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Abstract

A new 3D full-wave code, named CUWA, is developed to investigate the physics of RF wave
propagation in the electron cyclotron frequency range in magnetised plasmas. The code utilises
the Finite Difference Time Domain (FDTD) technique and takes advantage of massive parallel
computations with Graphics Processing Units (GPU), which allows for a significant acceleration
of the computations. As examples of code application we show 3D calculations of the linear
transformation of ordinary to extraordinary electron-cyclotron waves and mode coupling in a
sheared magnetic field. Thanks to its speed, the GPU-capable code allows for efficient and large
parametric scans over a broad range of parameters.
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1. Introduction

RF waves play an important role in plasma physics. In tokamaks and stellarators they are used
for heating, current drive and for diagnostic purposes. A large spectrum of problems is con-
nected with Electron Cyclotron (EC) wave propagation in inhomogeneous plasmas. Geometrical
optics, also known as the Wentzel-Kramers-Brillouin (WKB) approximation, is a standard tool
for studying wave propagation in weakly inhomogeneous plasmas. However a variety of prob-
lems exist which fall outside the applicability of the WKB approximation: linear transformation
of modes (i.e. mode conversion) [1, 2, 3], mode coupling in strongly sheared magnetic fields
[4, 5], cross-polarisation scattering by electro-magnetic fluctuations [6, 7], propagation and re-
flection of waves in turbulent plasmas [8, 9, 10]. These problems should be considered within a
full wave approach.

This paper reports on the development of a new 3D cold plasma full wave code, named CUWA.
The code utilises the Finite Difference Time Domain (FDTD) technique [11, 12]. The computa-
tion domain is “minimised” around the WKB-trajectory obtained from ray-tracing calculations
by means of the convolutional perfectly matched layer (CPML) technique [13]; the background
magnetic field is recovered from pre-computed 3D equilibrium data. The code takes advantage
of massive parallel computations with Graphics Processing Units (GPUs), which allows for up
to×100 acceleration over a single-CPU. CUWA contains several diagnostic and post-processing
tools, including windowed Fast Fourier Transform (wFFT) of the resulting snapshots of the wave

∗Corresponding author
Email address: pavel.aleynikov@ipp.mpg.de (Pavel Aleynikov)

Preprint submitted to Computer Physics Communications May 15, 2019



fields, which allows for the direct comparison of the full-wave computations with WKB-theory
whenever appropriate.

2. Numerical model

2.1. Discretisation

FDTD (also known as Yee’s method) is a standard technique for full-wave simulations in
various branches of physics [11, 12]. In fusion plasmas, it has been successfully applied to wave
propagation, O-X conversion [14], reflectometry [8] and the scattering of EC waves on plasma
turbulence [15].

In this work we mostly follow the FDTD method as given in Chapter 11.3 of [12], with two
important modifications: first, we alter the current discretisation scheme and, second, we amend
the differential operators of Maxwell’s equations in the boundary layers in accordance with the
CPML technique [13].

The system of equations being solved by the code is Maxwell’s equations with the addition of
a “cold plasma” response current (J) equation given by the electron law of motion:

∂

∂t
B = −∇×E,

∂

∂t
E = c2∇×B− J/ε0,

d

dt
J + νJ = ε0ω

2
pE− J× ωc,

(1)

where ω2
p = nee

2/ε0me is the electron plasma frequency, ν is the electron collision frequency,
ωc = |e|B0/me is the electron cyclotron frequency (vector) corresponding to the background
magnetic field B0.

In the FDTD method the field components are discretised on staggered grids in space and
time. Note that is it common to discretise the plasma-response current, J, in such a way that its
Jx, Jy and Jz components are co-located in space [12, 14]. This facilitates the current update
calculation. However, we find the stability of this scheme to be unsatisfactory, in particular when
applied to the CMPL region. Therefore we have implemented a slightly more computationally
demanding but more stable scheme where J is discretised in the same way as the wave electric
field, E. This implies that the current update equation involves interpolation of its components
[16].

In our implementation the wave magnetic field B and the plasma response current J are com-
puted at half-integer timesteps t = 1

2 ,
3
2 , . . . , n + 1

2 , while the electric field E is computed at
integer timesteps t = 0, 1, . . . , n + 1. Such an explicit E − J scheme is known to be unstable
in some extreme cases and an alternative implementation with implicit stepping therefore ex-
ists [17, 18]. However, our explicit E − J coupling in combination with the co-location of the
corresponding E and J components has satisfactory stability in relevant problems, while impos-
ing tolerable overheads in a GPU-specific code. Stabilisation of the explicit E − J coupling by
modification of the discretisation of the vector product is discussed in Ref. [19].

After the discretisation according to Yee’s method and taking into account CPML alterations
(i.e. virtual currents Ψ and stretch coefficients κ - see Section 2.2 for details) the x-components
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of the first two equations of the system (1) take the following discrete form:
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where the electric field has been rescaled as E ≡ cε0E, magnetic field is H ≡ B/µ0, and the
current J ≡ cJ∆t, with c denoting the speed of light. The time step takes the form of the
Courant-Friedrichs-Lewy (CFL) parameter C ≡ c∆t

∆x , where ∆x = ∆y = ∆z is the cell size.
In all examples below we use C = 0.5. In Eq. (2) and below we adopt index notation, which
is typical for the FDTD formulation, i.e. in Hx|

n+ 1
2

i,j+ 1
2 ,k+ 1

2

the first index x denotes the vector

component, the upper index after the vertical bar (|n+ 1
2 ) denotes the time step and the lower

indices after the bar (|i,j+ 1
2 ,k+ 1

2
) denote the location.

The discretized exact solution of the last equation of the system (1) reads

J |n+ 1
2

i+ 1
2 ,j,k

= exp(Ω∆t)J |n−
1
2

i+ 1
2 ,j,k

+ ω2
p∆tΩ−1 (exp(Ω∆t)− I)E|ni+ 1

2 ,j,k
,

(3)

where

Ω ≡

 −ν −ωcz ωcy
ωcz −ν −ωcx
−ωcy ωcx −ν

 .
The fully expanded form of these matrix exponentials can be found in Refs. [12, 15]. Note that
Eq. (11.36a) in the book [12] has two typos: the signs of the terms proportional to S1 in the yz
and zx matrix elements need to be reversed.

Only the Jx component needs to be updated in the location (i+ 1
2 , j, k), yet the right-hand

side of Eq. (3) involves all three components of J |n−
1
2

i+ 1
2 ,j,k

and E|n
i+ 1

2 ,j,k
vectors. Therefore their

y and z components need to be interpolated from a four neighbouring cells, specifically
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2 ,k
+ Jy|i,j+ 1

2 ,k
+ Jy|i+1,j+ 1

2 ,k

4
,
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2 ,j,k

=
Jz|i,j,k− 1

2
+ Jz|i+1,j,k− 1

2
+ Jz|i,j,k+ 1

2
+ Jz|i+1,j,k+ 1

2

4
.

(4)

The interpolation for the electric field components is analogous.
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2.2. Perfectly Matched Layer

The minimisation of the computation domain plays a critical role in efficient 3D computations.
A physical absorber layer with a non-zero collisionality (ν > 0) is often used in plasma physics
computations to truncate the computation domain [14, 15]. With this technique, one would need
to amend the computation domain with layers of “many-wavelengths” thickness at each boundary
ensuring that any reflected signals are small. This may become problematic in 3D calculations
where the domain of interest itself has the size of a few wavelengths. Amending such a domain
with six boundary layers may significantly reduce the overall efficiency.

A so-called Convolutional Perfectly Matched Layer (CPML) boundary [13] is instead imple-
mented in our full-wave code to truncate the computation domain. An efficient CPML requires
only a few extra Yee cells in each direction - i.e. a fraction of a single “wavelength”. CPML also
requires two auxiliary 3D fields (Ψ) for each component of E and B, i.e. 12 auxiliary fields in
total. However, these auxiliary fields are defined only within the narrow CPML layers, resulting
in a negligible overhead in a practical setup.

The conceptual idea behind CPML [13] can be summarised in the following way (further
details and a rather complete overview of various PMLs can be found in the book [20]). CPML
is an efficient numerical implementation of Complex Frequency Shifted PML [21], in which the
differential operators in Eqs. (1) are replaced with the convolution1:

∂

∂u
→ L−1

 1

κu +
σu

αu + iωε0

 ∗ ∂

∂u
, (5)

where L−1{F (ω)} denotes the inverse Laplace transform, κu and αu are free parameters ac-
counting for coordinate stretching in the real and complex plains, σu is an “effective conduc-
tivity”, and u = x, y, z. The PML given by Eq. (5) introduces no reflections because it can be
viewed as a vacuum with complex-stretched coordinates. In other words, with Eq. (5) the solu-
tion of Eq. (1) is analytically continued into the complex plane with a subsequent mapping of
the complex coordinates back into real space but with a “complex material”.

The implementation of the convolution Eq. (5) would be prohibitively expensive computa-
tionally in time domain had it not been for the development of an efficient implementation in
Ref. [13]. In the time domain, the inverse Laplace transformed operator from Eq. (5) takes the
form of a sum of the unit impulse function δ(t)/κu and an exponential decay ∼e−th(t), where
h(t) is the step function. The convolution with the δ-function is trivial (hence the factor 1/κu in
Eqs. (2)), while the convolution with an exponential decay ψ(t) =

∫ t
0
e−a(t−t′)f(t′)dt′ can be

accurately found using the following recursive approximation:

ψ(t+ ∆t) = e−a∆tψ(t) +
1− e−a∆t

a
f(t+ ∆t/2), (6)

where the next half-step value of the convoluted function f(t + ∆t/2), namely ∇ × B(t) and
∇ × E(t), is available in our case thanks to the nature of the leapfrog time-stepping adopted in
FDTD algorithm.

1In the frequency domain this operation takes the form of a coordinate “stretching” by the factor κu +
σu

αu + iωε0
.
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From Eqs. (5) and (6) the CPML auxiliary fields Ψ used in Eq. (2) for the magnetic field
update equation become
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(7)

where bu = e−σu/κu+αu and au =
σu

κu(σu + κuσu)

(
bu − 1

)
. The best performance is achieved

when the coefficients κu, αu, σu vary smoothly within the PML when the boundary is ap-
proached:

σx(x) = σmax(x/d)m,

κx(x) = 1 + (κmax − 1)(x/d)m,

αx(x) = αmax(x/d)m1 .

(8)

where d is the PML thickness, and x is the distance within the PML. Refs. [11, 13] give a
prediction of the optimal value for σmax ≈ 0.7(m + 1)C. Note that the graded coefficients
in Eq. (8) needs to be computed at locations corresponding to the definitions of the fields they
apply to, i.e. some field components are defined at integer and some at half-integer steps, and the
distance x in Eq. (8) needs to be calculated accordingly.

The electric field auxiliary fields ΨEx,y and ΨEx,z are updated analogously to Eqs. (7).

2.3. CUWA code structure
The CUWA code uses GPUs to compute the fields update according to Eqs. (2)-(4) and (7).

Here we give some details about the general architecture of the code.
The computational setup, including an initialisation of parameters, ray-tracing calculation and

reading of the equilibrium data (see Section 2.4) is done on a CPU using the python language.
Then, the prepared data, namely 3D arrays of plasma frequency ωp(i, j, k) and the components
of the cyclotron frequency ωcx(i, j, k), ωcy(i, j, k) and ωcz(i, j, k) are copied from RAM to the
GPU memory.2 Note that this data needs to be defined in the same locations as the current
components (see Eq. (3)), i.e. in (i+ 1

2 , j, k), in (i, j+ 1
2 , k) and in (i, j, k+ 1

2 ). But, in practice,
because the background parameters vary slowly, we use a single set of data for updating all three
current components or interpolate between the neighbouring nodes using an equation analogous
to (4).

The core field-updating routines are written using the CUDA platform [22, 23]. After the
initialisation, they are executed in a loop in the following order:

1. Source: (Ex,y,z(t) at one of the boundaries)
2. Update Hx,y,z using Eq. (2)
3. Copy Jx,y,z to J0

x,y,z

2Currently CUWA supports only single-GPU calculations, therefore the computation domain is limited by the mem-
ory size of the GPU.
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4. Update Jx,y,z using Eq. (3), where J
n− 1

2
x,y,z ≡ J0

x,y,z

5. Update Ex,y,z using Eq. (2)

The PML fields (Ψ) are updated using Eq. (7) immediately before the corresponding wave fields.
When the iteration stops, the wave fields are copied from the GPU memory to the RAM for
post-processing.

The diagnostics implemented in the CUDA GPU code include the calculation of the time-
averaged Poynting vector, 〈E×B〉, and a 2D windowed Fourier Transform (wFFT) of the cross
sections of the wave fields. In a homogeneous magnetic field, FFT allows for a direct comparison
of the full-wave calculations with the predictions of WKB theory. The 1D sinusoidal window
is moved along one of the axis to generate the resulting “dispersion curves”. The batch FFT
(containing window-scaled data) is computed on GPUs using the scikit-cuda library [24].

2.4. Computation setup
In modern magnetic confinement fusion devices, such as a tokamaks or stellarators, the mag-

netic field is typically of the order of several tesla. Specifically, in Wendelstein 7-X (W7-X)
the magnetic field is 2.5 T, meaning that the vacuum wavelength required for electron cyclotron
resonance heating (ECRH) at the second harmonics is approximately 2 mm. This wavelength
is much shorter than the size of the plasma, which is of order 1 m. The typical RF beam ra-
dius is several cm, which is also much smaller than the plasma size. This disparity between the
wave and plasma sizes suggests that the computational domain could be reduced to some small
sub-volume of the plasma where the wave is present. The full discretisation of the entire plasma
volume with a sub-mm size grid is not feasible.

In order to construct a 3D computational domain which contains the beam and accounts for
realistic background plasma parameters (3D magnetic field and density) a preliminary estimate
of the beam trajectory in the plasma is needed. This estimate is obtained using the standard
ray tracing technique (see, e.g. Ref. [25]). In the WKB approximation Eqs. (1) reduce to the
following wave equation [26]

DαβEβ = 0, Dαβ = NαNβ −N2δαβ + εαβ , (9)

where εαβ(ω) is the “cold plasma” dielectric tensor, Nα = kαc/ω is the refractive index, kα
is the wave vector, and Eβ is the polarisation vector. Then, a wave packet can be viewed as
a particle with Hamiltonian ω(k, r), where the wave-vector k and the wave packet position r
represent the canonical momentum and spatial coordinate, respectively. Its equations of motion
are

dk

dt
= −∂ω(k, r)

∂r
,

dr

dt
=
∂ω(k, r)

∂k
,

(10)

where the Hamiltonian is implicitly given by the dispersion relation det Dαβ = 0.
The initial value problem for ray tracing equations (10) is solved using the

scipy.integrate.solve ivp interface [27], which provides access to several efficient
integration methods, including the Runge-Kutta, the backward differentiation and the Adams
methods3. The integration is stopped when the trajectory crosses the last closed flux surface (and
the group velocity is directed outward from the plasma).

3A detailed description of some other ray tracing codes can be found in Refs. [28, 29, 30, 31]
6



CUWA uses pre-computed magnetic equilibrium data, reconstructed using MConf library in
the same way it is done in TRAVIS code [30] (see Section 4 therein for the details). The MConf
library supports various formats for the equilibrium data, including 3D VMEC equilibrium data
[32] and axisymmetric equilibrium data in EQDSK format [33].

Based on the reference ray trajectory, R(s), the computational domain can be constructed
in various ways depending on the problem. We found that it is often “efficient” to construct a
computational box in which the (x, y) plane contains the plasma entry and exit points, while the
y basis vector (ey) coincides with the ray direction at the entry point, i.e. ey ≈ kc/ω.

The wave polarisation, required for the initialisation of the beam, can be determined from
Eq. (9). However, a typical CUWA application setup involves launching a wave from the outside
of the plasma (i.e. from an external antenna). In this case, direct application of Eq. (9) in
the limit of vanishing plasma density is problematic due to degeneracity. Instead, the limiting
polarisation of the O- and X-modes entering (or leaving) the plasma can be calculated from the
wave equation (9) by expanding it in the small parameter ω̂2

p = ω2
p/ω

2 (see, e.g. Ref. [34]).
In the Stix reference frame, where B0 = (0, 0, B0) and N = (N⊥, 0, N‖), the complex wave
amplitude then becomes

Ex
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for the O-mode polarisation with Ez 6= 0 and

Ex
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= − iω̂c
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c )

]
,

Ez
Ey

= i
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2
c

[
1 +

ω̂2
p

N2
⊥0(1− ω̂2

c )

(
1 + F−

2
−

N2
‖F−

F− −N2
⊥0ω̂

2
c

)
,

] (12)

for the X-mode polarisation with Ey 6= 0. Here, ω̂c = ωc/ω and

F± =
ω̂2
c

2
N2
⊥0

1±

√
1 +

4N2
‖

ω̂2
cN

4
⊥0

 , (13)

with the upper sign (+) corresponding to the O-mode and the lower (-) to the X-mode. All values
are taken at the plasma/vacuum boundary, in particular, N2

⊥0 = 1−N2
‖ and ω̂2

p � 1. Note also
that Eqs. (11)-(12) are derived in the geometrical optics limit, therefore they cannot be applied
to cases with a very sharp plasma boundary. A full-wave treatment is required to calculate the
limiting polarisation in such case [35].

The spatial distribution of the launched wave field is usually prescribed to have the form of a
Gaussian beam [36],

E(ρ, s) = E0
w0

w(s)
exp

(
− ρ2

w2(s)
− i
(
ks+

kρ2

2R(s)
− ϕG(s)

))
, (14)

where ρ is the radial distance from the centre axis of the beam, s is the axial distance from the
beam’s focus (or “waist”, which has radius w0), R(s) = s(1 + z2

R/s
2) is the curvature of the
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wavefront, w(s) = w0

√
1 + s2/z2

R is the beam radius, zR = πw2
0/λ is the Rayleigh length,

k = ω/c and ϕG(s) = arctan(s/zR) is the Gouy phase. The wave polarisation vector E0 in
the reference frame of the computational box is obtained from Eqs. (11)-(12) after transforming
from the Stix reference frame.

Explicitly, the real part of Eq. (14) is prescribed at the first plane after the CPML.

3. Tests and benchmarks against analytical solutions

In this section, we demonstrate CPML performance and show a comparison of our full-wave
calculations with analytical solutions in some analytically tractable cases.

3.1. Demonstration of CPML performance

In order to demonstrate CPML performance for the FDTD realisation described above we de-
sign a benchmark which represents a generic anisotropic plasma scenario. In this scenario, a
divergent Gaussian beam propagating through the plasma escapes from the computation domain
through a strongly nonuniform boundary. The entire computational domain is surrounded by a
narrow CPML layer. This is shown in Fig. 1, where the wave is launched vertically from the
origin (0, 0). The background magnetic field is normal to the plane (x, y) and the plasma den-
sity gradient is directed diagonally (bottom right to top left) with the density ranging from 0 to
approximately 80% of the O-mode cut-off. The PML parameters are m1 = m = 3, αmax = 0.5,
κmax = 5. It can be seen that at the top PML layer the wave-front incident angle varies from
almost normal to quite oblique, ensuring extended benchmarking. The resulting reflection error
is estimated from the maximum value of the electric field amplitude recorded in the bottom-
right quarter of the domain. Note that the maximum relative error reported in the original work
Ref. [13] is ≈ 5 · 10−4. Similar reflection is observed in our benchmark case (a wave with
the cyan contours [10−4; 10−3]). We found that the numerical stability in PML can be greatly
improved when increasing the αmax parameter at the price that the reflection error is somewhat
increased. Note the presence of another wave propagating out through the top right corner (con-
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Figure 1: A snapshot of the decimal logarithm of the wave E-field magnitude for a CPML benchmark case. Background
magnetic field is normal to the plane (x, y) and plasma density gradient is directed diagonally (bottom right to top left)
with the density range from 0 to approximately 80% of the O-mode cut-off (some contours of constant density are shown
with dashed curves). The PML parameters are: m1 = m = 3, αmax = 0.5, κmax = 5.
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tours [10−5; 10−4]). This spurious wave is associated with an inaccuracy of the Gaussian beam
setup at the bottom boundary. Frequently, CPML outperforms the initial condition accuracy (for
instance in a typical case where PML lies in vacuum) so that the latter becomes the dominant
noise source (i.e. introduces ∼10−4 error in field amplitude). Note that the relative errors are
squared when the intensity or mode power are evaluated. The above example is calculated with
the resolution of 12 Yee-cells per vacuum wavelength and a CPML size of 12 cells.

3.2. Reflection from the cutoff layer

In the simplest 1D benchmark we consider an isotropic linear layer without absorption. The
plasma density increases linearly along the y axis, so that the permittivity vanishes at the location
y1, i.e. ε(y) = 1 − y/y1. The wave launched from vacuum (y = 0) must be reflected from the
layer ε(y) = 0. The exact analytical solution of the wave equation for the electric field in this
case takes the form (see §17 in [35]):

E(ζ) = Aζ
1
2

[
J 1

3

(
2
3ζ

3
2

)
+ J− 1

3

(
2
3ζ

3
2

)]
for ζ > 0,

E(ζ) = A(−ζ)
1
2

[
I− 1

3

(
2
3 (−ζ)

3
2

)
− I 1

3

(
2
3 (−ζ)

3
2

)]
for ζ < 0,

(15)

where A is a constant, Jn and In are ordinary and modified Bessel functions of the first kind,
respectively, and the new variable ζ ≡ (ωy1/c)

2
3 ε(y).

In the numerical calculation we use 12 cells per wavelength. The length of the domain is 480
cells in y direction4. A 10-cell CPML layer is located in the y < 0 region. The resulting steady-
state electric field distribution, which is achieved after approximately 5000 time-steps, is shown
with markers in Fig. 2 (top). Equation 15 is plotted as a solid curve in the same plot. The vertical
grey line marks the y1 location and separates the region where ζ, ε > 0 from the evanescent layer
ζ, ε < 0. The bottom panel shows the error of the calculation, i.e. the distance between the roots
of E(y) = 0 obtained from the numerical and analytical solutions. In this setup the error does
not exceed the size of the computational cell.

3.3. Interaction of the electromagnetic and plasma waves

Some numerical techniques may experience difficulties when resolving behaviour of a wave
near resonances. Such situations also require special treatment when studied analytically. In
order to demonstrate that our full-wave code provides well-behaved solutions around resonances
we calculate plasma wave excitation by the oblique reflection of a wave from a linear isotropic
plasma layer with collisional damping given for relatively small reflection angles. The permit-
tivity in this case is

ε ≈ 1− y

y1

(
1 + i

ν

ω

)
. (16)

This setup is illustrated in Fig. 3, where the calculated electric field is colour-coded and the
red curve shows the ray-tracing calculation. In the geometrical optics limit the ray turning point
location (indicated with the green line) is given by the relation yr = y1(1 − sin2 θ0), where
θ0 is the wave incidence angle. Therefore, for relatively small θ0, such that |y1 − yr| . λ, a
finite evanescent wave, which propagates behind the geometrical reflection point yr, can excite

4Technically this calculation is performed in 2D setup with a very wide Gaussian beam, since our code does not
currently support 1D calculations.
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Figure 2: Top: Steady-state distribution of the wave electric field (dots) in 1D isotropic plasma with ε(y) = 1 − y/y1,
where y1 = 0.0595m (marked with the vertical grey line). The wave frequency is ω/2π = 140 GHz. Analytical
solution, Eq. (15), is plotted with the solid curve. Bottom: The distance between the roots of E(y) = 0 obtained from
numerical and analytical solutions.

plasma (Langmuir) oscillations near the resonance location y1 (indicated with the dashed line in
Fig. 3). Note that electrostatic charge separation near the resonance is due to the electric field
component along the density gradient, therefore no singularity arises if Ey = 0. Consequently,
the considered wave is linearly polarised in the x− y plane.
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Figure 3: A snapshot of the electric field amplitude (colour-coded) and the ray tracing trajectory (red curve) for the test
case with the permittivity given by Eq. (16). The green line represents yr and the dashed line represents y1.

The problem of wave reflection and generation of Langmuir oscillations near the singularity
point, ε(y1) = 0, can be treated analytically in the limit of rather large incidence angles (see §20
in [35] and references therein). This is the limit where the distance between y1 and yr is much
greater than the wavelength. Figure 4 shows the squared electric field component E2

y around the
resonance region computed with our full-wave code (yellow) compared with the approximate
analytical solution (green) for ν/ω = 3.4 × 10−4 and two incident angles: sin θ0 = 0.34, i.e
θ0 ≈ 20◦ (a) and sin θ0 = 0.2, i.e. θ0 ≈ 11.5◦ (b). A grey vertical line marks the geometrical
optics reflection point yr. The analytical solution predicts an exponential (in sin3 θ0) scaling
for |Ey| ∼ e− sin3 θ0/ν, which is in agreement with our calculations. In this test the resolution
had to be increased to 24 cells per vacuum wavelength in order to resolve the narrow resonance
peak. Because the energy flow to the resonance is exponentially slow it takes a very long time for
the peak to saturate at the chosen collisional frequency, namely approximately 50000 time-steps
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required in the cases of Fig. 4.
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Figure 4: Squared electric field component E2
y around the resonance region computed with CUWA code (yellow) com-

pared with the approximate analytical solution from [35] (green) for ν/ω = 3.4 × 10−4 and two incident angles:
sin θ0 = 0.34 (a) and sin θ0 = 0.2 (b). Grey vertical line marks the geometrical optics reflection point yr . .

4. O-X mode conversion

One of the premier applications of our code is the calculation of the linear transformation of
the ordinary (O) to the extraordinary (X) mode in 3D plasmas.

Electron Cyclotron Resonance Heating (ECRH) is the main plasma heating mechanism in
the Wendelstein 7-X (W7-X) stellarator [37]. The X- and O-modes are used in a wide range
of operation scenarios. Whereas X2 (frequency corresponding to the 2nd electron cyclotron
harmonic) has a cut-off at the density 1.2 × 1020m−3, the O2-mode can be used in plasmas
with densities up to 2 × 1020m−3 (the cut-off density is 2.4 × 1020m−3). Possible operation
at densities above the cut-off would involve double mode-conversion from O- to slow X- and to
Bernstein-mode, i.e. an OXB-scenario [38]. The efficiency of such heating schemes is defined
by the O-X conversion efficiency. The physics of O-X conversion is outside the applicability of
the routinely used geometrical optics approximation and should be considered within a full-wave
approach.

Linear O-X transformation happens when the O-mode cutoff and the X-mode “turning sur-
face” are close to each other. At the intersection of these two surfaces WKB approximation
predicts a perfect conversion [1, 39, 2] wave, i.e. a wave with an optimal refractive index, Nopt

|| ,
for given plasma parameters. In reality, however, 3D shaped cutoff surfaces and a finite spectral
width of the incident O-mode may reduce the conversion efficiency considerably.

A number of analytical considerations of O-X conversion in 3D plasmas exist [40, 41, 42],
which, however, all rely on an idealised 3D geometry at the conversion point. As we will see
in the example below in realistic 3D stellarator equilibria the evanescent layer can have a rather
complex shape which cannot be properly described in a reduced analytical representation. In
contrast, the 3D full wave treatment demonstrated here allows for a direct evaluation of the
conversion efficiency for arbitrarily shaped beams and plasmas.

Figure 5 shows an example of a 2D full wave calculation of the O-X conversion process.
The O-mode at 140 GHz, launched from vacuum, propagates into the plasma and is partly re-
flected off the corresponding cut-off layer, where a part of the O-mode is converted into a slow
X-mode, which propagates toward the upper-hybrid resonance (dashed line). The magnetic field
of approximately 2.5 T is directed along the positive x axis. The density is smoothly ramped
up along the y axis the density length scale L ≡ ne/∇ne = 1/15 m at the conversion layer.
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Figure 5: An example of the O-X mode conversion calculation. Left plot: snapshot of the wave electric field (colour-
coded), ray tracing (solid red). The antenna is located at the origin (0,0). The O-mode cutoff and upper hybrid resonance
layers are indicated with the white and the white dashed lines, respectively. The intensity (time averaged normalised
Poynting vector amplitude) of the wave at the y = 0 plane is illustrated with the white curve. Right plot: windowed
Fourier transform of the wave field, i.e the wave refractive index Ny = N⊥ (colour-coded) and the refractive index
predicted with a ray-tracing (solid).

Despite the fact that WKB-optimal wave launched, the conversion efficiency of the finite width
Gaussian beam is much lower than unity. The beam radius and the radius of the curvature at
the launching position are 1.2 cm and 1 m, respectively. The reflected part of the O-mode has
a “hole” around the reference ray due to the non-uniform O-X conversion. The intensity (time
averaged normalised Poynting vector amplitude) of the wave at the y = 0 plane is illustrated
with the white curve. The overall conversion efficiency is about 60% in this case. The evolution
of the perpendicular component of the refractive index is computed using a windowed Fourier
transform and is shown in Fig. 5 (right). The incoming O-mode, the reflected O-mode and the
slow X-mode (which settles near the upper hybrid resonance layer) can be clearly distinguished
in this diagram, which appears to be in a good agreement with expectations from WKB theory
(i.e. dispersion curves), validating the numerical solution. Note that the slow X-mode is even-
tually dissipated numerically without leaving the computation domain. This dissipation is of
purely numerical nature. It happens when the wavelength of the mode becomes shorter than 10
computational cells, i.e. ∆x/λ > 0.1.

Since W7-X plasmas are strongly shaped, simulations of the O-X conversion in W7-X require
3D evaluation. Figure 6 shows an example of such a calculation. The wave is launched from the
bottom of the domain in the y direction, the slow X- mode is contained within the computation
domain, and the reflected O-mode power distribution is shown on the plane x = Const). The
reflected O-mode power distribution does not have a simple structure (around the central refer-
ence ray), as in the 2D case above, but has an asymmetrically distributed power density. This is
because of the rather complex structure of the evanescent layer shown in Fig. 7.

To estimate the power conversion efficiency, we compute surface integrals of the time-
averaged Poynting vector (i.e. the intensity) over every boundary of the computational domain:
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Figure 6: 3D calculation of the scenario similar to the one described in Fig. 5. The decimal logarithm of the time-
averaged Poynting vector is colour-coded. The grey tube represents the corresponding WKB trajectory for the reference
ray.

Pi =
1

µ0

∫∫
(〈E×B〉 · n) dS, (17)

where the index “i” denotes a particular boundary, n represents its normal vector and 〈...〉 denotes
time averaging.

In the above case, the O-X conversion efficiency is 85%, calculated as the difference between
the intensities of the input (Pin) and reflected (Pref ) waves. This case represents an optimised
scenario in which the W7-X launching antenna position was varied to find the highest conversion
within a given equilibrium and density profile. The normalised density gradient near the cutoff
is approximately 15m−1. Note that it is not possible to realise the launcher position required
for this case in W7-X with the existing ECRH system, and the typical conversion efficiency for
realistic configurations and launcher positions is around 50%. Figure 8 shows how the conversion
efficiency depends on the launcher azimuth and altitude angles for one of the W7-X launchers
[43, 44]. A systematic study of the O-X conversion efficiency in W7-X plasmas was reported in
[45].

5. Mode coupling in a sheared magnetic field

Another example of CUWA applications is the calculation of cross-mode coupling at vanish-
ing density [46]. In particular, this effect is observed in LHD, where ECRH beams propagate
in strongly sheared magnetic field outside of the plasma [4, 47]. The O- and X-mode’s polar-
isations are then not well separated and energy transfer occurs between the modes. A number
of theoretical approaches for the mode purity study were previously reported, see, for exam-
ple, Refs. [5, 48]. Full wave calculations permit direct evaluation of mode coupling effects in a
realistic magnetic fields [47].

Figure 9 (right) shows an example of a full wave calculation of an LHD-like scenario, i.e.
beam propagation in a strongly sheared magnetic field. Note that a realistic LHD setup involves
beam propagation in a 2 m duct from the last mirror toward the plasma, whereas Figure 9 only
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Figure 7: Structure of the evanescent layer on the O-mode cutoff surface for N|| ≈ Nopt
|| . The thickness of the

evanescent layer is colour-coded (the intersection with the X-mode turning surface is indicated with the white contours).

25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5
azimuth

−7.0

−6.5

−6.0

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

al
tit
ud

e

0.13
0.19

0.19

0.19

0.2
60.3

3
0.39

0.46

Figure 8: Contours of the O-X conversion efficiency for a given plasma parameters over varying beam aiming angles (for
a fixed location of the launcher).

shows a calculation of the last 15 cm of a beam propagation. A very high-purity O-mode (see
Eq. (11)) is launched from the bottom of the computational domain toward the plasma, and the
density of the plasma rises above the X-mode “cutoff” so that the spurious X-mode is reflected.
In this particular example the reflected wave amplitude is only 3% of the wave amplitude of
the incoming O-mode. Note that when the realistic LHD magnetic field is replaced with a uni-
directional magnetic field the X-mode is not generated. This is demonstrated in Fig. 9 (left).
Our preliminary analysis of W7-X relevant plasma shows negligible cross-polarisation power
exchange. This is mainly because of a significantly lower magnetic shear in W7-X, as compared
to LHD.

6. Summary

In this paper we report on the development of the 3D full wave GPU-capable code CUWA.
The code is equipped with CPML “boundary conditions”, which permit efficient truncation of the
computational domain and windowed Fourier Transform for a direct comparison of the full wave
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Figure 9: O-mode propagation in vanishing density for a unidirectional magnetic field (left) and for an LHD-like sheared
magnetic field (right). Power transfer to the spurious X-mode (reflected from the plasma) is observed in the sheared case
(right). The solid curves correspond to a ray-tracing calculations of the O and X modes. Dashed curves are the contours
of constant density.

solution with the predictions of the WKB approximation. The code uses ray-tracing calculations
to construct a computational domain with realistic plasma parameters.

The accuracy and stability of the employed numerical techniques are demonstrated in bench-
marks against analytically tractable examples.

Also, we demonstrate CUWA application to a problem of linear O-X mode conversion in 3D
plasmas and to a problem of mode-coupling in a strongly sheared magnetic field.

A great advantage of the GPU-capable code is its speed. The 3D computation shown in Fig. 6
takes only a few minutes (depending on the GPU device), while analogous 2D computations are
typically no longer than several seconds. This allows for efficient and large parametric scans over
a broad range of parameters, and makes it possible to solve otherwise demanding optimisation
problems or problems involving statistical averaging over a large number of calculations, i.e.
study of the effects of turbulence on waves propagation.
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