
Code O-SUKI: Simulation of Direct-Drive Fuel Target

Implosion in Heavy Ion Inertial Fusion

R. Satoa, S. Kawataa,∗, T. Karinoa, K. Uchiboria, T. Iinumaa, H. Katoha, A.
I. Ogoyskib

aGraduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585, Japan
bDepartment of Physics, Varna Technical University, Varna 9010, Bulgaria

Abstract

The Code O-SUKI is an integrated 2-dimensional (2D) simulation pro-
gram system for a fuel implosion, ignition and burning of a direct-drive
nuclear-fusion pellet in heavy ion beam (HIB) inertial confinement fusion
(HIF). The Code O-SUKI consists of the four programs of the HIB illumi-
nation and energy deposition program of OK3 (Comput. Phys. Commun.
181, 1332 (2010)), a Lagrangian fluid implosion program, a data conversion
program, and an Euler fluid implosion, ignition and burning program. The
OK3 computes the multi-HIBs irradiation onto a spherical fuel target. One
HIB is divided into many beamlets in OK3. Each heavy ion beamlet de-
posits its energy along the trajectory in a deposition layer depending on the
particle energy. The OK3 also has a function of a wobbling motion of the
HIB axis oscillation, and the HIBs energy deposition spatial detail profile is
obtained inside the energy absorber of the fuel target. The spherical target
implosion 2D behavior is computed by the 2D Lagrangian fluid code coupled
with OK3, until just before the void closure time of the fuel implosion. After
that, all the data by the Lagrangian implosion code are converted to them
for the Eulerian code. The fusion Deuterium (D)-Tritium (T) fuel and the
inward moving heavy tamping material are imploded and deformed seriously
at the stagnation phase. The Euler fluid code is appropriate to simulate the
fusion fuel compression, ignition and burning. The Code O-SUKI 2D simu-
lation system provides a capability to compute and to study the HIF target
implosion dynamics.

∗Corresponding author.
E-mail address: kwt@cc.utsunomiya-u.ac.jp

Preprint submitted to Computer Physics Communications December 19, 2018

ar
X

iv
:1

81
2.

07
12

8v
1

 [
ph

ys
ic

s.
pl

as
m

-p
h]

 1
8

D
ec

 2
01

8

Keywords: Implosion; Heavy ion beam; Inertial confinement fusion;
Direct-drive fuel pellet implosion; Ignition; Burning.

Program summary
Program Title: O-SUKI
Licensing provisions: CC BY NC 3.0
Programming language: C++
Computer: PC(Pentium 4, 1 GHz or more recommended)
RAM: 3072 MBytes
Operating system: UNIX
Journal reference of previous version: No
Nature of problem: The nuclear fusion energy would provide one of energy re-
sources for our human society. In this paper we focus on heavy ion beam (HIB)
inertial confinement fusion (HIF). A spherical deuterium (D) - tritium (T) fuel
pellet, whose radius may be about several mm, is irradiated by HIBs to be com-
pressed to about a thousand times of the solid density. The DT fuel temperature
reaches ∼5-10KeV to be ignited to release the DT fusion energy. The typical HIBs
total input energy is several MJ, and the HIBs pulse length is about a few tens of
ns. The DT fuel compression uniformity is essentially important to release the suf-
ficient fusion energy output. The DT fuel pellet implosion non-uniformity should
be kept less than a few %. The O-SUKI code system provides an integrated tool
to simulate the HIF DT fuel pellet implosion, ignition and burning. The HIBs
energy deposition detail profile is computed by the OK3 code (Comput. Phys.
Commun. 181, 1332 (2010)) in an energy absorber outer layer, which covers the
DT fuel spherical shell. The DT fuel is compressed to the high density, and so the
DT fuel spatial deformation may be serious at the DT fuel stagnation. Therefore,
the O-SUKI system employs a Lagrangian fluid code first to simulate the DT fuel
implosion phase until just before the stagnation. Then all the simulation data
from the Lagrangian code are converted to them for the Euler fluid code, in which
the DT fuel ignition and burning are simulated.
Solution method: In the two fluids codes (Lagrangian and Euler fluid codes) in the
O-SUKI system the three-temperature fluid model (J. Appl. Phys. 60, 898 (1986))
is employed to simulate the pellet dynamics in HIF. The HIBs energy deposition
detail profile is computed by the OK3 code (Comput. Phys. Commun. 181, 1332
(2010)).
Additional comments including Restrictions and Unusual features: No

2

1. Introduction

In inertial confinement fusion (ICF) a deuterium (D) - tritium (T) fuel
target implosion, ignition and burning are essentially important to release a
sufficient fusion energy output. In the nuclear fusion two nuclei of D and T
are fused once. The DT fusion reaction creates He and neutron, and releases
the energy of the mass defect as their kinetic energy in the DT reaction. In
ICF a few mg DT in a fuel pellet is first heated up to ∼5-10KeV by an input
driver energy, for example, lasers or heavy ion beams (HIBs) or pulse power
[1]. Especially, the solid DT fuel density must be compressed to about a
thousand times of the solid density to reduce the input energy and also to
realize controlled fusion reactions. In addition, the ion temperature of the
compressed DT must reach ∼5-10 KeV. In order to compress the DT fuel
stably to the high density, the implosion non-uniformity should be less than
a few percent[2] The central issues of the fuel implosion in ICF includes how
to realize the uniform implosion, how we can control the driver beam energy
deposition to compress the DT fuel to the high density, and consequently
how to keep the implosion stable during the fuel implosion. The O-SUKI
code system provides an integrated computer simulation tool to study the
DT fuel implosion, ignition and burning in heavy ion inertial confinement
fusion (HIF).

The heavy ion beam (HIB) fusion has been proposed in 1970s. The re-
cent HIF activities and reviews are found in Refs. [3, 4]. The HIF reactor
designs were also proposed[5, 6, 7]. HIB ions deposit their energy inside of
materials, and the interaction of the HIB ions with the materials are well
understood [8, 9]. The HIB ion interaction with a material is explained and
defined well by the classical Coulomb collision and a plasma wave excitation
in the material plasma. The HIB ions deposit all the HIB ion energy inside
of the material. The HIB energy deposition length is typically the order of
∼mm in an HIF fuel target depending on the HIB ion energy and the mate-
rial. When several MJ of the HIB energy is deposited in the material in an
inertial confinement fusion (ICF) fuel target, the temperature of the energy
deposition layer plasma becomes about 300 eV or so. The peak temperature
or the peak plasma pressure appears near the HIB ion stopping area by the
Bragg peak effect, which comes from the nature of the Coulomb collision.
The total stopping range would be normally wide and the order of ∼mm
inside of the material. An indirect drive target was also proposed in Ref.
[10].

3

In ICF, a driver efficiency and its repetitive operation with several Hz ∼
20 Hz or so are essentially important to constitute an ICF reactor system.
HIB driver accelerators have a high driver energy efficiency of ∼30-40 %
from the electricity to the HIB energy. In general, high-energy accelerators
have been operated repetitively daily. The high driver efficiency relaxes the
requirement for the fuel target gain. In HIF the target gain of 30∼50 allows
us to construct a HIF fusion reactor system, and 1MkW of the electricity
output would be realized with the repetition rate of ∼10∼15 Hz.

The HIB accelerator also has a high controllability to define the ion en-
ergy, the HIB pulse shape, the HIB pulse length and the HIB number density
or current as well as the beam axis. The HIB axis could be also controlled or
oscillated with a high frequency[11, 12, 13]. The controlled wobbling motion
of the HIB axis is one of remarkable preferable points in HIF, and would con-
tribute to smooth the HIBs illumination non-uniformity on a DT fuel target
and to mitigate the Rayleigh-Taylor (R-T) instability growth in the HIF fuel
target implosion[14, 15, 16]. In the OK3 code the HIBs wobbling capability
is also installed to study the wobbling ion beam energy deposition.

The relatively large density gradient scale length is created in the HIBs
energy deposition region in an DT fuel target, and it also contribute to reduce
the R-T instability growth rate especially for shorter wavelength modes[17,
18]. So in the HIF target implosion longer wavelength modes should be
focused for the target implosion uniformity.

In general the target implosion non-uniformity is introduced by a driver
beams’ illumination non-uniformity, an imperfect target sphericity, a non-
uniform target density, a target alignment error in a fusion reactor, et al. The
target implosion should be also robust against the implosion non-uniformities
for the stable reactor operation.

In the HIBs energy deposition region in a DT fuel target a wide density
valley appears, and in the density valley a part of the HIBs deposited energy
is converted to the radiation and the radiation is confined in the density valley
[19]. The converted and confined radiation energy is not negligible, and it
would be the order of ∼100 kJ in a HIF reactor-size DT target. The confined
radiation in the density valley contributes also to reduce the non-uniformity
of the HIBs energy deposition.

The HIB uniform illumination was also studied, and the target implosion
uniformity requirement requests the minimum HIB number: details HIBs
energy deposition on a direct-drive DT fuel target shows that the minimum
HIBs number would be the 32 beams [20]. The detail HIBs illumination on

4

a HIF DT target is computed by a computer code of OK3 [21, 22, 23]. The
HIBs illumination non-uniformity is also studied in detail. One of the study
results shows that a target misalignment of ∼100µm is tolerable in fusion
reactor to release the HIF energy stably.

The DT fuel implosion is simulated until just before the void closure time
by the Lagrangian code, which couples with the OK3 code to include the
time-dependent HIBs energy deposition profile in the target energy absorber
layer. The Lagrange code data are converted to the data imported to the
Euler code, which is robust against the target fuel and material deformation.
The DT fuel ignition and burning are simulated further by the Euler fluid
code. The O-SUKI code system simulates the 2D HIF target implosion dy-
namics, and would contribute to release the fusion energy stably and in a
robust way for our human society.

2. O-SUKI code algorithm description

2.1. O-SUKI code structure

The O-SUKI code system is an integrated DT fuel implosion code in HIF,
and consists of four parts: The HIBs illumination code of OK3 [23], the La-
grangian fluid code [24], the data conversion code from the Lagrangian code
to the Euler code, and Euler code. The fluid model is the three-temperature
model in Ref. [25]. The detail information on OK3 is presented in Refs.
[21, 22, 23]. The Lagrangian fluid code, the data conversion code and the
Euler code are described below in detail.

In the Lagrangian fluid code the spatial meshes move together with the
fluid motion [24]. However the mass and energy conservations are well de-
scribed, the Lagrange meshes can not follow the fluid large deformation. On
the other hand, the Euler meshes are fixed to the space, and the fluid moves
through the meshes. Therefore, just before the void closure time, that is, the
stagnation phase, the Lagrangian code is used to simulate the DT fuel implo-
sion. After the void closure time, the Euler code is employed to simulate the
DT fuel further compression, ignition and burning. Between the Lagrangian
code and the Euler code the data should be converted by the data conversion
code.

All the simulation process is performed in its integrated way by using the
script of ”O-SUKIcode start.sh”. The processes executed by this shell script
are as follows.
1. Make the stack size infinite.

5

2. Change the permission of shell scripts to executable.
3. Compile the main function of the Lagrangian code and execute it.
4. If any problems do not appear during the calculation of the Lagrangian
code, compile the main function of the data conversion code and execute it.
5. If there is no problem during the data conversion, compile the main func-
tion of the Euler code and execute it.

2.2. Steps in Lagrangian code

The Lagrangian code has the following steps:

1. Initialize the variables.

2. Calculation of time step size.

3. Calculation of coordinates.

4. Solve equation of motion.

5. Solve density by equation of continuity.

6. Calculation of artificial viscosity.

7. Transfer the data to the OK3.

8. Calculation of energy deposition distribution in code OK3. For details
of the OK3, see the ref.[21, 22, 23].

9. Solve energy equations

10. Calculation of heat conduction

11. Calculation of temperature relaxation among three temperatures.

12. Solve equation of state

13. Save the results.

14. End the Lagrangian calculation right before the void closure.

15. Transfer the data to converting code.

2.3. Data Conversion code from Lagrangian fluid code to Euler fluid code

1. Read variables saved in Lagrangian code.

2. Generate the Eulerian mesh.

3. Calculate the interpolation of the physical quantity to them on the
Eulerian mesh.

4. Write the converted data to the Eulerian code.

6

2.4. Steps in Eulerian code

1. Read the mesh number from the converted data and define the each
matrices.

2. Initialize the variables.

3. Calculation of time step size.

4. Solve equation of motion.

5. Track the material boundaries of DT, Al and Pb.

6. Linearly interpolate the boundary lines and transcribe them on the
Eulerian code.

7. Discriminate the materials by using the transferred boundary line.

8. Solve density by equation of continuity.

9. Calculate artificial viscosity.

10. Solve energy equations

11. Calculation of fusion reaction.

12. Calculation of heat conduction

13. Calculation of temperature relaxation among three temperatures.

14. Solve equation of state.

15. Save the results.

16. End.

3. Included files

The coordinates in the Lagrangian fluid simulation code are as shown
below (see Fig. 1)The discretization method in Ref. [24] is employed in the
Lagrangian fluid code.

R = R(k, l, t)

Z = Z(k, l, t)

The position vector R and the vector R̄ are introduced as follows.

R =

[
R
Z

]
, R̄ =

[
Z
−R

]

7

Figure 1: Lagrangian coordinate.

The definition points of the discretized physical quantities in the Lagrange
and Euler codes are presented in Figs. 2 and 3, respectively. The subscripts
k and l correspond to the positions in space, and the subscript n corresponds
to time n × dt. The displacement amounts in the k and l directions are
defined as follows.

dRn
k+ 1

2
,l

= Rn
k+1,l −Rn

k,l (1)

dZn
k,l+ 1

2
= Zn

k,l+1 − Zn
k,l (2)

∆Rn
k+ 1

2
,l

= Rn
k+1,l −Rn

k,l

δRn
k,l+ 1

2

= Rn
k,l+1 −Rn

k,l∆Zn
k+ 1

2
,l

= Zn
k+1,l − Zn

k,l

δZn
k,l+ 1

2

= Zn
k,l+1 − Zn

k,l∆Rn
k+ 1

2
,l

= Rn
k+1,l −Rn

k,l

δRn
k,l+ 1

2

= Rn
k,l+1 −Rn

k,l

8

Figure 2: Definition points of discretized physical quantities in the Lagrangian code.

Figure 3: Definition points of discretized physical quantities in the Eulerian code.

9

3.1. Lagrangian code and OK3
1. BC LC.cpp

The boundary conditions are included in the procedure.
2. CONSTANT.h

The file contains the definition of constant values and normalization
factors.

3. Derf.c
The file contains the error function in the double precision.

4. HIFScheme.h
The file contains 1, 2, 3, 6, 12, 20, 32, 60 and 120-beam irradiation
schemes. (see also Refs. [21, 22, 23].)

5. IMOK.cpp
The file contains a procedure to transfer the data such as the target
temperature and others to OK3. After the deposited energy distribu-
tion in OK3 is calculated, it is passed to the Lagrangian code.

6. InitMesh LC.cpp
The file initializes the Lagrangian coordinates and determines the num-
ber of the target layer. The number of the layers can be selected from
1 to 5 layers. The user must set the mesh number of each layer in this
file.

7. InputOK3.h
The input data file contains the target parameters, the HIB parameters,
target mesh parameters and also the reactor chamber parameters.

8. Insulation.cpp
The file contains a procedure to calculate the adiabat α with the fol-
lowing equations to evaluate the fuel preheating.

α =
p

p

p = p0(
ρ

ρ0
)
5
3

Here, p and ρ are the average pressure and mass density in the DT
layer, respectively. p0 and ρ0 are the initial pressure and mass density
in the DT layer, respectively.

9. Legendre.cpp
The procedure performs the mode analyses based on the Legendre func-
tion in order to find the implosion non-uniformity. The analysis results
are also output in this procedure.

10

10. Lr LC.cpp
A procedure to calculate the Rosseland mean free path (see Ref. [26]).

11. MS.cpp
A function to solve matrix by the Gauss elimination method.

12. MS TDMA.cpp
A function to solve matrix by TDMA (TriDiagonal-Matrix Algorithm).

13. OK3code.cpp
The file is the main routine of OK3 and contains the following procedures[21,
22, 23].
Irradiation(): These procedures organizes a one-beam energy depo-
sition process.
InitEdp1(): This procedure calculates one-beamlet kinetic energy for
each bunch. Eprt is the energy of one projectile ion, nE is a particle
number parameter and nBunch is the particle number in one bunch.
Focus(): As shown in the Fig. 4, the position of the focal point must
be determined. The procedure calculates the focal point distance f as
below :

f =
RchRb −RenRp

Ren −Rb

(3)

Here, Rb is the beam radius on a tangential α-plane, Rch the reactor
chamber radius, Rp the outer radius of the pellet and Ren the beam
radius on the chamber entrance.

11

Figure 4: Orbit of one beam to the target pellet

fDis(): This procedure calculates the beam particle number density
distribution coefficients Fij.
Divider(): This procedure organizes the beam division on beamlets.
Each beamlet deposits its energy in the target independently.
kBunch(): This procedure calculates the energy deposition coefficients
Lij and Kij for each fixed mesh cell. Lij is the total trace length from
one-particle traversal plane of each fixed beamlet, dij the effective par-
ticle diameter and Kij the number of traversal planes for the beamlet.
PointC(): Two spherical coordinate systems are used in the procedure
as in Fig. 5, one linked to the reactor chamber center Chamber System
(CS) and another linked to the pellet centerPellet System (PS). This
procedure calculates the coordinates of the beam center on the pellet
surface rC , θC and φC in PS.
PointF(): This procedure calculates the coordinates of the focal point
f : rf , θf and φf in PS.
PointAlpha(): Each beamlet trajectory is fixed by two points in
PSthe crossing point with a tangential α-plane and the common fo-
cal point F (see Fig. 5). This procedure calculates the coordinates
(r, θ, φ) to each α-point in PS.

12

Figure 5: The beamlets coordinate schemes[21].

As mentioned in Section 1, there is an irradiation scheme called the
spiral axis-oscillating wobbling HIBs, and a HIB irradiates the target
pellet as shown in the Fig. 6. It is found that there is a smoothing
effect for deposited energy deviation by rotating the beam axis. In OK
3, it is possible to calculate the HIBs energy deposition to the target
pellet, when all beams wobble. The procedures related to the beam
rotation are shown below.
BeamCenterRot(): The procedure rotates the beam axis around the
impinging direction of each beam.
BeamletRot(): The procedure rotates the beamlet axes that belong
to each beam.
Rotation(): The procedure sets the coordinates of rotated beams and
beamlets in the reactor chamber and pellet systems.

13

Figure 6: Conceptual diagram of spiral wobbling beam irradiating a fuel target

14. PelletSurface.h
The file sets the initial target surface numerically.

15. RMS.cpp
The procedure in this file calculates the root-mean-square (RMS) de-
viation in target non uniformity.

16. ResultIMP.cpp
This file contains a procedure to calculate the implosion velocity.

17. SLC.cpp
This file contains a procedure that outputs the time history of each
physical quantities obtained by cutting out one of the theta directions.

18. StoppingPower1.cpp
The file contains a function Stop1. This function serves a heart of the
OK1 code [21] and describes the energy deposition model. It calculates
the stopping power from the projectile ions into the solid target. The
one-ion stopping power is considered to be a sum of the deposition
energy in the target nuclei, the target bound and free electrons and the
target ions[9].

19. Acceleration.cpp
A procedure for calculating the target acceleration.

20. artv LC.cpp
This file contains a procedure calculate the artificial viscosity. When
dealing with shock waves propagating in a compressive fluid at a su-
personic speed in fluid dynamics simulations, it is impossible to employ

14

sufficient number of multiple meshes to describe the real shock front
structure, because its thickness is very thin. As a method, we intro-
duce the following artificial viscosity devised by Von Neumann and
Richtmyer[27].

The two-dimensional artificial viscosity is written as follows[24]:

qA = −ρc20
(
∂u

∂k

)A ∣∣∣∣∣ ∂∂k
(
∂u

∂k

)A∣∣∣∣∣ (4)

qB = −ρc20
(
∂u

∂l

)B ∣∣∣∣∣ ∂∂l
(
∂u

∂l

)B∣∣∣∣∣ (5)

(
∂u

∂k

)A
= min

[(
∂u

∂k

)A
, 0

]
(
∂u

∂l

)B
= min

[(
∂u

∂l

)B
, 0

]
(
∂u

∂k

)A
=

R̄l · uk∣∣R̄l

∣∣ =
Zluk −Rlvk√

Z2
l +R2

l(
∂u

∂l

)B
=

R̄k · ul∣∣R̄k

∣∣ =
Zkul −Rkvl√
Z2
k +R2

k

Here, qA and qB are artificial viscosities for the directions of R̄l and
R̄k, respectively. Equations (4) and (5) are discretized and written as
follows:

qA
n+ 1

2

k+ 1
2
,l+ 1

2

=
(
qA1

n+ 1
2

k+ 1
2
,l+ 1

2

+ qA3
n+ 1

2

k+ 1
2
,l+ 1

2

+ qA1n
k+ 1

2
,l+ 1

2
+ qA3n

k+ 1
2
,l+ 1

2

)
(6)

qB
n+ 1

2

k+ 1
2
,l+ 1

2

=
(
qB2

n+ 1
2

k+ 1
2
,l+ 1

2

+ qB4
n+ 1

2

k+ 1
2
,l+ 1

2

+ qB2n
k+ 1

2
,l+ 1

2
+ qB4n

k+ 1
2
,l+ 1

2

)
(7)

Here,

qA1n+1
k,l = −c20ρ

n+ 1
2

k,l dV a1k,lddV afk,l (8)

qB2n+1
k,l = −c20ρ

n+ 1
2

k,l dV b2k,lddV bfk,l (9)

qA3n+1
k,l = −c20ρ

n+ 1
2

k,l dV a3k,lddV afk,l (10)

qB4n+1
k,l = −c20ρ

n+ 1
2

k,l dV b4k,lddV bfk,l (11)

15

dV ak.l = min

δR̄n
k+ 1

2
,l
·∆u

n− 1
2

k,l+ 1
2∣∣∣δR̄n

k+ 1
2
,l

∣∣∣ , 0

dV bk.l = min

−∆R̄n
k,l+ 1

2

· δun−
1
2

k+ 1
2
,l∣∣∣∆R̄n

k,l+ 1
2

∣∣∣ , 0

ddV ak,l = |dV ak+1,l − dV ak,l|
ddV bk,l = |dV bk,l+1 − dV bk,l|

ddV afk.l =
1

2
{ddV ak,l + ddV ak−1,l}

ddV bfk,l =
1

2
{ddV bk,l + ddV bk,l−1}.

21. coc LC.cpp
The file calculates the Lagrangian mesh dynamics. The Lagrangian
meshes move together with the fluid motion. The new position coordi-
nates for each mesh point are renewed at n+ 1.

22. cotc define.h
Define variables for calculating the heat conduction.

23. cotc e.cpp, cotc r.cpp
For calculation of the heat conduction, the following basic equation is
used[28].

CVk
DT

Dt
=

1

ρ
∇ · (κk∇Tk) (k = e, r) (12)

κe = 1.83× 10−10T 5/2
e (log Λ)−1Z−1 [W/mK]

κr =
16

3
σLRT

3
r [W/mK]

16

κ : Heatconductivity

Tk : Ion, electron, radiation temperature[K]

log Λ : Coulomb logarithm

m : Mass

Z : Ionization degree

σ : Stefan−Boltzmann constant
LR : Rosseland mean free path

Here, the basic equation is transformed as follows:

CV
DT

Dt
=

1

ρ
∇ · (κ∇T)∫∫∫

ρCV
DT

Dt
dV =

∫∫∫
∇ · (κ∇T)dV

MCV
DT

Dt
=

∑
i

(κ∇T) · Si

DT

Dt
=

1

MCV

∑
i

Si ·
[
δR̄l

∂T

∂k
−∆R̄k

∂T

∂l

]
(13)

Equation (13) is discretized as follows:

T n+1
k+ 1

2
,l+ 1

2

− T n
k+ 1

2
,l+ 1

2

dtn+
1
2

=A1

(
T n+1
k+ 1

2
,l+ 1

2

− T n+1
k+ 1

2
,l− 1

2

)
+A2

(
T n+1
k+ 1

2
,l+ 3

2

− T n+1
k+ 1

2
,l+ 1

2

)
+B1

(
T n+1
k+ 1

2
,l+ 1

2

− T n+1
k− 1

2
,l+ 1

2

)
+B2

(
T n+1
k+ 3

2
,l+ 1

2

− T n+1
k+ 1

2
,l+ 1

2

)(14)

Here,

A1 = −Sn
k+ 1

2
,l

∣∣∣∣∆R̄n
k+ 1

2
,l

∣∣∣∣κnk+ 1
2
,l

jn
k+ 1

2
,l

A2 = Sn
k+ 1

2
,l+1

∣∣∣∣∆R̄n
k+ 1

2
,l+1

∣∣∣∣κnk+ 1
2
,l+1

jn
k+ 1

2
,l+1

B1 = −Sn
k,l+ 1

2

∣∣∣∣δR̄n
k,l+ 1

2

∣∣∣∣κnk,l+ 1
2

jn
k,l+ 1

2

B2 = Sn
k+1,l+ 1

2

∣∣∣∣δR̄n
k+1,l+ 1

2

∣∣∣∣κnk+1,l+ 1
2

jn
k+1,l+ 1

2

.

17

24. define LC.h
It contains the procedure declarations for OK3 and the Lagrangian
code.

25. dif LC.cpp
The following Lagrangian equation of motion is used[24].

ρ
Du

Dt
= −∇p− ρ

M

[
∂

∂k
(R̂R̄lqA)− ∂

∂l
(R̂R̄kqB)

]
(15)

Equation (15) is expressed for each component as follows:

ρ
Du

Dt
= − ∂p

∂R
− ρ

M

[
∂

∂k
(R̂ZlqA)− ∂

∂l
(R̂ZkqB)

]
(16)

ρ
Dv

Dt
= − ∂p

∂Z
− ρ

M

[
∂

∂k
(R̂(−Rl)qA)− ∂

∂l
(R̂(−Rk)qB)

]
(17)

The above equations are converted to the Lagrangian differentiations,
and the following equations are obtained.

Du

Dt
= − 1

ρj

(
Zl
∂p

∂k
− Zk

∂p

∂l

)
− 1

M

[
∂

∂k
(R̂ZlqA)− ∂

∂l
(R̂ZkqB)

]
(18)

Dv

Dt
=

1

ρj

(
Rl
∂p

∂k
−Rk

∂p

∂l

)
− 1

M

[
∂

∂k
(R̂RlqA)− ∂

∂l
(R̂RkqB)

]
(19)

Equation (18) is discretized as follows:

u
n+ 1

2
k,l = u

n− 1
2

k,l −Dt
n

[{
Zl
ρj

∂p

∂k
+

1

M

∂

∂k
(R̂ZlqA))

}n
k,l

−
{
Zk
ρj

∂p

∂l
+

1

M

∂

∂l
(R̂ZkqB))

}n
k,l

]
(20)

Equation (20) is written as follows with the weight functions ξk,l, ηk,l
and the artificial viscosities of qA1, qA3, qB2 and qB4.

u
n+ 1

2
k,l = u

n− 1
2

k,l − Dtn[ηk,lTP1u + (2− ηk,l)TP3u

− ξk.lTP2u − (2− ξk,l)TP4u] (21)

18

Here each symbol in Eq. (21) is listed below:

ξk,l = max
[
0.2,min {0.8, ξ′k,l}

]
ηk,l = max

[
0.2,min {0.8, η′k,l}

]
ξ′k.l =

2ωk− 1
2
,l

ωk+ 1
2
,l + ωk− 1

2
,l

, η′k.l =
2ωk,l− 1

2

ωk,l+ 1
2

+ ωk,l− 1
2

ωk+ 1
2
,l =

√√√√(∆Rn
k+ 1

2
,l+ 1

2

+ ∆Rn
k+ 1

2
,l− 1

2

2

)2

ωk,l 1
2

=

√√√√(δRn
k+ 1

2
,l+ 1

2

+ δRn
k− 1

2
,l+ 1

2

2

)2

TP1u =
(Zl)

n
k,l− 1

2

(
pn
k+ 1

2
,l− 1

2

− pn
k− 1

2
,l− 1

2

)
ρn
k+ 1

2
,l− 1

2

jn
k+ 1

2
,l− 1

2

+ ρn
k− 1

2
,l− 1

2

jn
k− 1

2
,l− 1

2

+
R̂n
k+ 1

2
,l− 1

2

qA1
n
k+ 1

2
,l− 1

2

[
(Zl)

n
k+1,l− 1

2

+ (Zl)
n
k,l− 1

2

]
2
(
Mn

k+ 1
2
,l− 1

2

+Mn
k− 1

2
,l− 1

2

) (22)

−
R̂n
k− 1

2
,l− 1

2

qA1
n
k− 1

2
,l− 1

2

[
(Zl)

n
k−1,l− 1

2

+ (Zl)
n
k,l− 1

2

]
2
(
Mn

k+ 1
2
,l− 1

2

+Mn
k− 1

2
,l− 1

2

)

TP2u =
(Zk)

n
k− 1

2
,l

(
pn
k− 1

2
,l+ 1

2

− pn
k− 1

2
,l− 1

2

)
ρn
k− 1

2
,l+ 1

2

jn
k− 1

2
,l+ 1

2

+ ρn
k− 1

2
,l− 1

2

jn
k− 1

2
,l− 1

2

+
R̂n
k− 1

2
,l+ 1

2

qB2
n
k− 1

2
,l+ 1

2

[
(Zk)

n
k− 1

2
,l+1

+ (Zk)
n
k− 1

2
,l

]
2
(
Mn

k− 1
2
,l+ 1

2

+Mn
k− 1

2
,l− 1

2

) (23)

−
R̂n
k− 1

2
,l− 1

2

qB2
n
k− 1

2
,l− 1

2

[
(Zk)

n
k− 1

2
,l−1 + (Zk)

n
k− 1

2
,l

]
2
(
Mn

k− 1
2
,l+ 1

2

+Mn
k− 1

2
,l− 1

2

)

19

TP3u =
(Zl)

n
k,l+ 1

2

(
pn
k+ 1

2
,l+ 1

2

− pn
k− 1

2
,l+ 1

2

)
ρn
k+ 1

2
,l+ 1

2

jn
k+ 1

2
,l+ 1

2

+ ρn
k− 1

2
,l+ 1

2

jn
k− 1

2
,l+ 1

2

+
R̂n
k+ 1

2
,l+ 1

2

qA3
n
k+ 1

2
,l+ 1

2

[
(Zl)

n
k+1,l+ 1

2

+ (Zl)
n
k,l+ 1

2

]
2
(
Mn

k+ 1
2
,l+ 1

2

+Mn
k− 1

2
,l+ 1

2

) (24)

−
R̂n
k− 1

2
,l+ 1

2

qA3
n
k− 1

2
,l+ 1

2

[
(Zl)

n
k−1,l+ 1

2

+ (Zl)
n
k,l+ 1

2

]
2
(
Mn

k+ 1
2
,l+ 1

2

+Mn
k− 1

2
,l+ 1

2

)

TP4u =
(Zk)

n
k+ 1

2
,l

(
pn
k+ 1

2
,l+ 1

2

− pn
k+ 1

2
,l− 1

2

)
ρn
k+ 1

2
,l+ 1

2

jn
k+ 1

2
,l+ 1

2

+ ρn
k+ 1

2
,l− 1

2

jn
k+ 1

2
,l− 1

2

+
R̂n
k+ 1

2
,l+ 1

2

qB2
n
k+ 1

2
,l+ 1

2

[
(Zk)

n
k+ 1

2
,l+1

+ (Zk)
n
k+ 1

2
,l

]
2
(
Mn

k+ 1
2
,l+ 1

2

+Mn
k+ 1

2
,l− 1

2

) (25)

−
R̂n
k+ 1

2
,l− 1

2

qB2
n
k+ 1

2
,l− 1

2

[
(Zk)

n
k+ 1

2
,l−1 + (Zk)

n
k+ 1

2
,l

]
2
(
Mn

k+ 1
2
,l+ 1

2

+Mn
k+ 1

2
,l− 1

2

)
26. dt LC.cpp

This procedure calculates and control the time step in order to satisfy
the numerical stability condition. The time step ∆t in the calculation
must satisfy the following conditions.

∆t =
∆r

CS + Vmax
(26)

The time step for the Lagrangian method Dtn+
1
2 is represented by the

following expression.

Dtn+
1
2 = α

drmin
CS + Vmax

(27)

α : Numerical coefficient constant (α ≤ 1)
drmin : the minimum grid spacing

20

CS : Sound speed
Vmax : the maximum flow speed

27. eoenergy LC.cpp
The file contains a procedure for calculation of the energy equation
and the HIBs input energy from OK3 code. The following Lagrangian
equation of energy is used except for the heat conductions terms.

DTi
Dt

= − kB
CVi

[
BTi

Dρ
Dt

+ pi
D
Dt

(
1
ρ

)
+ 1

ρj
{qA(Zluk −Rlvk)− qB(Zkul −Rkvl)}

]
DTe
Dt

= − kB
CVe

[
BTe

Dρ
Dt

+ pe
D
Dt

(
1
ρ

)]
DTr
Dt

= − kB
CVr

[
BTr

Dρ
Dt

+ pr
D
Dt

(
1
ρ

)] (28)

Equation (28) is discretized as follows:

Tn+1
k+ 1

2
,l+ 1

2

= Tn
k+ 1

2
,l+ 1

2

− 1

CV
n+ 1

2

k+ 1
2
,l+ 1

2

[
BT

n+1
k+ 1

2
,l+ 1

2

(ρn+1
k+ 1

2
,l+ 1

2

− ρn
k+ 1

2
,l+ 1

2

) + p
n+ 1

2

k+ 1
2
,l+ 1

2

(τn+1
k+ 1

2
,l+ 1

2

− τn
k+ 1

2
,l+ 1

2

)

+
Dtn+

1
2 {qA

n+ 1
2

k+ 1
2
,l+ 1

2

(Zluk −Rlvk)
n+ 1

2

k+ 1
2
,l+ 1

2

− qB
n+ 1

2

k+ 1
2
,l+ 1

2

(Zkul −Rkvl)
n+ 1

2

k+ 1
2
,l+ 1

2

}

ρ
n+ 1

2

k+ 1
2
,l+ 1

2

j
n+ 1

2

k+ 1
2
,l+ 1

2

28. eos.cpp

The file contains the procedures to calculate the following equation of
state. The equations of state for ions and various physical quantities
are shown below:

Pi = nikBTi

Ui = 3
2
kBTi
mpM

Cvi =
(
∂Ui

∂Ti

)
v

= 3
2

kB
mpM

(29)

Pi : Ion pressure[Pa]
ni : Ion number density[1/m3]
Ti : Ion temperature[eV]

21

Ui : Ion specific energy[J/kg]
Cvi : Ion specific heat at constant volume[J/K · kg]
mp : Mass of proton[kg]
kB : Boltzmann constant[J/K]
M : Atomic weight

For the equation of state for electrons, we use the equation of state
based on the Thomas-Fermi model shown in Ref. [29]. Users can select
the Thomas-Fermi model or the ideal equation of state in the header
file of ”input LC.h”.

For the equation of state for the radiation, we use the following equa-
tions:
Radiation energy Ur

Ur =
4σT 4

r

ρc
(30)

Radiation pressure Pr

Pr =
4

3

σT 4
r

c
(31)

Radiation specific heat at constant volume CVr

CVr =
16σT 3

4

ρc
(32)

Here, various physical quantities are shown below.

kB : Boltzmann constant
TI,e,r : Temperature
ρ : Mass density
j, J : Area and volume per mesh
M : Mass
n : Number density
pi,e,r : Pressure
CVi,e,r : Specific heat at the constant volume
BTi,e,r : Compressibility
qA, qB: Artificial viscosity

22

σ : Stefan-Boltzmann constant
c : Speed of light

29. init LC.h
It contains the initial conditions such as the energy driver projectile,
the initial target temperature and so on.

30. input LC.h
The input data for Lagrangian code contains the target layer thickness,
the input beam pulse, the beam radius and so on.

31. jacobian LC.cpp
The area and volume per mesh are calculated in this file. Jacobian j
for the coordinate transformation from (R, Z) to (k, l) is expressed
by the following formula. j represents the area of the mesh.

j =
∂R

∂k

∂Z

∂l
− ∂R

∂l

∂Z

∂k
= RkZl −RlZk (33)

The volume Jacobian is as follows.

J = Rj (34)

From Eq. (33), the area Jacobian is expressed as follows:

jn
k+ 1

2
,l+ 1

2
=
(∂R
∂k

)n
k+ 1

2
,l+ 1

2

(∂Z
∂l

)n
k+ 1

2
,l+ 1

2

−
(∂R
∂l

)n
k+ 1

2
,l+ 1

2

(∂Z
∂k

)n
k+ 1

2
,l+ 1

2

(35)

Here,

(∂R
∂k

)n
k+ 1

2
,l+ 1

2

=
∆Rn

k+ 1
2
,l+1

+ ∆Rn
k+ 1

2
,l

2(∂R
∂l

)n
k+ 1

2
,l+ 1

2

=
δRn

k+1,l+ 1
2

+ δRn
k,l+ 1

2

2(∂Z
∂k

)n
k+ 1

2
,l+ 1

2

=
∆Zn

k+ 1
2
,l+1

+ ∆Zn
k+ 1

2
,l

2(∂Z
∂l

)n
k+ 1

2
,l+ 1

2

=
δZn

k+1,l+ 1
2

+ δZn
k,l+ 1

2

2
.

23

Therefore,

jn
k+ 1

2
,l+ 1

2
=

∆Rn
k+ 1

2
,l+1

+ δRn
k+ 1

2
,l

2

δZn
k+1,l+ 1

2

+ δZn
k,l+ 1

2

2

−
δRn

k+1,l+ 1
2

+ δRn
k,l+ 1

2

2

∆Zn
k+ 1

2
,l+1

+ ∆Zn
k+ 1

2
,l

2

=
1

4

[(
∆Rn

k+ 1
2
,l+1

+ ∆Rn
k+ 1

2
,l

)(
δZn

k+1,l+ 1
2

+ δZn
k,l+ 1

2

)
−

(
δRn

k+1,l+ 1
2

+ δRn
k,l+ 1

2

)(
∆Zn

k+ 1
2
,l+1

+ ∆Zn
k+ 1

2
,l

)]
. (36)

The discretization of volume Jacobian J is as follows:

Jn
k+ 1

2
,l+ 1

2
=

1

6

(
R̂n
k,l + R̂n

k,l+1 + R̂n
k+1,l

)
·
(

∆Rn
k+ 1

2
,l
δZn

k,l+ 1
2
−∆Zn

k+ 1
2
,l
δRn

k,l+ 1
2

)
+

1

6

(
R̂n
k+1,l+1 + R̂n

k,l+1 + R̂n
k+1,l

)
· (37)(

∆Rn
k+ 1

2
,l+1

δZn
k+1,l+ 1

2
−∆Zn

k+ 1
2
,l+1

δRn
k+1,l+ 1

2

)
32. main LC.cpp

The main procedure of the Lagrangian fluid code.

33. outputRMS.cpp
It contains a procedure to output the results for the RMS non-uniformity.

34. output LC.cpp
The result data are stored by this procedure. The time interval of data
output is 0.01 ns in the Lagrangian code. The user can adjust the
output step in ”input LC.h”.

35. output to EulerCode.cpp
This file contains a procedure for outputting the data used in Euler
code. The data is output, when the position of the innermost mesh is
1.5 mm or less from the coordinate center.

36. relax.cpp
The following equation is used as the basic equation for the temperature
relaxation[25].

CVi
dTi
dt

= −Kie

CVe
dTe
dt

= Kie −Kre

CVr
dTr
dt

= Kre

(38)

24

Here, Kie is the energy exchange rate between the ions and the elec-
trons, Kre the energy exchange rate between the radiation and the
electrons. {

Kie = CViωie(Ti − Te)
Kre = CVrωre(Te − Tr)

(39)

ωieand ωre are the collision frequencies between the ions and the elec-
trons and between the radiation and the electrons, respectively. They
are obtained by the following formulae: The Compton effect between
the radiation and the electrons is included.

ωie =
Z2e4n log Λ

√
me

32
√

2πε20Mmp(kT)3/2
[1/s] (40)

ωre = ω′re + ωcr

ω′re = 8.5× 10−14
〈Z2〉〈Z〉niIg
MT

1/2
e ce

[1/s] (41)

Ig =

∫ ∞
0

ξ(eξu − eu)
(ξ − 1)(eξu − 1)(eu − 1)

du

ωcr =
128

3

πe4σ

(mec2)3
T 4
r = 7.362× 10−22T 4

r [1/s] (42)

Here, u =
h mu

kTe
, ξ =

Te
Ti

and h is Planck’s constant, µ the collision

frequency.

C
n+ 1

2
Vi

T n+1
i − T ∗i
∆tn+

1
2

= −Kn+ 1
2

ie

C
n+ 1

2
Ve

T n+1
e − T ∗e
∆tn+

1
2

= K
n+ 1

2
ie −Kn+ 1

2
re

C
n+ 1

2
Vr

T n+1
r − T ∗r
∆tn+

1
2

= −Kn+ 1
2

re

(43)

T ∗ represents the temperature after calculation with the energy equa-
tion. Discretizing the energy exchange rates are written as follows with
ξie = Ti − Te and ξre = Te − Tr.{

K
n+ 1

2
ie = CViω

n+ 1
2

ie ξ
n+ 1

2
ie

K
n+ 1

2
re = CVrω

n+ 1
2

re ξ
n+ 1

2
re

(44)

25

ξ
n+ 1

2
ie and ξ

n+ 1
2

re are as follows.

ξ
n+ 1

2
ie = CiA+

[
ξnie −

(αi
γ

)n+ 1
2

]
B +

(αi
γ

)n+ 1
2

ξ
n+ 1

2
re = CrA+

[
ξnre −

(αr
γ

)n+ 1
2

]
B +

(αr
γ

)n+ 1
2

The variables in the formulae are represented below.

αi = (φi + βrφr)ωre, αr = (φiG+ βiφr)ωie

βi = 1 +
CVi
CVe

, βr = 1 +
CVe
CVr

, G =
CVi
CVe

, γ = (βiβr −G)ωieωre

A =

[
exp

(
X∆tn+

1
2

)
− 1

]
X∆tn+

1
2

−

[
exp

(
Y∆tn+

1
2

)
− 1

]
Y∆tn+

1
2

B =

[
exp

(
Y∆tn+

1
2

)
− 1

]
Y∆tn+

1
2

X = −1

2
λ+

1

2
(λ2 − 4γ)n+

1
2 , Y = −1

2
λ− 1

2
(λ2 − 4γ)n+

1
2

Ci =
1

(λ2 − 4γ)n+
1
2

[
φi − βiωieξi0 + ωreξr0 +

1

2
λ
(
ξi0 −

αi
γ

)]
+

1

2
λ
(
ξi0 −

αi
γ

)
Cr =

1

(λ2 − 4γ)n+
1
2

[
φr − βrωreξr0 +Gωieξi0 +

1

2
λ
(
ξr0 −

αr
γ

)]
+

1

2
λ
(
ξr0 −

αr
γ

)
λ = βiωie + βrωre, φi =

Wi

CVi
− We

CVe
, φr =

We

CVe
− Wr

CVr

26

37. relax define.h
It contains the procedure declarations for the temperature relaxation.

3.2. Conversion code

1. Check EuMesh.sh This shell creates symbolic links connecting to the
output files from the Lagrangian code. The shell file must have an exe-
cution permission. When the O-SUKI code is run on your computer by
using the ”O-SUKIcode start.sh”, the ”O-SUKIcode start.sh” changes
the permission of the ”Check EuMesh.sh” to executable.

2. Check CP.sh This shell retrieves the file name of the linked data
file from the Lagrangian code. For example, when the link name has
the name of ’EuCopy0001.dat’ and the original data file name may
be ’Euler n 00080754 t 2.750010e+01.dat’, the following command re-
turns the original data file name.

$ Check CP.sh 0001

$ lrwxrwxrwx · · · EuCopy0001.dat → Euler n 00080754 t 2.750010e+01.dat

The shell is used, when users need to know the linked file name.

3. check quantities.cpp The function outputs the data of the trans-
formed Euler mesh as a text file.

4. define convert.h Define the variables necessary for the conversion
code.

5. DownConvert.cpp The procedure to compress four Eulerian meshes
into one mesh. The process is the down-conversion program. Initially
the computing spatial area in the R and Z directions is specified in
”main convert.cpp”. The minimum mesh size is determined in ”Gener-
ateEulerMesh.cpp”. The minimum mesh size is equal to the minimum
mesh size of the Lagrangian mesh size. The Euler mesh shape is a
foursquare. It may be necessary to reduce the mesh number so that it
does not exceed 300 which is the maximum allowable mesh k number
in the Euler code in one coordinate direction. The physical quantity
definition points are shown in the Fig.7 during the down-conversion
process. To perform the down conversion, the mesh number must be
an even number so that this process is executed multiple times. For
example, the relation of the number (km) of meshes in the k direction
before and after the down-convert is shown below as the number p of

27

the down-convert processing.

kmbefore = 2pkmafter + 2 (45)

The down conversion can be performed by p times in this case. As the
down-conversion time increases, the calculation results will be affected.
In O-SUKI, the number of the down conversion is limited to 4 times.
Therefore, the maximum allowable number of the Euler meshes before
the conversion (kmbefore) is about 4800. If kmbefore is larger than 4800,
the down conversion limit number 4 should be set to a larger number
in ”define convert.h”.

Figure 7: Definition points of each physical quantity and the down-convert

6. GenerateEulerMesh.cpp The procedure to determine the number of
the Euler meshes and to secure the necessary memory, just before the

28

down conversion.
7. GenerateEulerMesh numSearch.cpp The procedure to check the

number of the Euler meshes based on the minimum mesh size obtained
in ”main convert.cpp”. The procedure is similar to the procedure of
”GenerateEulerMesh.cpp”, but it is used during the selection of the
data conversion dataset at a specific time.

8. Interpolation.cpp The function interpolates the data on the Lagrangian
mesh to the meshes on the Euler mesh. Figure 8 shows the interpola-
tion method from the Lagrange data to the Euler data. The ”Mesh-
Search.cpp” provides the relation between the Lagrangian mesh loca-
tion and the Euler mesh location. The following interpolation equation
is used to obtain each physical quantity on the Euler meshes. Here x
shows an arbitrary physical quantity.

x(P) =
1(

1

|
−−−→
distk,l|

)2

+

(
1

|
−−−−−→
distk+1,l|

)2

+

(
1

|
−−−−−→
distk,l+1|

)2

+

(
1

|
−−−−−−→
distk+1,l+1|

)2

×

(
1

|
−−−→
distk,l|

xk,l+
1

|
−−−−−→
distk+1,l|

xk+1,l+
1

|
−−−−−→
distk,l+1|

xk,l+1+
1

|
−−−−−−→
distk+1,l+1|

xk+1,l+1

)(46)

9. main convert.cpp This is the main procedure of the conversion code.
This procedure selects the output Lagrangian data transferred to the
Euler code among the Lagrangian data sets obtained in the Lagrangian
code. The Lagrangian meshes are deformed along with the fluid mo-
tion. The Lagrangian code stops before no mesh is crushed. The data
selection process is as follows:

1. From the Lagrangian data at a specific time, the square area cov-
ered by the position of the maximum ion temperature and the ori-
gin is selected, and is simulated in the Euler code. The minimum
mesh size is detected from the Lagrangian data. The uniform Eu-
ler mesh size is set to the minimum mesh size in the Lagrangian
data. The Euler total mesh number required is determined to
cover the selected area.

29

Figure 8: The interpolation of physical quantity

2. The procedure selects the Lagrangian data, which needs the small-
est number of the total Euler mesh among the data sets for the
final 1.5 ns in the Lagrangian code. If the total mesh number km
in the k direction exceeds 300, the data down conversion takes
place to reduce km, which should be less than 300 in the O-SUKI
code.

3. The default maximum down conversion number is limited to 4.
In this prescription, the maximum Euler mesh number is 4800 in
the k direction. If the selected data from the Lagrangian data set
has the meshes more than 4800, first the square area selected in
the Step 1 is reduced to fulfill the mesh number requirement of
4800. The area reduction is performed by reducing the size in the
k direction by 0.01 mm. The reduction procedure is repeated until
the total mesh number becomes less than 4800 in the k direction.

4. If the total number of the Euler meshes exceeds 4800, the limit
number of down conversion, which is specified in ”define convert.h”,
should be set to a larger number manually. However, many down
conversion operations do not guarantee the numerical accuracy.

30

10. MeshSearch.cpp This procedure examines the location of each Euler
mesh among the Lagrangian meshes. In Fig. 8, ~P represents the coor-
dinate vector of a specific Euler mesh and ~R represents the coordinate
vector of the Lagrangian mesh. The ~V1, ~V2, ~V3, ~V1P , ~V2P and ~V3P in
Fig. 8 are indicated by the vectors of the Lagrangian meshes and the
Euler mesh as follows:

~V1 = ~Rk,l − ~Rk+1,l

~V2 = ~Rk+1,l+1 − ~Rk,l

~V3 = ~Rk+1,l − ~Rk+1,l+1

−−→
V1P = ~P − ~Rk+1,l−−→
V2P = ~P − ~Rk,l−−→
V3P = ~P − ~Rk+1,l+1

If the cross product of each side vector of the triangle and the point P
satisfies the following condition, the point P exists inside the triangle.

~V1 ×

−−→
V1P < 0

~V2 ×
−−→
V2P < 0

~V3 ×
−−→
V3P < 0

(47)

11. output.cpp In this procedure the converted data is output.

12. read variable.cpp This procedure reads the file data output by the
Lagrange code, after the Lagrangian data set selection.

13. read variable numSearch.cpp This procedure reads the data by the
Lagrangian code during the Lagrangian data set selection in the pro-
cedure of the ”main convert.cpp”.

3.3. Eulerian code

1. BoundaryTracking.cpp
It is a function to track the material boundary lines. Each boundary
point is specified by the coordinates of the two variables: BoundaryMesh k
and BoundaryMesh l. The function interpolates the velocities u and
v at the coordinates by the area interpolation, and tracks the positions
of each boundary point. In Fig. 9 dotted lines represent the material
boundaries. When the boundary point exists at the position shown in
Fig. 10, the boundary point velocity (ub, vb) is calculated by the area
interpolation method and can be obtained by the following equations:

ub = Su1uk,l+1 + Su2uk,l + Su3uk+1,l+1 + Su4uk+1,l (48)

vb = Sv1vk,l+1 + Sv2vk,l + Sv3vk+1,l+1 + Sv4vk+1,l (49)

31

Figure 9: Material boundary points.

Figure 10: Velocity interpolation by the area interpolation.

2. GenerateMatrix.cpp
The mesh total numbers of (km, lm) are loaded from the converted

32

data in GenerateMatrix(). all the variables required in the Euler code
are defined based on the number (km, lm).

3. Legendre.cpp
The procedure performs the mode analyses based on the Legendre func-
tion in order to find the implosion non-uniformity. The analysis results
are also output in this procedure.

4. MS TDMA.cpp
It is a function to solve matrix by TDMA (TriDiagonal-Matrix Algo-
rithm).

5. MaterialDiscrimination.cpp
It is a function to discriminate each material by the material boundary
lines.

6. PaintMaterial.cpp
The material is specified between the two material boundary lines in
the procedure.

7. RMFP ECSH.cpp
It is a procedure to calculate the Rosseland mean free path (see Ref.
[26]).

8. ScanLine.cpp
It is a procedure that specifies the material on each Euler mesh.

9. artv ECSH.cpp
This file contains a procedure to calculate the artificial viscosity. The
two-dimensional artificial viscosity is written as follows:

qr = ρCQ

(
∂u

∂k

)2

+ ρCLc0

∣∣∣∣∂u∂k
∣∣∣∣ (50)

qz = ρCQ

(
∂v

∂l

)2

+ ρCLc0

∣∣∣∣∂v∂l
∣∣∣∣ (51)

Here, the discretized artificial viscosity is shown below:

qr
n
k+ 1

2
,l+ 1

2
= ρn

k+ 1
2
,l+ 1

2
CQ

(
un
k+1,l+ 1

2
− un

k,l+ 1
2

)2
+ ρn

k+ 1
2
,l+ 1

2
CLc0

∣∣∣unk+1,l+ 1
2
− un

k,l+ 1
2

∣∣∣ (52)

qz
n
k+ 1

2
,l+ 1

2
= ρn

k+ 1
2
,l+ 1

2
CQ

(
vn
k+ 1

2
,l+1
− vn

k+ 1
2
,l

)2
+ ρn

k+ 1
2
,l+ 1

2
CLc0

∣∣∣vnk+ 1
2
,l+1
− vn

k+ 1
2
,l

∣∣∣ (53)

33

10. define ECSH.h
It contains the constant values, the normalization factors and the pro-
cedure declarations required.

11. dif ECSH.cpp
The following equations of motion are used.

∂u

∂t
= −

(
u
∂u

∂R
+ v

∂u

∂Z
− 1

ρ

(
∂pi
∂R

+
∂q

∂R

))
∂v

∂t
= −

(
u
∂v

∂R
+ v

∂v

∂Z
− 1

ρ

(
∂pi
∂Z

+
∂q

∂Z

)) (54)

Equations (54) are discretized as follows:

u
n+ 1

2

k,l+ 1
2

= u
n− 1

2

k,l+ 1
2

−Dtn
[{(

u
∂u

∂R

)n
k,l+ 1

2

+

(
v
∂u

∂Z

)n
k,l+ 1

2

}
+

{
1

ρ

(
∂pi
∂R

+
∂q

∂R

)}n
k,l+ 1

2

]
(55)

Here,

(
u
∂u

∂R

)n
k,l+ 1

2

=

u
n− 1

2

k,l+ 1
2

u
n− 1

2

k,l+ 1
2

− un−
1
2

k−1,l+ 1
2

dRk− 1
2
,l+ 1

2

(
u
n− 1

2

k,l+ 1
2

> 0
)

u
n− 1

2

k,l+ 1
2

u
n− 1

2

k+1,l+ 1
2

− un−
1
2

k,l+ 1
2

dRk+ 1
2
,l+ 1

2

(
u
n− 1

2

k,l+ 1
2

< 0
)

(
v
∂u

∂Z

)n
k,l+ 1

2

=

v
n− 1

2

k,l+ 1
2

u
n− 1

2

k,l+ 1
2

− un−
1
2

k,l− 1
2

dZk,l

(
v
n− 1

2

k,l+ 1
2

> 0
)

v
n− 1

2

k,l+ 1
2

u
n− 1

2

k,l+ 3
2

− un−
1
2

k,l+ 1
2

dZk,l+1

(
v
n− 1

2

k,l+ 1
2

< 0
)

{
1

ρ

(
∂pi
∂R

+
∂q

∂R

)}n
k,l+ 1

2

=
2

ρn
k+ 1

2
,l+ 1

2

+ ρn
k− 1

2
,l+ 1

2(
pi
n
k+ 1

2
,l+ 1

2

− pink− 1
2
,l+ 1

2

dRk,l+ 1
2

+
qn
k+ 1

2
,l+ 1

2

− qn
k− 1

2
,l+ 1

2

dRk,l+ 1
2

)
.

34

12. eod ECSH.cpp
The following continuity equation is used.

∂ρ

∂t
= −ρ

(
1

R

∂(Ru)

∂R
+
∂v

∂Z

)
−
(
u
∂ρ

∂R
+ v

∂ρ

∂Z

)
(56)

Equation (56) is discretized as follows

ρn+1
k+ 1

2
,l+ 1

2

= ρn
k+ 1

2
,l+ 1

2

−Dtn+
1
2

[
ρn
k+ 1

2
,l+ 1

2

{{
1

R

∂(Ru)

∂R

}n
k+ 1

2
,l+ 1

2

+

(
∂v

∂Z

)n
k+ 1

2
,l+ 1

2

}

+

{(
u
∂ρ

∂R

)n
k+ 1

2
,l+ 1

2

+

(
v
∂ρ

∂Z

)n
k+ 1

2
,l+ 1

2

}]
(57)

Here,

(
u
∂ρ

∂R

)n
k+ 1

2
,l+ 1

2

=

un
k+ 1

2
,l+ 1

2

ρn
k+ 1

2
,l+ 1

2

− ρn
k− 1

2
,l+ 1

2

dRk,l+ 1
2

(
un
k+ 1

2
,l+ 1

2

> 0
)
,

un
k+ 1

2
,l+ 1

2

ρn
k+ 3

2
,l+ 1

2

− ρn
k+ 1

2
,l+ 1

2

dRk,l+ 1
2

(
un
k+ 1

2
,l+ 1

2

< 0
)
,

(
v
∂ρ

∂Z

)n
k+ 1

2
,l+ 1

2

=

vn
k+ 1

2
,l+ 1

2

ρn
k+ 1

2
,l+ 1

2

− ρn
k+ 1

2
,l− 1

2

dZk+ 1
2
,l

(
vn
k+ 1

2
,l+ 1

2

> 0
)
,

vn
k+ 1

2
,l+ 1

2

ρn
k+ 1

2
,l+ 3

2

− ρn
k+ 1

2
,l+ 1

2

dZk+ 1
2
,l+1

(
vn
k+ 1

2
,l+ 1

2

< 0
)
.

13. eoenergy ECSH
The following basic energy equations are used.

∂Ti
∂t

= −(u ·∇)Ti − kB
CVi

[
BTi

{
∂ρ
∂t

+ (u ·∇)ρ
}

+ pi+q
ρ

(∇ · u)
]

∂Te
∂t

= −(u ·∇)Te − kB
CVe

[
BTe

{
∂ρ
∂t

+ (u ·∇)ρ
}

+ pe
ρ

(∇ · u)
]

∂Tr
∂t

= −(u ·∇)Tr − kB
CVr

[
BTr

{
∂ρ
∂t

+ (u ·∇)ρ
}

+ pr
ρ

(∇ · u)
] (58)

35

The discretized energy equation for the ion temperature, for example,
becomes as follows:

Ti
n+1
k+ 1

2
,l+ 1

2

= Ti
n
k+ 1

2
,l+ 1

2
−Dtn+

1
2

[{(
u
∂Ti
∂R

)n
k+ 1

2
,l+ 1

2

+

(
v
∂Ti
∂Z

)n
k+ 1

2
,l+ 1

2

}
+

1

CVi
n
k+ 1

2
,l+ 1

2

·[
BTi

n
k+ 1

2
,l+ 1

2

{
−ρn

k+ 1
2
,l+ 1

2

{{
1

R

∂(Ru)

∂R

}n
k+ 1

2
,l+ 1

2

+

(
∂v

∂Z

)n
k+ 1

2
,l+ 1

2

}}

+
(
pi
n
k+ 1

2
,l+ 1

2
+ qn

k+ 1
2
,l+ 1

2

){{ 1

R

∂(Ru)

∂R

}n
k+ 1

2
,l+ 1

2

+
∂v

∂Z

}]]
(59)

Here,

(
u
∂Ti
∂R

)n
k+ 1

2
,l+ 1

2

=

un
k+ 1

2
,l+ 1

2

Ti
n
k+ 1

2
,l+ 1

2
− Tink− 1

2
,l+ 1

2

dRk,l+ 1
2

(
un
k+ 1

2
,l+ 1

2

> 0
)

un
k+ 1

2
,l+ 1

2

Ti
n
k+ 3

2
,l+ 1

2
− Tink+ 1

2
,l+ 1

2

dRk+1,l+ 1
2

(
un
k+ 1

2
,l+ 1

2

< 0
)

(
v
∂Ti
∂Z

)n
k+ 1

2
,l+ 1

2

=

vn
k+ 1

2
,l+ 1

2

Ti
n
k+ 1

2
,l+ 1

2
− Tink+ 1

2
,l− 1

2

dZk+ 1
2
,l

(
vn
k+ 1

2
,l+ 1

2

> 0
)

vn
k+ 1

2
,l+ 1

2

Ti
n
k+ 1

2
,l+ 3

2
− Tink+ 1

2
,l+ 1

2

dRk+ 1
2
,l+1

(
vn
k+ 1

2
,l+ 1

2

< 0
)
.

14. eos ECSH.cpp
The same equation is used as the equation of state in the Lagrangian
code.

15. fusion.cpp
The fusion reactions are calculated in this procedure. The fusion reac-
tion formulae for deuterium and tritium are shown below.

D + D −−→
50%

T(1.01MeV) + p(3.02MeV)

−−→
50%

He3(0.82MeV) + n(2.45MeV)

D + T→ He4(3.5MeV) + n(14.1MeV)

(60)

36

D decreases due to the DD and DT reactions from the expression (60).
The number density nD change is given bellow.

∂nD

∂t
= −NDD −NDT

= −1

2
〈σv〉DDnDnD − 〈σv〉DTnDnT (61)

The discretized form for nD is written as:

nD
n+1
k+ 1

2
,l+ 1

2

=nD
n
k+ 1

2
,l+ 1

2

−∆t

(
1

2
nD

n
k+ 1

2
,l+ 1

2
nD

n
k+ 1

2
,l+ 1

2
〈σv〉DD

n
k+ 1

2
,l+ 1

2

+ nD
n
k+ 1

2
,l+ 1

2
nT

n
k+ 1

2
,l+ 1

2
〈σv〉DT

n
k+ 1

2
,l+ 1

2

)
.

(62)

The nT is expressed as follows.

∂nT

∂t
= +

1

2
NDD −NDT

= +
1

4
〈σv〉DDnDnD − 〈σv〉DTnDnT (63)

The discretized equation for nT is written as:

nT
n+1
k+ 1

2
,l+ 1

2

=nT
n
k+ 1

2
,l+ 1

2

+∆t

(
1

4
nD

n
k+ 1

2
,l+ 1

2
nD

n
k+ 1

2
,l+ 1

2
〈σv〉DD

n
k+ 1

2
,l+ 1

2

− nD
n
k+ 1

2
,l+ 1

2
nT

n
k+ 1

2
,l+ 1

2
〈σv〉DT

n
k+ 1

2
,l+ 1

2

)
.

(64)

Considering the diffusion term of α particles and the term of α particle
absorption, nα is described as follows.

∂nα
∂t

= +〈σv〉DTnDnT −∇ · F − ωαnα (65)

The discretized α particle reaction is written as:

nα
n+1
k+ 1

2
,l+ 1

2

= nα
n
k+ 1

2
,l+ 1

2
+ ∆tnD

n
k+ 1

2
,l+ 1

2
nT

n
k+ 1

2
,l+ 1

2
〈σv〉DT

n
k+ 1

2
,l+ 1

2
. (66)

37

The analysis curves corresponding to the reaction rates of the D-D
reaction and the D-T reaction are shown below.

〈σv〉DD = exp

(
x1 −

x2
T x5i

+
x3Ti

(Ti + x4)2

)
(67)

〈σv〉DT = exp

(
x1 −

x2
T x5i

+
x3

1 + x4

)
(68)

For 50% of the D-D reactions in the Eq. (67), the coefficients xn(n =
1 ∼ 5) are bellow.

x1 = −49.1789720673151
x2 = 15.3267580380585
x3 = −4168271.58512757
x4 = 36677.9694366768
x5 = 0.365303247159742

For 50% of the D-D reactions in the Eq. (67), the coefficients xn(n =
1 ∼ 5) are bellow.

x1 = −48.9931165228571
x2 = 15.6125104498645
x3 = −4168271.58512757
x4 = 36677.9694366768
x5 = 0.363023326564475

For the D-T reaction in the Eq. (68), the coefficients xn(n = 1 ∼ 5)
are bellow.

x1 = −48.9580509680824
x2 = 18.1155080330636
x3 = 895.149425658926
x4 = 135.888636700177
x5 = 0.366290140624939

The diffusion equations for the r and z directions are expressed as
follows:

∂nα
∂t

=
1

r

∂

∂r
(rFr) = −1

r

∂

∂r

r
1

3
nαvαλα

nα +
4

3
λα

∣∣∣∣∂nα∂r
∣∣∣∣
∂nα
∂r

 (69)

∂nα
∂t

=
∂Fz
∂z

= − ∂

∂z

1

3
nαvαλα

nα +
4

3
λα

∣∣∣∣∂nα∂z
∣∣∣∣
∂nα
∂z

 (70)

38

Here, Fr and Fz are the α particle flux in the r and z directions. The
discretized diffusion equation in the r direction is written as:

nα
n+1
k+ 1

2 ,l+
1
2

= nα
n
k+ 1

2 ,l+
1
2
− ∆t

Rn
k+ 1

2 ,l

rnk+1,l

∆r

1
3Nα

n
k+1,l+ 1

2
vαλα

n
k+1,l+ 1

2

Nα
n
k,l+ 1

2
+ 4

3λα
n
k,l+ 1

2

∣∣∣∣nαnk+3
2
,l+1

2

−nαn
k+1

2
,l+1

2

∆r

∣∣∣∣
nα

n
k+ 3

2 ,l+
1
2

− nαnk+ 1
2 ,l+

1
2

∆r

−
rnk,l
∆r

1
3Nα

n
k,l+ 1

2
vαλα

n
k,l+ 1

2

Nα
n
k,l+ 1

2
+ 4

3λα
n
k,l+ 1

2

∣∣∣∣nαnk+1
2
,l+1

2

−nαn
k− 1

2
,l+1

2

∆r

∣∣∣∣
nα

n
k+ 1

2 ,l+
1
2

− nαnk− 1
2 ,l+

1
2

∆r

The energy increases by the α particle energy deposition are shown
below:

∆Ti =
Eαnαfi
ρCvi

(71)

∆Te =
Eαnαfe
ρCve

(72)

Here f represents the distribution factor of the α particle energy among
ions and electrons [30].

fi =
1

1 + 32
Te(KeV)

, fe = 1− fi (73)

The discretized energy increases for ions and electrons are described as
follows.

Ti
n+1
k+ 1

2
,l+ 1

2

= Ti
n
k+ 1

2
,l+ 1

2
+ ∆t

Eαnα
n
k+ 1

2
,l+ 1

2

fi
n
k+ 1

2
,l+ 1

2

ρn
k+ 1

2
,l+ 1

2

Cvi
n
k+ 1

2
,l+ 1

2

(74)

Te
n+1
k+ 1

2
,l+ 1

2

= Te
n
k+ 1

2
,l+ 1

2
+ ∆t

Eαnα
n
k+ 1

2
,l+ 1

2

fe
n
k+ 1

2
,l+ 1

2

ρn
k+ 1

2
,l+ 1

2

Cve
n
k+ 1

2
,l+ 1

2

(75)

16. init ECSH.cpp
The file initializes the Eulerian code.

39

17. load convert.cpp
It is a procedure to read the converted data.

18. main ECSH.cpp
The main function of the Eulerian code.

19. output ECSH.cpp
The results are stored in this procedure.

4. Shell script files for postprocessing

After finishing all the simulation process in the O-SUKI code, users may
need to visualize the simulation data. Some of the data computed in O-SUKI
are visualized by the following shell scripts. All shell files require gnuplot 5.0
or later.

4.1. Visualization for the Lagrange code data

All the visualized data images are stored in the ”pic La” directory.

1. adiabat.sh
The visualized graph for the time history of the adiabat α calculated
in ”Insulation.cpp” in the Lagrangian code.

2. Animation rho RZ.sh
This shell file visualizes the distributions of mass density for each out-
put data in the Lagrangian code.

3. Animation Ti MODE.sh
This shell file visualizes the mode analysis results of the ion temperature
calculated by ”Legendre.cpp” in the Lagrangian code.

4. Animation Ti RZ.sh
This shell file visualizes the distributions of the ion temperature for
each output data in the Lagrangian code.

5. ImplosionVelocity.sh
This shell plots the time histories of the implosion speed averaged over
the azimuthal direction for the DT inner surface, the DT outer surface
and the averaged DT speed.

6. RMSoutput.sh
This shell file plots the time histories of the root-mean-square (RMS)
for the ion temperature and the mass density in the DT layer and Al
layer. The RMS data is calculated by ”RMS.cpp” in the Lagrangian
code.

40

7. SLC t r.sh
This shell file outputs the images of the r − t diagrams representing
the time history of the Lagrangian meshes at θ =15, 45, 75, 105, 135
and 165 degrees. To execute this shell file, users need to specify the
boundary mesh number of each material in the Lagrangian code.

4.2. Visualization for the Euler code data

All visualized data files are stored in the ”pic Eu” directory.

1. Animation atomic RZ.sh
This shell file visualizes the distributions of the atomic number for each
output data in the Euler code.

2. Animation rho RZ.sh
This shell file visualizes the distributions of the mass density foreach
output data in the Euler code.

3. Animation Ti MODE.sh
This shell file visualizes the mode analysis results for the ion tempera-
ture distribution calculated in the ”Legendre.cpp” in Euler code.

4. Animation Ti RZ.sh
This shell file visualizes the distributions of the ion temperature for
each output data in the Euler code.

5. Fusiongain.sh
This shell file plots the history of the fusion energy gain.

5. Instructions for the user

Before running the O-SUKI code, the user must set the target pellet and
HIB parameters accordingly as follows.
(a)Projectile ion type: Five projectile ion types are included in OK3Pb, U, Cs, C

and p. The user can choose one of them or add other species expanding the arrays

aZb and aAb in ”InputOK3.h”.

(b)Ion beam parameter: The user can specify the HIB radii on the target surface

changing the parameter tdbrc in ”input LC.h”. The design of the beam input

pulse is also done in the same file. The pulse rise start time, rise time, and beam

power are set by variables t beamj, del t beamj, and Powerj(j = 1 ∼ 5), respec-

tively. The user should input the total input beam energy into input energy in

the ”define ECSH.h” manually. As the parameter value of the wobbling beam,

41

the maximum radius of the beam axis trajectory in the rotation and the oscillat-

ing frequency should be specified. The user can set the desirable values for the

maximum beam trajectory radius rRot in the ”InputOK3.h” and the rotational

number rotationnumber in the ”input LC.h”.

(c)The beam irradiation position: The file HIFScheme.h contains 1, 2, 3, 6, 12, 20,

32, 60 and 120-beam irradiation schemes. The user can choose one of them or add

other HIB irradiation schemes supplementing that file.

(d)The reactor chamber: The user can specify the chamber radius changing the

parameter Rch. The parameter dz fix the pellet displacement from the reactor

chamber center in the Cartesian PS coordinates. In OK3 the target alignment

errors of dx, dy and dz can be specified. However, in the Lagrangian and Euler

fluid codes dx and dy are set to be zero in this version of the O-SUKI code.

(e)The target pellet structure and mesh number: The parameter values of initial

target can be set with ”input LC.h” and ”init LC.h”. O-SUKI includes an ex-

ample DT-Al-Pb structure target defined by target layer thickness parameters

Rin,Rbc1, Rbc2 and Rout. The user can add other target matters expanding the

arrays aZt0, aZtm, aAt, aUi, aro and SC in ”InputOK3.h”. If you want to em-

ploy a new substance for target structure, The user also need to add solid density

and mass per atom in ”CONSTANT.h”. The user can adjust the Lagrangian ra-

dial mesh number for each layer by changing the value MWC in ”Input LC.h”.

When MWC = 0, the radial mesh width (dR1 = dR2 = · · ·) in all layers be-

comes equal, and when the MWC is large, the radial mesh number for each layer

(num k1 = num k2 = · · ·) becomes close to the same number.

The user can run ”O-SUKIcode start.sh” to start running O-SUKI code
simulation. When the shell script is executed, Lagrangian fluid code, data
conversion code and Eulerian fluid code are sequentially activated. The re-
sults of the Lagrangian simulation are saved in the output directory, and the
results of the Eulerian simulation are saved in output euler.

6. Testing the program O-SUKI

The tests shown below present two cases of the target fuel implosion
dynamics with the spiral wobbling or without the oscillating HIBs. In the two
cases, the HIBs and the target fuel have the following common parameters:
the beam radius at the entrance of a reactor chamber Ren = 35 mm, the beam
particle density distribution is in the Gaussian profile and all projectile Pb
ions have 8 GeV. The target is a multilayered pellet, in which the pellet outer

42

radius is 4 mm, a Pb layer thickness is 0.029 mm, the Al thickness is 0.460
mm, and the DT thickness is 0.083 mm; the Pb, Al and DT layers have the
radial mesh numbers of 4, 46 and 30 in these example cases, respectively, and
the total mesh number in the theta direction is 90. The input beam pulse is
shown in Fig. 11.

In both the cases, the beam radius is 3.8mm on the target surface. How-
ever, Rb = 3.8mm changes at τwb to 3.7mm for the wobbling beam irra-
diationHere τwb is the rotational period of the beam axis. The rotational
frequency is 424MHz (rotaionnumber = 11).

We show the r − t diagram for the no-wobbling HIBs implosion in Fig.
12. The Lagrangian test results for the target ion temperature (Ti) and the
mass density (ρ) distribution at t = 29 ns stored in the output directory
are visualized in Figs. 13 and 14 for the cases (a) with and (b) without the
wobbling HIBs, respectively. Table 1 shows a part of the output data in this
example case. The Eulerian test results for the fusion energy gain is shown
in Fig. 15.

Figure 11: An example for the input beam pulse.

43

Figure 12: The r − t diagram for the no-wobbling implosion at θ =15 degrees. The black
line area is the Pb layer, the blue line area the Al layer and the red line area the DT layer.

44

Table 1: Sample Lagrangian output data in the case without the wobbling HIBs illumina-
tion.
(A part of the file ”output n 00111631 t 2.900003e+01.dat”)

k l R[mm] Z[mm] Ti [keV] ρ [kg/m3]

2 2 0 -0.541139 0.016053360 430.9763
3 2 0 -0.583234 0.008505923 1354.026
4 2 0 -0.607416 0.007180678 2336.383
5 2 0 -0.608314 0.007371715 2979.180
6 2 0 -0.628788 0.008847765 3967.528
7 2 0 -0.646761 0.010036480 4740.172
8 2 0 -0.662140 0.011212840 5361.822
9 2 0 -0.676259 0.011752890 5741.311
10 2 0 -0.690425 0.011760940 5900.050

2 45 0.530685 -0.068807 0.031829590 244.3120
3 45 0.584110 -0.064204 0.011127140 1011.397
4 45 0.594244 -0.061249 0.008079627 1768.814
5 45 0.602283 -0.059985 0.006450778 2504.119
6 45 0.607245 -0.059653 0.006173464 2958.682
7 45 0.611429 -0.059955 0.006315128 3247.758

73 92 0 5.119479 0.1271688 226.9499
74 92 0 5.188125 0.1246725 225.8297
75 92 0 5.257423 0.1224152 224.1392
76 92 0 5.327892 0.1206470 221.8201
77 92 0 5.400163 0.1195989 218.5499
78 92 0 5.473610 0.1197280 544.0956
79 92 0 5.562877 0.1215621 439.3806
80 92 0 5.672047 0.1220177 281.0545
81 92 0 5.842509 0.1218479 144.7919
82 92 0 6.000000 0.1218479 144.7919

45

(a) with wobbling beam (b) w/o wobbling beam

Figure 13: Target ion temperature distributions at t = 29.0 ns.

46

(a) with wobbling beam (b) w/o wobbling beam

Figure 14: Target mass density distributions at t = 29.0 ns.

Figure 15: Fusion energy gain curves for the cases with (a solid line) and without (a dotted
line) the wobbling HIBs .

47

7. Conclusions

We have developed and presented the O-SUKI code, which is useful to
simulate 2D spherical DT fuel target implosion in HIF. The O-SUKI code
consists of the HIB illumination code, the Lagrangian fluid code, the data
conversion from the Lagrangian code data to the Euler code data, and the
Euler code. Near the void closure phase of the DT fuel implosion, the DT fuel
spatial deformation is serious. At the stagnation phase the DT fuel is com-
pressed to about a thousand times of the solid density. Therefore, The Euler
code is appropriate after the void closure phase, however the Lagrangian code
is effective before the void closure time. In addition, data visualization script
programs are also provided. The O-SUKI code would provide a useful tool
for the integrated DT fuel target implosion simulation in HIF.

Acknowledgments

The work was partly supported by JSPS, Japan- U. S. Exchange Program,
MEXT, CORE (Center for Optical Research and Education, Utsunomiya
University), and ILE/Osaka University.

References

[1] S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion, Oxford
University Press, 2009.

[2] S. Kawata, K. Niu, J. Phys. Soc. Jpn. 53 (1984) 3416-3426.

[3] S. Kawata, T. Karino, A. I. Ogoyski, Matter and Radiation at Extremes
1(2) (2016) 89-113.

[4] I. Hofmann, Matter and Radiation at Extremes, 3(1) (2018) 1-11.

[5] D. Böhne, I. Hofmann, G. Kessler, G.L. Kulcinski, J. Meyer-ter-Vehn,
et al., Nucl. Eng. Des. 73 (2) (1982) 195-200.

[6] T. Yamaki, et al., HIBLIC-1, Conceptual Design of a Heavy Ion Fusion
Reactor, Research Information Center, Institute for Plasma Physics,
Nagoya University, Report IPPJ-663, 1985.

[7] R.W. Moir, R.L. Bieri, X.M. Chen, T.J. Dolan, M.A. Hoffman, et al.,
Fusion Technol. 25 (1994) 5-25.

48

[8] J. F. Ziegler, J. P. Biersack, U. Littmark, The Stopping and Range of
Ions in matter, volume 1, Pergamon, New York, 1985.

[9] T.A. Mehlhorn, J. Appl. Phys. 52 (1981) 6522-6532.

[10] D.A. Callahan-Miller, M. Tabak, Nucl. Fusion 39 (1999) 883-892.

[11] R.C. Arnold, E. Colton, S. Fenster, M. Foss, G. Magelssen, et al., Nucl.
Inst. Meth. 199 (1982) 557-561.

[12] A.R. Piriz, A.R.N.A. Tahir, D.H.H. Hoffmann, M. Temporal, Phys. Rev.
E 67 (017501) (2003) 1-3.

[13] H. Qin, R.C. Davidson, B.G. Logan, Phys. Rev. Lett. 104 (2010) 254801.

[14] S. Kawata, T. Sato, T. Teramoto, E. Bandoh, Y. Masubichi, et al., Laser
Part. Beams 11 (1993) 757-768.

[15] S. Kawata, T. Sato, T. Teramoto, E. Bandoh, Y. Masubichi, et al., Phys.
Plasmas 19 (2012) 024503.

[16] S. Kawata, T. Karino, Phys. Plasmas 22 (2015) 042106.

[17] S.E. Bodner, Phys. Rev. Lett. 33 (1974) 761-764.

[18] H. Takabe, K. Mima, L. Montierth, R.L. Morse, Phys. Fluids 28 (1985)
3676-3682.

[19] J. Sasaki, T. Nakamura, Y. Uchida, T. Someya, K. Shimizu, M. Shita-
mura, T. Teramoto, A. I. Blagoev, S. Kawata, Jpn. J. Appl. Phys. 40(1)
(2001) 968-971.

[20] K. Miyazawa, A.I. Ogoyski, S. Kawata, T. Someya, T. Kikuchi, Phys.
Plasmas 12 (2005) 122702-122711.

[21] A. I. Ogoyski, et al., Comput. Phys. Commun. 157 (2004) 160-172.

[22] A. I. Ogoyski, S. Kawata and T. Someya, Compt. Phys. Commun. 161
(2004) 143-150.

[23] A. I. Ogoyski, S. Kawata, P. H. PopovCompt, Phys. Commun. 181
(2010) 1332-1333.

49

[24] W. D. Schulz, Two-Dimensional Lagrangian Hydrodynamic Difference
Equations, University of California Lawrence Radiation Laboratory Liv-
ermore, California, UCRL-6776, 1963.

[25] N. A. Tahir, K. A. Long, E. W. Laing, J. Appl. Phys. 60 (1986) 898.

[26] Ya. B. Zel’dovich, Yu. P. Raizer, Physics of Shock Waves and High-
Temperature Hydrodynamic Phenomena, Dover Books on Physics, New
York, 2002.

[27] J. Von Neumann and R. D. Richtmyer, J. Appl. Phys. 21 (1950) 232-237.

[28] J. P. Christianen, D. E. T. F. Ashby, and K. V. Roberts, Computer
Physics Communications 7 (1974) 271-287.

[29] A. R. Bell, Rutherford Laboratory Report, RL-80-091, 1981.

[30] G. S. Fraley, E. J. Linnebur, R. J. Mason, R. L. Morse, Phys. Fluids, 17
(1974) 474-489.

50

