
reskit: a toolkit to determine the poles of an
S-matrix

Peter S. Binghama, Jimena D. Gorfinkiela,∗

aSchool of Physical Sciences, The Open University, MK67AA Walton Hall, Milton
Keynes, United Kingdom

Abstract

We present the python package reskit, developed to calculate the coeffi-

cients of an analytical continuation of the S-matrix of a physical system by

means of Padé approximants and, from this fit, determine the complex poles

of this S-matrix.

The current implementation of the program is restricted to elastic scat-

tering, i.e. cases in which all channels have the same energy. It has been

tested using as input ab initio scattering data for electron-molecule collisions

obtained for energies along the real axis. The identification and characteri-

sation of the resonances present in the systems using reskit is described and

discussed.

Keywords: Padé approximants; S-matrix; resonances;

PROGRAM SUMMARY

Program Title: reskit

Licensing provisions(please choose one): MIT

∗Corresponding author.
E-mail address: J.Gorfinkiel@open.ac.uk

Preprint submitted to Computer Physics Communications January 21, 2019

Programming language: Python 2.7

Nature of problem(approx. 50-250 words): the S-matrix of a system is usually cal-

culated as a function of real energy (for example by varying the kinetic energy of a

projectile in a scattering process). Locating its complex poles requires some type

of extrapolation on the Riemann sheets relating the total energy, in the complex

plane, to the momentum. The program determines the complex poles of the fitted

polynomial S-matrix that identify its resonant, bound and virtual states.

Solution method(approx. 50-250 words): the program is based on the method de-

veloped by Rakityansky and collaborators [1] in which a Padé approximant is used

to fit provided S-matrix data, determined as a function of a real energy. Express-

ing the S-matrix in the Jost form, the generally complex poles of the S-matrix can

be found by determining the stability of the roots of the determinant of the Jost

matrix as S-matrix data for an increasing number of energies are used for the fit.

Additional comments including Restrictions and Unusual features (approx. 50-250

words): the current implementation requires that all channels/states have the same

energy and that no long-range Coulomb interaction potential is present. The first

of these restrictions results in a simplified S-matrix that is defined solely as a func-

tion of the momentum in the complex plane.

[1] P. Ogunbade, S. Rakityansky, S-matrix parametrization as a way of locating

quantum resonances and bound states: multichannel case, in: Proceedings of

the 2nd South Africa - JINR SYMPOSIUM, Models and Methods in Few- and

Many-Body Systems, JINR, 2010, 52–61.

2

1. Introduction

Resonances are an important phenomenon in atomic and molecular physics:

for example, their presence results in the enhancement of processes like

collision-induced electronic excitation. They affect both photodetachment

and photoionization and are crucial in cold collisions. In addition, some

physical processes are initiated by the formation of a resonance, an exam-

ple of which is dissociative electron attachment (DEA). In DEA, an electron

temporarily attaches itself to a molecule forming a resonance and, as a result,

one or several bonds in the molecule are broken [1]. Therefore, the identifi-

cation and characterisation of resonances is an important task necessary for

the understanding and modelling of many atomic and molecular phenomena.

Several techniques and programs have been developed to identify and

characterise resonances using, as input, scattering data (i.e. K-matrices,

S-matrices and derived quantities). Some [2, 3] are based on fitting the

eigenphase sum or phase shift to a Breit-Wigner profile [4, 5]. However,

this approach fails under certain circumstances; for example, when two or

more resonances overlap, when a resonance is very close to a channel thresh-

old or when the resonance is very wide. In the latter case the problem is

that it is very difficult to separate the resonant and the non-resonant (back-

ground) contribution to the eigenphase sum. There have been attempts to

address the shortcomings of using the Breit-Wigner formula through the de-

velopment of more elaborate approximations [6], although the authors are

not aware of any publicly available computational implementations of the

improved approaches. An alternative technique for identifying and charac-

terising resonances is based on the analysis of the time-delay [7]. Resonances

3

can be located by analysing the eigenvalues of the time-delay matrix. This

technique is particularly effective for overlapping resonances. Computational

implementations of the technique are available [8, 9]. We note that a number

of approaches, not based on scattering methods, have been developed for the

identification of resonances. These are based on conventional bound state

methodologies, stabilization techniques, complex absorbing potentials, etc..

One of them is based on the analytical continuation of the electron affinities

of the target molecules in the presence of a perturbation potential [10, 11].

In this method, known as the regularized method of analytic continuation,

conventional quantum chemistry calculations are employed to determine the

real energies of the system in the presence of a perturbation. The results are

then analytically continued into the complex energy plane.

Rakinyansky et al. [12] have proposed an approach that takes advantage

of the fact that resonances are associated with poles of the S-matrix [4, 5] and

that the S-matrix in Jost form can be expressed as the product of a matrix

and the inverse of a related matrix. Analytical continuation is achieved by

expressing this Jost form using Padé approximants. By fitting to S-matrix

data for sufficient discrete values along the real energy axis the coefficients

of the Padé expansions can be found. The roots of the polynomial expansion

of the determinant of the matrix that is inverted will correspond to the poles

of the rational S-matrix. Since bound and virtual states are also associated

to these poles (that are generally located on different sheets of the Riemann

surface), the method actually enables the identification of all these types

of states of a system. In addition, the rational S-matrices can be used to

determine quantities like the cross section, time-delay, etc.

4

In this paper, we present a python toolkit, reskit, based on the approach

of Rakinyansky et al.. The toolkit provides the routines necessary to perform

the S-matrix fit and the pole determination for cases in which all the channels

involved in the process have the same energy, i.e. for an elastic process.

Rakitiansky and collaborators proposed approaches to both elastic [13] and

inelastic [12] cases. In our software, we have implemented the more general

inelastic case although, at the moment, the implementation only works for

elastic cases for which the complexities of dealing with Riemann sheets are

avoided. An implementation for the inelastic cases is expected to follow.

2. Method

We begin our discussion of the theory presented in [12] by considering an

N channel scattering system involving both elastic and inelastic channels.

For the purpose of discussion and because the tests presented and analysed

in Section 5 correspond to electron-molecule scattering we will talk in terms

of an electron as the incident particle. The technique (and the derived soft-

ware) can be applied to any non-relativistic scattering system, provided that

sufficient S-matrix data has been obtained.

A channel refers to a discrete state of the scattering system at asymptote

and, in electron-molecule scattering, it is normally defined by the angular

momentum of the scattering electron and the internal state of the target

molecule. A channel, labelled n, is considered open if it is energetically

accessible at asymptote, i.e. if the total energy of the system, E, is greater

than or equal to its energy Eth
n .

We note that it is customary in electron scattering studies to take the

5

lowest (ground) internal state of the target to correspond to the zero of

energy. In this case Eth
n =0 for all channels associated to this internal state

and the Eth
n for all other channels become threshold energies.

2.1. Parametrised S and Jost matrices

The multi-channel S-matrix can be written in terms of matrices of the

out and in Jost matrices as the product:

S(E) = Fout(E)[Fin(E)]−1 (1)

For an N -channel scattering problem the Jost matrices can be expressed in

the following form:

F out/in
mn (E) =

1

2
[Amn(E)± iBmn(E)] (2)

where m and n are the channel indices over the range 1, 2, ..., N . The quan-

tities Amn and Bmn can be regarded as the coefficients when the wavefunc-

tion at asymptote is expanded in terms of the Riccati-Bessel and Riccati-

Neumann functions.

We now apply the technique presented in [12] to obtain parametrised

forms of (1) and (2). Considering the channel momenta:

kn = ±
√
E − Eth

n (3)

and channel angular momenta ln, Ogunbade and Rakityansky show [12] that

when no Coulomb (long range) interaction is present between the particles

[14] the coefficients in (2) can be written in the factorised form:

6

Amn =
kln+1
n

klm+1
m

Ãmn, Bmn = klmm k
ln+1
n B̃mn (4)

We expand Ãmn and B̃mn as a power series:

Ã(E) =
M∑
µ=0

α(µ)Eµ and B̃(E) =
M∑
µ=0

β(µ)Eµ (5)

where α(µ) and β(µ) are matrices of coefficients. Using (4) and (5) and

inserting them into (2) will give the form of the Jost matrices in terms of

the coefficients α(µ) and β(µ). These can then be inserted into (1) which will

then, after some algebra and enforcement of the zero energy behaviour [4]

Smn(E) −−−−→
km−→0

δmn +O(kqm), yield the following linear system:

M∑
µ=1

[
kln+1
n

klm+1
m

(Smm(Ei)− 1)α(µ)
mn − iklmm kln+1

n (Smm(Ei) + 1) β(µ)
mn

+
N∑
j=1
j 6=m

Smj(Ei)

(
kln+1
n

k
lj+1
j

α
(µ)
jn − ik

lj
j k

ln+1
n β

(µ)
jn

)
Eµ
i

 = δmn − Smn(Ei) (6)

where Smj(Ei) are the elements of an S-matrix obtained by some computa-

tional method for a discrete set of energies {Ei}.

M as defined in equation (5) is the maximum power of the two expansions,

for which there will be a total of 2(M + 1) unknown coefficients. However,

since the zeroth coefficients are given by the zero energy enforcement, the

S-matrix elements must be provided for Npts=2M unique energy points in

order to solve (6) and calculate the elements of α(µ) and β(µ). This will

allow the elements F in/out
mn (E) of Fin/out(E) to be determined and thus the

parametrised S and Jost matrices obtained.

7

The first release of our software considers application to multichannel,

elastic systems only. Here all the thresholds can be set to zero and, using

equation (4), equation (2) can be expressed purely in terms of a single k as:

F out/in
mn (k) =

1

2

M∑
µ=0

[
α(µ)
mnk

ln−lm+2µ ± iβ(µ)
mnk

ln+lm+1+2µ
]

(7)

Since F out/in
mn (k) is a polynomial function of k, and the coefficients have

been obtained solving equation (6), we can utilise well known numerical

methods for the solving of polynomial systems [15, 16, 17].

2.2. Locating the S-matrix poles

The S-matrix poles are obtained by first finding the roots of:

det
[
Fin(k)

]
= 0 (8)

The total number of roots will be dictated by the degree of the polynomial

obtained after insertion of (7) into (8) and the subsequent expansion of the

determinant. This means it will depend on the system that we choose to

solve: the number of channels, their angular momenta and, of course, M .

Generally not all of these roots correspond to true poles of the S-matrix.

However, as pointed out in [12], the roots corresponding to the true poles

can be expected to converge onto the ’true’ value as M increases while the

other roots will move about in a random manner. Therefore, locating the

poles involves comparing the roots across a range of increasing values of M .

To assist in the understanding of the following, more detailed, description

of the routines involved in this task, we introduce the following notation:

• The increasing M sequence is indexed using m.

8

• The set of roots found at a particular Mm is labelled Rm.

• Root i within the root set Rm is is denoted Rm[i]

• The number of steps across successive Mm for which a comparison test

will be applied is denoted by cf .

• Real and imaginary components of the root are indicated using R and

I subscripts respectively.

The procedure will use a comparison test (explained below) to determine,

for each root in Rm, if any of the roots in Rm+1 is close enough to it. Those

in Rm+1 that pass the comparison test (and are thus designated close) are

flagged as possible poles. If a root in Rm is close to more than one in Rm+1

then the root in Rm+1 that is closest to the root in Rm is used. At this point

if cf = 1 then the test is complete and the flagged roots are designated as

candidate poles.

If cf > 1 then the flagged roots in Rm+1 are used to test against all of

those in Rm+2 in a manner analogous to that just described, with the flagged

roots updating to those in Rm+2 that passed the comparison test. This con-

tinues until cf steps are reached, at which point the final set of flagged roots

in Rm+cf are designated as candidate poles. At this point the routine de-

scribed in Section 2.3 is executed to assign quality indicators to each of the

candidate poles. Before discussing this we first describe the comparison test.

The comparison test is applied to all possible pairs of roots for successive

steps. The test is applied separately to the real and imaginary components:

9

• If the component is greater than a zero value zk for both steps, then

cdiff is calculated using:

cdiffR,I =
|Rn[i]R,I −Rn−1[j]R,I|

max(|Rn[i]R,I|, |Rn−1[j]R,I|)
(9)

• If the component is smaller than or equal to zk for one of the two

steps, then it is set to zk for that step and cdiff is calculated using

expression (9).

• If the component is smaller than zk for both steps then it will be set

to zk and cdiff will also be set to zero.

If both cdiffR and cdiffI are less than a respective comparison threshold dk

(note that the same value is used for both real and imaginary components)

then the comparison test passes and the root is flagged as a candidate pole.

2.3. Assessing the quality of the candidate poles

The identification of a candidate pole in a single application of a location

test will therefore depend on dk, zk and M . In practice, the location test is

applied for a range of dk and M as determined by the input provided by the

user; zk is also an input parameter in reskit. We note that the number of

significant figures in the input data (given by the method and computational

approached used to generate it) will have an effect on the identification of

poles (see below).

Unfortunately, not all candidate poles are true poles of the system, so a

way of quantifying the likelihood that these poles are true poles is required.

We do this by defining, and calculating, some ’quality indicators’ (QI). This

10

involves applying the location routine repeatedly across a range of M values

for decreasing dk. The QI are determined in the following way:

• The routine keeps count of how many times a particular candidate pole

is located over the M ranges for all of the dks. This value defines the

first QI, ΣM .

• The second QI is the lowest dk for which a candidate pole is identified

and is referred to as ∨dk.

These QI should provide the user with a mechanism to ascertain the

confidence that a candidate pole is a true pole of the system, particularly

when compared to any others also discovered in the same data set. However,

care must be exercised when choosing the starting value of dk and the value

assigned to zk, especially with respect to the precision and size of the input

data.

3. Using the Software

The software to locate S-matrix poles using the method described in Section 2

is made available either from a number of independent python packages or via

an encapsulating python package named reskit, all of which are installable

via provided distutils setup.py scripts. In addition, a pip requirements.txt

is provided with reskit containing specific version numbers for the known

working reskit dependencies. We recommend installing into an isolated

python environment using, for example, the virtualenv tool.

As well as pulling together the underlying packages (referred to as the

reskit Utilities) reskit has also been designed to provide archiving of

11

results, handling of low-level parameters and numeric type abstraction. Since

it has a modular design, new techniques can be easily constructed using the

Utilities and added as what is referred to as a Tool.

As a way of introducing the package and its use, we present and discuss

an example program that uses reskit to find S-matrix poles using an ab

initio data set as input; the program shown is a simplification of the test code

included with the reskit release. The poles are found using the MCSMatFit

Tool.

1 import reskit as rk

2 import channelutil as cu

3 import ukrmolmatreader as rmol

4

5 # Use mpmath types (optional)

6 rk.use_mpmath_types(dps=100)

7

8 # Read in the K-matrix data

9 kmatdict,_ = rmol.read_Kmats("kmatrix_input_pyrazine.txt")

10

11 # Get a calculator with units and channel angular momenta

12 calc = rk.get_asym_calc(rk.rydbergs, [3,5,5])

13 # Initialise the data into the required container

14 dkmat = rk.get_dmat_from_discrete(rk.Kmat, kmatdict, calc,

"pyrazine")

15 # Slice the data set (optional)

16 dkmat2 = dkmat[0:1200]

17

12

18 sfittool = rk.get_tool(rk.mcsmatfit, dkmat2, "results")

19

20 # Perform the calculation of the poles and the quality

indicators

21 cfins = sfittool.get_elastic_Fins(range(2,32,2))

22 sfittool.find_stable_Smat_poles(cfins)

To begin, the required modules are imported: reskit, channelutil and

ukrmolmatreader. The ab initio K-matrix data is read using the ukr-

molmatreader (line 9). Further details of this data set, obtained for the

pyrazine molecule can be found in Section 5. The ukrmolmatreader parser

is specific to the particular file structure of our input data but all that is

required by reskit is a python dictionary of either S-, K- or T-matrices

keyed by energy (translation to the required S-matrix will be done internally

if required). reskit supports both python types using numpy operations

(default) or the arbitrary precision offered by the mpmath python library.

Line 6 specifies to use mpmath with 100 decimal places.

The angular momenta, spin (for the calculation of the cross section) and

energy units are provided by the user and then contained as an AsymCalc

(asymptotic calculator) object, which is returned from the get_asym_calc

function (line 12). In our example, it specifies that the unit of energies are

Rydberg (Ry) and that there are three channels of angular momenta 3, 5

and 5.

The call to get_dmat_from_discrete in line 14 translates the user’s

scattering data, stored in kmatdict, into a reskit compatible container

type. Here, the first argument specifies the scattering matrix type of the user

13

data, the scattering matrix itself is supplied as the second argument. The

third argument is the AsymCalc instance, calc, that was returned in line

12. The "pyrazine" argument is a string given to describe the data set,

which is used to build the path for saving and loading the results.

An accompanying function to get_dmat_from_discrete, which is called

get_dmat_from_continuous, exists for the situation when the scattering

data is given by an functional expression.

After creation of the reskit compatible container, it is reduced in size in

line 16. This reduction is carried out using the python dictionary interface,

in this case taking the first 1200 energy points only.

The first argument of the rk.get_tool function in line 18 is specifying

the required Tool (MCSMatFit), the second is the reskit container created

above, dkmat2. The third argument specifies a path into which any results

(for example the coefficients calculated by MCSMatFit) generated by the

Tool can be saved; if it is not supplied then the Tool will only programmat-

ically return the generated results without any writes to disk. More is said

on the storage of results at the end of this section.

rk.get_tool has an optional fourth parameter, param_file_path to

allow overriding the default arguments for the low level routines. These in-

clude additional parameters for the numpy and mpmath routines, as well as

more advanced reskit related parameters. By convention, each Tool pro-

vides a default.yaml file containing a set of default arguments. The user can

supply their own arguments by passing a path argument for param_file_path,

specifying the location of their overriding yaml file. Any user provided yaml

file should match the structure and naming of the default yaml it is overrid-

14

ing.

Finally Lines 21 and 22 call the functions that perform the actual calcu-

lation. get_elastic_Fins accepts a range of Npts and returns a list of F in

(see equation 2) for each of the supplied Npts (in this case the list returned

from the range function inclusively contains Npts from 2 to 30 with a step

of 2). It does this by solving equation (6) for the coefficients and then using

expansion (7). The F in (contained in the list cfins) are then passed to the

find_stable_Smat_poles function which finds the roots and calculates

the QIs as described in Section 2.3.

As mentioned, results from the calculations are written to disk if a results

path has been specified in the call to the get_tool function. reskit pro-

vides a ’smart archive’, in that results are written to a location depending

on the supplied data, the arguments of the calculation and whether numpy

or mpmath types are used. This means that any result written into the

archive will have enough accompanying information to allow it to be easily

reproduced and to allow correct loading of any intermediate calculation re-

sults if available and required. All of the results are written relative to the

path supplied to the get_tool function. As an example, the path to the

find_stable_Smat_poles results in our example will look like:

results/pyrazine/mpmath_100/(0,1200,None)/mcsmatfit/pole

s/default/[2,4,6,8,10,12,14,16,18,20,22,24,26,28,30]

The names results and pyrazine are provided by the user as the

example above shows. (0,1200,None) refers to the reduction of the data

set in line 16, mpmath_100 and mcsmatfit to the types and Tool used in the

calculation and default to the yaml file containing the Tool arguments. The

15

list of numbers in square brackets are the Npts used in the calculation. Similar

paths will exist for the coefficients and roots obtained during the calculation,

so that, for example, if the user decides to rerun the calculation including

Npts = 32 with no other changes, the existing coefficients and roots (i.e. those

for values of Npts already used) will be loaded from the archive. The final

results will then be stored in an alternative folder at the end of the above

path named [2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32].

4. reskit package

16

Figure 1: Schematic diagram detailing high level API and public functions for the reskit

python package. The reskit __init__.py file contains the main interface functions.

The Tools group contains the Tools that are returned from the get_tool function in

the __init__.py. Also shown are the low-level Utilities, the two modules provided

for test and demonstration purposes and the required third party packages.

17

Figure 1 shows the architecture of reskit. At the lowest level is the

Utilities group. This group encompasses a set of python packages which pro-

vide numerical operations and other fundamental functionality. The Tools, of

which there are currently two, are dependent on the Utilities and are shown

along with their public interfaces.

The reskit package file __init__.py provides access to the Tools and

other general functionality, such as the initialisation of data into the required

containers and type configuration. Also shown in figure 1 are two classes used

to obtain the data for the examples provided (Ancilliary Example Modules)

as well as the external packages required by reskit.

The typical user isn’t required to have any knowledge of the packages

contained within the Utilities group; the more advanced user can refer to the

detailed documentation provided within each of the package folders. This

documentation provides instructions for using each Utility package either

as a standalone entity or for building Tools and/or other Utilities that can

interact with or be integrated into reskit. The remainder of this section

will provide a brief overview of the various Utility packages before presenting

a more detailed reference of the reskit and Tools interfaces.

4.1. reskit Utilities

The Utilities group contains the building blocks of reskit. It includes

numerical routines that are used internally by the Tools, as well as the con-

tainers that are returned to the user from the reskit interface (e.g. from the

get_dmat_from_discrete function called in the example program given

in Section 3) and are used throughout the reskit software.

18

The pynumwrap package wraps the two different numeric types, stan-

dard python and mpmath, supported by reskit behind a common inter-

face. The user can specify what types they want to work with by calling the

use_python_types() or use_mpmath_types(dps). The latter of these

functions offers arithmetic to a specified number of decimal places (dps) and

as such allows more accurate (but slower) calculations to be carried out.

The matfuncutil package provides containers for the discrete and con-

tinuous representations of data that are typically associated with a scatter-

ing problem. The discrete containers for matrix, vector and scalar types

are named dMat, dVec and dSca respectively and provide functionality for

charting and operations such as slicing and selection of the fit data, as well as

useful functions such as eigenvalues() and gradient(). Operating on

a container will transform the dMat (or dVec or dSca) into an appropriate

container containing the results of the operation.

The analogous matfuncutil continuous containers are named cMat,

cVec and cSca. The main purpose here is to wrap a provided function ref-

erence and to allow easy discretisation to an appropriate discrete container.

In addition, the cMatSympypoly and cScaSympypoly continuous contain-

ers are provided as extensions of the cMat and cSca to further represent

symbolic matrices and scalars via the popular sympy python package. These

symbolic containers provide a simple interface for determinant and root find-

ing.

tisutil provides extension of the matfuncutil containers to the var-

ious scattering representations: dSmat, dKmat, dTmat, cSmat, cKmat and

cTmat. These containers are returned from the get_dmat_from_discrete

19

and get_dmat_from_continuous functions and passed to the get_tool

function in the reskit __init__.py package file. They are also returned

from the functions in the ukrmolmatreader and twochanradialwell

example modules. These containers provide functionality for converting be-

tween the various scattering representations, routines for the calculation of

cross sections (dXSmat) and eigenphase sums (dEPhaseSca), as well as the

interface for the matfuncutil discrete containers. cMatSympypolyk is

also provided as an extension of the matfuncutil cMatSympypoly con-

tainer, to allow parmetrisation of a symbolic matrix by energy using the

AsymCalc. The cFinMatSympypolyk, returned from get_elastic_Fin,

is a cMatSympypolyk.

The implementation of the technique described in Section 2 for the loca-

tion of S-matrix poles is mainly contained in the parsmat and stelempy

Utility packages. parsmat is responsible for solving Equation (6) for the

α(µ) and β(µ) coefficients and using them to form either a rational S-matrix

(Equation (1)) or an F in (Equation (2)), depending on user choice. For

the location of the S-matrix poles, a list of F in are first returned as cFin-

MatSympypolyk containers. The roots of the F in are then found using

the cMatSympypolyk.find_roots function and passed to the stelempy

package. stelempy was designed to find and quantify stable elements over a

number of sets and allows the S-matrix poles to be identified using the tech-

nique described in Sections 2.2 and 2.3. The comparison test, summarised

by Equation (9), is implemented as the RationalCompare1 class in the

pynumutil package.

channelutil contains the AsymCalc class containing the channel infor-

20

mation, such as threshold energies, angular momenta and spin as well as func-

tions to convert between energy and momentum. The reskit __init__.py

file provides the helper function get_asym_calc to return an AsymCalc.

4.2. reskit Interface

The interface to reskit is through the __init__.py package file shown

in figure 1. This section provides a summary of the available functions. Some

of these are employed when a discrete set of scattering data (generated by

other codes) is used and some when a functional expression is provided for

these data. The parameters of each of the functions are listed and described.

get_asym_calc: Returns an AsymCalc for converting from momentum to

energy.

• units (int): Specification of the energy units. Available options are

reskit.rydbergs, reskit.hartrees and reskit.eVs.
• angmoms (list of ints, optional): Specification of the angular momenta

in each of the channels. Defaults to zero in all channels.

• tot_spin (float, optional): Specification of the total spin of the sys-

tem. Defaults to 1
2
. Only required for calculation of cross sections.

• targ_spins (float or list of floats, optional): Specification of the spin

of the target electronic state associated with each of the channels. De-

faults to zero in all channels. Only required for calculation of cross

sections.

get_dmat_from_discrete: Converts discrete energy dependent scatter-

ing data into a reskit compatible container (i.e. dSmat, dTmat or dKmat).

21

Types must match those specified using the use_python_types or use_mpmath_types

functions.

• mat_type (int): Specification of the scattering matrix type. Available

options are reskit.Smat, reskit.Kmat and reskit.Tmat.
• mat_dict (energy dict of scattering matrices): Scattering data to be

used in the calculation. Can be either floats or mpmath types.

• asymcalc (AsymCalc): As returned from the get_asym_calc func-

tion.

• source_str (str): String provided to uniquely identify the scattering

data. Will be used in the archiving of results.

get_dmat_from_continuous: Discretises continuous energy dependent

scattering data into a reskit compatible container (i.e. dSmat, dTmat or

dKmat). Types must match those specified using the use_python_types

or use_mpmath_types functions.

• mat_type (int): As for get_dmat_from_discrete.
• fun_ref (function with float parameter): An energy function describ-

ing the elements of the scattering matrix. Can be either python float

or mpmath.mpf type.

• asymcalc (AsymCalc): As for get_dmat_from_discrete.
• start_ene (float): Start energy for the discretisation.

• end_ene (float): End energy for the discretisation.

• num_points (float): Number of energy points for the discretisation.

• source_str (str): As for get_dmat_from_discrete.

get_tool: Initialises and returns a Tool.

22

• toolid (int): Specification of the Tool. Available options are reskit.chart

and reskit.mcsmatfit.
• data : Tool data. This is the data container to be used by the Tool.

• archive_root (str, optional): Specification of the location into which

reskit will write its results.

• param_file_path (str, optional): Location of an existing yaml file

containing overrides for the more advanced routine parameters.

• silent (bool, optional): Switch determining whether to suppress out-

put to console.

use_python_types: Specifies to use python types.

use_mpmath_types: Specifies to use mpmath types.

• dps (int): Specifies the mpmath precision.

4.3. Tools

In this section we describe the functionality provided by the Tools. MC-

SMatFit performs the analytic fit and pole identification whereas Chart

provides functionality for the basic plotting of data.

4.3.1. MCSMatFit

These routines perform the fit and identify the poles as described in Sec-

tion 2.

get_elastic_Fins: Performs F in fits using the specified list of fit points

and returns a list of cFinMatSympypolyk.
• Npts_list (list of ints): List of Npts to be used for successive fits.

23

find_Fin_roots: Returns the roots of a list of parameterised F in as a list

of python complex or mpmath.mpc types. There are additional advanced

parameters supplied via the Tool yaml file.

• cfins (list of cFinMatSympypolyk): List of parameterised F in.

find_stable_Smat_poles: Finds the S-matrix poles by identifying stable

roots. The input can be either a list of roots or the F in themselves. There

are additional advanced parameters supplied via the Tool yaml file.

• cfins_or_roots (list of either cFinMatSympypolyk or list of floats):

As returned from either get_elastic_Fins or find_Fin_roots.

get_elastic_Smat: Performs an S-matrix fit using the specified number

of fit points and returns a cSmat.
• Npts (int): Number of points to use in the fit. Must be an even

number.

plot_Smat_fit: Plots the specified matrix element(s) of the original and

rational S-matrices and the fit points used. There are additional advanced

parameters supplied via the Tool yaml file.

• csmat (cSmat): Rational S-matrix returned from get_elastic_Smat.
• num_plot_points, units, i, j, logx, logy, imag : Refer

to the chart Tool for description.

plot_XS_fit: Plots the cross sections obtained from the original and ratio-

nal S-matrices along with the fit points used. There are additional advanced

parameters supplied via the Tool yaml file.

• csmat (cSmat): Rational S-matrix returned from get_elastic_Smat.

24

• num_plot_points, units, logx, logy : Refer to the chart

Tool for description.

4.3.2. Chart

plot_raw, plot_Smatrix, plot_Kmatrix, plot_Tmatrix, plot_UniOpSMat,

plot_EphaseSum, plot_XS: Plots various scattering related quantities. A

png image of the plot will be automatically saved into the archive.

• start / end (int or float, optional): Indicates the start/end index

(if int) or the nearest start/end energy (if float).

• num_plot_points (int, optional): The number of points to plot,

evenly distributed between start and end.

• units (int, optional): If specified, then will convert to these units prior

to plotting. Available options are reskit.rydbergs, reskit.hartrees

and reskit.eVs.
• logx (bool, optional): Switch to turn on x-axis log plotting.

• logy (bool, optional): Switch to turn on y-axis log plotting.

• imag (bool, optional): For complex quantities, switch to plot the imag-

inary component. By default just plots the real component.

• i (int, optional): Zero-based row index to plot. Default is to plot all

rows.

• j (int, optional): Zero-based column index to plot. Default is to plot

all columns.

The i and j parameters are only available when the quantity to plot is a

matrix (i.e. not for plot_Ephase and plot_XS).

25

5. Example runs

In this section, we present some results obtained with the reskit package

and discuss how to interpret them, in particular what the values of the QI

say about the likelihood that candidate poles identified in the calculations

are true poles of the system. The calculations correspond to the test runs

that are provided in the code release and the figures presented have been

created using the charting functionality provided by reskit. Atomic units

are used throughout.

5.1. Square well

A simple test system is the elastic s-wave scattering two-channel radial

square well for which the interaction potential between channels n and m

can be written as:

Vmn(r) =

 0 r > a

vmn r < a
(10)

where vmn is a 2×2 matrix containing the channel potentials, v11 and v22,

and a coupling factor λ:

vmn = −

 v11 0.5λ

0.5λ v22

 (11)

Here v11, v22 and λ are constants. The exact solution for the S-matrix for

this system is known [4].

Table 1 compares the values of the S-matrix poles obtained using reskit

with those obtained numerically1 from the exact solutions given in [4] for a

1The exact solutions given in [4] describe scattering from a general two channel radial

26

well with a=1.0, v11=v22=2.0 and λ=1.0. For the reskit calculation, even

Npts were used by fitting Npts=2M points in the interval 1.0-8.0 Ha, with

a starting dk of 10−4 and testing across 3 successive M (i.e. cf=2). The

Npts points were selected from a set of 1000 evenly spaced energies points for

which the S-matrix was calculated using the functional form given in [4]; 100

decimal places were used throughout these calculations.

The first two poles in the table correspond to bound states while all the

others correspond to resonances: both the resonance pole and its correspond-

ing antipole [5] are tabulated. Three things are immediately clear from the

table: (i) the method identifies poles well outside the range of the real en-

ergies for which S-matrix data is provided; (ii) the QI get worse (that is,

∨dk increases and ΣM decreases), as the method ’extrapolates’ further away

from the data provided; (iii) use of a larger value for M (in the same energy

range) enables the identification of poles further from the energy range of the

input data set as well as improving the QI for the poles already identified.

Table 1 shows clearly that the QI gets worse as poles move further away

from both the real axis and the (real) energies for which the S-matrix data is

provided. To further illustrate the effect of ’extrapolating’ away from the real

axis, figure 2 shows how one of the QI, ΣM , changes as the imaginary part

of a pole (i.e. the width of the resonance it corresponds to) increases. The

data corresponds to a specific resonance as the depth of the wells is varied.

In order to eliminate the effect of extrapolating the real component of the

well. For the bound states the poles were located graphically from a transcendental equa-

tion derived from these solutions by the authors. For the resonances, they were obtained

using the secant method to locate the zeros of the denominator of the S-matrix

27

energy, the calculation for each depth was done by shifting the energy range

for which the S-matrices are provided, so that the real part of the pole energy

is located approximately in the centre of the data set. Unsurprisingly, ΣM

decreases as the width of the resonance increases, even though all the poles

identified by reskit are true poles of the system. The example demonstrates

that smaller QI (ΣM but also ∨dk) are to be expected for wider resonances:

this should not be necessarily taken to indicate the pole identified is not a

true pole of the system.

Figure 2: Example pole for the square analytical well: ΣM for resonances of different

widths (obtained by varying the depth of the wells). Fit data was chosen over a range of

7.0 Ha centred around the real part of the resonance energy. A starting dk of 10−4 was

used, with cf=2.

Finally, as an illustration of the convergence of a root, table 2 shows

28

the value of the root that converges to the third pole listed in table 1 for

increasing values ofM . It can be seen that, in this calculation, both real and

imaginary components of the pole converge to more than 20 decimal places.

As we will see, this is not the case when ab initio S-matrix data is used.

5.2. Pyrazine

This is an example of using reskit to locate poles corresponding to res-

onances from ab initio K-matrix data. This data corresponds to 3-channel

elastic electron scattering from pyrazine, C4N2H4. The ab initio R-matrix

data has been obtained using the UKRmol suite [18] and the R-matrix

method [19] at the static-exchange plus polarization level (for more details of

the calculation, see [20]). This molecule belongs to the D2h point group and

this example involves channels of Au symmetry. It is well known [20] that

pyrazine possesses a shape resonance (that is, described by elastic scattering)

of Au symmetry with energy around 1 eV and width ≈10−2 eV.

For the reskit calculation, evenNpts were used in the interval 7.35×10−4

to ∼0.441368 Ry, with a starting dk of 10−4, cf = 3 and Mmax = 20. The

energy interval corresponds to the range where we are interested in locating

resonances. For the radial square well, resonances with a real component

well outside the range are identified with high QI; however, this is not the

case when (less precise) ab initio data is used, so the energy range should be

chosen more carefully.

Table 3 summarizes the candidate poles. It is immediately clear that

the QI in this calculation are, in general, poorer than for the case of the

square well, even though the real component of all the candidates poles is

inside the energy range of the initial S-matrix data. The candidate pole with

29

the best QI values (the smallest ∨dk and largest ΣM) corresponds to the

known resonance of the system. This resonance is visible in the elastic cross

section plotted in figure 3. This figure shows that the S-matrix obtained using

Padé approximants (with M = 10) describes the scattering process very well

within the region of the data points provided: the agreement between the

cross sections obtained from both S-matrices is excellent.

The other poles/antipole pairs in table 3 have significantly poorer QI.

Two of them (with ∨dk = 10−5) have relatively big imaginary components.

The last three have an extremely small ΣM and a negative real component:

the pair with a non-zero imaginary component is clearly non-physical and we

shall not discuss it further.

The issue to address is whether these candidate poles are true poles of

the system or not. We make a distinction here: it is possible for poles of

the S-matrix of a system not to manifest themselves in physical observables.

Therefore it is possible that, even if no resonance (or virtual state) has been

identified in a certain energy region by scattering calculations or experiments,

a true pole of the S-matrix is present in that region.

The last candidate pole has zero imaginary component and would corre-

spond to a bound/virtual state of the anion C4N2H−4 : pyrazine is a system

that does not support bound anionic states and the cross section does not

show the behaviour expected in the presence of a virtual state. Two expla-

nations are therefore possible: (i) this is a true pole of the rational S-matrix,

that therefore does not describe the system well in the energy region around

0 eV but this does not seem likely from figure 3; (ii) this is not a true pole

of the rational S-matrix: the poor QI indicate poor convergence of a root for

30

only a few values of M . It is always possible that, by chance, two random

roots from successive M have energies less than dk apart and are therefore

identified as the same (stable) root. This will be obviously more likely for

larger values of dk (but less so for bigger cf). Also, the higher the num-

ber of channels, the more roots of the S-matrix (for a specific number of fit

points) so the likelihood of random roots being identified as candidate poles

increases.

31

Functional (Ha) Parametrised (Ha)

Mmax = 15 Mmax = 20

Real Imag Real Imag ∨dk ΣM ∨dk ΣM

-0.4657 0 -0.4657 0 1e-27 102 1e-49 289

-0.0307 0 -0.0306 0 1e-27 99 1e-49 286

6.131 5.94 6.131 5.940 1e-24 92 1e-45 261

6.129 -5.94 6.131 -5.940 1e-24 92 1e-45 261

6.482 7.13 6.482 7.129 1e-23 84 1e-42 242

6.48 -7.13 6.482 -7.129 1e-23 84 1e-42 242

24.481 14.65 24.481 14.650 1e-11 24 1e-25 106

24.482 -14.65 24.481 -14.650 1e-11 24 1e-25 106

24.696 16.623 24.696 16.623 1e-10 23 1e-24 103

24.697 -16.623 24.696 -16.623 1e-10 23 1e-24 103

53.041 24.572 53.040 24.571 1e-4 2 1e-14 37

53.04 -24.572 53.040 -24.571 1e-4 2 1e-14 37

53.168 27.347 53.168 27.347 1e-4 2 1e-14 36

53.169 -27.347 53.168 -27.347 1e-4 2 1e-14 36

91.663 35.372 91.662 35.371 - - 1e-7 8

91.663 -35.372 91.662 -35.371 - - 1e-7 8

91.726 38.952 91.726 38.952 - - 1e-7 8

91.726 -38.952 91.726 -38.952 - - 1e-7 8

Table 1: S-matrix poles for a two channel, elastic radial square well of width a=1.0, depth

v11=v22=2.0 and coupling factor λ=1.0, as described in [4]. The left-hand column lists

the real and imaginary parts, in Hartree (Ha), of the poles obtained numerically from the

exact solutions given in [4] while the second column shows the components of the poles

located using reskit. Results have been truncated to the approximate precision limit of

the numerical method used for the left-hand column. The right-hand columns show the

QI, ∨dk and ΣM , for two values of Mmax; if no value is provided for a pole that indicates

the pole has not been identified. The input data used in the calculations was specified to

100 decimal places.

32

M Real Imag

2 0.947548796707301856015280400671 0.265748262516494625022746083132

3 0.137528668651726452078587289159 2.333754499518979210913580125889

4 6.105231600017854127389513402724 5.940297892975684034502238988090

5 6.114611628886600628783996046546 5.941232293795682020948957147385

6 6.131507564765944392832600313036 5.940191201112208768288428174064

7 6.131497980760253892033660974623 5.940223739578295869731962652009

8 6.131497977767842537429753059739 5.940223834729429137996505041263

9 6.131497977999105847638466698984 5.940223835529722433870519755797

10 6.131497977998788582791881404577 5.940223835529424360668159225567

11 6.131497977998787434690863840223 5.940223835529423904158295614678

12 6.131497977998787433834742378356 5.940223835529423904169672091908

13 6.131497977998787433834779192569 5.940223835529423904169648952163

14 6.131497977998787433834779503703 5.940223835529423904169648154793

15 6.131497977998787433834779503717 5.940223835529423904169648154758

Table 2: Convergence of the pole near 6.13 Ha in table 1 for increasing M . These values

were extracted from the pole and root tables contained in the author_results folder sup-

plied with reskit; specifically the dk1e-04.dat files for M > 5 and from the individual

root files for the smaller M .

33

Real energy Imag energy ∨dk ΣM

0.076641273137 6.5298521000e-4 1e-11 52

0.076641273137 -6.5298521000e-4 1e-11 52

0.068281 0.17860 1e-5 7

0.068281 -0.17860 1e-5 7

0.30872 0.24350 1e-5 6

0.30872 -0.24350 1e-5 6

-0.05360 0.09512 1e-4 3

-0.05360 -0.09512 1e-4 3

-0.09335 0 1e-4 3

Table 3: Real and imaginary components of the poles and QI for 3 channel elastic Au

symmetry scattering from pyrazine obtained with reskit using Mmax = 20 in the energy

interval 7.35×10−4 to 0.441368 Ry, a starting dk of 10−4 and cf=3. Any quantity whose

absolute value is less than 10−20 is regarded, and tabulated, as zero. Note that the poles

are listed in order of deteriorating QI, not in energy order.

34

Figure 3: Au contribution to the elastic cross section for the 3-channel scattering from

pyrazine.’Original’ indicates the cross section obtained from the ab initio S-matrix, ’Fitted’

corresponds to the cross section obtained from the rational S-matrix and the ’Fit points’

(Npts=20) are those used in the fit. The ’Original’ line is completely hidden under the

’Fitted’ line.

35

The other candidate poles, that would correspond to resonances, have

not been identified in the literature nor do they seem to have an effect in the

elastic cross section. Their poor QI could be due, as was shown in the case

of the radial square well, to the fact that these poles lie further away from

the real axis. However, their QI do not improve significantly when Mmax

is increased to 48, whereas ΣM increases significantly (to 80) for the first

pole/antipole pair.

One way of establishing whether candidate poles correspond to random

roots is to perform the same calculation changing the range of energies for

which the ab initio data is provided [13]. This will entail either changing

the starting energy, the energy range or both. Tests have shown that the

energy range must be neither too broad not too narrow as the QI will be

poorer; the ranges used in these examples have been found optimal after a

number of tests. It is, however, difficult to define a set of energy ranges

and starting points for these kinds of tests. In the case of scattering from

pyrazine, both changes to the starting point and the range were investigated:

in some cases, all candidate poles, except for the first pair at the top of table

3 disappeared. For others, the poles with the large imaginary part remained,

but always with very low QI. We therefore take a sceptical approach and

deem it unlikely that the candidate poles with poor QI (∨dk ≥ 10−5) are

true poles of the S-matrix.

The poorer QI for this example compared to those for the square well can

probably be attributed to the precision of the input data provided. Whereas

in the case of our square well calculations the S-matrix data was determined

to 100 decimal places, the ab initio R-matrix calculations have significantly

36

lower precision.

5.3. Uracil

In this example, data from a calculation of 6-channel elastic electron

scattering from uracil, C4N2O2H4 is used. The ab initio data has again been

obtained using the UKRmol suite and the R-matrix method. The calcula-

tions were performed at the static-exchange level and, in order to reduce the

number of channels, only partial waves up to l=3 were included (for more de-

tails of the calculation on which this one was based see [21]). Unlike pyrazine,

uracil is a polar molecule (its dipole moment is around 4.4 D); this means

that a long range interaction affects the scattering process.

Real energy Imag energy ∨dk ΣM

0.340841151 9.93430232e-3 1e-9 32

0.340841151 -9.93430232e-3 1e-9 32

0.6090283 0.07591980 1e-7 22

0.6090283 -0.07591980 1e-7 22

0.1727679 8.997753e-3 1e-7 11

0.1727679 -8.997753e-3 1e-7 11

0.4118 0.2389 1e-4 4

0.4118 -0.2389 1e-4 4

Table 4: Real and imaginary components of the poles and QI for 6 channel elastic scattering

from uracil in the A′′ symmetry obtained with reskit using withMmax = 20 in the energy

interval 7.35×10−4 to 0.882000 Ry and cf = 3. Again, the poles are listed in order of

worsening QI, not in energy order.

This molecule belongs to the Cs point group and the example involves

37

channels of A′′ symmetry. It is well known [20] that this system possesses

three shape resonances of this symmetry that will appear approximately at

the following energies for a static-exchange calculation: 2.27, 4.05 and 8.0 eV,

i.e. 0.17, 0.30 and 0.59 Ry [22].

For the reskit calculation, evenNpts were used in the interval 7.35×10−4

to ∼0.8820 Ry, with a starting dk of 10−4, cf = 3 and Mmax = 20. Table 4

summarises the candidate poles found. Again, we see poorer QI than for

the radial square well but also pyrazine, the latter most likely due to the

increase in the number of channels. The first three candidate pole/antipole

pairs correspond to previously identified resonances. The last one would

describe a rather wide resonance: as discussed before, given the size of the

imaginary component, we would expect poorer QI. However, we think it more

likely that this is not a true pole of the S-matrix, given, in particular the large

value of ∨dk.

Figure 4 shows the contribution to the cross section of the A′′ symmetry

obtained from the original ab initio S-matrix and the rational one. Once

again the agreement between the two is excellent, but only down to around

0.07 Ry. Below that energy, the cross section obtained from the rational

S-matrix shows unphysical peaks. We believe this behaviour is related to the

enforcement of the condition that the S-matrix becomes the identity matrix

when k −→ 0 to obtain the system of equations 6 is not appropriate for polar

molecules in the fixed-nuclei approximation. Clearly, this problem does not

prevent the identification of poles at higher energies, but we would expect

that it will prevent the identification of poles in the low energy range.

38

Figure 4: A′′ contribution to the elastic cross section for 6-channel scattering from uracil.

’Original’ indicates the cross section obtained from the ab initio S-matrix, ’Fitted’ cor-

responds to the cross section obtained from the rational S-matrix and the ’Fit points’

(Npts=20) are those used in the fit.

39

6. Conclusions

We have developed a python toolkit that searches for the complex poles

of an S-matrix. The toolkit provides routines to: (i) perform an analytic

continuation of the S-matrix from the real axis into the complex plane by

constructing the Padé approximant; (ii) locate the roots of the resulting poly-

nomials and (iii) identify those roots that are stable and therefore correspond

to true poles of the system by determining two quantities that act as quality

indicators. The scattering data can be provided, for real energy values, as

S-, T- or K-matrices. The package also includes routines for a number of

auxiliary tasks, e.g., determining cross sections, plotting results, etc.

The toolkit was applied to three example cases involving 2 (square well),

3 (electron scattering from pyrazine) and 6 (electron scattering from uracil)

channels. For the square well, two bound states and a number of resonance

states were identified with high accuracy: the value of QI for most of the poles

identified is high. When ab initio data for electron scattering from pyrazine

and uracil is used, the QI are much lower, probably due to the fewer number

of significant figures of the input data. All resonances previously identified

for the two molecules are found. Additionally poles corresponding to very

wide resonances are identified but deemed likely not to be true poles of the

systems.

The QI provide a way of ascertaining the likelihood that an identified pole

will be a true pole of the system. However, the further away from the real

axis that a pole is located, the poorer the QI indicators will be. As a result,

application of the routine to very wide resonances will yield ’low confidence’

results, making it hard to decide if the pole is a true pole of the system or

40

not. In the uracil example presented in this paper, the potential resonance

would have had a width of more than 6 eV; resonances of similar widths are

understood to play a role in low energy DEA of molecules like formic acid,

glycine and uracil [23] (in the latter case, the resonance in question is of A′

symmetry). We have been unable to test the package for the case of a known

(i.e. identified by other means) very wide physical resonance.

The present implementation, although based on a general methodology,

currently only works for systems in which all the channels have the same

energy (i.e. for elastic scattering). For inelastic scattering, locating the

roots of the S-matrix is much harder, since the F in is no longer a simple

polynomial and techniques such as that proposed by Delves [24] must be

employed. Initial tests for the square well and some ab initio data using the

Delves technique showed some promise but further refinement is required

to the routines when applied to the ab initio data, especially for the case

when resonances are close to threshold/s. Further releases of the code are

also expected to incorporate the correct behaviour of the scattering data for

polar molecules at very low energies.

7. Acknowledgements

We are grateful to Dr. Zdeňek Mašín for bringing this approach to our

attention and to Thomas Hird for coding an initial version during a summer

undergradaute placement at The Open University.

41

8. References

[1] I. I. Fabrikant, S. Eden, N. J. Mason, J. Fedor, Chapter nine - re-

cent progress in dissociative electron attachment: From diatomics to

biomolecules, in: C. C. L. Ennio Arimondo, S. F. Yelin (Eds.), Ad-

vances In Atomic, Molecular, and Optical Physics, Vol. 66 of Advances

In Atomic, Molecular, and Optical Physics, Academic Press, 2017, pp.

545–657. doi:10.1016/bs.aamop.2017.02.002.

[2] J. Tennyson, C. J. Noble, RESON - A program for the detection

and fitting of Breit-Wigner resonances, Computer Physics Communi-

cations 33 (4) (1984) 421 – 424. doi:https://doi.org/10.1016/0010-

4655(84)90147-4.

[3] K. Bartschat, P. Burke, Resfit - A multichannel resonance fitting

program, Computer Physics Communications 41 (1) (1986) 75 – 84.

doi:http://dx.doi.org/10.1016/0010-4655(86)90022-6.

[4] R. G. Newton, Scattering theory of waves and particles, Dover Publica-

tions Inc., Mineola, NY, 2002. doi:10.1007/978-3-642-88128-2.

[5] J. R. Taylor, Scattering Theory: The quantum Theory on Nonrelativistic

Collisions, Wiley, New York, 1972.

[6] T. Belozerova, V. Henner, Overlapping resonances in multichan-

nel reactions, Physics of Particles and Nuclei 29 (1) (1998) 63–87.

doi:10.1134/1.953060.

[7] F. T. Smith, Lifetime matrix in collision theory, Physical Review 118 (1)

(1960) 349–356. doi:10.1103/PhysRev.118.349.

42

[8] D. T. Stibbe, J. Tennyson, Timedel: A program for the detection and

parameterization of resonances using the time-delay matrix, Computer

Physics Communications 114 (1-3) (1998) 236–242. doi:10.1016/s0010-

4655(98)00070-8.

[9] D. A. Little, J. Tennyson, M. Plummer, C. J. Noble, A. G.

Sunderland, Timedeln: A programme for the detection and

parametrization of overlapping resonances using the time-delay

method, Computer Physics Communications 215 (2017) 137 – 148.

doi:https://doi.org/10.1016/j.cpc.2017.01.005.

[10] J. Horáček, L. Pichl, Calculation of resonance s-matrix poles by means

of analytic continuation in the coupling constant, Communications in

Computational Physics 21 (4) (2017) 1154–1172. doi:10.4208/cicp.OA-

2016-0068.

[11] J. Horáček, I. Paidarová, R. Čurík, On a simple way to calculate elec-

tronic resonances for polyatomic molecules, The Journal of Chemical

Physics 143 (18) (2015) 184102. doi:10.1063/1.4935052.

[12] P. Ogunbade, S. Rakityansky, S-matrix parametrization as a way of

locating quantum resonances and bound states: multichannel case, in:

Proceedings of the 2nd South Africa - JINR SYMPOSIUM, Models and

Methods in Few- and Many-Body Systems, JINR, 2010, pp. 52–61.

[13] S. A. Rakityansky, S. A. Sofianos, N. Elander, Padé approximation of

the S-matrix as a way of locating quantum resonances and bound states,

43

Journal of Physics A: Mathematical and Theoretical 40 (49) (2007)

14857. doi:10.1088/1751-8113/40/49/017.

[14] S. A. Rakityansky, N. Elander, Analytic structure of the multichannel

jost matrix for potentials with coulombic tails, Journal of Mathematical

Physics 54 (12) (2013) 122112. doi:10.1063/1.4853855.

[15] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University

Press, 1985.

[16] E. Durand, Solutions numeriques des equations algebriques. 1, Equa-

tions du type F(x)=0: racines d’un polynome., Paris: Masson, 1960.

[17] I. O. Kerner, Ein gesamtschrittverfahren zur berechnung der null-

stellen von polynomen, Numerische Mathematik 8 (3) (1966) 290–&.

doi:10.1007/BF02162564.

[18] J. M. Carr, P. G. Galiatsatos, J. D. Gorfinkiel, A. G. Harvey, M. A.

Lysaght, D. Madden, Z. Mašín, M. Plummer, J. Tennyson, H. N.

Varambhia, UKRmol: a low-energy electron- and positron-molecule

scattering suite, Eur. Phys. J. D 66 (3). doi:10.1140/epjd/e2011-20653-

6.

[19] P. G. Burke, R-Matrix Theory of Atomic Collisions: Application to

Atomic, Molecular and Optical Processes, Springer, 2011.

[20] Z. Mašín, J. D. Gorfinkiel, Elastic and inelastic low-energy electron col-

lisions with pyrazine, The Journal of Chemical Physics 135 (14) (2011)

144308. doi:10.1063/1.3650236.

44

[21] Z. Mašín, J. D. Gorfinkiel, Resonance formation in low energy electron

scattering from uracil, The European Physical Journal D 68 (5) (2014)

112. doi:10.1140/epjd/e2014-40797-y.

[22] F. Kossoski, M. H. F. Bettega, M. T. d. N. Varella, Shape resonance

spectra of uracil, 5-fluorouracil, and 5-chlorouracil, J. Chem. Phys.

140 (2) (2014) 024317. doi:http://dx.doi.org/10.1063/1.4861589.

[23] Fabrikant, Ilya I., Theory of dissociative electron attachment:

Biomolecules and clusters, EPJ Web of Conferences 84 (2015) 07001.

doi:10.1051/epjconf/20158407001.

[24] L. M. Delves, J. N. Lyness, A numerical method for locating the zeros

of an analytic function, Math. Comp. 21 (1967) 543. doi:10.1090/S0025-

5718-1967-0228165-4.

45

