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Abstract

We present a stepwise adaptive-timestep version of the Quantum Jump (Monte
Carlo wave-function) algorithm. Our method has proved to remain robust even
for problems where the integrating implementation of the Quantum Jump method
is numerically problematic. The only specific parameter of our algorithm is the
single a priory parameter of the Quantum Jump method, the maximal allowed
total jump probability per timestep. We study the convergence of ensembles
of trajectories to the solution of the full master equation as a function of this
parameter. This study is expected to pertain to any possible implementation of
the Quantum Jump method.
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1. Introduction

The Quantum Jump (Monte Carlo wave-function – MCWF1) method has
been around since at least the late 1980s, the notion of quantum jumps being
introduced in connection with intermittent fluorescence [1] in works like [2, 3].
The first versions of implementable algorithms were published in the early 1990s
[4, 5]. In a parallel development, another kind of quantum trajectory methods,
the quantum state diffusion has been worked out [6].

The Quantum Jump method can be put forward with two distinct motiva-
tions:

As a computational tool to unravel the quantum master equation into a set
of quantum trajectories in order to reduce the dimensionality of the nu-
merical problem to make larger systems tractable. In this case, it is not
necessary to endow the individual trajectories with any physical meaning.

As a physical model to reflect the behavior of single realizations of small
quantum systems. While quantum mechanics was originally conceived to
describe ensembles, with single ions in Paul traps [7] being the first exam-
ples it has in the last few decades become possible to study single realiza-
tions. In this case, the individual trajectories can be considered physical,
and they will depend on the way the system is observed, in accordance
with the lore of quantum measurement.

While the benefit in terms of net computational resources as compared to direct
master equation simulation is not clear cut [8], since too many trajectories may
be needed for acceptable statistics; in realistic situations the system is often so
big that even a single copy of the full density matrix exceeds memory limits.
Then, in the ergodic case, it is still a possible solution to content oneself with
finding the steady state via time averaging along a single long trajectory. Al-
ready a single electromagnetic mode coupled to a few-level system (like in cavity
quantum electrodynamics) can easily fall into this category under realistic con-
ditions [9, 10], but in this way it was possible to study a system consisting of two
atoms coupled to a single mode [11], or two-modes (ring cavity) coupled to a sin-
gle atom [12]. Ergodicity could be utilized even in the case of a system featuring

1The use of the term “wave function” is not completely correct in this version of the name
because the method is generally applicable for state vectors and not only for those expanded in
space (which are the wave functions). Nevertheless, we continue using this customary acronym.
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two distinct semiclassical attractors [13], although with heavy computational
cost. Recently, quantum trajectories have been applied also in quantum many
body context [14, 15], sometimes together with tensor-network techniques.

Adaptive algorithms are very important in dynamical simulations as in gen-
eral there is no way to predict an optimal stepsize, which even varies along the
trajectory evolution. While in the case of deterministic problems (ordinary dif-
ferential equations – ODEs), seasoned robust generic algorithms exist, the same
is not true for stochastic problems (stochastic differential equations – SDEs).
Such dynamics and their numerical simulation have been intensively researched
during the last decades, numerous excellent papers and books can be found in
the literature giving conditions on strong and weak convergence, stability, and
also rates of convergence of the discretized solution [16–19]. The simplest such
method is the Euler-Maruyama scheme which is basically the extension of the
explicit Euler method well-known from the theory of ODEs (for a more detailed
description of the various numerical methods the reader is referred to [20]). As
opposed to the deterministic case, where the order of (global) convergence is 1,
the order of strong convergence in the case of the Euler-Maruyama method is
only 1/2. Generally, no numerical method based only on an approximation of
the Brownian motion can guarantee an asymptotic convergence rate higher than
that [21]. For higher orders of strong convergence (n/2 with n ≥ 2), the Itô-
Taylor expansion yields an answer, which involves approximation of Lévy areas,
i.e. integrals of Brownian motion. Unfortunately, due to the properties of the Itô
integral, these schemes are more complicated than their deterministic counter-
parts. Usually, higher order methods are computationally very expensive, and
in order to save computational time, variable stepsize for lower order methods
was introduced and various results on convergence rate and the optimal choice
of the stepsize were published as well [22].

These developments are not directly relevant to MCWF because it does not
consist of the integration of an SDE, but they may be utilized for Quantum State
Diffusion, which does have the form of an SDE – to our knowledge, higher-order
methods have not yet been tried in this case. The MCWF can be described as
an SDE that consists of an ODE driven by a general Poisson-process.

In this paper, we present a stepwise adaptive algorithm to simulate this
process that is by principle more robust than the popular implementation of
the MCWF method [23, 24] that we denote the “integrating method” in this
paper, and that is used e.g. in the popular QuTiP package [25, 26]. The increased
robustness, whose main reason is that the stepwise algorithm does not depend
on an algorithm for retrieving a past jump time instant, comes at the cost of
some reduction of efficiency, which however we will argue to be marginal in most
usecases we encountered so far. The algorithm here presented has been used in
C++QED [27–29] since the inception of that framework, both the algorithm
and framework having been originally developed for the demanding problem of
simulating motional quantum degrees of freedom expanded in momentum space
[11, 12, 30–36]. We will argue that in this field, the robustness of our algorithm
over the integrating one is especially expressed.

Apart from the parameters governing the precision of the ODE integration,
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the stochastic part of our algorithm is governed by the single additional dimen-
sionless parameter ∆p: the maximal allowed total jump probability per step.
Another aspect of the present paper is a study of convergence of ensembles
of MCWF trajectories to the solution of the density operator as a function of
this parameter. This being also the most important a priori parameter of the
MCWF method, this convergence study is not specific to our algorithm, but
pertains to any possible implementation of the MCWF method, including the
integrating one.

The paper is structured as follows: Section 2 describes the original MCWF
algorithm and its issues that we set out to address with our adaptive algo-
rithm. The latter is described in detail in Section 3. Section 4 is devoted to
the numerical investigation of the convergence of ensembles of trajectories com-
puted by our adaptive algorithm to the solution of the master equation. We will
see (Section 4.1) that the problem of a finite-temperature harmonic oscillator
mode driven purely by photon exchange with the bath is the most demand-
ing of the simple generic examples, due to a kind of bosonic enhancement of
the noise. In the case of a nontrivial Hamiltonian (Section 4.2), a contention
between the ODE stepsize-control heuristic and our superimposed heuristic of
jump-probability control takes place. In Section 5, we compare our algorithm to
the integrating algorithm [23, 24] of MCWF evolution, showing some realistic
usecases that favor our method (Section 5.1). Finally, we share some insights
about sampling and time averaging (Section 6).

2. Primordial MCWF and its critique

The MCWF method aims at unravelling a master equation into a statistical
ensemble of stochastic quantum trajectories, whose initial condition is a corre-
sponding ensemble of state vectors that appropriately samples the initial density
operator. Besides being a useful theoretical tool for reducing the dimensionality
of the numerical problem, it furthermore reflects the – physically unrealistic –
situation when an experimenter is in full control of any single copy (realization,
experimental run) of the physical system, both in terms of controlling possible
pure-state initial conditions and observing all the possible quantum jumps (e.g.
photon decays) the system undergoes over time.

A master equation in the Born-Markov approximation in the most general
– so called Lindblad – form reads:

ρ̇ =
1

i~
[H, ρ] +

∑
m

(
JmρJ

†
m −

1

2

{
J†mJm, ρ

})
≡ 2Re

{
HnH

i~
ρ

}
+
∑
m

JmρJ
†
m,

(1a)
where with the second equality we have defined the non-Hermitian “Hamilto-
nian”

HnH ≡ H −
i~
2

∑
m

J†mJm. (1b)

The Jm operators are called quantum jump – or Lindblad, or reset, or collapse
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– operators, and their maximum number is one less than the square of the
dimension of the physical system.

The state-vector initial condition |Ψ(0)〉 of a single trajectory is taken from
an ensemble that appropriately samples the initial density operator ρ(0) (in gen-
eral, we need many state vectors from this ensemble and many trajectories for
each state-vector initial condition). In its original form, the MCWF algorithm
to evolve |Ψ(t)〉 to |Ψ(t+ δt)〉 can be listed as follows.

1. The state vector is evolved according to the nonunitary dynamics

i~
d |Ψ〉
dt

= HnH |Ψ〉 . (2a)

In the next derivations we will neglect the terms including δt of order
higher than 2. Then

|ΨnH(t+ δt)〉 =

(
1− iHnH δt

~

)
|Ψ(t)〉 . (2b)

Since HnH is non-Hermitian, this new state vector is not normalised. The
square of its norm reads

〈ΨnH(t+ δt)|ΨnH(t+ δt)〉 = 〈Ψ(t)|

(
1 +

iH†nH δt

~

)(
1− iHnH δt

~

)
|Ψ(t)〉 ≡ 1−δp,

(2c)
where δp reads

δp = δt
i

~
〈Ψ(t)|HnH−H†nH |Ψ(t)〉 ≡

∑
m

δpm, δpm = δt 〈Ψ(t)| J†mJm |Ψ(t)〉 ≥ 0.

(2d)
Note that the timestep δt should be small enough that this first-order
calculation be valid. Finding the appropriate δt is the main theme of the
present paper. In particular, we require that

δp� 1. (3)

This is important in order that the probability of two jumps occuring in
the same timestep be negligible. The primordial MCWF algorithm is first
order in the sense that it cannot deal correctly with events like this. Higher
order MCWF algorithms have been developed [37], but they require a
combinatorically increasing number of jump operators in order to account
correctly for every possible multi-jump event.

2. A possible quantum jump with total probability δp. For the physical in-
terpretation of such a jump, cf. [4, 5]. Choose a random number r between
0 and 1, and if δp < r – which should mostly be the case – no jump occurs
and for the new normalised state vector at t+ δt take

|Ψ(t+ δt)〉
∣∣∣∣
no jump

=
|ΨnH(t+ δt)〉√

1− δp
. (4)
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If r < δp, on the other hand, a quantum jump occurs, and the new
normalised state vector is chosen from among the different state vectors
Jm |Ψ(t)〉 with probability distribution Πm = δpm/δp:

|Ψ(t+ δt)〉
∣∣∣∣
mth jump

=
√
δt
Jm |Ψ(t)〉√

δpm
. (5)

These steps can be easily shown to reproduce the master-equation evolution
to first order in δt. Let us consider the delta of a state-vector diad on a single
trajectory:

ρ1traj(t+ δt) = |Ψ(t+ δt)〉 〈Ψ(t+ δt)|

= (1− δp) |Ψ(t+ δt)〉 〈Ψ(t+ δt)|
∣∣∣∣
no jump

+
∑
m

δpm |Ψ(t+ δt)〉 〈Ψ(t+ δt)|
∣∣∣∣
mth jump

= |ΨnH(t+ δt)〉 〈ΨnH(t+ δt)|+ δt
∑
m

Jm |Ψ(t)〉 〈Ψ(t)| J†m

=

(
1− iHnH δt

~

)
|Ψ(t)〉 〈Ψ(t)|

(
1 +

iH†nH δt

~

)
+ δt

∑
m

Jm ρ1traj(t) J
†
m

= ρ1traj(t)+δt

(
HnH

i~
ρ1traj(t)− ρ1traj(t)

H†nH

i~

)
+δt

∑
m

Jm ρ1traj(t) J
†
m+O

(
δt2
)

�

(6)

This derivation displays that the first term in the rightmost part of eq. (1a)
describes the no-jump evolution. It is a non-Hermitian evolution, because an
open system is open not only at the time instants of jumps, but always: the
no-jump periods also leak information about the system. Hence, the no-jump
evolution in general cannot remain Hermitian. Conversely, the second term in
the same part of eq. (1a) alone is responsible for the quantum jumps.

This algorithm has several issues:

1. The no-jump evolution reduces to the Euler method of ODE evolution,
which is inadequate for all but the most trivial problems.

2. The quantum jump takes finite time, since in a timestep δt, we either
make an ODE step, or perform a jump. This is because in the right-hand
side of eq. (5), we use the unevolved state vector. Whether a jump should
take a finite time has been discussed in the literature (cf. [1] Sec. IV.C),
but here we present a strong argument that it should not.

Let us consider a decaying harmonic-oscillator mode started from a coher-
ent state. If we allowed jumps to take a finite time, then a single trajectory
would deviate from the solution of the master equation as displayed in fig. 1
(cf. the figure caption for detailed explanation). Since coherent states are
(the most) classical states, we do not want to allow such a deviation, since
physically a classical evolution is expected for a single trajectory as well
as for the master equation or any sub-ensembles.
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Figure 1: Cartoon of the evolution of the photon number in a single decaying harmonic-
oscillator mode started from a coherent state. Since the coherent state is an eigenstate of the
jump operator (cf. Section 4 with nTh = 0 for the mathematical scenery of this situation), the
state remains coherent throughout, only with decaying amplitude. The blue line represents
the correct solution obtained from the master equation. The red line is a single trajectory
in the case when we allow jumps to take finite time. In this case, every jump introduces a
temporal shift equal to the actual timestep with respect to the correct solution because the
state is unchanged under a jump, the coherent state being eigenstate to the jump operator.
Of course, in the timestep → 0 limit, the correct behavior is recovered, however, a systematic
error is introduced with finite stepsize by the incorrect treatment of jumps.

3. Timestep is not adaptive. This is a problem already in ODE, but in MCWF
it creates the additional problem that the satisfaction of the condition
eq. (3) remains uncontrolled.

3. Stepwise adaptive MCWF

While the integrating algorithm of MCWF evolution sidesteps these issues
thanks to its peculiar treatment of jumps (cf. section 5), we aimed at a stepwise
adaptive algorithm that rectifies them. By ‘stepwise’ we mean that the possi-
bility of one of the possible quantum jumps to occur is accounted for in each
timestep.

Ad 1. Instead of the 1st order Euler ODE step, we use a higher order adaptive
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method 2. Regarding timestep control, such a routine expects a timestep
δttry, which is the timestep to try in the actual step, and yields

1. δtdid, the timestep actually performed

2. δtnext, which is the timestep to try in the next step

When used sequentially, δttry is always equated to the δtnext obtained in
the previous step. It is important that

δtdid ≤ δttry, (7)

that is, the stepper is not allowed to overshoot the suggestion obtained
from the step before, while δtnext can be bigger than δtdid, providing a
mechanism for increasing the timestep.

Ad 2. ODE evolution is not optional during a timestep (this follows partly from
item Ad 1 just above), but an ODE step is always taken, and at the end
of that step, it is decided whether or not a quantum jump is taken in
addition in the same timestep. The jump itself is instantaneous.

Ad 3. Timestep is naturally adaptive stemming from item Ad 1 above, so we
need to control the fulfillment of condition (3). For this, we introduce a
new parameter ∆p of the algorithm representing the maximum allowed
total jump probability in a timestep. Clearly, we expect the algorithm to
work correctly if

∆p� 1. (8)

The behavior of MCWF as a function of ∆p is the main theme of the
remainder of the paper.

Our adaptive algorithm can then be summed up in the form of a flowchart as
in Fig. 2. Superposed on the ODE stepsize-control heuristic, we use a two-layer
heuristic: upon calculating the jump rates after the HnH evolution,

1. the timestep guess fed back to the ODE stepper at the beginning of the
next step is abridged by ∆p-control as:

δtnext ≤
∆p

rtot
, (9)

where rtot =
∑
m rm is the total jump rate. The problem here is that a

∆p-overshot is handled only in the next step.

2. if it is found that the total accumulated probability in the given step is too
high, i.e. rtot δtdid > ∆p′, with some ∆p′ > ∆p, then the step is rejected
and we go back to the beginning of the given step by restoring the state

2A general-purpose choice used also in the examples throughout this paper is the Runge-
Kutta Cash-Karp stepper, which is fifth order with embedded fourth order error estimator.
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Figure 2: Flowchart describing a single step of our adaptive MCWF algorithm. Besides the
physical parameters and those governing the ODE evolution, the parameters of the algorithm
are ∆t, ∆p, and ∆p′. The two-layer control makes sense only if ∆p′ > ∆p.
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vector to a copy cached at time t. In general, the internal state of the
ODE stepper needs to be cached and restored as well. The next step is
tried with timestep reduced as

δtnext =
∆p

rtot
, (10)

Layer 2, introduced as a safety measure, requires additional resources (al-
though usually negligible compared to the several copies of the state vector the
ODE stepper has to store internally during a step), and our experience is that
its usefulness is very difficult to quantify in real-life situations. Hence, in the
following we will only study the effects of the 1st layer of control, and switch off
the 2nd one (this can always be done by choosing a very large ∆p′ value).

One last important difference of our algorithm compared to the original must
be noted: we perform an exact renormalization of the state vector just before
calculating the jump rates. Keeping the norm constant can be a very strong
stabilizing condition for the ODE evolution, in certain problems that we will
discuss in section 5.1. In these problems, experience has shown that the exact
renormalization can stabilize an otherwise unstable ODE evolution, or make an
otherwise very small timestep bigger. The need for exact renormalization in this
sense means that the integrating method, which lets the norm evolve freely and
monitors its value to determine the jumps is hindered.

It is easy to verify that the first-order-in-δt derivation of the master-equation
evolution presented in eq. (6) is unchanged by our modifications to the algo-
rithm, which remains of order 0.5 despite the fact that the order of the ODE
stepper can be higher. This is because the handling of the quantum jumps is
essentially unchanged: we allow at most one jump per timestep.

For each timestep, we define a maximum time that the stepper is allowed to
reach. This is important in order to define time instants during the trajectory
at which the trajectory is sure to stop. These are defined as

sampling times ≡ u∆t with u ∈ N. (11)

Hence, at these points all the trajectories of an ensemble can be brought to-
gether e.g. for ensemble averaging (due to adaptive stepping, the trajectories
have different times after fixed number of steps). As we shall see below, ∆t is
an important parameter that in principle pertains to the convergence of the
method.

4. Convergence

To study the convergence properties of the adaptive MCWF as a function of
∆p, we choose a very simple system: a single harmonic-oscillator mode interact-
ing with a finite-temperature reservoir. If a denotes the annihilation operator of
the mode excitations, the jump operators read:

J0 =
√

2κ(nTh + 1) a (photon emission), (12a)

J1 =
√

2κnTh a
† (photon absorption). (12b)
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We set the timescale such that κ = 1.
The mode can be driven by a coherent drive, that we will consider resonant

with the mode frequency, in which case we find a time-independent Hamiltonian
in the frame rotating with the frequency of the drive:

H = i~ η
(
a† − a

)
, (13)

where η is the Rabi frequency of the drive. The non-Hermitian Hamiltonian
reads:

HnH = −i~κ(2nTh + 1) a†a+ i~ η
(
a† − a

)
. (14)

The coherent drive tends to impose a coherent steady state even on a single
trajectory, which is stabilized also by the photon emission (eigenstate of J0),
the photon absorption being the only mechanism acting against it.

4.1. Pure ∆p-control

Let us first study the case of η = 0 and Fock-state initial condition, which
is the most demanding of simple examples. One reason for this is that in the
lack of coherent driving, the just discussed stabilization mechanism on a single
trajectory is absent. The other reason is a manifestation of bosonic enhance-
ment: the photon exchange with the reservoir is the more intense, the larger
the photon number the mode already has. Therefore, the photon number along
a single trajectory fluctuates wildly, with cascading absorptions and emissions.
To illustrate this, and give the reader a taste about the number of trajectories
needed for acceptable convergence, we display the time evolution of the average
photon number over trajectory ensembles of various sizes in fig. 3. Here, nTh = 5
and |Ψ(0)〉 = |10〉, so that the photon number along the master-equation evo-
lution stays in the interval between 5 and 10. Yet, in ensembles on the order of
one million trajectories, we have encountered single trajectories that overshoot
a Fock-state cutoff of 200!

The lack of driving and the Fock-state initial condition means that the
MCWF method is drastically simplified to a classical Markov chain in Fock
space, since in this case the mode state will remain a number state throughout
the evolution. The process could be treated exactly by using random numbers
with exponential distribution for the waiting time till the next jump, and simply
hopping from one jump to the next in time. However, when regarded as a spe-
cial case of our adaptive algorithm with the superimposed criterion of equally
distributed sampling times, the behavior becomes nontrivial.

Our main result is displayed in fig. 4. Here we plot the deviation of trajectory
ensembles from the exact (master-equation) solution as a function of the size of
the ensemble. The deviation is measured by

deviation(f, g) ≡ 2‖f − g‖
‖|f |+ |g|‖

, with ‖f‖ ≡
∫ T

0

dt |f(t)|, (15)

where f and g are functions of time over the interval [0, T ], these are the expec-
tation values of the physical quantities along the trajectory.
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Figure 3: A typical picture of convergence of the MCWF solution to that of the master equation
(midline of the yellow stripe) as a function of the number of trajectories. A single trajectory
fluctuates wildly, without any appreciable relaxation of the initial state to the steady one.
Even with 1000 trajectories we see significant deviations, but the average of 10000 trajectories
fits nicely. Parameters: nTh = 5, |Ψ(0)〉 = |10〉, ∆p = 0.1, ∆t = 0.05.
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Figure 4: Same parameters as in fig. 3, but with varying ∆p. The midline of the yellow stripe
is the line 1√

number of trajectories
, which coincides with a linear fit (in log-log scale) on the

curve for ∆p = 0.02. The three features to be noted in the Figure are: (1) the general trend of
bettered convergence with decreasing ∆p; (2) the flattening out of the curves with increasing
number of trajectories, which occurs at the larger number of trajectories, the smaller ∆p we
have; (3) the critical behavior at ∆pc = 0.5 (the curve for ∆p = 0.61 virtually coincides with
the one at 0.5!), below which there is a sharp drop in the deviation. The inset exposes the
flattening-out behavior on a more suitable scale. These three features are explained in the text.
To avoid misunderstandings, we note that here and throughout the paper, we use artificially
big values of ∆p in order to magnify the effect of finite ∆p for the purpose of presentation. In
practice, we use values on the order of 10−2.
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The general trend that a decreasing ∆p betters the convergence is obvious,
although we observe a striking critical behavior at ∆pc = 0.5: for larger ∆p
values, the curve flattens out to a relatively high value with increasing number
of trajectories and the curve already at ∆p = 0.61 is virtually indistinguishable
from the limiting curve at ∆pc. On the other hand, for values smaller than the
critical, the ∆p-dependence can be captured only with a number of trajectories
on the order of hundreds of thousands: the larger ∆p, the smaller the number
of trajectories for which the curves start to flatten out.

The MCWF method has two layers of errors. The first layer comes from
discretization: the jumps can happen only at the endpoints of the timesteps.
It is easy to see that the probability of a single jump happening evaluated at
the end of the timestep is always smaller than what would come from the exact
exponential waiting-time distribution, so that due to discretization the number
of jumps gets smaller than the exact value. The second layer comes from the
missed multi-jump events due to the first-order nature of the method, which
also amounts to a smaller number of jumps than what we would have on an
exact jump trajectory. As exposed in Appendix Appendix A, both these kinds
of error scale with the square of an average timestep, which in turn scales with
∆p2.

The fact that the lower ∆p-curves in fig. 4 follow a line const.√
number of trajectories

(where the constant happens to be 1 within the errorbars of a least-square fit)
up to a certain limiting number of trajectories, is a manifestation of the law of
large numbers, given that the trajectories are independent. So what we observe
in this region is the statistical error of averaging a finite set of independent tra-
jectories. The flattening-out as a function of the trajectory number starts when
this statistical error reaches the same order of magnitude as the intrinsic error
of the method explained above, which of course happens with the larger number
of trajectories, the smaller ∆p we use. However, even though our statistics is
large, we do not seem to be able to verify the ∆p2-dependence of the intrinsic
error in the figure.

Let us return to the critical behavior, which is further exposed in fig. 5, where
we plot certain average characteristics of the trajectories as a function of ∆p, the
criticality being present in each. On panel (f), we can see that for ∆p > ∆pc,
the method even misses the correct number of average jumps, and even the
difference between the two kinds of jumps is rendered incorrectly. (This latter
is obtained trivially: since the system starts form the 10-photon state, and the
steady state is the 5-photon state [= nTh], the average difference should be 5.)
It should be noted that the number of MCWF steps continues its steep increase
for subcritical ∆p values (cf. panel [e]), while the quality of convergence doesn’t
increase appreciably (cf. panel [a]).

The “smoking-gun evidence” for the cause of the critical behavior is pre-
sented by the green lines on all panels and panels (b,c):

The green lines While in fig. 5, the sampling time ∆t = 0.05, for the green
lines we chose ∆t = 0.25, and see that the criticality disappears with this
choice.
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Figure 5: Important characteristics of MCWF evolution as a function of ∆p with same param-
eters as in fig. 4. The discontinuity observed on the panels is explained in detail in the text.
For the green lines, ∆t = 0.25, and they are plotted in order to show the behavior without
discontinuity. In panel (f), the green line represent the mean of the two kinds of jumps. The
average timestep on panel (b) and the correlation between the stepsize and the photon number
in panel (d) are taken along a trajectory and over the full ensemble of trajectories as well.
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Panel (b) The timestep averaged over the trajectory drops sharply at the crit-
ical point.

Panel (c) The possibility of taking full ∆t steps ceases at the critical point
(curve drops to exactly 0 for ∆p < ∆pc).

In conclusion, the criticality depends strongly on ∆t, being related with the
possibility of taking full ∆t steps. Let us explain: In our present case, when
the timestep is controlled purely by the relation eq. (10), we can determine the
condition for the system to be able to take a full ∆t step when in the Fock state
n:

∆t ≤ ∆p

rtot(n)
=

∆p

2κ[(nTh + 1)n+ nTh(n+ 1)]
=

∆p

2κ[(2nTh + 1)n+ nTh]
. (16)

This gives a critical ∆p value for each Fock state for the case when the equality
sets in:

∆pc(n) = 2κ∆t [(2nTh + 1)n+ nTh]. (17)

The smallest ∆p value given by this is for n = 0, which gives us the value of the
critical point observed in the figure as:

∆pc = ∆pc(0) = 2κnTh ∆t, (18)

equaling 0.5 for the parameters used in figs. 3 to 5. Why does the cessation of
the possibility of taking full ∆t steps cause a drop in the average timestep and a
feature also in the other characteristics plotted in fig. 5? Assume the system has
just undergone a sampling at time u∆t with some u ∈ N, and it is in the 0th
Fock state at this instant. Then, for supercritical ∆p, it will directly jump to
the next sampling time instant (u+ 1)∆t, while for a ∆p value just below ∆pc,
it will take a step just short of this next sampling time instant, so that it needs
to take a very small step to finish the full ∆t interval. It is the appearance of
such small fragmentary steps that make the average timestep drop at the critical
point.

The drop in the deviation of an ensemble of trajectories from the master-
equation solution can also be explained from the drop seen in panel (b). In fact,
the quality of convergence of the MCWF depends not directly on ∆p, but on
the average stepsize: the smaller the timestep, the less probable we miss jumps
via two-jumps-per-timestep events, hence, the better our (first-order) MCWF
is. The dependence on ∆p is only via the dependence on the timestep.

The sharp feature in panel (d) at ∆pc can also be explained. Generally, the
higher the photon number, the smaller steps we have to take, so that overall,
the timestep-photonnumber correlation must be negative, which is what we see.
The lower the ∆p, the stricter the stepsize control, so that the correlation with
the photon number should increase in modulus, that is actually the case for
∆p > ∆pc. At the critical value, the small fragmentary steps appear, whose
size is largely independent of the photon number, hence the sudden drop in the
modulus of the correlation.
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Figure 6: Behavior of the stepsize as a function of ∆p for three sets of parameters. The
criticality (which is even doubled for the green line) follows the prediction of eq. (17).

On changing parameters, the above picture of the criticality is confirmed.
First of all, the green lines in fig. 5 represent the case ∆t = 0.25, where the
criticality disappears because ∆pc > 1 according to eq. (17). In fig. 6 we present
three further cases: for ∆t = 0.05 as above, but nTh = 4 and 6 the critical
point is given as 0.4 and 0.6; while in the case of ∆t = 0.015625 and nTh = 5,
eq. (17) even predicts two critical points below 1, since ∆pc(0) = 0.15625 and
∆pc(1) = 0.5. These predictions are confirmed by the figure.

4.2. Contention with ODE-control

Let us look at how the above picture is modified if the mode is driven coher-
ently with Rabi frequency η, that is, the Hamiltonian (13) is nontrivial, meaning
a nontrivial ODE evolution with its own internal stepsize control. This control
will contend with our superimposed ∆p-control.3

3For the sake of clarity, we remark that a priori, jumps never come without a Hamiltonian
to reckon with in the form of the non-Hermitian part, cf. eq. (1b). Furthermore, this part
scales with system parameters and state in the same way as the total jump probability. In the
case when this “obligatory” part of HnH is diagonal in the working basis, it can be treated
with an exact propagator (this is what C++QED does), so that it does not burden the ODE
stepper. In the case studied in section 4.1, when the state remains a Fock state all along, this
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In many situations of physical interest, a generic behavior that was noticed
already in [30] is that off-diagonal elements of the density matrix converge slower
than diagonal ones. In the present case this makes that the phase of the field
converges worse than the amplitude, which we have found difficult to prove in a
clear-cut way. A possible physical interpretation of this behavior could be that
the photon loss measures the photon number. This suggests that a homodyne
detection could result in opposite behavior, however, this we could not prove
either in a distilled way.

In fig. 7(a) we display the average timestep as a function of ∆p with three
different values of η. The dashed lines are predictions based on eq. (10) assuming
pure ∆p-control:

δt∆p-controlled = ∆p
1

rtot
= ∆p

1

2κ((2nTh + 1)a†a+ nTh)
, (19)

where the overline means averaging over time along one trajectory and averaging
over (an ensemble of 20000) trajectories as well.

The main message of the figure is that for small ∆p, ∆p-control dominates,
so that the curves overlap with ∆p-controlled timestep, while for increasing ∆p,
ODE-control takes over, so that the curves flatten out, the timestep becoming
independent of ∆p. ODE-control depends on the largest frequency present in
the system, the resulting stepsize scaling with the inverse of this frequency. This
means that this control is the stricter, the larger the frequencies present in the
system. This is the reason why the larger the η, the lower the ∆p value at which
the curves start to flatten out. For the same reason, the stepsizes are generally
smaller for increasing η.

For large enough η values, pure ODE-control is established, as exhibited in
panel (b) of the same figure. Here we plot the dependence of the timestep on |η|
for a rather large ∆p value. We observe that the curve asymptotically coincides
with the dashed one which represents a ∝ |η|−2

decrease. The reason for this
is that in this simple case, the largest frequency in the system scales with η2,
since in the Hamiltonian (13), the mode amplitude is also proportional to η.

5. Comparison with the integrating method of MCWF evolution

In the implementation of the MCWF method, there is another main stream,
which we will refer to as “integrating” in contrast to our (adaptive) “stepwise”
method. In this algorithm, the norm of the state vector is let to decrease under
the evolution by HnH. A random number r ∈ [0, 1) is drawn at the beginning,

term moreover amounts to nothing more than a trivial norm factor, which anyway disappears
during the renormalization after each timestep. So in this case it is possible to completely
disregard this “coherent” part of the evolution. In more involved uses, when the working
basis cannot be chosen in such a way that the non-Hermitian part be diagonal, the ODE-
control will dominate the timestep control due to the just mentioned scaling argument, and
the superimposed ∆p-control will intervene only at exceptional moments. The same is true
when other parts of the Hamiltonian have the largest characteristic frequencies.
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Figure 7: The behavior of the algorithm as witnessed by the average timestep in the case
of nontrivial coherent evolution. Same physical system and parameters as in fig. 4, but with
finite driving amplitude η. In panel (a), the dashed lines are predictions from eq. (19), with
the same color code as for the solid lines.
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Figure 8: Cartoon illustrating the workings of the integrating method. tns are the sampling
time instants when the state-vector norm is compared against the previously drawn random
number r. t@ would be the time instant of the jump according to the real evolution of the
norm, while t∗ is the jump time instant retrieved by the algorithm when using the most
primitive retrieval method: linear interpolation.

and as the state-vector norm reaches this number, a jump is introduced. At
this point, the distribution of jumps pm is calculated, and the nth jump is
performed where n is the smallest integer satisfying

∑n
i=1 pi ≥ r. It can be shown

that the norm-loss equals the accumulated jump probability (hence the name
“integrating method”) under a very general set of conditions. The workings of
the method together with the typical error that it involves are illustrated in
fig. 8. One needs to define a set of sampling times tn where the norm will be
compared against r. It is a non-trivial issue what is a good sampling interval. The
source of the method’s error is that when we notice that the norm has shrunken
below r at time tn, then we are already after the real time instant of the jump.
Therefore, we need a mechanism to retrieve the jump time instant together with
the state of the system at that time in order to perform the jump. When using
linear interpolation, the error will be |t@ − t∗|, which somehow scales with the
sampling time interval.

One of the advantages of the method is that it enables the use of multistep
methods for the ODE evolution part, although the multistepper has to be exited
now and again to check the norm of the state vector, and eventually retrieve
the jump time instant and perform the jumps.

The mcsolve routine of QuTiP [25, 26], uses the integrating method, the
jump time within a supplied norm tolerance being retrieved by bisection root-
finding combined with linearization (Paul Nation, private communication). The
parameters of this algorithm are the norm tolerance (default: 0.001) and the
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number of maximum iterations of the root-finding algorithm (default: 5).
Our stepwise method is more conservative, conceptually simpler and more

robust in the sense that it does not rely on a heuristic for retrieving the jump
time instance, hence it is immune against failures of such a heuristic (for which
there are specific error messages in QuTiP).4 However this comes at the price
of a certain reduction of performance, which is twofold:

1. The stepsize is bounded in each timestep due to the ∆p-criterion, while
in the integrating method it is solely the ODE stepper which controls the
stepsize. This difference, however, disappears in the case when the ODE-
control dominates the timestep-control, which in our experience is the case
in most real-life situations (cf. footnote 3).

2. The jump probabilities have to be evaluated in each timestep, instead of
just calculating the norm. This overhead on the other hand can become
negligible if the evaluation of the Hamiltonian (which is done several times
per step within the ODE solver) is significantly more expensive, which is
the case in most real-life examples we encountered so far.

Let us make two more notes of comparison favoring our method.

1. The integrating method requires more parameters for controlling the error
of the MCWF, since besides the norm tolerance, further parameters are
required for the method dedicated to retrieve the time instance of the jump
(e.g. number of iterations). Furthermore, the parameters controlling the
specific error of the first-order MCWF are intertwined with the parameters
controlling the sampling, since the larger the sampling intervals, the larger
the overshoot of the real jump time instant. This is in contrast to our single
parameter ∆p, and our stepsize control which is done either by the ODE
stepper, or by the ∆p condition, depending on which one is stricter. In
our method it is also easy to estimate the maximum probability of two
jumps occuring in a single time step, since assuming ∆p� 1, this is given
by ∆p2.

2. The possibility of exactly renormalizing the state vector after each ODE
step is lost in the integrating method. This is an important stabilizing
means of the method (cf. section 5.1), which is available in our algorithm.5

Having said all this, the convergence properties of the two methods are
similar when respective appropriate parameters are chosen, as illustrated on
the example of the coherently driven mode interacting with a thermal bath
in fig. 9. As we see, the “flattening out” behavior also appears in the case of

4According to the developers (Paul Nation, private communication), in all the usecases en-
countered so far, the jump time was found within the default tolerance in at most 3 iterations.

5On a final note: the concept of a single adaptive step is well-defined in our case due to
the possibility of jumps being immediately accounted for in each step, making our algorithm
compatible with higher-level trajectory drivers.
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∆ps and the integrating algorithm as implemented in QuTiP with two different sets of precision
parameters. The physical system is the same as in section 4.2, with same parameters as in
fig. 7. The yellow stripe is the same as in fig. 4.
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the integrating method. Note that this method is also sensitive to the issue of
double jumps, being also first order in this sense: it will miss such events when
two jumps would occur within the time interval corresponding to the given norm
tolerance.

5.1. Example usecases favoring the stepwise method

Moving-particle cavity QED. Let us consider a particle of mass m with a one-
dimensional motional degree of freedom. We consider periodic boundary condi-
tion in space, meaning that the particle momentum is discretized with intervals
∆k, so that it is possible to define a dimensionless “wave-number operator” for
the particle K = p/(~∆k), that has integer spectrum. The particle is moving
in a single-cosine-mode optical field with wave number K that is an integer
multiple of ∆k. The Hamiltonian then reads:

H = ~ωrec K2 + V cos2 (Kx), (20)

where the recoil frequency is defined as ωrec = ~∆k2/(2m), and V is an energy
scale representing the coupling between the mode and the particle. This is a
numerically demanding problem because of the quadratic increase of the char-
acteristic frequencies of the different components particle wave-number space.
The quadratic increase makes that very separate timescales appear in the sim-
ulation, resulting in very small timesteps compared to the necessary simulation
time. (In general, the simulation time scales with the slowest, while the timestep
with the fastest timescale.) This situation can be improved by transforming into
an interaction picture defined by the kinetic part of the Hamiltonian:

HI =
V

2

[
e4iωrec(K−K/∆k)te−2iKx + e−4iωrec(K+K/∆k)te2iKx

]
, (21)

the gain by this being that the characteristic frequency now increases only lin-
early with K. This can lead to an increase by a few orders of magnitude in
the timestep. However, the still large frequencies in the now explicitly time-
dependent Hamiltonian can lead to instabilities in the ODE stepper. We have
found that an exact renormalization of the state vector after each ODE step re-
solves this issue. This approach has been used with success in several situations
[11, 12, 30–36].

Non-unitary interaction picture. In many situations it is worthwhile to use not
only a traditional interaction picture, but an exact propagator obtained by ex-
ponentializing the full diagonal part of the non-Hermitian Hamiltonian, that
is, a non-unitary interaction picture. Consider eq. (14), but with off-resonant
driving with detuning δ:

HnH = −~[iκ(2nTh + 1) + δ]a†a+ i~ η
(
a† − a

)
. (22)

Here, if we pass to a traditional interaction picture

HnH,I = −~iκ(2nTh + 1)a†a+ i~ η
(
e−iδt a† − eiδt a

)
, (23)
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then, a term contributing high frequencies with growing excitation number re-
mains in the form of the non-Hermitian term. It is much better to eliminate this
as well:

HnH,nU = i~ η
(
e[κ(2nTh+1)−iδ]t a† − e[−κ(2nTh+1)+iδ]t a

)
. (24)

We see that the frequency depending linearly on the excitation number has dis-
appeared, which again can lead to a substantial increase in the timestep. The
downside is that there appeared explicitly time-dependent terms, some of which
grow while others decrease exponentially in time. This can again lead to insta-
bilities in the ODE stepper. Here again, we have found that these instabilities
are removed by an exact renormalization of the state vector after each ODE
step. This approach has been used with success in several situations [9, 10, 13].

The necessity of renormalization after each ODE step in the two situations
shown in this section has the consequence that the integrating method cannot
be used, since the norm remains 1 during the whole evolution.

6. A note on sampling and time averaging

Because of the adaptive nature of the trajectories, there are two possibilities
for sampling along the evolution of a single trajectory: one can either sample (1)
in equal time intervals or (2) in equal number of steps. Sampling method (2) is
better suited for following the physics of the problem along a single trajectory,
since at those times where a lot of dynamics takes place, the stepsize control
will choose smaller timesteps resulting in more samples than in calmer times.
Moreover, it is only with method (2) that the sampling does not influence the
trajectory simulation in the way we saw in section 4.1.

In this connection, it is of great importance to note that when using a long
single trajectory for finding steady-state results as time averages, then with
sampling method (2) the time average must be calculated with weighing with
the stepsize:

O(2)
=

∑
m∈[sampling steps] δt(m) 〈O〉 (m)∑

m∈[sampling steps] δt(m)
, (25a)

where O is an observable and δt(m) is the timestep done in the mth step. This
is because states are correlated with stepsize (cf. fig. 5(d)) and hence the density
of samples, so that states resulting in smaller stepsize (e.g., states with higher
photon numbers in the example of section 4.1) will be overrepresented among
the samples. On the other hand, with sampling method (1), stepsize-weighing
must not be used:

O(1)
=

∑
ti∈[sampling times] 〈O〉 (ti)

(number of sampling times)
, (25b)

where the sampling times are equally distributed in time. Confusion in this
respect can result in gross misestimates of steady-state values!

24



7. Conclusion

Besides presenting a stepwise adaptive MCWF algorithm controlled by ∆p,
the total jump probability per timestep, in this paper we have studied the
convergence behavior of the MCWF method depending on this parameter. This
dependence should be equivalent with the dependence on the norm-tolerance
parameter in the case of that implementation of the MCWF method which we
came to call “integrating”, and should pertain to any other implementation of
the MCWF method as well.

We have found that the ∝ 1
number of trajectories dependence of the deviation

of the MCWF from the exact solution flattens out, which happens at the larger
number of trajectories, the smaller the ∆p. This behavior we attributed to the
inherent errors of the first order MCWF method, namely (1) time discretization
and (2) missing multi-jump events, both of which are O(δt2) errors, meaning
that they scale as ∆p2.

We have found and characterized a discontinuous behavior of the method as
a function of ∆p in the pure ∆p-controlled case, which we have attributed to
the way the trajectories are sampled in time. This a showcase of how sampling
can modify the behavior of trajectories through influencing the stepsize, which
at the same time displays the role of the average stepsize as the real regulator
of MCWF convergence.

In the case when a non-trivial Hamiltonian is present, we have character-
ized the contention between ∆p- and ODE-control, finding that ODE-control
will take over when those characteristic frequencies of the system that do not
participate in the loss increase. The takeover of ODE-control is signalled by
that the average timestep becomes determined by the largest non-loss-related
characteristic frequency of the system, becoming independent of ∆p.

In the comparison with the integrating method, we have come to the con-
clusion that our stepwise method is more conservative, conceptually simpler,
and more robust at the price of some reduction of performance. This reduction,
however, should become marginal in many real-life situations. Regarding con-
vergence, the two methods are equivalent when the respective parameters are
chosen appropriately. In some special but realistic situations when a renormal-
ization of the state vector relieves numerical problems of the ODE evolution,
our method is favored above the integrating one.

Code availability

The algorithm presented here is available as the quantumtrajectory::MCWF Trajectory
class in C++QED: a C++/Python application programming framework for
simulating open quantum dynamics [27–29].6 In particular, all the simulations
presented here can be reproduced using the PumpedLossyMode C++QED script

6For the development version and an extensive documentation, cf. http://cppqed.sf.net.
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available in the framework’s distribution. A sample command line simulating a
single trajectory may read:

PumpedLossyMode C++QED --dpLimit 0.1 --seed 1000 --cutoff 2000 --nTh 5

(the parameter ∆p is called dpLimit in the framework, for historical reasons).
Some further code snippets are presented in appendix Appendix B.
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Appendix A. Quantification of the error

In this appendix, we give a simple quantification of the behavior of the error
in fig. 4.

Let us introduce some notation. Let X(t) denote the photon-number process.
In the simplest case exhibited in section 4.1, when the mode is driven solely
by the interaction with the thermal bath, X(t) is a birth-death process with
generator

qnm =


λn if m = n+ 1

−λn − µn if m = n

µn if m = n− 1

0 otherwise.

(A.1)

where λn = 2κ(n+1)nth and µn = 2κ(nth+1)n. The theory of such processes is
well developed, and it is known that the processX is fully determined by its state
space and its generator, furthermore one can easily determine the stationary
state (if it exists), distribution of waiting times, probability of extinction etc.

Let Y (t) denote the discretized model. In this simple case Y (t) is also a
stochastic process, in particular a discrete-time Markov chain, but with different
transition probabilities. Since the rate of transition is fixed between jumps, so
is the timestep δt. Here the transition matrix is given by

pnm = P
[
Y (t+ δt) = m

∣∣Y (t) = n
]

=


λnδt if m = n+ 1

1− (λn + µn)δt if m = n

µnδt if m = n− 1

0 otherwise.

(A.2)
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Note that this matrix is a valid transition matrix if and only if (λn+µn) δt ≤ 1,
furthermore that Y (t) is a time-discretized version of X(t). In order to under-
stand the relaxation of the curves in the figures let us examine the quantity

E
[
X(t+ δt)− Y (t+ δt)

∣∣X(t) = Y (t) = n
]
, (A.3)

that is, the difference of the mean of the real trajectories and that of the approx-
imated ones at one timestep away from t, given that the trajectories coincide at
time t. The expected value of Y is given by

E
[
Y (t+ δt)

∣∣Y (t) = n
]

= n+ (λn − µn) δt, (A.4)

while that of X needs a little bit more effort to calculate. First we will show
that

P
[
|X(t+ δt)− n| ≥ 3

∣∣X(t) = n
]

= O
(
δt3
)
. (A.5)

It is known that the waiting times between two jumps of a continuous-time
Markov chain are exponentially distributed and independent random variables.
Consider some independent, exponentially distributed random variables Tj , j =
1, 2, 3 with parameters γj , j = 1, 2, 3. Then

P(T1 + T2 + T3 < δt)

=
γ1γ2γ3

γ1 − γ2

[
1
γ2

(
1− e−γ2δt

)
− 1

γ3

(
1− e−γ3δt

)
γ3 − γ2

−
1
γ1

(
1− e−γ1δt

)
− 1

γ3

(
1− e−γ3δt

)
γ3 − γ1

]
= O

(
δt3
)
,

(A.6)

which means that the probability of a continuous time Markov chain jumping
at least three times in an interval of length δt is O

(
δt3
)
, thus

E
[
X(t+ δt)

∣∣X(t) = n
]

=
∑
m

mP
[
X(t+ δt) = m

∣∣X(t) = n
]

=
∑

m : |m−n|≤2

mP
[
X(t+ δt) = m

∣∣X(t) = n
]

+O
(
δt3
)
. (A.7)

Hence, for an at-most-second-order-in-δt calculation of the expectation, we only
need to calculate the probabilities

P
[
X(t+ δt) = m, in at most 2 jumps

∣∣X(t) = n
]
, with m = n, n±1, n±2.

(A.8)
These are found to read

P
[
X(t+ δt) = n, #jumps ≤ 2

∣∣X(t) = n
]

= e−qnδt +
λn µn+1

qn − qn+1

(
e−qnδt − e−qn+1δt

qn − qn+1
− δt e−qnδt

)
+

µn λn−1

qn − qn−1

(
e−qnδt − e−qn−1δt

qn − qn−1
− δt e−qnδt

)
= 1− qnδt+

(qnδt)
2

2
+
λn µn+1 + λn−1 µn

2
δt2 +O

(
δt3
)
, (A.9a)
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P
[
X(t+ δt) = n+ 1, #jumps ≤ 2

∣∣X(t) = n
]

=
λn

qn+1 − qn
(
e−qnδt − e−qn+1δt

)
= λnδt−

λn
2

(qn + qn+1)δt2 +O
(
δt3
)
,

(A.9b)

P
[
X(t+ δt) = n− 1, #jumps ≤ 2

∣∣X(t) = n
]

=
µn

qn−1 − qn
(
e−qnδt − e−qn−1δt

)
= µnδt−

µn
2

(qn + qn−1)δt2 +O
(
δt3
)
,

(A.9c)

P
[
X(t+ δt) = n+ 2, #jumps ≤ 2

∣∣X(t) = n
]

=
λnλn+1

qn+2 − qn+1

(
e−qnδt − e−qn+1δt

qn+1 − qn
− e−qnδt − e−qn+2δt

qn+2 − qn

)
=

1

2
λnλn+1δt

2+O
(
δt3
)
,

(A.9d)

P
[
X(t+ δt) = n− 2, #jumps ≤ 2

∣∣X(t) = n
]

=
µnµn−1

qn−2 − qn−1

(
e−qnδt − e−qn−1δt

qn−1 − qn
− e−qnδt − e−qn−2δt

qn−2 − qn

)
=

1

2
µnµn−1δt

2+O
(
δt3
)
,

(A.9e)

from which we obtain

E
[
X(t+ δt)− Y (t+ δt)

∣∣X(t) = Y (t) = n
]

=
δt2

2

(
q2
n + λnµn+1 + λn−1µn + (n+ 1)λn(qn + qn+1)

+ (n− 1)µn(qn + qn−1) + (n+ 2)λnλn+1 + (n− 2)µnµn−1

)
∼ ∆p2, (A.10)

where the last relation is due to eq. (10). This implies that as soon as 1
number of trajectories

is comparable to ∆p2, the error does not decrease by increasing the number
of trajectories, a phenomenon observed in figs. 4 and 9. We also remark that
eq. (A.10) shows the local error of the means. In the case of fixed timestep, the
global error can grow up to O(δt) as well.

Appendix B. Python snippets

A Python function using the Pythonic interface of C++QED to run a single
trajectory may read:
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from cpypyqed import *

def runSingleTraj(cutoff,delta,eta,kappa,nTh,n0,Dt,T,dpLimit,seed) :

p=parameters.ParameterTable()

pe=evolution.Pars(p)

pm=mode.ParsPumpedLossy(p)

pm.cutoff=cutoff; pm.delta=delta; pm.eta=eta; pm.kappa=kappa; pm.minitFock=n0; pm.nTh=nTh

pe.Dt=Dt; pe.T=T; pe.dpLimit=dpLimit; pe.seed=seed

pe.evol=evolution.Method.SINGLE; pe.dc=0; pe.epsAbs=1e-12; pe.epsRel=1e-06

evolve(mode.init(pm),mode.make(pm,QMP.IP),pe)

This is equivalent to the PumpedLossyMode C++QED script mentioned in sec-
tion 7, and indeed uses the same C++ libraries.

The much simplified algorithm in the case presented in section 4.1, when
the MCWF is reduced to a random walk in Fock space can be implemented in
Python as follows:

import random

import numpy as np

def calculateRates(dp,nTh,n) :

r0=2*(nTh+1)*n # photon-loss rate

r1=2*nTh*(n+1) # photon-absorption rate

return r0,r1,dp/(r0+r1)

def performStep(n,dtToDo,nTh,dp) :

r0,r1,dtTryNext=calculateRates(dp,nTh,n)

ran=random.random()/dtToDo

if ran<r0 : nextState=n-1; jump=0 # photon loss occurs

elif ran<r0+r1 : nextState=n+1; jump=1 # photon absorption occurs

else : nextState=n; jump=-1 # no jump occurs

return nextState,dtTryNext,jump
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