Accepted Manuscript

A numerical routine for the crossed vertex diagram with a massive-particle loop

Roberto Bonciani, Giuseppe Degrassi, Pier Paolo Giardino, Ramona Gröber

PII: \quad S0010-4655(19)30092-X
DOI: https://doi.org/10.1016/j.cpc.2019.03.014
Reference: COMPHY 6761

To appear in: Computer Physics Communications
Received date: 14 December 2018
Revised date: 12 March 2019
Accepted date: 19 March 2019

Please cite this article as: R. Bonciani, G. Degrassi, P.P. Giardino et al., A numerical routine for the crossed vertex diagram with a massive-particle loop, Computer Physics Communications (2019), https://doi.org/10.1016/j.cpc.2019.03.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A Numerical Routine for the Crossed Vertex Diagram with a Massive-Particit Loop

Roberto Bonciani ${ }^{\text {a }}$, Giuseppe Degrassi ${ }^{\text {b }}$, Pier Paolo Giardino ${ }^{\text {c }}$, ku nonä Gröber ${ }^{\text {d,* }}$
${ }^{a}$ Dipartimento di Fisica, Sapienza - Università di Roma, 00 85, orr., Italy and INFN Sezione di Roma, 00185, Rome, Itaıy
${ }^{b}$ Dipartimento di Matematica e Fisica, Università di Roma 「 c , 0014v Rome, Italy and INFN, Sezione di Roma Tre, 00146 Ro ie, Ital's
${ }^{c}$ Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madri, 28049, Madrid, Spain
${ }^{d}$ Institut für Physik, Humboldt-Universität zu Berlin 1 u48.9 Derlin, Germany
and Institute for Particle Physics Phenomenology, Department of Ph ıcs, Durham University, Durham, DH1 3LE, UK

Abstract

We present an evaluation of the two master integrals 'or the crossed vertex diagram with a closed loop of top quarks that allows for an eas, nr aterical implementation. The differential equations obeyed by the master integrals a use to generate power series expansions centered around all the singular points. The dift ${ }^{n} \Theta_{1}{ }^{*}$ series are then matched numerically with high accuracy in intermediate points. $\quad . i$ calculation of the two master integrals in ant the regions of the phase space. A numerical routine that implements these expar $-n$ is presented.

Keywords: Feynman diagrams, $\mathrm{N}_{\perp} \cdot 1$ lti-loc) calculations

PROGRAM SUMMAR ${ }^{\text {C }}$

Program Title: elliptic
Program Files doi: http://d . गni.org/10.17632/kybzy5d84t. 1
Licensing provisions: CC By 4.0
Programming language: Fr itre 177
Nature of problem: Nunı ic .I computation of the two master integrals for the crossed ladder vertex diagram with m ssive ic p at two-loop level.
Solution method: Por ir sr ies xpansions around singular and regular points for positive and negative values in $x=-S / r^{2}$, ith m denoting the massive state in the loop and S the Madelstam invariant. The dif srent ories expansions are matched numerically.

1. Introduci: n

In the ' τs^{\prime} years, we witnessed an impressive progress in the analytic calculation of multi-loop Ft nman diagrams. This progress was mainly due to a procedure which is by

[^0]now standard and consists in the reduction of the dimensionally regularize scalar integrals to the Master Integrals (MIs) [1-13], and their calculation using the difierent. ${ }^{1}$ equations [4, 14-17].

With this procedure, it was possible to calculate massless quantu. ' orrections to important processes in collider physics, that are now known to three a. 1 fou loops [18-27]. These corrections can be usually expressed in terms of generalize . . plyluorithms (GPLs) [28-31]. While sometimes higher-order massive corrections can ilso oe cxpressed in terms of GPLs [32-36], they reveal in general a more complicated structu. ?. This is for instance the case of the two MIs of the equal-mass two-loop sunrise The elated system of firstorder linear differential equations cannot be decoupled and i, admi s solutions in terms of complete elliptic integrals of the first and second kind [37-ヶヵ)]. This is also the case of three[44, 45] and four-point functions [46-48] that were consic or 4 re ently and whose solutions are expressed as iterated integrals over elliptic kernels in . 1 tip.'. ${ }^{1}$ by polylogarithmic terms. The study of these new functions has just started [49-54].

In this article, we focus on the calculation of the twe MI of the vertex crossed topology with a closed heavy-quark loop. These two MIs were su. tied in detail in Ref. [45], where the authors worked out completely their solution in $\because \checkmark \mathrm{ms}$ of repeated integrations over elliptic kernels. They enter the calculation of several processe at the two-loop level in perturbation theory, as the production of top-antitop pairs in ha ronic collisions [47, 48, 55-61], di-photon or di-jet production [62] and they are par of t_{t} ? coefficients of the p_{T} expansion of the double Higgs production cross section, as dis us od in Ref. [63].

Our goal is to present a Fortran nuis *ival outine that can be easily used to evaluate the MIs for every real value of the dimensic less parameter $x=-S / m^{2}$, which the MIs depend on, with double precision. T... approach we use is a semi-analytical approach to the solution of the differential equ tions, j amely the expansion of the differential equation near singular points. It was pror oseu in Ref. [64] for the sunrise with three equal masses. In Ref. [44] the method was ap, lier to a three-point function ${ }^{1}$ occurring in the calculation of the MIs that are involved in he wo-loop corrections to the electroweak form factor [67, 68]. More recently, a si ilar approach was used in [69, 70].

The paper is structured as l^{11} lows. In Section 2, we discuss the MIs entering the 6denominator topology of $\mathrm{F}^{\prime} 1_{\xi} .1$. We focus on the two crossed MIs $\left(\mathcal{T}_{9}, \mathcal{T}_{10}\right)$ for which we present the relevant secu γ order linear differential equation that will be solved expanding the solution by series lear the singular points. Section 3 is devoted to the discussion of the solution for \mathcal{T}_{9} in th. rf sior $x \geq 0$. We present first the series in the two singular points $x=0$ and $x=16 \cdots$ d tı; matching. Then, we discuss the expansion at infinity and how it can be match d to t . e expansion at $x=16$. In Section 4, we present the solution for \mathcal{T}_{9} in the region $x<0$,btained via the analytic continuation in the high-energy time-like region. In Sf ction 5, we discuss the evaluation of the second master integral. Finally, in Section 6, wt preser ; the Fortran routine.

[^1]

Figure 1: The 6-denominator topology. Internal plain thin lines represe.. r assless propagators, while thick lines represent the massive propagator. External plain thin lines rer -sent. assless particles on their mass-shell.

2. The Differential Equations for the two crossed Ma-1or Integrals

We consider a process in which two massless partic 'os $\mathrm{w}^{\text {itl }}$ incoming momenta p_{1} and p_{2}, such that $p_{1}^{2}=p_{2}^{2}=0$, annihilate into a particle with mo nentum $p=p_{1}+p_{2}$. We define the Mandelstam invariant $S=-\left(p_{1}+p_{2}\right)^{2}$ and the dit. ons' nless parameter

$$
\begin{equation*}
x=-\frac{S}{m^{2}}=-s, \tag{1}
\end{equation*}
$$

where $s=S / m^{2}$ and m is the mass of a massiv , tate that runs into the loops.
The 6 -denominator topology we are in aste' in relevant for this process is shown in Fig. 1. The dimensionally regularized scalar intugrals belonging to that topology can be expressed in terms of

$$
\begin{equation*}
\int \mathcal{D}^{d} k_{1} \mathcal{D}^{d} k_{n} \frac{D_{7}^{a_{7}}}{\eta_{1}^{a_{1}} D_{2}^{a_{2}} D_{3}^{a_{3}} D_{4}^{a_{4}} D_{5}^{a_{5}} D_{6}^{a_{6}}} . \tag{2}
\end{equation*}
$$

In Eq. (2), $D_{i}, i=1, \ldots, 7$, are the \quad nomi rators to which the following routing is assigned

$$
\begin{align*}
D_{1, . .7}= & \left\{k_{1}^{2}+m^{2},\left(p_{1} \quad k\right)^{2}+m^{2}, k_{2}^{2}+m^{2},\left(p_{2}+k_{2}\right)^{2}+m^{2},\left(p_{1}-k_{1}-k_{2}\right)^{2},\right. \\
& \left.\left(p_{2}+k_{1}+, 2\right)^{2}\left(k_{1}+k_{2}\right)^{2}\right\}, \tag{3}
\end{align*}
$$

with k_{1} and k_{2} the loop mo renta; a_{i}, with $i=1, \ldots, 7$, are integer numbers, $d=4-2 \epsilon$ is the dimension of the snac. ime, and the normalization is such that ${ }^{2}$

$$
\begin{equation*}
\mathcal{D}^{d} k_{i}=\frac{d^{d} k_{i}}{4 \pi^{\frac{d}{2}} \Gamma(1+\epsilon)}\left(\frac{m^{2}}{\mu^{2}}\right)^{\epsilon}, \tag{4}
\end{equation*}
$$

where μ is the sca' ${ }^{\prime}$ of imensional regularization.
The redu cion the MIs of the family in Eq. (2) are performed using the computer programs FI، e $[7,1$) , 11] and Reduze $2[8,9]$. There are 10 MIs in total, shown in Fig. 2. All of them are niown in the literature from previous works [45, 68, 71, 72].

We foc 's n che evaluation of \mathcal{T}_{9} and \mathcal{T}_{10} using the semi-analytic approach followed in Refs. [64, 7.3]. We concentrate on the system of first-order linear differential equations

[^2]

Figure 2: Master Integrals. The convention for the lines is as in Fig. 1. T'e de reresents a propagator raised to the second power.
that involves the two coupled 6-denominator MIs \mathcal{T}_{9} and $\mathcal{T}_{\text {. }}$. ㄱ.. two MIs are finite in ϵ. Moreover, in all the processes mentioned in the introdu tio ${ }^{\imath}$, a the NNLO, they enter in the calculation of the finite part of the cross section s that n^{2} y the $\mathcal{O}\left(\epsilon^{0}\right)$ is needed. At the $\mathcal{O}\left(\epsilon^{0}\right)$, we find:

$$
\begin{align*}
\frac{d \mathcal{T}_{9}}{d x} & =-\frac{2}{x} \mathcal{T}_{9}+\frac{4 m^{2}}{x} \mathcal{T}_{10} \tag{5}\\
\frac{d \mathcal{T}_{10}}{d x} & =-\frac{1}{16 m^{2}}\left(\frac{1}{x}-\frac{1}{x-16}\right) \mathcal{T}_{9}-\left(\frac{1}{r}+\frac{1}{x-16}\right) \mathcal{T}_{10}+\Omega_{2}(x) \tag{6}
\end{align*}
$$

where $\Omega_{2}(x)$ contains the MIs of the subtof ${ }^{l}$ ogit and, at this order in ϵ, is a function that can be expressed in terms of logarithms and tuc carithms of the variable x.

The system is equivalent to a single -wad order linear differential equation for one of the two MIs involved. Let us consider \mathcal{T}_{9}. W. find:

$$
\begin{equation*}
\frac{d^{2} \mathcal{T}_{9}}{d x^{2}}-p(x) \frac{{ }^{\prime} \mathcal{T}_{9}}{c}+q(x) \mathcal{T}_{9}=\Omega(x) . \tag{7}
\end{equation*}
$$

The general solution of the secr nd order linear differential equation in Eq. (7) can be expressed as a linear combinatıu. (wi'n two unknown coefficients) of the two independent solutions of the homogeneo * part and a particular solution. If $\mathcal{T}_{9,1}^{(0)}$ and $\mathcal{T}_{9,2}^{(0)}$ are the two homogeneous solutions and $\tilde{\mathcal{T}}_{9}$ is the particular solution, we have

$$
\begin{equation*}
\mathcal{T}_{9}=c_{1} \mathcal{T}_{9,1}^{(0)}+c_{2} \mathcal{T}_{9,2}^{(0)}+\tilde{\mathcal{T}}_{9} . \tag{8}
\end{equation*}
$$

The two constants c an $i c_{2}$ have to be fixed imposing the initial conditions, for instance the value of the funci: 1 ar d its derivative in a given point of the real axis.

The actual fo ill of Eq. (7) has $\Omega(x)=\left(4 m^{2} / x\right) \Omega_{2}$ and

$$
\begin{align*}
p(n)= & \frac{4}{x}+\frac{1}{x-16}, \tag{9}\\
q(n)= & \frac{9}{4 x^{2}}-\frac{7}{64 x}+\frac{7}{64(x-16)}, \tag{10}\\
s_{\cdot}(x)= & \frac{1}{m^{4}}\left\{\frac{5}{64}\left[\frac{1}{256(x-16)}-\frac{1}{256 x}-\frac{1}{16 x^{2}}-\frac{1}{x^{3}}\right] H(-r,-r, x)\right. \\
& \left.+\frac{3}{64}\left[\frac{1}{16(x-16)}-\frac{1}{16 x}-\frac{1}{x^{2}}\right] \frac{H(r, 0, x)}{\sqrt{x(4-x)}}\right\}, \tag{11}
\end{align*}
$$

where we used the notation introduced in Refs. [68, 74] for the repeated ntegration over square roots

$$
\begin{align*}
H(-r,-r, x) & =\int_{0}^{x} \frac{d t}{\sqrt{t(t+4)}} \int_{0}^{t} \frac{d t^{\prime}}{\sqrt{t^{\prime}\left(t^{\prime}+4\right)}} \tag{12}\\
H(r, 0, x) & =\int_{0}^{x} \frac{d t}{\sqrt{t(4-t)}} \log t \tag{13}
\end{align*}
$$

The function $H(-r,-r, x)$ is real when $x \geq 0$. In the Minkow si reg on, $x \rightarrow-s-i 0^{+}$, with $s>0, H(-r,-r, x)$ is real if $0<s<4$. For $s>4$, it develops \imath^{n} im $\begin{aligned} & \text { ginary part due to the }\end{aligned}$ branch cut of the square root. The function $H(r, 0, x)$ is eal if $U<x<4$, while for $x>4$ the square root of the integrand has a branch cut. The at is purely imaginary and the sign depends on the sign of the small imaginary part m_{2} っt m_{i} add to x to chose on which part of the cut we are. The same happens for the scuare ro $\mathrm{t} \sqrt{x(4-x)}$ in Eq. (11). It is real for $0<x<4$ and purely imaginary for $x>4$. The ${ }^{\circ}$. bination $H(r, 0, x) / \sqrt{x(4-x)}$ is real on the entire $x>0$ axis. Using consistently the \cdot me prescription for $H(r, 0, x)$ and for $\sqrt{x(4-x)}$, we find that the ratio is real and \imath dependent on the prescription used.

The two functions $H(-r,-r, x)$ and $H(r, \cap r)$ can be easily expressed in terms of logarithms and polylogarithms performing a chans'ri variable [75, 76]. For $H(-r,-r, x)$, we define

$$
\begin{equation*}
x=\frac{(:-c)}{\square}, \tag{14}
\end{equation*}
$$

with

$$
\begin{equation*}
\xi=\frac{\sqrt{r+1}}{\sqrt{r+4}}-\frac{\sqrt{x}}{\sqrt{x}}, \quad 0<x<\infty \tag{15}
\end{equation*}
$$

In terms of ξ we can write

$$
\begin{equation*}
I(-,-r, x)=\frac{1}{2} \ln ^{2}(\xi) . \tag{16}
\end{equation*}
$$

For $H(r, 0, x)$, we define

$$
\begin{equation*}
x=\frac{\left(1+\xi^{\prime}\right)}{\xi^{\prime}} \tag{17}
\end{equation*}
$$

with

$$
\begin{equation*}
\xi^{\prime}=\frac{\sqrt{4-x}+i \sqrt{x}}{\sqrt{4-x}-i \sqrt{x}}, \quad 0<x<4 \tag{18}
\end{equation*}
$$

and we can writ.

$$
\begin{equation*}
4(r, 0, x)=\pi \ln \left(\xi^{\prime}\right)-i\left(2 \zeta_{2}-\frac{1}{2} \ln ^{2}\left(\xi^{\prime}\right)-2 \operatorname{Li}_{2}\left(\xi^{\prime}\right)\right) \tag{19}
\end{equation*}
$$

The analy montinuation of the expressions in Eqs. $(16,19)$ for other values of the variable x is discuss ${ }^{d}$ in [76].

Eq. (7) be'ongs to the Fuchs class, i.e. it has regular singular points only, eventually including the point at infinity. In our case, the singularities on the real axis are located at $x=0, x=16$, while also the point at infinity, $x=\infty$, is singular, as can be seen replacing the variable x with $y=1 / x$ and studying the equation in $y=0$.

The solution of the homogeneous equation associated to Eq. (7) car he expressed in terms of complete elliptic integrals of the first kind, and the particular sotution : expressed as repeated integrations over the elliptic kernel, as it was discussed ir. de tail in Ref. [45]. However, in this paper we are going to use another approach for the su' ${ }^{\prime}$, on of the secondorder differential equation. We will use the differential equation to coner te power series expansions around the singular points and at infinity. Each series in deter nined up to two arbitrary constants. We will impose the constants of the serie in $c=0$, since we know the initial conditions for \mathcal{T}_{9} in that point. Then, the series are muched two-by-two in a point which lies inside both convergence domains. In this wa ', we ill be able to fix all the constants and have a representation by series on the whole rea' axis. Jur ultimate goal is to be able to evaluate precisely the function \mathcal{T}_{9} on the whole real axis. In order to achieve the required precision it can be useful to supplement the or riv al e pansion in $x=0, x=16$ and infinity, with additional expansions around regulaı nint.

Once the first master integral \mathcal{T}_{9} has been determined, w can find the expression of the second, \mathcal{T}_{10}, using Eq. (5):

$$
\begin{equation*}
\mathcal{T}_{10}=\frac{x}{4 m^{2}} \frac{d \mathcal{T}_{9}}{d x}+\frac{1}{2 m^{2}} \because \tag{20}
\end{equation*}
$$

3. \mathcal{T}_{9} evaluation for $x \geq 0$

In this Section we discuss the solution $:$ Fq. (7) in the region $x \geq 0 . \mathcal{T}_{9}$ is obtained through the series in the singular regular por ts $x=0, x=16$ and $x=\infty$ that are then matched to cover the entire region $x \geq i$ in all points, we first solve the homogeneous equation and then the complete equation, obtaining all the coefficients of the series in terms of the first two unknown coefficient . 1. 'se unknowns will be fixed from the behaviour of the solution in one point, with the natchi 1 g procedure.

3.1. The solution around $x=r$

The point $x=0$ allows us to n, se the initial conditions and, therefore, to determine the two constants of integr wi n that come from the general solution of the second-order linear differential equation (7). Fur this purpose, it is sufficient to know the behaviour of the master \mathcal{T}_{9} for $x \rightarrow$ ' th t can be obtained, for example, via a large-mass asymptotic expansion of the integral,

$$
\begin{equation*}
\mathcal{T}_{9} \sim \log x \quad \text { for } x \rightarrow 0 \tag{21}
\end{equation*}
$$

This implies that in os oslution no terms with inverse powers of x appear, fixing the constants of inte, ratior

We first cons, ${ }^{\text {ler }}$ the homogeneous equation

$$
\begin{equation*}
\frac{d^{2} \mathcal{T}_{9}^{(0)}}{d x^{2}}+p(x) \frac{d \mathcal{T}_{9}^{(0)}}{d x}+q(x) \mathcal{T}_{9}^{(0)}=0 \tag{22}
\end{equation*}
$$

The funct. ns $p(\cdot$.$) and q(x)$ have the following expansion in $x=0$:

$$
\begin{align*}
& p(x) \simeq \frac{4}{x}-\frac{1}{16}-\frac{x}{256}-\frac{x^{2}}{4096}+\ldots \tag{23}\\
& q(x) \simeq \frac{9}{4 x^{2}}-\frac{7}{64 x}-\frac{7}{1024}-\frac{7 x}{16384}-\frac{7 x^{2}}{262144}+\ldots \tag{24}
\end{align*}
$$

Since $x=0$ is a singular regular point, we look for a power series solutior of the form:

$$
\begin{equation*}
\mathcal{T}_{9}^{(0)}(x)=x^{\alpha} \sum_{n=0}^{\infty} a_{n} x^{n} \tag{25}
\end{equation*}
$$

where a_{n} are numerical coefficients determined from the differential equ ${ }^{-}$tion itself and from the initial conditions. Substituting the solution (25) in Eq. (22), w outain the characteristic equation for the determination of α :

$$
\begin{equation*}
\left(\alpha+\frac{3}{2}\right)^{2}=0 \tag{26}
\end{equation*}
$$

with double solution in $\alpha=-3 / 2$. The fact that we 'rave coinciding solutions for α constrains the prefactor of only one of the two indepe. .ent slutions of the differential equation. This will be of the form $1 /(x \sqrt{x})$. Let us cart ${ }^{\text {this }}$ nrst solution $\mathcal{T}_{9,1}^{(0)}$ and let us look for a second solution, independent from $\mathcal{T}_{9,1}^{(0)}$, of \imath_{e} form $\mathcal{T}_{9,2}^{(0)}=\mathcal{T}_{9,1}^{(0)} g(x)$. Substituting in Eq. (22) and using the fact that $\mathcal{T}_{9,1}^{(0)}$ is a solution, ve find for $g(x)$ a differential equation that admits a \log arithmic behaviour, $\log (x)$ a \therefore wowin, a power series. Therefore, the general solution of the homogeneous differential equ +ion (22) takes the form

$$
\begin{equation*}
\mathcal{T}_{9}^{(0)}(x)=\frac{1}{\sqrt{x}} \sum_{n=-1}^{\infty}{ }_{r_{n}} x^{n}-\frac{\log x}{\sqrt{x}} \sum_{n=-1}^{\infty} b_{n} x^{n} \tag{27}
\end{equation*}
$$

where we have absorbed a $1 / x$ factor ins. \downarrow © series. The series (27) converges in a circle of radius $r=16$, i.e. up to the nearest divery nce point on the real axis.

Expanding now the differential $\mathrm{y}^{\text {ation (22) }}$ in $x=0$ and substituting the general solution (27), we can fix all the cof ficients of the series in terms of the first two coefficients, a_{-1} and b_{-1}, that are the unkno mn cu st ints to be fixed using the initial conditions. The first few coefficients are:

$$
\begin{align*}
& a_{0}=\frac{1}{64} a_{-1}+\frac{1}{{ }_{3}} b_{-1}, \quad b_{0}=\frac{1}{64} b_{-1}, \tag{28}\\
& a_{1}=\frac{9}{1638^{4}}{ }_{-1}+\frac{\Sigma^{1}}{16384} b_{-1}, \quad b_{1}=\frac{9}{16384} b_{-1}, \tag{29}\\
& a_{2}=\frac{25}{10} \frac{2576}{},+\frac{185}{3145728} b_{-1}, \quad b_{2}=\frac{25}{1048576} b_{-1} . \tag{30}
\end{align*}
$$

The general solution $i \cdot \mathcal{T}^{(\prime)}$ is a combination of two independent solutions, that can be found imposing, 'or instance, $a_{-1}=1$ and $b_{-1}=0$ (pure power series, to be identified as $\mathcal{T}_{9,1}^{(0)}$ in Eq. (8)) ir $a_{-1}=0$ and $b_{-1}=1$ (power series plus power series times a logarithm of x, to be id nlified as $\mathcal{T}_{9,2}^{(0)}$ in Eq. (8)).

Let us nc v cons der the complete equation, Eq. (7), and look for a particular solution. The expansion \sim.ne function $\Omega(x)$ around $x=0$ is 3

$$
\begin{equation*}
\Omega(x)=\sum_{n=-2}^{\infty} k_{n} x^{n}+\log x \sum_{n=-2}^{\infty} r_{n} x^{n}, \tag{31}
\end{equation*}
$$

[^3]with first coefficients
\[

$$
\begin{align*}
k_{-2} & =\frac{1}{128}, & r_{-2} & =-\frac{3}{128}, \tag{32}\\
k_{-1} & =\frac{21}{2048}, & r_{-1} & =-\frac{11}{2048}, \tag{33}\\
k_{0} & =\frac{10549}{7372800}, & r_{0} & =-\frac{83}{1<28}+0, \tag{34}
\end{align*}
$$
\]

Therefore, the inhomogeneous term has a double pole in $x=0$, mı ${ }^{1}$ tiplied also by a single $\log x$. We look for a particular solution of Eq. (7) in $x=0 o_{1}$ the fc m:

$$
\begin{equation*}
\widetilde{\mathcal{T}}_{9}(x)=\sum_{n=-1}^{\infty} p_{n} x^{n}+\log x \sum_{n=-1}^{\infty} y_{n} x^{n} \tag{35}
\end{equation*}
$$

Substituting Eq. (35) in the second-order differential uat on expanded around $x=0$ we obtain, as in the case of the general solution of the how ogeneous equation, terms p_{n} and q_{n} that depend on p_{-1} and q_{-1}. However, in this can ' we are looking for a particular solution, since the general solution of the homogeneous equatın is already known by Eq. (27). We can then choose to set

$$
\begin{equation*}
p_{-1}=C \quad q_{-}=0 \tag{36}
\end{equation*}
$$

finding the following first terms of the sories 1. Eq. (35):

$$
\begin{array}{ll}
p_{0}=\frac{5}{288}, & q_{0}=-\frac{1}{96}, \\
p_{1}=\frac{77}{28800}, & q_{1}=-\frac{1}{960}, \\
p_{2}=\frac{12^{?}}{56^{4} 48}, & q_{2}=-\frac{1}{8960} .
\end{array}
$$

The general solution of the con. nlete equation is therefore:

$$
\begin{equation*}
\mathcal{T}_{9}(x)=\frac{1}{\sqrt{n}} \sum_{n=-1}^{\infty} a_{n} x^{n}+\frac{\log x}{\sqrt{x}} \sum_{n=-1}^{\infty} b_{n} x^{n}+\sum_{n=0}^{\infty} p_{n} x^{n}+\log x \sum_{n=0}^{\infty} q_{n} x^{n} \tag{40}
\end{equation*}
$$

To determine comple, iv \dagger he solution, we have to impose the initial conditions. Since $\mathcal{T}_{9}(x)$ can have a mos+ a logarithmic singularity for $x \rightarrow 0$, the coefficients of the power singularities mus vanis:

$$
\begin{equation*}
a_{-1}=0, \quad b_{-1}=0 \tag{41}
\end{equation*}
$$

and, as a cor sequen se, all the a_{n} and b_{n} coefficients vanish.
Therefore, liw olution of the complete equation reduces to

$$
\begin{equation*}
\mathcal{T}_{9}(x)=\sum_{n=0}^{\infty} p_{n} x^{n}+\log x \sum_{n=0}^{\infty} q_{n} x^{n}, \tag{42}
\end{equation*}
$$

where the first few coefficients p_{n} and q_{n} are given in Eqs. (37-39).

The solution given in Eq. (42) is real for $x>0$. However, in the nhysical region, $x<0(s>0)$, it develops an imaginary part that can be determined using i. \sim Feynman prescription $x \rightarrow-s-i 0^{+}$. This means that the logarithmic terms de elop an explicit imaginary part:

$$
\begin{equation*}
\log x \rightarrow \log s-i \pi \tag{43}
\end{equation*}
$$

Then, $\mathcal{T}_{9}(x)$ becomes complex for $x<0(s>0)$ with:

$$
\begin{align*}
& \left.\operatorname{Re} \mathcal{T}_{9}(s)=\sum_{n=0}^{\infty} p_{n}(-s)^{n}+\log s \sum_{n=0}^{\infty} q_{n},-s\right)^{n} \tag{44}\\
& \operatorname{Im} \mathcal{T}_{9}(s)=-\pi \sum_{n=0}^{\infty} q_{n}(-s)^{n} \tag{45}
\end{align*}
$$

3.2. The solution around $x=16$

The series in $x=0$ is completely determined. 1in follc sing singular regular point we have to consider is $x=16$. Since the singular point , ' 'sest to $x=16$ is $x=0$, the radius of convergence of the series in $x=16$ is $r=16$.

As in the previous subsection, we write $T_{9}^{(0)}$ as

$$
\begin{equation*}
\mathcal{T}_{9}^{(0)}(x)=(x-\underbrace{\alpha} \sum_{n}^{\alpha} a_{n}(x-16)^{n} \tag{46}
\end{equation*}
$$

and solving the characteristic equation w. obtain a double solution $\alpha=0$ Therefore, the homogeneous equation has a solution of the turm:

$$
\begin{equation*}
\mathcal{T}_{9}^{(0)}(x)=\sum_{n=0}^{\infty} a_{n}(x-16)+\log (x-16) \sum_{n=0}^{\infty} b_{n}(x-16)^{n} . \tag{47}
\end{equation*}
$$

The coefficients are, of course $u^{\circ}{ }^{\sigma}$ rer 。 from the ones of the previous section, although we use the same notation to a id intruducing too many symbols. The first few coefficients read:

$$
\begin{array}{ll}
a_{1}=-\frac{7}{64}-\frac{1}{32} b_{0}, & b_{1}=-\frac{7}{64} b_{0} \\
a_{2}=\frac{1,3}{1 \cdot \frac{3}{28}} a_{0}+\frac{69}{16384} b_{0}, & b_{2}=\frac{153}{16384} b_{0} \\
a_{3}=-\frac{1283}{10} b_{0}, & b_{3}=-\frac{759}{1048576} b_{0} . \tag{50}
\end{array}
$$

As discussed in the _- vious section, we find the homogeneous solution as a combination of two indep ndent olutions: the first can be found imposing $a_{0}=1$ and $b_{0}=0$ and it is a pure power st ies; + te second, imposing $a_{0}=0$ and $b_{0}=1$, resulting in a power series plus a power $\& \therefore$ multiplied by a logarithm of $(x-16)$.

In orde $+\rho$ find a particular solution, we must study the non-homogeneous term. Its expansion aro nd $x=16$ is of the following form:

$$
\begin{equation*}
\Omega(x)=\sum_{n=-1}^{\infty} q_{n}(x-16)^{n} \tag{51}
\end{equation*}
$$

where the first three coefficients q_{n} are:

$$
\begin{align*}
q_{-1}= & -\frac{3}{4096 \sqrt{3}} \operatorname{Li}_{2}(-7+4 \sqrt{3})-\frac{3}{16384 \sqrt{3}} \log ^{2}(7-4 \sqrt{3})+\frac{5}{8192} \operatorname{lo}_{0}(2+\sqrt{5}) \\
& -\frac{3}{8192 \sqrt{3}} \zeta_{2}, \tag{52}\\
q_{0}= & \frac{19}{131072 \sqrt{3}} \operatorname{Li}_{2}(-7+4 \sqrt{3})+\frac{19}{524288 \sqrt{3}} \log ^{2}(7-4 \sqrt{3})-\frac{1}{n 72} \log ^{2}(2+\sqrt{5}) \\
& +\frac{5}{65536 \sqrt{5}} \log (2+\sqrt{5})-\frac{1}{16384} \log (2)+\frac{19}{262144 \sqrt{3}}{ }^{2}, \tag{53}\\
q_{1}= & -\frac{161}{8388608 \sqrt{3}} \operatorname{Li}_{2}(-7+4 \sqrt{3})-\frac{161}{3355442 \sqrt{3}} \log ^{2}\left(7-\operatorname{l}^{\sqrt{3}} 3\right)+\frac{15}{1048576} \log ^{2}(2+\sqrt{5}) \\
& -\frac{69}{4194304 \sqrt{5}} \log (2+\sqrt{5})+\frac{15}{1048576} \log (2)-\frac{101}{1677} \zeta_{216 \sqrt{3}}^{215} . \tag{54}
\end{align*}
$$

In particular, note that there is no logarithmic term . Eq. (51).
The particular solution of the non-homogenc is equation in $x=16$ reads:

$$
\begin{equation*}
\widetilde{\mathcal{T}}_{9}(x)=\sum_{n=0}^{\infty} r_{n}(x-16)^{n}+\mathrm{l}_{\varepsilon} \cdot(x-16) \sum_{n=0}^{\infty} p_{n}(x-16)^{n} . \tag{55}
\end{equation*}
$$

The coefficients r_{i} and p_{i} depend on the r_{0}, nd p_{0}, which are undetermined. However, since we are looking for a particular solu: ${ }^{\prime}$ n we can set from the beginning $r_{0}=0$ and $p_{0}=0$. This, in turn, forces the entire series of the logarithmic part of Eq. (55) to vanish, $p_{n}=0$ for all $n=1,2, \ldots$. Ther iore, ve have a simple power series, with the first three terms given by:

$$
\begin{align*}
& r_{1}=-\frac{3}{4096 \sqrt{3}} \operatorname{Li}_{2}\left(-7+4 \downarrow^{\overline{2}}\right)-\frac{3}{1} \frac{384 \sqrt{3}}{\log ^{2}(7-4 \sqrt{3})+\frac{5}{8192} \log ^{2}(2+\sqrt{5}) ~} \\
& -\frac{3}{8192 \sqrt{3}} \zeta_{2} \text {, } \tag{56}\\
& \left.r_{2}=\frac{107}{1048576 \sqrt{3}} \operatorname{Li}_{2},-7+4 \sqrt{3}\right)+\frac{107}{4194304 \sqrt{3}} \log ^{2}(7-4 \sqrt{3})+\frac{5}{262144 \sqrt{5}} \log (2+\sqrt{5}) \\
& -\frac{175}{2097152} 1 \mathrm{~g}^{2}(2+\sqrt{5})-\frac{1}{65536} \log (2)+\frac{107}{2097152 \sqrt{3}} \zeta_{2}, \tag{57}\\
& r_{3}=-\frac{61}{60397} \frac{\lrcorner 3}{776 \sqrt{3}} \operatorname{Li}_{2}(-7+4 \sqrt{3})-\frac{6133}{2415919104 \sqrt{3}} \log ^{2}(7-4 \sqrt{3}) \\
& -\frac{157}{5(331648} \overline{\sqrt{5}} \log (2+\sqrt{5})+\frac{9865}{120795955} \log ^{2}(2+\sqrt{5})+\frac{11}{4194304} \log (2) \\
& { }^{1} 21 \text { ryu } 9552 \sqrt{3} \zeta_{2} \text {. } \tag{58}
\end{align*}
$$

The gener 1 solution of the differential equation is given by

$$
\begin{equation*}
\mathcal{T}_{9}(x)=\sum_{n=0}^{\infty} a_{n}(x-16)^{n}+\log (x-16) \sum_{n=0}^{\infty} b_{n}(x-16)^{n}+\sum_{n=0}^{\infty} r_{n}(x-16)^{n} . \tag{59}
\end{equation*}
$$

Note that the integral $\mathcal{T}_{9}(x)$ should be real in the Euclidean region. Howe $\mathfrak{}$ r, the logarithmic terms, that come from the homogeneous solution, are responsible of the ppearance of an imaginary part that cannot be there. We have, therefore, to ; np se that $b_{0}=0$. This condition implies that the logarithmic part of the expansion vanı completely. The solution in Eq. (59) becomes a simple power series and depends on . sing. condition, a_{0}, that can be fixed as explained in the following section.

3.3. Matching the series in $x=0$ and $x=16$

The series expansion around $x=0$ is completely deter fined y imposing the initial conditions. The series in $x=16$, instead, depends on a $\sin _{\varepsilon}{ }^{1} \mathrm{e}$ un .etermined constant of integration, a_{0}. We can compute a_{0}, imposing that thr serios in $x=0$ and the one in $x=16$ assume the same value in a given point in the inte cor tiol of the respective domains of convergence. Since both series have radius of con reetee $r=16$, in principle it is sufficient to impose that both series have the same value in any point $x \in(0,16)$.

Dealing with infinite series would exactly determint the ioefficient a_{0}. However, we can only determine an arbitrary, but finite, number of coe ${ }^{n}$ rients of both series. Therefore, a_{0} will be determined in an approximate way.

The number of terms in the series depend on the 1 lative precision at which we want to be able to compute $\mathcal{T}_{9}(x)$ in a given point of t_{1} e r aar axis. Our goal is to provide a double precision numerical routine, using a relativ ${ }^{\prime} v \mathrm{sn} . \mathrm{ll}^{\prime}$ number of terms in the series (around 50 or less).

If we want to use just the series in $x-0,16=16$ and we want to be able to provide such a precision, we have to deal with a large . - mber of terms in the series. In order to keep the number of terms of the order $\mathrm{o}^{f}=$? and relative double precision within the interval $0<x<16$, we have to add series 1 inter nediate points.

All the points in the interval $x \in(1) j$) are regular points for the differential equation and they will result in simple ,ow r series (without the logarithmic part). In particular, we added series in $x=2$, 4, anc. 9 . The procedure of matching is, therefore, performed as follows. We match the s^{\prime} ios in $x=0$ with the one in $x=2$. As a matching point we choose $x=1.5$. Then, in the polı ${ }^{\star} x=3.25$ the series in $x=2$ is matched with the one in $x=4$, while in $x=6, \mathrm{t}^{\mathrm{l}}$ e s ries in $x=4$ is matched with the one in $x=8$. Finally, the series in $x=8$ is matche. ' ' ith the one in $x=16$, in the point $x=12$.

The actual point n whic. we match two series is of course arbitrary. Nevertheless, a bad choice would lo or she srecision of the matched series. This would, in turn, lower the precision for all $x \sim$ bove ${ }^{11}$ e matching point. A possible approach for a good choice is the following. We fis it star with a point that assures a good convergence for both the series and we determint the , nknown constants. Then, we vary a bit the point of the matching and we look at the corresponding variation of the significant digits of the constants. A good matchi. of poir maximises the number of stable digits in the result for the unknown constants

3.4. The sou tion around $x=\infty$

We consider now the expansion of \mathcal{T}_{9} around $x=\infty$. Since the closest singularity to $x=\infty$ is at $x=16$, we expect the expansion around infinity to be convergent outside the circle of radius 16 , i.e. for $|x|>16$.

The expansion at infinity can be studied systematically by perform $\cdot \sigma$ the following change of variable $x=1 / y$ and, then, considering the limit $y \rightarrow 0$.

The homogeneous equation in $y \rightarrow 0$ limit reads

$$
\begin{equation*}
\frac{d^{2} \mathcal{T}_{9}^{(0)}}{d y^{2}}-\frac{3}{y} \frac{d \mathcal{T}_{9}^{(0)}}{d y}+\frac{4}{y^{2}} \mathcal{T}_{9}^{(0)}=0 \tag{60}
\end{equation*}
$$

We look for a solution of the form

$$
\begin{equation*}
\mathcal{T}_{9}^{(0)}(y)=y^{\beta} \sum_{n=0}^{\infty} A_{n} y^{n} \tag{61}
\end{equation*}
$$

The characteristic equation gives $(\beta-2)^{2}=0$, with a dc $1 \mathrm{bl} \quad \mathrm{Lt} . \mathrm{o}$ in $\beta=2$. Therefore, the solution of the homogeneous equation, in the original variable $=1 / y$ is

$$
\begin{equation*}
\mathcal{T}_{9}^{(0)}(x)=\sum_{n=2}^{\infty} \frac{a_{n}}{x^{n}}-\operatorname{loo} x \sum_{=2}^{\infty} \frac{b_{n}}{x^{n}}, \tag{62}
\end{equation*}
$$

with the coefficients a_{n} and b_{n} expressed in terı of the lowest-order ones, a_{2} and b_{2} as shown for the first few terms:

$$
\begin{array}{ll}
a_{3}=4 a_{2}+8 b_{2}, & b_{3}=4 b_{2}, \\
a_{4}=36 a_{2}+84 b_{2}, & b_{4}=36 b_{2}, \\
a_{5}=400 a_{2}+2960 b_{2}, & b_{5}=400 b_{2} .
\end{array}
$$

The expansion of the non-homognonous term $\Omega(x)$ around $x=\infty$ is of the form:

$$
\begin{equation*}
\Omega(x)=\sum_{n=0}^{\infty} \frac{n_{n}}{x^{n}}-l_{r} x \sum_{n=0}^{\infty} \frac{l_{n}}{x^{n}}+\log ^{2} x \sum_{n=0}^{\infty} \frac{m_{n}}{x^{n}}, \tag{66}
\end{equation*}
$$

where the lowest-order coeffi ients ~.d:

$$
\begin{array}{lll}
k_{0}=-\frac{3}{4} \zeta_{2}, & l_{0}=0, & m_{0}=\frac{1}{4} \\
k_{1}=\frac{3}{2}-\frac{2}{2}, & l_{1}=-4, & m_{1}=\frac{13}{4} \\
k_{2}=\frac{24}{8}-\frac{41}{2}, 2, & l_{2}=-\frac{131}{2}, & m_{2}=\frac{199}{4} .
\end{array}
$$

The different al equ tion involves a second derivative and the non-homogeneous term has double logarı hmic erms. Therefore, the particular solution must contain up to four powers of the ogaritnm:

$$
\begin{equation*}
\widetilde{\mathcal{T}}_{9}(x)=\sum_{r=2}^{\infty} \frac{p}{x^{n}}-\log x \sum_{n=2}^{\infty} \frac{q_{n}}{x^{n}}+\log ^{2} x \sum_{n=2}^{\infty} \frac{r_{n}}{x^{n}}-\log ^{3} x \sum_{n=2}^{\infty} \frac{u_{n}}{x^{n}}+\log ^{4} x \sum_{n=2}^{\infty} \frac{t_{n}}{x^{n}} . \tag{70}
\end{equation*}
$$

Substituting \llcorner 'q. (70) into the non-homogeneous equation, we obtain the following first few coefficients:

$$
\begin{equation*}
p_{2}=0, \quad p_{3}=7+\frac{3}{2} \zeta_{2}, \quad p_{4}=\frac{1075}{16}-\frac{15}{8} \zeta_{2}, \tag{71}
\end{equation*}
$$

$$
\begin{align*}
& q_{2}=0, \tag{72}\\
& q_{3}=-1-6 \zeta_{2}, \\
& q_{4}=-\frac{91}{4}-r_{0}, \\
& r_{2}=-\frac{3}{8} \zeta_{2}, \quad r_{3}=-\frac{7}{4}-\frac{3}{2} \zeta_{2}, \tag{73}\\
& r_{4}=-\frac{185}{1}-\frac{27}{2} \zeta_{2}, \\
& u_{2}=0, \quad u_{3}=\frac{2}{3}, \tag{74}\\
& t_{2}=\frac{1}{48}, \quad t_{3}=\frac{1}{12}, \tag{75}\\
& u_{4}=7 \text {, } \\
& t_{4}=\frac{3}{1}
\end{align*}
$$

Finally, the general solution is given by:

$$
\begin{equation*}
\mathcal{T}_{9}(x)=\sum_{n=2}^{\infty} \frac{\tilde{p}_{n}}{x^{n}}-\log x \sum_{n=2}^{\infty} \frac{\tilde{q}_{n}}{x^{n}}+\log ^{2} x \sum_{n=2}^{\infty} \frac{r_{n}}{x^{n}}-\log ^{3} x \sum_{n=2}^{\infty} x_{n} x_{n}+\log ^{4} x \sum_{n=2}^{\infty} \frac{t_{n}}{x^{n}} \tag{76}
\end{equation*}
$$

where we set:

$$
\begin{equation*}
\tilde{p}_{n}=p_{n}+a_{n}, \quad \tilde{q}_{n}=-q_{n}^{\prime}-h \tag{77}
\end{equation*}
$$

The coefficients of the power series and of the singln 1 , orithm depend upon the two constants of integration, while the coefficients of the I^{\prime} 'uble, triple and fourth logarithm are uniquely determined. As in the case of the s. $\mathrm{s}_{\mathrm{n}} \mathrm{in}^{r}=16$, the two constants have to be determined matching the solution in $x=\infty \mathrm{w}^{+} \mathrm{n}$ the one in $x=16$, in an intermediate point chosen in the range $16<x<32$ (t.terıs in $x=16$ has radius of convergence $r=16$). However, in order to improve the p. acision in the determination of the integral $\mathcal{T}_{9}(x)$, without adding too many terms in the series expansions, it is better to add the expansions in three additional regular points: $x=32, x=64$ and $x=128$, before the matching with $x=\infty$.

4. \mathcal{T}_{9} evaluation for $x<0(3>0)$

The solution for \mathcal{T}_{9} in the reglu. <0 can be constructed starting from the expansion of the amplitude $\mathcal{T}_{9}(x)$ for atc time-like momenta, namely for $x \rightarrow-\infty(s \rightarrow \infty)$, that can be found from the asrmptotic expansion in the space-like region $(x \rightarrow \infty)$ by analytic continuation. With the eyr man prescription

$$
\begin{equation*}
x \rightarrow-s-i 0^{+} \tag{78}
\end{equation*}
$$

we have to considen thaı ${ }^{+}$'e logarithm develops an imaginary part as in Eq. (43):

$$
\begin{equation*}
\log x \rightarrow \log s-i \pi \tag{79}
\end{equation*}
$$

Then $\mathcal{T}_{9}(s)$ l ecomes complex and its real and imaginary parts are given by:

$$
\begin{align*}
\operatorname{Re} \mathcal{T}_{9}(.)= & \sum_{n=2}^{\infty}(-1)^{n} \frac{\tilde{p}_{n}}{s^{n}}-\log s \sum_{n=2}^{\infty}(-1)^{n} \frac{\tilde{q}_{n}}{s^{n}}+\left(\log ^{2} s-\pi^{2}\right) \sum_{n=2}^{\infty}(-1)^{n} \frac{r_{n}}{s^{n}}-\left(\log ^{3} s\right. \\
& \left.-3 \pi^{2} \log s\right) \sum_{n=2}^{\infty}(-1)^{n} \frac{u_{n}}{s^{n}}+\left(\log ^{4} s-6 \pi^{2} \log ^{2} s+\pi^{4}\right) \sum_{n=2}^{\infty}(-1)^{n} \frac{t_{n}}{s^{n}}, \tag{80}
\end{align*}
$$

$$
\begin{align*}
\operatorname{Im} \mathcal{T}_{9}(s)= & \pi\left[-\sum_{n=2}^{\infty}(-1)^{n} \frac{\tilde{q}_{n}}{s^{n}}+2 \log s \sum_{n=2}^{\infty}(-1)^{n} \frac{r_{n}}{s^{n}}-\left(3 \log ^{2} s-\pi^{2}\right) \sum_{n=2}^{\infty}-1\right)^{n} \frac{u_{n}}{s^{n}} \\
& \left.+\left(4 \log ^{3} s-4 \pi^{2} \log s\right) \sum_{n=2}^{\infty}(-1)^{n} \frac{t_{n}}{s^{n}}\right] \tag{81}
\end{align*}
$$

The series in $x=0$ has a convergence radius $r=16$ and the erif, infinity converges in $|x|>16$. In order to determine \mathcal{T}_{9} in all points of the time-like . .qion with the required precision, we need additional expansion points to sew the ser es at intinity with the one in $x=0$. Since in the region $-\infty<x<0(0<s<\infty)$ the e are oo singular points, the points to be added will be regular points, and the correspr ning ouries will be simple power series.

We added the following points: $s=4, s=8, s=16 s=39 s=64$ and finally $s=128$. We will discuss extensively just $s=16$.

4.1. The solution around $s=16$

The point $s=16$ is a regular point. The cun, ue expansion of the homogeneous solution is a power series

$$
\begin{equation*}
\mathcal{T}_{9}^{(0)}(s)=\sum_{n}^{\infty} a_{i}(,-16)^{n} \tag{82}
\end{equation*}
$$

with the first few coefficients given in terms c. a_{0} and a_{1} by

$$
\begin{align*}
& a_{2}=-\frac{25}{n 96} a_{0}-\frac{9}{64} a_{1} \tag{83}\\
& a_{3}=\frac{53}{u_{5} \cdot 3 f} \iota_{0}+\frac{57}{4096} a_{1} \tag{84}\\
& a_{4}=-\frac{7859}{00663296} a_{0}-\frac{39}{32768} a_{1} \tag{85}
\end{align*}
$$

The expansion of the in' nogeneous term around $s=16$ is of the following form

$$
\begin{equation*}
\Omega(s)=\sum_{n=1}^{\infty} q_{n}(s-16)^{n}, \tag{86}
\end{equation*}
$$

where

$$
\begin{align*}
q_{1}= & \frac{5}{209715 亡} \sqrt{\sqrt{3}} \log (2+\sqrt{3})+\frac{51}{10485760 \sqrt{5}} \operatorname{Li}_{2}\left(\frac{1}{(2+\sqrt{5})^{2}}\right) \\
& +\frac{51}{10} \frac{585760 / \sqrt{5}}{} \log (2+\sqrt{5})^{2}-\frac{35}{8388608} \log (2+\sqrt{3})^{2}-\frac{3}{2621440} \log (2) \\
& -\frac{105}{10450,60 \sqrt{5}} \zeta(2)+\frac{105}{16777216} \zeta(2)-i \pi\left[\frac{5}{4194304 \sqrt{3}}+\frac{51}{10485760 \sqrt{5}} \log (2+\sqrt{5})\right. \\
& \left.-\frac{3}{10485760}-\frac{35}{8388608} \log (2+\sqrt{3})\right], \tag{87}\\
q_{2}= & -\frac{245}{402653184 \sqrt{3}} \log (2+\sqrt{3})-\frac{4389}{6710886400 \sqrt{5}} \operatorname{Li}_{2}\left(\frac{1}{(2+\sqrt{5})^{2}}\right)
\end{align*}
$$

$$
\begin{align*}
& -\frac{4389}{6710886400 \sqrt{5}} \log (2+\sqrt{5})^{2}+\frac{1}{62914560}+\frac{155}{268435456} \log (2+\sqrt{ } \sqrt{ })^{2} \\
& \left.+\frac{231}{838860800} \log (2)+\frac{4389}{6710886400 \sqrt{5}} \zeta(2)-\frac{465}{536870912} \zeta(2)-i \pi \right\rvert\,-\frac{245}{805306368 \sqrt{3}} \\
& \left.-\frac{4389}{6710886400 \sqrt{5}} \log (2+\sqrt{5})+\frac{231}{3355443200}+\frac{155}{26843545}{ }^{\prime}(2: \sqrt{3})\right] \text {, } \tag{88}\\
& q_{3}=\frac{205}{2147483648 \sqrt{3}} \log (2+\sqrt{3})+\frac{3819}{53687091200 \sqrt{5}} \operatorname{Li}_{2}\left(\frac{1}{(\angle+\sqrt{5})^{-}}\right) \\
& +\frac{3819}{53687091200 \sqrt{5}} \log (2+\sqrt{5})^{2}-\frac{233}{48318382080}-\frac{555}{5589404592} \log (2+\sqrt{3})^{2} \\
& -\frac{547}{13421772800} \log (2)-\frac{3819}{53687091200 \sqrt{5}} \zeta(2)+\frac{166 i}{1717_{0}^{n}} \cdot 9184 \quad \zeta(2) \\
& -i \pi\left[\frac{205}{4294967296 \sqrt{3}}+\frac{3819}{53687091200 \sqrt{5}} \log (\angle-\sqrt{5})-\frac{547}{53687091200}\right. \\
& \left.-\frac{555}{8589934592} \log (2+\sqrt{3})\right] . \tag{89}
\end{align*}
$$

Therefore, the particular solution of the diffe $\cdot n t$ nt μ equation in $s=16$ is, again, a power series in which the coefficients $p_{n}, n \geq 2$, d nena upon the first two coefficients, p_{0} and p_{1}. Since we are now looking for a particular soı $\mathrm{t}_{1} \mathrm{n}$, we can set $p_{0}=0$ and $p_{1}=0$, finding

$$
\begin{equation*}
\widetilde{\mathcal{T}}_{9}(s)=\sum_{n=2} n_{2}(s-16)^{n} \tag{90}
\end{equation*}
$$

with the first few coefficients that ead

$$
\begin{align*}
& p_{2}=-\frac{3}{262144 \sqrt{5}} \operatorname{Li}_{2}\left(\frac{1}{(2+}\right)-\frac{3}{262144 \sqrt{5}} \log (2+\sqrt{5})^{2}+\frac{5}{524288} \log (2+\sqrt{3})^{2} \\
& +\frac{3}{262144 \sqrt{5}} \zeta(2)-\frac{15}{104 \div 576} \zeta(2)+i \pi\left[\frac{3}{262144 \sqrt{5}} \log (2+\sqrt{5})\right. \\
& \left.-\frac{5}{524288} \log (2,-\sqrt{ },)\right] \text {, } \tag{91}\\
& p_{3}=+\frac{5}{12582912} \sqrt{ }^{\sqrt{5}} 1, \mathrm{~g}(2+\sqrt{3})+\frac{79}{41943040 \sqrt{5}} \operatorname{Li}_{2}\left(\frac{1}{(2+\sqrt{5})^{2}}\right) \\
& +\frac{7}{41943} \frac{}{40 \sqrt{5}} \cdot \operatorname{og}(2+\sqrt{5})^{2}-\frac{5}{3145728} \log (2+\sqrt{3})^{2}-\frac{1}{5242880} \log (2) \\
& -\frac{79}{4 \mathrm{i}} \frac{9}{43040} \overline{\sqrt{5}} \zeta(2)+\frac{5}{2097152} \zeta(2)-i \pi\left[\frac{5}{25165824 \sqrt{3}}+\frac{79}{41943040 \sqrt{5}} \log (2+\sqrt{5})\right. \\
& \frac{1}{00}\left(\frac{1}{1020}-\frac{5}{3145728} \log (2+\sqrt{3})\right] \text {, } \tag{92}\\
& p_{4}=-\frac{95}{1207959552 \sqrt{3}} \log (2+\sqrt{3})-\frac{11111}{53687091200 \sqrt{5}} \operatorname{Li}_{2}\left(\frac{1}{(2+\sqrt{5})^{2}}\right) \\
& -\frac{11111}{53687091200 \sqrt{5}} \log (2+\sqrt{5})^{2}+\frac{1}{754974720}+\frac{2275}{12884901888} \log (2+\sqrt{3})^{2}
\end{align*}
$$

$$
\begin{align*}
& +\frac{61}{1677721600} \log (2)+\frac{11111}{53687091200 \sqrt{5}} \zeta(2)-\frac{2275}{8589934592} \zeta(2) \\
& +i \pi\left[\frac{95}{2415919104 \sqrt{3}}+\frac{11111}{53687091200 \sqrt{5}} \log (2+\sqrt{5})-\frac{61}{671080,1 r}\right) \\
& \left.-\frac{2275}{12884901888} \log (2+\sqrt{3})\right] \tag{93}
\end{align*}
$$

Finally, the general solution is given by

$$
\begin{equation*}
\mathcal{T}_{9}(s)=\sum_{n=0}^{\infty} w_{n}(s-16)^{n} \tag{94}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{0}=a_{0}, \quad w_{1}=a_{1}, \quad w_{n}=a_{n}+p_{n}+\mathrm{r} n \geq 2 . \tag{95}
\end{equation*}
$$

5. Expansions for the Master Integral \mathcal{T}_{10}

The second MI is directly determined from the $1 \ldots \downarrow$, one by means of Eq. (20):

$$
\begin{equation*}
\mathcal{T}_{10}=\frac{x}{4 m^{2}} d \frac{d \mathcal{T}_{9}}{x}+\frac{1}{2 m^{2}} \mathcal{T}_{9} \tag{96}
\end{equation*}
$$

Knowing the series expressions for \mathcal{T}_{9}, E4. Y \mathbf{y}, ..llows to determine \mathcal{T}_{10} performing a simple derivative.

The matching conditions that wf $\ln _{\mathrm{r}}$ רsed for the series expansions in the various points of the real axis, for the complete etermi ation of \mathcal{T}_{9}, are still valid for \mathcal{T}_{10}. In principle,
 them in order to fulfill Eq. (96 . Ir the case of infinite series, there would be no difference in the determination and pre isic. of \mathcal{T}_{10} with respect to what we found for \mathcal{T}_{9}. However, we deal with truncated seri and this means that the optimal choice for a matching point of two series for \mathcal{T}_{9} can be less or ${ }^{\text {timal }}$ for the corresponding series of \mathcal{T}_{10}. Therefore, we decided to determine thr me ching points independently for the series of \mathcal{T}_{9} and \mathcal{T}_{10}.

We used the criteriun. f maximization of the number of stable digits in the determination of the unknow a crnstants, under the variation of the matching point. In so doing, we found that the $1_{\llcorner } \uparrow$ tr ains points for corresponding pair of series of \mathcal{T}_{9} and \mathcal{T}_{10} give rise to slightly differer' matc ng constants. We used the difference between the values of the matching consta ts as a indicator for the precision at which we can claim the series reproduce the numericai val - of the masters. In all the matching points, we found corresponding matching cor stants that agree with double precision.

6. The T_tran Routine

In this se tion we give details on the numerical routines that accompany the paper.
The routine implements the series in the various points of the real domain discussed in the previous sections. In some points (in particular in $x=2,4,8,16,32,64,128$ and
$s=4,8,12,16,32,64,128$), in order to improve the convergence of the seri s. we performed the Bernoulli variable transformation [77, 78], which is defined as

$$
\begin{equation*}
t=\log \left(\frac{b-x_{0}}{x_{0}-a} \frac{x-a}{b-x}\right) \tag{97}
\end{equation*}
$$

for a series expansion around x_{0}, with nearest singular points a ar $d b$. \cdots ch that $a<x_{0}<b$. This change of variable usually increases the convergence of tir ries near the point of expansion (see for instance Refs. [44, 64]). Although in th poinı indicated above we found a considerable increase in such convergence, resulting i i an in rease of the number of reliable digits of the final result, in $x=0$ and $x= \pm \infty$ the or $\boldsymbol{r}_{C}{ }^{\text {in }}{ }^{1}$ power series worked at the same level of accuracy (or sometimes even better) o har istter numerical behaviour. Therefore, the routines are written using the original seric, in $x=0$ and $x= \pm \infty$, and the series in the Bernoulli variable in all the regular points and $x=16$.

The numerical program consists of the header fil main_lliptic.f and the two main files MI1.f and MI2.f, which compute the master nteg wis \mathcal{T}_{9} and \mathcal{T}_{10} respectively. The program is written in FORTRAN. Several files contain tha ngthy formulae of the expansions around the various points.

The program can be used in the two follo i.e. wavs:

- Way 1: As a whole with output onto t scre n and into an outputfile. After unzipping the files

$$
\text { tar -xuf elliptic.zip } \quad \omega^{\text {It. rnatively } \quad \text { unzip elliptic.zip }}
$$

the program can then be compiled with the provided makefile, meaning by typing

> make
and run by the command

$$
\text { I run \# alue of } x \# \text { name of outputfile }
$$

If no input value $\mathrm{f}_{\mathrm{r}}{ }^{r} r=-s$ is given, the program interrupts and asks to input a value. If instead n, inf at for the name of the output file is given, the output is written into a default file nar. od output_MI.dat.

- Way 2: Inside nc her program. In this case only the files MI1.f for \mathcal{T}_{9} and MI2.f for \mathcal{T}_{10} are need ${ }^{-1}$ as will as all files in the folder seriesexpansions. The makefile of the other rogral must then be adjusted by adding MI1.0 or MI2.o to the files to be comp ${ }^{\text {ºd }}$. The function complex*16 MI1(double precision x) for \mathcal{T}_{9} or comple $* 16$ MI2(double precision x) for \mathcal{T}_{10} can then be called directly within any otl r FOR RAN program.

In the rom. .ag we list the various files and explain them in more details.

- main_e_?.iptic.f: The main file calls the functions MI1(x) and MI2(x) for the value x given by the user as an argument when running the program and writes the output. This file is not needed if the user wants to call the integrals from within his/her own program.
- MI1.f: Computes the master integral \mathcal{T}_{9} and can be called by th user directly if he/she decides to call the integral from within his/her own program. $M_{\perp}{ }^{1}$ f decides which series expansion is needed for the given value of x and retur $s \mathrm{t}$. e corresponding value. It needs the help files that are provided in the folder ser - ${ }^{\circ} \mathrm{s}$ sxpansions.
- MI2.f: Same as MI1.f but for \mathcal{T}_{10}.
- seriesexpansions/MI1_in_x_\#.f: Help files that contar. † ie lengthy expressions for the series expansions of \mathcal{T}_{9} around $x=0,2,4,8,16,-2,64,28$ and ∞, where \# stands for the respective value of x.
- seriesexpansions/MI1_in_s_\#.f: Help file that contnins the lengthy expressions for the series expansions of \mathcal{T}_{9} around $s=4,8,12, \varsigma, 2,6 ז, 128$ and ∞.
- seriesexpansions/MI2_in_x_\#.f and seriesexpaı. ions/MI2_in_s_\#.f: Same as seriesexpansions/MI1_in_x_\#.f and seriest. nans ons/MI1_in_s_\#.f respectively but for \mathcal{T}_{10}.

6.1. Numerical Checks

We performed several numerical checks boi to towure the correctness of our results and to check the numerical accuracy. We will d sccri» ? them in the following.

- As outlined in Section 3.3, we detormin d the constants of integration by matching the series in points within the raa 'c or convergence of two series, starting from $x=0$ which we have determined completely, going to $x=\infty$ and $x=-\infty$. We did this procedure for both \mathcal{F}_{9} an` \mathcal{T}_{10} separately. If we would be able to expand the series to arbitrary high \cup. $\mathrm{der}, \dagger 1 \mathrm{e}$ constants of integration of \mathcal{T}_{9} and \mathcal{T}_{10} would be the same. However, wf work w.ch truncated series, and the determination of the constants depend upon toretais of the series used, as for instance the form of the coefficients and the nur ber oit ${ }^{+}$rms. As a consequence, the integration constants are not exactly the same. 1 i allows us to use the comparison of the matching constants between \mathcal{T}_{9} and $\mathcal{T}_{1 r}{ }^{{ }^{\prime}}{ }^{\text {r }}$ each series to determine internally the numerical accuracy of the procedure. Do 1 g so we find agreement in all the series to double precision accuracy.
- As an internal $h_{f} \cdot k$ a d as a determination of the accuracy of the result, we adopted the followin, corattor ${ }_{0}$. The series in $x=0$ is completely determined, since we impose the initial conditic is in that point. Starting from $x=0$, we match the undetermined constants of her ries as described in the paper up to the series in $x=\infty$. Independently, we pe form the same procedure in the Minkowski region, starting from $s=0$ up to t.e seri s in $s=\infty$. Now with the series in $x=\infty$, we perform an analytic con ${ }^{+i n i m a t i o n ~ t o ~ t h e ~ M i n k o w s k i ~ r e g i o n, ~} s>0$, and we numerically evaluate the series in $s=1 \mathrm{~J} 00$, comparing the result with the numerical evaluation, in the same point, of the s. ries obtained with the matchings in the Minkowski region. We find that the two numbers agree with double precision.
- We cross-checked our numerical routines against PySecDec [79-81] ir reveral points of the entire domain, in both the Euclidean and Minkowski regions. We fou. 1 complete agreement within the numerical accuracy of PySecDec, which is ${ }^{1} \mathrm{~m}_{1}$ ed to $5-6$ digits.
- The most stringent test was the one done with the numbers $\sim_{m l i c}$ from the exact solution of Ref. [45]. We could check our routines against tho nu hers provided by the authors of Ref. [45] in $x=3,13,50$ and $s=3,5,18,5 \mathrm{r}$, fir in $\begin{gathered}\text { č an agreement to }\end{gathered}$ double precision accuracy ${ }^{4}$.

7. Conclusions

In this paper we presented a semi-analytical evaluat: on $\mathrm{f}_{\boldsymbol{\prime}}$ he two MIs of the crossed vertex topology with a closed massive loop, implemented in a ${ }^{5}$ ortran numerical routine.

The two MIs can be expressed in power series of the dinı nsional parameter $\epsilon=(4-d) / 2$. Each order in ϵ fulfills a system of two coupled first-c der lir ear differential equations, that admits solutions in terms of one-fold integrals of con nlete elliptic integrals of the first and second kind times polylogarithmic terms (see Ref [15], ... the present paper we focus on the solution of the differential equations for the $\mathcal{O}\left(\epsilon^{0}\right)$, which is relevant for phenomenological applications at the NNLO.

In order to implement the solutions in a 1 rtran numerical routine, for the precise evaluation of the two MIs, we followed a a dard approach that was used in the past for the study of the equal-mass sunris^ and the three-point function with two massive exchanges, namely the solution by series ι^{c} the equivalent second-order linear differential equation for one of the masters. The other master is then calculated by a simple derivative, once the first master is known.

Expanding the master in series : nth singular points of the differential equation we were able to directly construct : sol ntion that covers the entire range $-\infty \leq x \leq \infty$ which is suitable for precise numerica. or alue ions.

The Fortran routine pres nted in. .his work returns the numerical value of the two MIs for every real value of the mionless parameter they depend on, with double precision accuracy.

Acknowledgmer is

We wish to thank $\mathrm{A}_{\mathrm{i}}{ }^{{ }^{1}{ }^{\prime} f \text { is } \mathrm{V} \text {, } \mathrm{n} \text { Manteuffel and Lorenzo Tancredi for having provided us with }}$ the numeric result of the wo master integrals published in Ref. [45] in additional points of the phase spase, or cros i-checks. P.P.G. acknowledges the support of the Spanish Research Agency (Agencia $_$tat 1 de Investigacion) through the contract FPA2016-78022-P and IFT Centro de Ex elenc ₹ Severo Ochoa under grant SEV-2016-0597. R.G. is partially supported by a Europe \urcorner Unir a COFUND/Durham Junior Research Fellowship under the EU grant number 609412 and acknowledges support of the Berliner Chancengleichheitsprogramm.

[^4]R．G．thanks the Galileo Galilei Institute for Theoretical Physics for the hr nitality and the INFN for partial support during the completion of this work
［1］F．Tkachov，＂A Theorem on Analytical Calculability of Four Lon n Fenormalization Group Functions，＂Phys．Lett．B100（1981）65－68．
［2］K．Chetyrkin and F．Tkachov，＂Integration by Parts：The f．go＊\because ．m to Calculate beta Functions in 4 Loops，＂Nucl．Phys．B192（1981）159－¿u＇
［3］S．Laporta，＂High precision calculation of multiloop Fe，nman ntegrals by difference equations，＂Int．J．Mod．Phys．A15（2000）5087－5159， arXiv：hep－ph／0102033［hep－ph］．
［4］T．Gehrmann and E．Remiddi，＂Differential equatः $\cap \mathrm{ns} \mathrm{f}-$（wo loop four point functions，＂Nucl．Phys．B580（2000）485－518，arXiv：h p－ph／9912329［hep－ph］．
［5］C．Anastasiou and A．Lazopoulos，＂Automatic tegral reduction for higher order perturbative calculations，＂JHEP 07 （2004 ~ 10 ，，Kiv：hep－ph／0404258［hep－ph］．
［6］R．N．Lee，＂Presenting LiteRed：a tool f an Loop InTEgrals REDuction，＂ arXiv：1212．2685［hep－ph］．
［7］A．V．Smirnov，＂Algorithm FIRE－Fey．mai Integral REduction，＂ JHEP 10 （2008）107，arXiv：0807．．＇ィン ！ep－ph］．
［8］C．Studerus，＂Reduze－Feynman Integral Reduction in C＋＋，＂ Comput．Phys．Commun． 181 （＇010）293－1300， arXiv：0912．2546［physics．cund－r n］．
［9］A．von Manteuffel and C．Stv erv＇s，＂Reduze 2 －Distributed Feynman Integral Reduction，＂arXiv：120 .43 su hep－ph］．
［10］A．V．Smirnov and V．A．Sni nov，＂FIRE4，LiteRed and accompanying tools to solve integration by parts rel．tions，＂Comput．Phys．Commun． 184 （2013）2820－2827， arXiv：1302．5885 i：$\subset \sim-\mathrm{ph}]$ ．
［11］A．V．Smirnov，＂FJ AE5 a C＋＋implementation of Feynman Integral REduction，＂ Comput．Phys（i．\sim run． 189 （2014）182－191，arXiv：1408．2372［hep－ph］．
［12］R．N．Lee，＇「iteRe 1．4：a powerful tool for reduction of multiloop integrals，＂ J．Phys．「nf．～̃．i． 523 （2014）012059，arXiv：1310．1145［hep－ph］．
［13］P．Maier＇oefer J．Usovitsch，and P．Uwer，＂Kira－A Feynman integral reduction program．＂comput．Phys．Commun． 230 （2018）99－112， arXiv 1705.05610 ［hep－ph］．
［14］A．Kotikov，＂Differential equations method：New technique for massive Feynman diagrams calculation，＂Phys．Lett．B254（1991）158－164．
[15] E. Remiddi, "Differential equations for Feynman graph amplitudes," Nuovo Cim. A110 (1997) 1435-1452, arXiv:hep-th/9711188 [hep-th].
[16] M. Argeri and P. Mastrolia, "Feynman Diagrams and Differentis Er uations," Int.J.Mod.Phys. A22 (2007) 4375-4436, arXiv:0707.4037 [h n-pı.
[17] J. M. Henn, "Lectures on differential equations for Feynmar in $\quad=$ rals," J. Phys. A48 (2015) 153001, arXiv:1412.2296 [hep-ph].
[18] S. Moch, J. A. M. Vermaseren, and A. Vogt, "Three-lor ρ resu ${ }^{+}$ts for quark and gluon form-factors," Phys. Lett. B625 (2005) 245-252, arXiv: `ep-r 1/0508055 [hep-ph].
[19] T. Gehrmann, G. Heinrich, T. Huber, and C. Stude us " N aster integrals for massless three-loop form-factors: One-loop and tr \sim-loon ; isertions," Phys.Lett. B640 (2006) 252-259, arXiv:hep-ph/060, 85 [hep-ph].
[20] G. Heinrich, T. Huber, and D. Maitre, "Master inte gral $^{\text {ald }}$ for fermionic contributions to massless three-loop form-factors," Phys. Lott D* ${ }^{2} 2$ (2008) 344-352, arXiv:0711. 3590 [hep-ph].
[21] G. Heinrich, T. Huber, D. Kosower, and I' ©mirnov, "Nine-Propagator Master Integrals for Massless Three-Loop For. . Fac \imath rs," Phys.Lett. B678 (2009) 359-366, arXiv:0902.3512 [hep-ph].
[22] R. Lee, A. Smirnov, and V. Smirnov, ^ nalytic Results for Massless Three-Loop Form Factors," JHEP 1004 (201n) 020, arXiv:1001.2887 [hep-ph].
[23] J. M. Henn, A. V. Smirnov, aı ${ }^{1}$ V. f. Smirnov, "Analytic results for planar three-loop four-point integr als from a Knizhnik-Zamolodchikov equation," JHEP 1307 (2013) 128, à. x_{j} : $1:$: J6. 2799 [hep-th].
[24] C. Anastasiou, C. Duh , ${ }^{\mp}$. Dulat, F. Herzog, and B. Mistlberger, "Higgs Boson Gluon-Fusion Production in $\mathrm{\imath CD}^{\mathrm{CD}}$ at Three Loops," Phys. Rev. Lett. 11 \& (2 15) 212001, arXiv:1503.06056 [hep-ph].
[25] A. von Manteuff, 1 and \therefore M. Schabinger, "Quark and gluon form factors to four-loop order in QCD: he J_{f}^{3} ontributions," Phys. Rev. D95 no. 3, (2017) 034030, arXiv:1611. nn79i 「.ep-ph].
[26] R. N. Lee, F. V. Ss irnov, V. A. Smirnov, and M. Steinhauser, "The n_{f}^{2} contributions to fermic - four-10op form factors," Phys. Rev. D96 no. 1, (2017) 014008, arXiv: 705.0 l 962 [hep-ph].
[27] J. Hr m A. V. Smirnov, V. A. Smirnov, M. Steinhauser, and R. N. Lee, "Four-loop photoi caark form factor and cusp anomalous dimension in the large- N_{c} limit of QCD," 」 ЧEP 03 (2017) 139, arXiv:1612.04389 [hep-ph].
[28] A. Goncharov, "Polylogarithms in arithmetic and geometry," Proceedings of the International Congress of Mathematicians 1,2 (1995) 374387.
［29］A．B．Goncharov，＂Multiple polylogarithms and mixed tate motives．＇math／0103059．
［30］E．Remiddi and J．Vermaseren，＂Harmonic polylogarithms，＂ Int．J．Mod．Phys．A15（2000）725－754，arXiv：hep－ph／9905237「nep ph］．
［31］J．Vollinga and S．Weinzierl，＂Numerical evaluation of multiple pu＇rvlogarithms，＂ Comput．Phys．Commun． 167 （2005）177，arXiv：hep－ph／041 J2ヶ $冫$ 「hep－ph］．
［32］J．M．Henn，A．V．Smirnov，and V．A．Smirnov，＂Analytir resu＇ts for planar three－loop integrals for massive form factors，＂JHEP 12 （2016，144， arXiv：1611．06523［hep－ph］．
［33］J．Henn，A．V．Smirnov，V．A．Smirnov，and M．Str inh ，usır，＂Massive three－loop form factor in the planar limit，＂JHEP 01 （2017）${ }^{\wedge 74}$ ， $\mathrm{ar}^{\mathrm{v}} \perp \mathrm{v}: 1611.07535$［hep－ph］．
［34］R．N．Lee，A．V．Smirnov，V．A．Smirnov，and 1 「 Stei hauser，＂Three－loop massive form factors：complete light－fermion correction for vie vector current，＂
JHEP 03 （2018）136，arXiv：1801． 08151 「han－nh．
［35］R．N．Lee，A．V．Smirnov，V．A．Smirno＂and Mı．Steinhauser，＂Three－loop massive form factors：complete light－fermion and $1 \mathrm{rs}, 2-\mathrm{N}_{c}$ corrections for vector，axial－vector， scalar and pseudo－scalar currents，＂JI $\neg D$ O（2018）187，
arXiv：1804．07310［hep－ph］．
［36］L．－B．Chen and J．Wang，＂Three－loop r^{\prime}＇anar master integrals for heavy－to－light form factors，＂Phys．Lett．B786（2018）453－461，arXiv：1810．04328［hep－ph］．
［37］S．Laporta and E．Remiddi，＂．nalyt＇；treatment of the two loop equal mass sunrise graph，＂Nucl．Phys．B704 ，2005）ox9－386，arXiv：hep－ph／0406160［hep－ph］．
［38］L．Adams，C．Bogner，ard b ．${ }^{1} \mathrm{~V}_{\mathrm{f}}$ ．nzierl，＂The two－loop sunrise graph with arbitrary masses，＂J．Math．Phy ． 4 （2013）052303，arXiv：1302．7004［hep－ph］．
［39］E．Remiddi and L．Tan redi，＂Differential equations and dispersion relations for Feynman amplituc－ 7 he two－loop massive sunrise and the kite integral，＂ Nucl．Phys．B90．（201し，400－444，arXiv：1602．01481［hep－ph］．
［40］S．Bloch and P．vinh ve，＂The elliptic dilogarithm for the sunset graph，＂ J．Number T neor． 148 （2015）328－364，arXiv：1309．5865［hep－th］．
［41］S．Bloch，M．inn，and P．Vanhove，＂A Feynman integral via higher normal functior s，＂Cc npos．Math． 151 no．12，（2015）2329－2375， arXiv：1＇n6．2＇ 64 ［hep－th］．
［42］L．Aa ${ }^{\prime}$＇U．Bogner，and S．Weinzierl，＂The iterated structure of the all－order result for the ivo－loop sunrise integral，＂J．Math．Phys． 57 no．3，（2016）032304， arXiv：1512．05630［hep－ph］．
[43] C. Bogner, A. Schweitzer, and S. Weinzierl, "Analytic continuation \& d numerical evaluation of the kite integral and the equal mass sunrise integral," Nucl. Phys. B922 (2017) 528-550, arXiv:1705.08952 [hep-ph]
[44] U. Aglietti, R. Bonciani, L. Grassi, and E. Remiddi, "The Twc loop rossed ladder vertex diagram with two massive exchanges," Nucl. Phys. B7®9 (4ㄱ8) 45-83, arXiv:0705.2616 [hep-ph].
 beyond multiple polylogarithms," JHEP 06 (2017) 127, arXiv:1701. 05905 [hep-ph].
[46] R. Bonciani, V. Del Duca, H. Frellesvig, J. M. Henı. F. Mr riello, and V. A. Smirnov, "Two-loop planar master integrals for Higgs $\rightarrow 3$ pu ${ }^{+}$+on with full heavy-quark mass dependence," JHEP 12 (2016) 096, arXiv:1609.0668ะ [hep-ph].
[47] L. Adams, E. Chaubey, and S. Weinzierl, "Planc" Double Box Integral for Top Pair Production with a Closed Top Loop to all $\dot{\sim} 10$ in the Dimensional Regularization Parameter," Phys. Rev. Lett. 121 no. 14, (2010, 142001, arXiv:1804.11144 [hep-ph].
[48] L. Adams, E. Chaubey, and S. Weinzit", "A. alytic results for the planar double box integral relevant to top-pair production n ith a closed top loop," JHEP 10 (2018) 206, arXiv:1806. (n 181 [hep-ph].
[49] J. Ablinger, J. Bluemlein, A. D... ${ }^{\text {itas, M. van Hoeij, E. Imamoglu, C. G. Raab, }}$ C. S. Radu, and C. Schneider "Itera ed Elliptic and Hypergeometric Integrals for Feynman Diagrams," J. Mc h. Fr.c 59 no. 6, (2018) 062305, arXiv:1706.01299 [hep- ih]
[50] J. Broedel, C. Duhr, F Dulat, and L. Tancredi, "Elliptic polylogarithms and iterated integrals on elliptic chives. ?art I: general formalism," JHEP 05 (2018) 093, arXiv:1712.07089 [II 0-th].
[51] J. Broedel, C. Dvhr, \& Dulat, and L. Tancredi, "Elliptic polylogarithms and iterated integrals on elli tic urves II: an application to the sunrise integral," Phys. Rev. D97 .. 1^{1}, (2018) 116009, arXiv:1712.07095 [hep-ph].
[52] E. Remiddi and L. Tancredi, "An Elliptic Generalization of Multiple Polylogarithı." ".ucl. Phys. B925 (2017) 212-251, arXiv:1709. 03622 [hep-ph].
[53] J. Broe el, C.)uhr, F. Dulat, B. Penante, and L. Tancredi, "Elliptic symbol calculus: lı_.. elliptic polylogarithms to iterated integrals of Eisenstein series," arXii•1ヶ vu. 10256 [hep-th].
[54] J. Broedti, C. Duhr, F. Dulat, B. Penante, and L. Tancredi, "Elliptic Feynman integrals and pure functions," arXiv:1809.10698 [hep-th].
［55］R．Bonciani，A．Ferroglia，T．Gehrmann，D．Maitre，and C．Studerus，＂Two－Loop Fermionic Corrections to Heavy－Quark Pair Production：The Quarn－Antı．1ark Channel，＂JHEP 07 （2008）129，arXiv：0806． 2301 ［hep－ph］．
［56］R．Bonciani，A．Ferroglia，T．Gehrmann，and C．Studerus，＂Tr o－Lu n Planar Corrections to Heavy－Quark Pair Production in the Quark－An＋iqua．${ }^{1 /}$ Channel，＂ JHEP 08 （2009）067，arXiv：0906．3671［hep－ph］．
［57］R．Bonciani，A．Ferroglia，T．Gehrmann，A．von Manteu ${ }^{[5}{ }^{\sim}{ }^{2}$ ，anc C．Studerus， ＂Two－Loop Leading Color Corrections to Heavy－Quark Pair F oduction in the Gluon Fusion Channel，＂JHEP 01 （2011）102，arXiv：1011．666．「r．p－ph］．
［58］A．von Manteuffel and C．Studerus，＂Massive plana．ad n n－planar double box integrals for light Nf contributions to $\mathrm{gg} \rightarrow \mathrm{tt}$ ，＂Jヶュ～P 1～，2013）037， arXiv：1306．3504［hep－ph］．
［59］R．Bonciani，A．Ferroglia，T．Gehrmann，A．von Manteuffel，and C．Studerus， ＂Light－quark two－loop corrections to heavy ．uain pair production in the gluon fusion channel，＂JHEP 12 （2013）038，arXiv：1309．4ヶn［hep－ph］．
［60］P．Mastrolia，M．Passera，A．Primo，and U schubert，＂Master integrals for the NNLO virtual corrections to μe scatte ${ }^{\prime} \iota_{c}{ }^{c}$＇in 2ED：the planar graphs，＂ JHEP 11 （2017）198，arXiv：1709．n743ヶ［hep－ph］．
［61］S．Di Vita，S．Laporta，P．Mastrolia，A．Drimo，and U．Schubert，＂Master integrals for the NNLO virtual correctio ω ．e scattering in QED：the non－planar graphs，＂ JHEP 09 （2018）016，arXiv：806．0ヶ241［hep－ph］．
［62］M．Becchetti and R．Bonci ni．＂Two－Loop Master Integrals for the Planar QCD Massive Corrections to $\mathrm{D}_{\mathrm{i}-\mathrm{p}}{ }^{1}$ ，tor and Di－jet Hadro－production，＂ JHEP 01 （2018）048，a Xiv：1ı 2.02537 ［hep－ph］．
［63］R．Bonciani，G．Degr－si，P．P．Giardino，and R．Gröber，＂An Analytical Method for the NLO QCD Cor ect ${ }^{\circ}$ ins to Double－Higgs Production，＂
Phys．Rev．Lett． 121 16，（2018）162003，arXiv：1806．11564［hep－ph］．
［64］S．Pozzorini an．F Re niddi，＂Precise numerical evaluation of the two loop sunrise graph master integra＇s in the equal mass case，＂
Comput．Pr．ıs．Coı ımun． 175 （2006）381－387，arXiv：hep－ph／0505041［hep－ph］．
［65］R．N．Le \sim ，A．V．Smirnov，and V．A．Smirnov，＂Solving differential equations for Feynma integ als by expansions near singular points，＂JHEP 03 （2018）008， arXiv：17しこ．っ1525［hep－ph］．
［66］R．N．L e，A．V．Smirnov，and V．A．Smirnov，＂Evaluating elliptic master integrals at speciaı kinematic values：using differential equations and their solutions via expansions near singular points，＂JHEP 07 （2018）102， arXiv：1805．00227［hep－ph］．
［67］U．Aglietti and R．Bonciani，＂Master integrals with one massive pro｀gator for the two loop electroweak form－factor，＂Nucl．Phys．B668（2003）3－76，
arXiv：hep－ph／0304028［hep－ph］．
［68］U．Aglietti and R．Bonciani，＂Master integrals with 2 and 3 m cssive nropagators for the 2 loop electroweak form－factor－planar case，＂Nucl．Phys B6：？（2004）277－318， arXiv：hep－ph／0401193［hep－ph］．
［69］M．Caffo，H．Czyz，M．Gunia，and E．Remiddi，＂BOKAS＇rN：九 Fast and precise numerical program to calculate the Master Integrals of he twe loop sunrise diagrams，＂Comput．Phys．Commun． 180 （2009）427－4ぶ arXiv：0807． 1959 ［hep－ph］．
［70］B．Mistlberger，＂Higgs boson production at hadrc collid is at $\mathrm{N}^{3} \mathrm{LO}$ in QCD，＂ JHEP 05 （2018）028，arXiv：1802．00833［hep－ph］．
［71］R．Bonciani，P．Mastrolia，and E．Remiddi，＂V ntex wagrams for the QED form－factors at the two loop level，＂Nucl．Phıe Rヶ． 1 （2003）289－343， arXiv：hep－ph／0301170［hep－ph］．
［72］R．Bonciani，P．Mastrolia，and E．Remida＊＂Master integrals for the two loop QCD virtual corrections to the forward bac＇．ard symmetry，＂ Nucl．Phys．B690（2004）138－176，arX1 ：：н p－ph／0311145［hep－ph］．
［73］U．Aglietti，R．Bonciani，G．Degrassi，nd A．Vicini，＂Master integrals for the two－loop light fermion contributinns to $g g \rightarrow H$ and $H \rightarrow \gamma \gamma$ ，＂
Phys．Lett．B600（2004）57－6，arX．v：hep－ph／0407162［hep－ph］．
［74］U．Aglietti，R．Bonciani，G Degran I，and A．Vicini，＂Two loop light fermion contribution to Higgs pror uct on nd decays，＂Phys．Lett．B595（2004）432－441， arXiv：hep－ph／0404071［her $\boldsymbol{h}^{\prime \prime}$ ］．
［75］A．Kotikov，J．H．Kulın，aıı＇O．Veretin，＂Two－Loop Formfactors in Theories with Mass Gap and Z－Bc ，ou Production，＂Nucl．Phys．B788（2008）47－62， arXiv：hep－ph／07C 1 n ，［HEP－PH］．
［76］R．Bonciani，G．Der iassi，and A．Vicini，＂On the Generalized Harmonic Polylogarithms u：）ne Complex Variable，＂ Comput．Ph，s．Commun． 182 （2011）1253－1264，arXiv：1007．1891［hep－ph］．
［77］G．＇t Hooft a． 1 M J．G．Veltman，＂Scalar One Loop Integrals，＂ Nucl．Pl ys．B53（1979）365－401．
［78］L．C．Mas ：m＿ 1 ，＂The dilogarithm function for complex argument，＂ Proct＇aur，jo ff the Royal Society of London A 459 （2003）2807－2819， http：／，＇rspa．royalsocietypublishing．org／content／459／2039／2807．full．pdf．
［79］S．Borowka，G．Heinrich，S．Jahn，S．P．Jones，M．Kerner，J．Schlenk，and T．Zirke， ＂pySecDec：a toolbox for the numerical evaluation of multi－scale integrals，＂ Comput．Phys．Commun． 222 （2018）313－326，arXiv：1703． 09692 ［hep－ph］．
[80] T. Binoth and G. Heinrich, "An automatized algorithm to compute ; frared divergent multiloop integrals," Nucl. Phys. B585 (2000) 741-759, arXiv:hep-ph/0004013 [hep-ph].
[81] S. Borowka, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk, a: d '1. Tirke, "SecDec-3.0: numerical evaluation of multi-scale integrals ber^nd u o loop," Comput. Phys. Commun. 196 (2015) 470-491, arXiv:1502 065 ou [hep-ph].

[^0]: ${ }^{*}$ Corresponding author.
 E-mail address: ramona.groeber@physik.hu-berlin.de

[^1]: ${ }^{1}$ See Refs. $\left.{ }^{5 r}, 66\right]$ for two recent publications on the method.

[^2]: ${ }^{2}$ Note that we present, in the paper and in the routine, the euclidean version of the MIs, before Wick rotation.

[^3]: ${ }^{3}$ In order to simplify the notation from now on we set $m^{2}=1$.

[^4]: ${ }^{4}$ In the comparison between the numbers of our routines and the numbers of Ref. [45] it must be remembered that the normalization of the integrals are different in the two works, as can be seen from our Eq. (4) and Eq. (2.2) of Ref.[45]. In particular, in order to match the numbers of Ref. [45], our \mathcal{T}_{9} has to be multiplied by 16 , while \mathcal{T}_{10} for -16 .

