 1 keV,
corresponding to βbulk = 2µ0(niTi + neTe)/B

2 ≈ 0.18 %. Using the fast-ion
parameters of Refs. [19, 20], we obtain the result shown in Fig. 1. Here, the
mode growth rate is shown as a function of the fast-ion temperature at the
fast-ion density held constant. We compare the simulations using the control-
variate approach [5] to the mitigation of the cancellation problem with the
simulations using the pullback scheme. One sees that the agreement is very
good. This verifies the pullback scheme implementation in ORB5.

For the control-variate simulations, we have used Ne = 2 × 107 electron
markers, Ni = 107 ion markers, Nf = 107 fast markers, Ns = 256 radial grid
points, Nθ = 256 poloidal grid points, and Nϕ = 64 toroidal grid points.
The time step is ωci∆t = 20. The Fourier filter includes the poloidal modes
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Figure 3: Real frequency as a function of the diagonal Fourier filter width and the time
step. On the left figure, only the control variate has been applied. The time step must be
strongly reduced for large filters. On the right figure, the pullback scheme has been used.
As a consequence, the time step requirements are considerably relaxed.
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Figure 4: Growth rate as a function of the diagonal Fourier filter width and the time step.
On the left figure, only the control variate is applied. One sees that the time step must be
strongly reduced for large filter widths, similar to Fig. 3. On the right figure, the pullback
scheme is used. The time step requirements are considerably relaxed.

9 < m < 12 and the toroidal mode n = −6. Dirichlet boundary conditions
for the potentials are set at the axis and at the edge. The ion/electron mass
ratio is mi/me = 200. The initial perturbation of the ion gyrocenter density
is localised near the mid-radius, and with mode numbers m = 10, 11 and
n = − 6. For the simulations with the pullback mitigation, we have used
the same parameters, except the number of markers, which has been set as
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Ne = 5 × 106 electron markers, Ni = 2 × 106 ion markers, Nf = 5 × 106

fast markers, and the time step, which is ωci∆t = 100. A numerical high-
frequency instability rising at outer radii (s ∼ 0.7) is observed to develop
in the simulations with the control variate only, and gyrokinetic fast ions,
at large times. In order to postpone the rising time of the instability, it is
necessary to increase the number of markers with respect to the values chosen
for the simulations with the pullback mitigation.

Now, we consider the benefits of the new pullback scheme in ORB5 sim-
ulations. In Fig. 2, the growth rate and the frequency of the TAE mode is
shown as a function of the time step used by ORB5. Whereas the control vari-
ate mitigation is capable reproducing only the first three points, becoming
numerically unstable for larger time steps, the pullback works robustly even
for time steps two orders of magnitude larger than the time steps typically
used for the electromagnetic simulations with the control variate only. In
this simulation, the fast-ion density has been ten times larger (corresponding
to 3% particle content) comparing to the standard “ITPA-TAE” benchmark
[19, 20]. This makes the simulations faster and more robust.

This improvement in the numerical properties of the code can also be
seen in Figs. 3 and 4. Here, we plot the frequency and the growth rate,
respectively, as functions of the numerical parameters: the times step and
the width of the diagonal Fourier filter [1, 28] used in the ORB5 simulations.
Here, we consider the original “ITPA-TAE” [19, 20] parameters again. One
sees that the time step needs to be adjusted depending on the number of
Fourier modes in the filter (defined by its width) both for the control variate
and for the pullback schemes. This requirement is, however, considerably
relaxed when the pullback mitigation is used.

4.2. Internal kink instability

In this Section, we consider an internal kink instability in tokamak geom-
etry. This mode is driven by a combination of ambient parallel current and
pressure gradient. In the gyrokinetic model of ORB5, the ambient current
must be included as a modification of the background electron distribution
function, for example using a shifted Maxwellian:

F0e = n0

(
me

2πTe

)3/2

exp
(
− meε

Te

)
exp

[
− meu0(u0 − 2v‖)

2Te

]
(50)
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Figure 5: Mode evolution of the internal kink instability in tokamak geometry. The
pullback-scheme simulation on the left is compared to the control-variate simulation with
the same set of numerical parameters. Note the different length of the simulations. One
sees that the control-variate simulation becomes numerically unstable within a few time
steps.
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Figure 6: Mode structure of the internal kink instability in tokamak geometry. On the left,
the radial structure of the internal kink mode electrostatic potential resulting from the
pullback scheme. On the right, the mode structure obtained using the identical numerical
parameters (number of the markers, time step, grid resolution, etc) but with only the
control variate implemented. This mode structure is unphysical.

written as a function of the energy ε, the parallel velocity v‖, the poloidal
flux ψ, and the poloidal angle θ:

ε =
v2‖
2

+ µB , µ =
v2⊥
2B

, u0 =
j‖0
qen0

(51)
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j‖0(ψ, θ) =
1

µ0
b0(ψ, θ) · ∇ ×B0(ψ, θ) (52)

In this paper, we simulate the internal kink instability in the large aspect ratio
tokamak geometry and use j‖0(ψ, θ = 0) for simplicity, so that u0 = u0(ψ).
The spatial derivative is taken at constant ε and v‖:

∂F0e

∂s
= F0e

[
n′
0

n0
−
(
3

2
− meε

Te
− meu0(u0 − 2v‖)

2Te

)
T ′
e

Te
− me(u0 − v‖)

Te
u′0

]

n′
0 =

dn0

dψ
, T ′

e =
dTe
dψ

, u′0 =
du0
dψ

(53)

The parallel-velocity derivative is taken at constant R and ε; the energy
derivative is taken at constant R and v‖:

∂F0e

∂v‖
=
meu0
Te

F0e ;
∂F0e

∂meε
= − me

meTe
F0e (54)

We consider a tokamak with the minor radius ra = 1 m, the major radius
R0 = 10 m, the magnetic field at the axis B0 = 1 T, flat ion and electron
temperatures Te = Ti defined by Lx = 2ra/ρs = 360 with ρs =

√
miTe/(eB)

the sound gyroradius. The safety factor is q(s) = 0.8(1+s2), the flux surface

label s =
√
ψ/ψa with ψa the poloidal flux at the plasma edge. The ambient

plasma density profile n0i(s) = n0e(s) is given by

n0e(s) = n0 exp
[
−∆nκn tanh

(
s− s0
∆n

)]
(55)

with κn = 3.0, s0 = 0.5, ∆n = 0.2, and n0 corresponding to βe = µ0n0eTe/B
2 =

0.0052.
The mode evolution is shown in Fig. 5. Here, the simulation using the

pullback mitigation is compared to the simulation applying only the control
variate (without the pullback mitigation). In both simulations, we use Ne =
64 × 106 electron markers, Ni = 16 × 106 ion markers, Ns = 200 radial grid
points, Nθ = 16 poloidal grid points, and Nϕ = 8 toroidal grid points. The
time step is ωci∆t = 10. The Fourier filter [2] includes the poloidal modes
m ∈ [−2, 2] and the toroidal mode n = 1 (recall that we consider a large-
aspect-ratio tokamak). The ion gyro-average is computed using the adaptive
scheme [30], the electrons are drift-kinetic. We initialise our simulations using
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an initial perturbed distribution function with the poloidal and toroidal mode
numbers m = −1 and n = 1.

In Fig. 5 on the left, one sees that the pullback simulation shows a decay
of the shear Alfvén wave continuum and results in a physically-driven inter-
nal kink mode developing after the decay phase is completed. In contrast,
the simulation using exclusively the control variate becomes immediately nu-
merically unstable. Note that the electrostatic potential reaches very high
values within just a few time steps indicating a strong numerical instabil-
ity at action. Such a pronounced instability is typical for a too large time
step. The radial structure of the electrostatic potential developing at the
end of each simulation is shown in Fig. 6. Here again, one sees a typical
internal kink mode structure resulting from the pullback simulation whereas
the control-variate mode structure is unphysical. Further convergence tests
with a smaller time step confirm that the control variate scheme becomes
numerically stable for a time step of ωci∆t = 1.

This example shows again that the pullback approach is numerically more
robust in terms of the time step compared to the control-variate mitigation.
This observation for the kink instability is consistent with the TAE case,
shown in Figs. 2 and 3, where the pullback mitigation has performed better
than the control variate at larger time steps.

4.3. Nonlinear simulations
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Figure 7: Nonlinear simulations with drift-kinetic fast ions. Control-variate mitigation is
compared with the linear and nonlinear pullback schemes, see Eqs. (10) and (65) respec-
tively. Note that, not only the linear growth rate, but also the nonlinear saturation level
agrees well with and without the pullback scheme.

18



Finally, we compare the pullback scheme with the usual control variate
approach in the nonlinear regime. In this case, one should take into account
additional nonlinear terms in the mixed-variable equations of motion [11].
The dominant nonlinear contribution is related to

B∗ = B +
mv‖
q

∇× b +∇
〈
A

(s)
‖

〉
× b (56)

leading to

b∗ =
B∗

B∗
‖

= b∗0 +
∇
〈
A

(s)
‖

〉
× b

B∗
‖

, b∗0 ≈ b+
mv‖
qB∗

‖

∇× b (57)

The mixed-variable perturbed equations of motion including these nonlinear
terms are

Ṙ(1) =
b

B∗
‖

×∇
〈
φ− v‖A

(s)
‖ − v‖A

(h)
‖

〉
(58)

− q

m
〈A(h)

‖ 〉


b∗0 +
∇
〈
A

(s)
‖

〉
× b

B∗
‖





v̇
(1)
‖ = − q

m

[
b∗ · ∇

〈
φ− v‖A

(h)
‖

〉
+
∂

∂t

〈
A

(s)
‖

〉]
(59)

− µ
b×∇B
B∗

‖

· ∇
〈
A

(s)
‖

〉

Substituting Ohm’s law, Eq. (6), we obtain for the parallel velocity

v̇
(1)
‖ = −


 v‖
B∗

‖

∇× b+
q

m

∇
〈
A

(s)
‖

〉
× b

B∗
‖


 · ∇

〈
φ− v‖A

(h)
‖

〉
+ (60)

+
q

m
v‖b · ∇

〈
A

(h)
‖

〉
− µ

b×∇B
B∗

‖

· ∇
〈
A

(s)
‖

〉

For the perturbed energy, we can write

ε̇(1) = v‖v̇
(1)
‖ + µṘ(1) · ∇B , ε =

v2‖
2

+ µB , µ =
v2⊥
2B

(61)

ε̇(1) = − qs
ms



msµ
b×∇B
qsB

∗
‖

+
msv

2
‖

qsB
∗
‖

(∇× b) + v‖
∇
〈
A

(s)
‖

〉
× b

B∗
‖



 · ∇〈φ〉 +
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+
qs
ms

v‖



v‖b+msµ
b×∇B
qsB

∗
‖

+
msv

2
‖

qsB
∗
‖

(∇× b) + v‖
∇
〈
A

(s)
‖

〉
× b

B∗
‖



 · ∇〈A(h)
‖ 〉 +

+
qs
ms

µB



∇ · b− mv‖
qB∗

‖

∇×B

B2
· ∇B −

∇
〈
A

(s)
‖

〉

B∗
‖

· b×∇B
B




〈
A

(h)
‖

〉
(62)

Note that the transformation Eq. (10) is perturbative in the field A
(h)
‖ . To

make it fully nonlinear, we should modify the pullback algorithm to the
following [11].

1. At the end of each time step, redefine the magnetic potential splitting,
collecting the entire instantaneous value of A‖(ti) in its ‘symplectic
part’:

A
(s)
‖(new)(ti) = A‖(ti) = A

(s)
‖(old)(ti) + A

(h)
‖(old)(ti) (63)

2. As a consequence of the new splitting, Eq. (8), the ‘hamiltonian’ part
of the vector potential must be corrected:

A
(h)
‖(new)(ti) = 0 (64)

3. Transform the phase-space coordinates keeping the particle weights
constant (this part is modified compared to Sec. 2):

v
(m)
‖(new) = v

(s)
‖ = v

(m)
‖(old) −

qs
ms

〈
A

(h)
‖ (ti)

〉
(65)

f
(m)
1s(new)

(
v
(m)
‖(new)

)
= f

(m)
1s(old)

(
v
(m)
‖(old)

)
(66)

4. Proceed, explicitly solving the mixed-variable system of equations at
the next time step ti +∆t in a usual way, but using Eqs. (65) and (66)
as the initial conditions.

In Fig. 7, we consider the nonlinear TAE mode [13] with only the wave-
particle nonlinearity kept comparing the three mitigation schemes: the con-
trol variate, the linear pullback Eq. (10), and the nonlinear pullback, Eqs. (65)
and (66), with the nonlinear terms included in the equations of motion, see
Eqs. (58), (59) and (61). Note that in the case of “linear pullback” we use
the equations of motion (2) and (3). These equations include the perturbed
fields, which makes the simulation itself nonlinear, but we ignore the higher-
order nonlinear terms that are present in Eqs. (58) and (59). Also, we use
the transformation Eq. (10) at the end of every time step. In the case of
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“nonlinear pullback” all the terms are included in the equations of motion
and the nonlinear transformation, Eqs. (65) and (66), is employed.

In our simulations, we use Ni = 107 ion markers, Ne = 4 × 107 electron
markers, Nf = 108 nonlinear fast-ion markers, 256 grid points in the radial
and poloidal directions, and 64 grid points in the toroidal direction. The
time step is ωci∆t = 20 for the control variate scheme and ωci∆t = 100
for the pullback mitigation. We use a reduced mass ratio me/mi = 0.005
and drift-kinetic fast ions. One sees that both the saturation levels and the
linear evolution agree very well in Fig. 7 for all the schemes. This verifies
the new pullback implementation in ORB5 also nonlinearly. Interestingly,
the discrepancy between the “linear pullback” and “nonlinear pullback” in
terms of the saturation level was larger for the tearing mode [11] where
the electron nonlinearity was important. Here, we see that this difference
is negligible for the fast-particle nonlinearity. Thus, the original pullback
scheme and the mixed-variable equations described in Sec. 2 can safely be
used for the Alfvénic simulations where the fast-ion nonlinearity is dominant.

5. Conclusions

The pullback scheme has been implemented in ORB5. The solver modifi-
cations needed for the pullback scheme implementation have been described.
The new scheme has been verified using the ITPA-TAE benchmark [19, 20]
both in the linear and nonlinear regimes. A considerable improvement of
the code efficiency has been observed. Also, the efficiency of the pullback
mitigation in ORB5 has been demonstrated using the internal kink mode
in tokamak geometry. To our knowledge, internal kink mode simulations in
tokamak geometry have not been reported previously for global gyrokinetic
particle-in-cell codes, such as ORB5, using realistic values for the plasma β.

In the outlook, ORB5 provides a unified framework which includes elec-
tromagnetic drift-wave turbulence, zonal flows and GAMs, fast particles,
shear Alfvén waves (TAEs, BAEs, etc), and MHD activity (tearing mode,
internal kink instability) in axisymmetric tokamak geometry. This represents
a vast field for future research.
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