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Abstract

We present the first version of the QEngine, an open-source C++ library for simulating and controlling
ultracold quantum systems using optimal control theory (OCT). The most notable systems presented here
are Bose-Einstein condensates, many-body systems described by Bose-Hubbard type models, and two inter-
acting particles. These systems can all be realized experimentally using ultracold atoms in various trapping
geometries including optical lattices. In addition we provide a number of optimal control algorithms includ-
ing the recently introduced group method. The QEngine library has a strong focus on accessibility and
performance. We provide several examples of how to prepare simulations of the physical systems and apply
optimal control.

Keywords: Quantum Optimal Control Theory; Bose-Einstein Condensate; Gross-Pitaevskii equation;
group; Bose-Hubbard; C++.

PROGRAM SUMMARY

Program Title: QEngine
Program Summary: quatomic.com
Download : gitlab.com/quatomic/qengine

License: MPL-2.0
Programming Language: C++14
Computer : Any system with a C++14 compliant compiler.
Operating system: Linux, Mac OSX, Windows
RAM : 2+ Gigabytes
External routines : Armadillo, LAPACK and BLAS or Intel Math Kernel Library
Nature of Problem: Quantum optimal control of ultracold systems.
Solution method : Numerical simulation of the equation of motion and gradient based quantum control.
Running time: Few seconds up to several hours depending on the size of the underlying Hilbert space.

1. Introduction

In the last two decades there have been exceptional advances in the ability to engineer and understand complex
quantum systems. Especially, ultracold atoms provide an excellent platform for precision measurements [1, 2], matter
wave interferometry [3, 4, 5], quantum simulation [6, 7], and quantum gates [8, 9, 10]. These systems offer extensive
versatility through their purity and the high level of control of both the underlying potential landscape and the
interatomic interactions [11]. In order to fully utilize the potential of these quantum systems the design of efficient
experimental protocols for preparing quantum states of interest poses an important challenge [12].

Many experimental control protocols rely on simple empirical or adiabatic inspiration, which are typically slow
and therefore limited by decoherence and sensitivity towards experimental imperfections [12, 13]. It is often desirable
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to find fast protocols that avoid decoherence and are robust with respect to system perturbations resulting in typically
highly complex controls. Such control protocols can be found within the framework of Quantum Optimal Control
(QOC). In QOC improved protocols are found using optimization algorithms that seek to minimize some cost
functional [14].

In the context of ultracold atomic physics, QOC has been applied to improve splitting and driving of Bose-Einstein
condensates trapped on an atom chip, which can be used to realize matter wave interferometry and nonlinear atom
optics [12, 15, 16]. QOC has also been applied to stabilize ultracold molecules [17, 18] and manipulate ultracold
many-body systems in optical lattices [19]. In addition, it has been demonstrated that such optimal control pulses
are experimentally feasible [12, 20]. There has also been fundamental studies showing that QOC can find controls
saturating the fundamental quantum speed limit [21, 22, 23] where similar behavior has also been reported for
ultracold atoms in a double well system [24]. QOC is a versatile tool that can be applied not only in the context
of ultracold atoms but as examples also in nuclear magnetic resonance [25], control of chemical reactions [26] and
nitrogen vacancies [27].

Optimal control protocols are typically designed for a certain set of experimental parameter values that may
change due to modifications in the experimental setup, thereby necessitating a recalculation for new optimal controls.
For instance, there is a large number of papers that discuss driving a condensate from the ground state into the first
excited state with slightly different parameter values [12, 15, 16, 20, 28, 29]. A barrier for rapidly recalculating such
controls is writing and rigorously testing QOC programs, which is time consuming and the programs are very slow
if not properly implemented. These two requirements, performance and usability, are primary driving forces behind
the design of the QEngine. The high level of usability for example enables experimentalists to readily recalculate
experimental protocols.

There exist a number of alternative software packages to the QEngine for performing quantum optimal control.
Many of these are implemented in matlab like octbec [30], dynamo [31] and the recent WavePacket [32, 33]. The
Python package QuTiP is also a widespread platform for simulation and optimal control of quantum optics [34].
Collectively these packages offer more functionality than the QEngine but they are implemented in weakly typed
programming languages that are inherently less focused on performance. Especially, octbec has a similar focus to
the QEngine and it has been a source of inspiration for our work.

The QEngine is designed for performance. One way the QEngine achieves this is by a general reliance on
templates to provide flexibility instead of virtual functions and pointers. This allows for a high number of compile-
time optimizations. Templates are useful for efficiency, but they are typically a programming barrier for physicists
who are not C++ professionals. In order to accommodate such users of the library, we have made considerable efforts
in providing a simplified API that does not invoke any advanced language features. The auto-syntax available in
modern C++ together with factory-functions and overloaded operators give a straightforward syntax close to the
mathematical equations used by theoretical physicists and weakly typed languages such as matlab and Python. The
QEngine uses the highly optimized Intel Math Kernel Library (MKL) and the C++ library Armadillo to provide
efficient basic linear algebra needed for the quantum simulations and optimizations [35]. In addition, the code has
also been profiled and optimized.

A comprehensive documentation for the QEngine is also available at quatomic.com and the source code is available
at gitlab.com/quatomic/qengine. The library has a number of example programs that can help users get started.
In this paper, we give an introduction to some of the features in QEngine but leave out several details that can be
found in the online documentation. The QEngine currently supports simulation and optimal control of the Gross-
Pitaevskii description of a BEC, the Bose-Hubbard model, two interacting particles, a single particle, and generic
few mode models.

The paper is organized as follows. In section 2 we give a brief introduction to the physical models and optimal
control theory. In section 3 we discuss how to prepare simulations in two example programs that demonstrate key
functionalities in the QEngine. Quantum optimal control theory is explained in section 4 including the group

algorithm we recently introduced in Ref. [36]. Finally in section 5 we explain how to perform optimal control
optimizations on the example programs from section 3. Section 6 gives a summary and outlook.

2. Overview of QEngine Features

In this section we give a brief overview of the mathematical description of the models available in the QEngine and
optimal control. The starting point for modelling these ultracold atomic systems is the second quantized Hamiltonian
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Figure 1: (Color Online) Snapshots of an optimized (blue) and unoptimized (red) transfer of a ground state BEC into the first
excited state (green) in an anharmonic potential (black) – see section 3.1 for details. The simulations and optimization were
performed using the QEngine.

[37]

Ĥ =

∫ (

Ψ̂†(x)

[

− ~
2

2m

∂2

∂x2
+ V̂

]

Ψ̂(x) +
g1D
2

Ψ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x)

)

dx. (1)

Here the first term describes the kinetic and potential energy and the second term represents two-particle interactions.
Currently, the QEngine only supports one-dimensional systems. Ψ̂(x) and Ψ̂†(x) are the bosonic field operators
obeying the usual commutation relations [Ψ̂(x1), Ψ̂

†(x2)] = δ(x1 − x2). ~ is the reduced Planck constant and m is
the mass of the atom. In Eq. (1) we have used that two-particle interactions in the ultracold limit are well-described
by an effective contact interaction, which in one-dimension is Vint(x1, x2) = g1Dδ(x1 − x2) where g1D is the system
dependent coupling strength [11, 38]. Different physical models described in the QEngine emerge from different
special cases of Eq. (1).

Gross-Pitaevskii Equation. One important special case for N ultracold bosons is a mean field description where the
bosonic field is in a single mode. This gives rise to the Gross-Pitaveskii Equation (GPE) describing the time evolution
of a Bose-Einstein condensate (BEC) ψ =

√
Nφ. The corresponding Hamiltonian is

Ĥgp = Ĥ0 + g1D|ψ(x, t)|2, (2)

where Ĥ0 is the kinetic and potential energy. The non-linear term represents the condensate self-interaction. The
GPE is an important starting point for modelling the dynamics of BECs [3, 11, 12, 15]. The QEngine can calculate
the ground state and first excited state of the GPE using an optimal damping algorithm described in Ref. [39]. The
time evolution is performed using the split-step Fourier method [40].

Bose-Hubbard. Ultracold atoms can be loaded into a periodic optical lattice [11]. In this system it is convenient
to expand Ψ̂(x) in terms of the localized Wannier modes on each lattice site. In a lowest band approximation the
expansion reads Ψ̂(x) =

∑

i âiw0(x− xi). Also assuming the tight-binding approximation Eq. (1) for L lattice sites
becomes

Ĥ = −J
L−1
∑

i=1

(

â†i+1âi + h.c.
)

+
U

2

L
∑

i=1

n̂i(n̂i − 1) +
L
∑

i=1

Vin̂i (3)

Here J and U are matrix elements of Eq. (1) with the lowest band Wannier functions, which describe the nearest-
neighbor tunneling and on-site interaction. Vi is the local external trapping potential. The ground state of this
Hamiltonian exhibits a phase transition from a delocalized superfluid state to a Mott insulating state depending on
the ratio U/J [11]. This model is simulated in the QEngine using exact diagonalization with sparse linear algebra.
The time evolution is performed using the Lanczos method [41].

Two-particle. Technological advances have enabled the preparation of single atoms in an optical lattice or tweezer
arrays [11, 42, 43]. It has been proposed to use these systems as a platform for quantum computation, where the
necessary two-qubit gate can be realized using controlled ultracold collisions of two atoms [8, 10, 44, 45]. It is
convenient to rewrite Eq. (1) in first quantization as

Ĥ = − ~
2

2m

∂2

∂x2
1

+ V̂ (x1)− ~
2

2m

∂2

∂x2
2

+ V̂ (x2) + g1Dδ(x1 − x2), (4)

where x1 and x2 are the positions of the two atoms. The associated dynamics is also simulated using the split-step
Fourier method. In a similar manner it is possible to simulate the dynamics of a single particle in the QEngine.
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Figure 2: The relative performance gain from matlab to C++ (higher is better) when running 100 optimization iterations in
the Gross-Pitaevskii example program. The results are averaged over 15 individual runs. The inset shows the average absolute
execution time for matlab and C++ (lower is better). The results were generated on a 2017 Macbook Pro laptop with an
Intel(R) CoreTM i7-7700HQ CPU @ 2.80GHz processor.

Units. In order to perform any physical simulation it is convenient to transform the Hamiltonians in Eqs. (2)-(4)
into dimensionless units. A discussion of the units used in the example programs is given in the appendix.

Quantum Optimal Control. The QEngine enables the user to solve state transfer problems using QOC. This type
of problem consists in manipulating the system dynamics in order to realize a transfer of an initial state ψ0 into a
target state ψt for some fixed duration T . The manipulatory access to the dynamics is through one or more control
fields u(t) parametrizing the Hamiltonian in some way H = H(u(t)). In an experimental setting the control fields
usually correspond to physical quantities such as the intensity or position of a laser beam. Optimization algorithms
are typically used to iteratively design the control fields. An example of a state transfer problem is shown in Fig. 1
where a BEC is driven from the ground state into the first excited state using an optimized control field. In this case
the control field corresponds to the position of the trap center, which is experimentally realized by adjusting magnetic
fields [12, 20]. The figure shows snapshots of the transfer process before and after the optimization, illustrating that
the optimization algorithm succeeds in finding an optimal control.

The QEngine offers a variety of optimization algorithms that can be applied to any of the physical models.

Benchmark against matlab. For comparison we benchmarked the QEngine against a similar implementation in
matlab used internally in our research group. The benchmark was performed on the entire Gross-Pitaevskii example
program described below, which ran for 100 optimization iterations with different grid sizes. The example program
was slightly modified to give the most direct comparison between the two code bases. The results are displayed in
Fig. 2, which shows that the QEngine is significantly faster.

3. Simulation Example Programs

Instructions for installing the QEngine are included in the README.md file. In order to help users get started we
have included a number of example programs in the folder example projects that are designed to illustrate many
of the different features in QEngine. An overview of these programs is given in Table 1. In this paper, we discuss
the two programs gpe-example.cpp and bosehubbard-example.cpp in depth, which gives a good overview of key
functionalities in the QEngine. For clarity, we omit minor code details in this paper. A more detailed and complete
API documentation can be found at quatomic.com, including more technical functionalities not discussed in the
example programs.

4
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Example Program Execution Time Description
gpe-example.cpp 582.27s Optimal control of driving a condensate wave function.
bosehubbard-example.cpp 234.94s Optimal control of a superfluid to Mott transfer.
twoparticle-example.cpp 975.32s Optimal control of a an ultracold atomic gate.
oneparticle-example.cpp 0.99s Optimal control of a single atom in a optical tweezer.
twolevel-example-cpp 0.67s Optimal control of the Landau-Zener system.

Table 1: The default example programs included in the QEngine. The table shows the file name, execution time and a short
description. The results were generated on a 2017 Macbook Pro laptop with an Intel(R) CoreTM i7-7700HQ CPU @ 2.80GHz
processor.

3.1. Gross-Pitaevskii Example Program

As a first example, we describe optimal control of a BEC trapped on an atom-chip. We focus on the control
problem described in Refs. [12, 16, 46] where a BEC is transferred from the ground state into the first excited state
as shown in Fig. 1. The physical motivation for this problem is to create a source of twin-atom beams, which is the
matter-wave analogue to twin-photon beams [46]. The mechanism behind twin beam emission is binary collisions of
two excited atoms. The collision may cause atoms to de-excite into the radial ground state mode while simultaneously
populating twin momentum states |±k0〉 along the axial z-direction due to conservation of momentum and energy.
The characteristic timescale for the collision induced decay is a few milliseconds (≈ 3ms), and as a consequence
the duration of the preparation stage into the excited state must be well below this threshold [12]. The atom-chip
experiment has two tightly confined transverse directions (x and y) and a weakly confined axial direction (z). One
of the transverse directions (say y) has a tighter confinement freezing out excitations. The dynamics along the axial
direction is slow compared to the transverse directions, and we may only consider a one-dimensional GPE along the
x-direction. This requires an appropriate effective coupling constant [12, 47].

The potential along the x-direction is parameterized by a single control field u(t), which is well-approximated by
the anharmonic potential

V (x, u(t)) = p2(x− u(t))2 + p4(x− u(t))4 + p6(x− u(t))6, (5)

where the pi’s are constants obtained experimentially [12, 46]. The initial state is taken to be the ground state of
V (x, 0), and in the optimal control part we take the target state to be the first excited state of V (x, 0) as shown in
Fig. 1. Measuring length in units of micrometers and time in units of milliseconds, the effective mean field interaction
strength for 700 atoms is g1D = 1.8299 (see Appendix A).

To use the QEngine in a program, we need to include the QEngine header file

#include <qengine /qengine .h>

#include <iostream >

using namespace qengine ;

The qengine.h header exposes the different simulation models and optimal control algorithms. At the highest
level the QEngine library defines the namespace qengine. The qengine namespace contains most API-functionality
across the different types of physics and optimal control. We will make use of the DataContainer class defined in
the QEngine, which can be used to save data to a .json file format or optionally to a matlab .mat file format. This
makes it easy to export data for visualization and post-processing.

First we set up the control field u(t)

const auto dt = 0.002;

const auto duration = 1.25; // corresponds to 1.25 ms

const auto n_steps = floor (duration /dt) + 1;

const auto ts = makeTimeControl(n_steps ,dt);

const auto initialAmplitude = 0.55;

const auto u = initialAmplitude*sin(PI/duration *ts); // control field

The makeTimeControl function returns a single control field with linearly spaced values, which can be used to
compose more complicated control fields. In this case the control field u is half a sine period with amplitude 0.55.
This will also act as our initial guess in the optimal control algorithms. It is possible to access the control field values
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at time index i by calling u.get(i), returning an RVec whose entries are the values for each control field at that
time index. The control field values at the first and last time index can be easily accessed with u.getFront() and
u.getBack(), respectively. In the present case we only have a single control field.

The concept of a Hilbert space is mimicked in the QEngine for each type of physical model.

const auto kinFactor = 0.36537; // T = -kinFactor *d^2/ dx^2

const auto s = gpe :: makeHilbertSpace (-2,+2,256, kinFactor );

const auto x = s.x(); // FunctionOfX of x-grid values

Having defined both x and u(t) we can create the control-dependent potential V (x, u(t)) Eq. (5)

const auto p2 = 65.8392;

const auto p4 = 97.6349;

const auto p6 = -15.3850;

const auto V_func = [&x,p2 ,p4 ,p6]( const real u)

{

// By saving intermediate calculations we reduce overall computation time

const auto x_u = x - u;

const auto x_uPow2 = x_u * x_u ;

const auto x_uPow4 = x_uPow2 * x_uPow2 ;

const auto x_uPow6 = x_uPow2 * x_uPow4 ;

return p2*x_uPow2 + p4*x_uPow4 + p6*x_uPow6 ;

};

const auto u_initial = u.getFront (). front (); // first entry in first time index

const auto V = makePotentialFunction (V_func , u_initial );

The lambda function V func takes a real number and returns a FunctionOfX evaluated with the given con-
trol value. To create a potential object the lambda function and an initial control field value are combined in
makePotentialFunction. The V object encapsulates the idea of a potential, and calling V(newControlValue) evalu-
ates the V func lambda with newControlValue and returns a potential operator. In the present case newControlValue
is of type real. The kinetic energy operator can simply be extracted from the Hilbert space. It is represented by the
5-diagonal approximation to the second derivative with non-periodic boundary conditions. The mean field interaction
is equally succinctly handled. Assembling the Hamiltonian operator is then straightforward,

const auto T = s.T();

const auto g1D = 1.8299;

const auto meanfield = makeGpeTerm (g1D );

const auto H = T + V + meanfield ;

The H object can be called in the same way as the underlying potential by H(newControlValue). Note that the type
of H is auto deduced to be a GPE Hamiltonian by the compiler. Omitting the meanfield term would change the type
deduction to a single particle Hamiltonian. This would still valid code since the GPE Hilbert space is the same as
the single particle Hilbert space. The QEngine defines a convenient syntax for creating general linear combinations
of eigenstates for operators. Let A be an operator and let {φi} be the corresponding eigenstates and suppose we
wanted to create the linear combination ψ = φ0 − 2iφ1. This is readily achieved with the lines,

const auto comb = A[0] - 2.0*1i*A[1]; // syntax object

const auto psi = makeWavefunction(comb); // evaluate syntax

The states we need for the example are individual eigenstates

const auto psi_0 = makeWavefunction(H(u.getFront ())[0]);

const auto psi_t = makeWavefunction(H(u.getBack () )[1]);

The QEngine currently only supports calculation of the ground state and first excited state for GPE type physics,
but will not raise an error if higher excited states are queried. There are no such restrictions for the other types of
physics.

Initializing the container and filling in time independent data is done by

DataContainer dc; // empty data container

dc["dt"] = dt;

dc["duration "] = duration ;
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dc["x"] = x.vec ();

dc["psi_t"] = psi_t.vec ();

Once all data has been collected, calling dc.save("<path/to/dest>.<file-extension>") creates a file in either the
.json or .mat file format, where e.g. the variable x is stored with the field name ”x” and corresponding field values.

To perform time evolution we initialize a stepper with fixed stepping interval length dt. We then loop over the
entire control and append a few quantities of interest at each instant of time for saving.

auto stepper = makeFixedTimeStepper (H,psi_0 ,dt);

for (auto i = 0; i < n_steps ; i++)

{

const auto& psi = stepper .state ();

dc["V"]. append (V(u.get(i)). vec ());

dc["psis"]. append (psi.vec ());

dc["overlap "]. append ( overlap (psi , psi_t ));

dc["fidelity "]. append ( fidelity (psi ,psi_t ));

dc["x_expect "]. append ( expectationValue(x,psi ));

if(i < n_steps -1) stepper .step(u.get (i+1));

}

The propagation from ψ(t) to ψ(t+ dt) is performed by stepper.step(u.get(i+1)) using the midpoint rule. Only
u(t+ dt) is needed since u(t) is stored internally from the previous step.

In the program we subsequently take additional steps with the final Hamiltonian held constant by using the
stepper.cstep() function in an otherwise identical loop to the one above.

The result of the simulation is illustrated in Fig. 3 where the density of the condensate is plotted as a function
of time. In the atom-chip experiment the objective is to transfer the initial state into the first excited state, which
is not accomplished in the unoptimized transfer Fig. 3.

3.2. Bose-Hubbard Example Program

In this example, we discuss the simulation of bosons in an optical lattice described by the Bose-Hubbard model
Eq. (3). Creating a Mott state with one particle on each site is important for many experimental applications
such as quantum logic gate operations [48, 49, 50, 51, 52], quantum simulation [53], and single atom transistors
[54]. Experimentally the system is initialized in the superfluid state and must be dynamically transferred into the
Mott state [55, 56]. However, near the phase transition the gap between the ground state and the first excited state
closes in an infinite system. This implies diverging transfer times for adiabatic solutions. There have been both
experimental and numerical attempts to find improved transfer protocols [19, 55, 57, 58].

Here we consider a transfer from the ground state at U = 4 into a Mott like ground state at U = 30 with
a weak harmonic external potential in units of J. It is necessary to impose a minimal Umin = 2 since the Bose-
Hubbard model assumes a sufficiently deep lattice [11]. In a similar manner, it is not experimentally feasible to
have arbitrarily large values of U . We take the upper bound to be Umax = 40. Later we will apply QOC to find
optimized solutions, which must also satisfy these experimental and modelling constraints on U . The constraints can
be accommodated by introducing a nonlinear transformation U(u) = A(tanh(u) +B), where u is a non-physical but
unbounded control field. Here A = Umax/(1 + B) and B = (1 + Umin/Umax)/(1− Umin/Umax) restricts the physical
control Umin < U < Umax.

const auto Umin = 2.0;

const auto Umax = 40.0;

const auto B = (1+ Umin/Umax )/(1- Umin/Umax); // transformation params

const auto A = Umax /(1+B);

const auto UFromu = [A,B]( auto u){ return A*( tanh(u) + B);}; // control to physical U

const auto uFromU = [A,B]( auto U){ return atanh (U/A-B);}; // physical U to control

const auto dt = 0.002;

const auto duration = 2.2;

const auto n_steps = floor (duration / dt) + 1;

const auto ts = makeTimeControl(n_steps , dt);

const auto u = uFromU (Umin + 0.5* exp(log ((30- Umin )/0.5)* ts/duration ));
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Here we use an exponential ramp for U , which will later be used as the starting point for the QOC algorithms [19].
As in the previous example we begin by creating the underlying Hilbert space and subsequently initialize the terms
in the Hamiltonian. We also demonstrate how to add a weak confinement potential.

const auto space = bosehubbard :: makeHilbertSpace (5 ,5);

const auto periodicBoundaries = false ;

const auto hoppingOperator = space .makeHoppingOperator( periodicBoundaries );

const auto onSiteOperator = space .makeOnSiteOperator ();

const auto sitePositions = linspace (-1.0, +1.0, space.nSites ());

const auto potential = 0.1* pow(sitePositions ,2);

const auto V = space .transformPotential(potential ); // transform to site indices

const auto H_J = -1.0* hoppingOperator; // J = 1.0

const auto H_const = H_J + V; // Constant parts of Hamiltonian is added

const auto H_func = [&H_const , &onSiteOperator , &UFromu ]( const real u)

{

return H_const + 0.5* UFromu (u)* onSiteOperator;

};

const auto H = makeOperatorFunction (H_func ,u.getFront (). front ());

As in the previous example the full Hamiltonian H is assembled using a lambda function H func and an initial control
value u.getFront().front(). After initializing the Hamiltonian we set up the superfluid state and the Mott like
state. We then initialize the time stepper. The default stepper is a Lanczos propagator, which uses a user supplied
Krylov order [41].

const auto psi_0 = makeState (H(u.getFront ())[0]);

const auto psi_t = makeState (H(u.getBack ())[0]);

const auto krylovOrder = 4;

auto stepper = makeFixedTimeStepper (H,psi_0 ,krylovOrder ,dt);

These lines of code complete the necessary steps to set up a Bose-Hubbard simulation. Exactly as in the previous
example we propagate over the control and in this case save the single-particle density matrix by

dc["rho1"]. append (space .singleParticleDensityMatrix (state ));

state is the instantaneous state from the stepper when propagated over the control u. The result of the Bose-
Hubbard simulation is illustrated in Fig. 4 where the on-site density is plotted as a function of time. In the
superfluid-Mott transfer the objective is to reach the Mott insulator type state, which is not accomplished in the
unoptimized transfer Fig. 4.

4. Theory of Quantum Optimal Control

In the previous section we have described how to set up simulations in the QEngine. In this section we briefly
review QOC and related algorithms. In the next section we describe how to apply QOC to the example programs.

Consider the problem of engineering a single control field u(t) realizing the state transfer from ψ0 to ψt in duration
T constrained by the equation of motion i~ψ̇ = Ĥ(u)ψ for all t. We may consider Ĥ = Ĥgp to be the general case,
as taking β = 0 produces the usual Schrödinger equation. In QOC this problem is posed as a minimization of the
cost functional [36]

J [ψ, χ, u] = JF [ψ] + Jγ [u] + Jgp[ψ, χ, u] (6)

=
1

2

(

1− | 〈ψt|ψ(T )〉 |2
)

+
γ

2

∫ T

0

u̇2dt+ℜ
∫ T

0

〈

χ
∣

∣

∣

(

i~∂t − Ĥ0(u)− β|ψ|2
)∣

∣

∣
ψ
〉

dt, (7)

where the time dependence of most quantities has been suppressed for readability. The first term is minimal for
perfect transfers up to a global phase i.e. when the fidelity F = | 〈ψt|ψ(T )〉 |2 is 1. The second term penalizes rapid
temporal fluctuations in the control field, which are typically not experimentally feasible. The relative importance
between the first and second term is determined by a regularization hyperparameter γ ≥ 0 where higher values shifts
preference towards smoother controls. Usually γ ∼ 10−7 − 10−5. The last term containing the Lagrange multiplier
χ(t) ensures the equation of motion is obeyed at all times.
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Figure 3: (a) the density of the condensate |ψ(x, t)|2 when
propagated along the unoptimized control (b) from the
Gross-Pitaevskii example program. The initial control gives
F = 0.23. After the vertical dashed line the control is held
constant.

Figure 4: (a) the on-site density 〈n̂i〉 when propagated along
the unoptimized control (b) from the Bose-Hubbard exam-
ple program. The initial control gives F = 0.81. After the
vertical dashed line the control is held constant.

4.1. grape

Setting the first Gâteaux variations of J wrt. the functions {ψ(t), χ(t), u(t)} to zero

DδψJ = DδχJ = DδuJ = 0, (8)

and assuming the variations of the control vanish at the boundaries (t = 0 and t = T ) lead to the first order optimality
conditions [36]

i~ψ̇ = (Ĥ0(u) + β|ψ|2)ψ, ψ(0) = ψ0, (9)

i~χ̇ =
(

Ĥ0(u) + 2β|ψ|2
)

χ+ βψ2χ∗, χ(T ) = i 〈ψt|ψ(T )〉ψt, (10)

γü = −ℜ
〈

χ

∣

∣

∣

∣

∣

dĤ0(u)

du

∣

∣

∣

∣

∣

ψ

〉

, u(0) = u0, u(T ) = uT . (11)

At this point we may think of J as a functional of only u, J = J [u], with the corresponding dynamics of ψ and χ
determined by the equations of motion above. An analytical approach to solving this set of equations is not generally
feasible. However, we may define the gradient of J wrt. u(t) under the X norm as the element ∇XJ fulfilling the
relation

DδuJ = 〈∇XJ, δu〉X , (12)

where δu is an arbitrary variation. The common choices of the norm are X = L2 and X = H1 defined as 〈f, g〉L2 =
∫ T

0
f(t)g(t)dt and 〈f, g〉H1 =

∫ T

0
ḟ(t)ġ(t)dt, respectively [59] . Eq. (12) establishes an indirect way of calculating the

gradient and for the norms above we obtain

∇L2J(t) = −ℜ
〈

χ(t)

∣

∣

∣

∣

dH0(u(t))

du

∣

∣

∣

∣

ψ(t)

〉

− γü(t), (13)

∇H1 J̈(t) = −∇L2J(t). (14)

The L2 gradient may not vanish at the boundaries so we must artificially enforce ∇L2J(0) = ∇L2J(T ) = 0 to respect
Eq. (11). In solving the Poisson Eq. (14) for the H1 gradient we may conveniently choose Dirichlet boundary
conditions ∇H1J(0) = ∇H1J(T ) = 0 directly so Eq. (11) is always fulfilled.
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The control is iterated towards a local minimum of the cost functional by the update rule

u(k+1) = u(k) + α(k)p(k), (15)

where α(k) is a suitable step size along the search direction p(k) for the k’th iteration. Typically the search direction
is based on gradient information [60]. The simplest choice is searching in the direction of steepest descent p

(k)
SD =

−∇XJ [u(k)] where we again are free to choose either X = L2 or X = H1. Another common search direction is the

Newton direction p
(k)
N = (∇2

XJ [u
(k)])−1∇XJ [u(k)], which takes into account the local curvature of the functional.

This requires an expensive calculation of the Hessian ∇2
XJ , while also having no guarantee of invertibility far from the

critical points of J . In practice one uses methods like l-bfgs to build an approximation p
(k)
l-bfgs ≈ p

(k)
N to the search

direction at iteration k based on the gradients calculated in iterations 1, 2, . . . , k [59]. In passing we note that our
numerical experiments suggest that restarting the l-bfgs by erasing the gradient history may improve convergence
rates in some situations.

As mentioned above, in a number of experimentally relevant cases there is also a bound on the maximal and
minimal values of the control umin ≤ u(t) ≤ umax. These bounds can be accommodated by using a non-linear
transformation that makes the control unconstrained as in the Bose-Hubbard example program. An alternative is to
add a term in the cost function Eq. (7) that penalizes controls outside the bounds. The latter approach, is known
as soft bounds and the QEngine supports a parabolic cost penalty

Jb =
σ

2

∫ T

0

Θ(umin − u)(u− umin)
2 +Θ(u− umax)(u− umax)

2dt, (16)

where Θ is the Heaviside step function. The weight factor σ is typically of the order σ ∼ 103−104 to heavily penalize
controls outside the bounds. It is straightforward to calculate the L2 gradient of this term which is

∇L2Jb = σ
(

Θ(umin − u)(u− umin) + Θ(u− umax)(u− umax)
)

. (17)

This gradient is added to Eq. (13) steering the optimization towards a region inside the bounds.
Collectively the updates using gradients described in Eqs. (13)-(14) are known as grape algorithms (gradient

ascent pulse engineering) [25]. Numerically solving Eq. (9) requires discretizing time in steps of ∆t with a total
number of steps N = ⌊T/∆t⌋+1. In the grape algorithm family, the dimensionality M of the optimization problem
is equal to the number of simulation time steps, M = N , which is usually on the order of thousands.

4.2. group

The group algorithm (gradient optimization using parametrization) [36] consists in expanding the control
function u on a reduced basis of functions fm(t) where 1 ≤ m ≤M

u(t; c) = u0(t) + S(t)
M
∑

m=1

cmfm(t), (18)

and performing gradient-based optimization in the M -dimensional space of real coefficients c = [c1, c2, . . . , cM ]T ,
which is usually on the order of tens, M ≪ N [36]. This gives group a much smaller optimization dimensionality
than grape and is also independent of the duration and size of the time steps. In Eq. (18) u0(t) is a reference
control and S(t) is any shape-function that goes to zero for t = 0 and t = T , together enforcing appropriate
boundary conditions Eq. (11). Since we are now optimizing the expansion coefficients c, the first Gâteaux variations
of J wrt. {ψ(t), χ(t),c} are set to zero

DδψJ = DδχJ = DδcJ = 0. (19)

This produces the same equations of motion as Eqs. (9)-(10). Effectively now J = J [c]. Choosing the inner product
to be the usual vector dot product for X = R

M , the corresponding gradient of J wrt. c is then defined as the element
∇RM J fulfilling the relation

DδcJ = 〈∇RM J, δc〉RM = ∇RM J · δc =

M
∑

m=1

∂J

∂cm
δcm, (20)
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grape group

makeGrape steepest L2(problem) makeGroup steepest(problem,basis)

makeGrape steepest H1(problem) makeGroup bfgs(problem,basis)

makeGrape bfgs L2(problem) makeDGroup steepest(problem,basisMaker)

makeGrape bfgs H1(problem) makeDGroup bfgs(problem,basisMaker)

Table 2: Simplest API to instantiate different control algorithms in the QEngine. The grape algorithms (left) only require a
state transfer problem object, whereas the group algorithms (right) additionally require a basis specification. The basisMaker

object creates a new basis in each superiteration according to prescription (23).

where δc is an arbitrary variation. This definition of the gradient coincides with the usual definition of the gradient
as a column vector of partial derivatives. The group gradient elements become

∂J

∂cm
=

∫ T

0

(

− ℜ
〈

χ

∣

∣

∣

∣

∣

dĤ0(u)

du

∣

∣

∣

∣

∣

ψ

〉

− γü
)

S(t)fm(t)dt =

∫ T

0

∇L2J(t)S(t)fm(t)dt, (21)

where we identified the term in parenthesis to simply be the L2
grape gradient from Eq. (13). Calculating the

group gradient amounts to first calculating the usual L2
grape gradient and subsequently performingM inexpensive

one-dimensional integrals [36]. The coefficients are then iterated according to

c
(k+1) = c

(k) + α(k)
p

(k), (22)

where p (k) is either the steepest descent direction or the l-bfgs direction both utilizing the gradient Eq. (21).

4.3. Dressed GROUP

A caveat of the parametrization Eq. (18) is that we may induce local trap minima not inherent to the control
problem, but rather due to the parametrization itself. These types of traps are known as artifical traps [61]. A
method to escape such traps was proposed in Ref. [61]. We may let fm = fm(t;θm) where θm is a set of values that
is usually drawn at random. For example we may take fm(t, θm) = sin ((m+ θm)πt/T ) where −0.5 ≤ θm ≤ 0.5 is
drawn from a uniform distribution. Then, if the algorithm gets trapped at (possibly) an artificial minimum, we set
u0(t)← u(t), re-initialize the algorithm with coefficients c = 0, and draw a new set of basis functions fm defined by
a new set of values θm,

u0(t)← u(t), c← 0, fm(t;θm)← fm(t;θ∗
m), (23)

where θ∗
m are new random values. This changes the topology of the optimization landscape and the artificial trap may

have been eliminated. Effectively, this corresponds to restarting the group algorithm with a new parametrization
basis. These restarts are known as superiterations [61]. This modification is refered to as dressed group, or dgroup
for short [36].

5. Optimal Control Example Programs

All algorithms described in the previous section are readily available in the QEngine. These algorithms can be
instantiated by the simple API listed in Table 2. Additional options such as stopping criteria, data collection, and
step size finding method can be set independently of the physical model. If these are not specified, default options
are used. As a result, the code in the following sections is valid for all example programs.

We now extend the example programs in section 3 by performing optimal control on the systems. Initially we
will use the simplest API to perform QOC on the Bose-Hubbard example program. Afterwards we will show a more
advanced API for the GPE example program.
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5.1. Control of Bose-Hubbard Program – Simple API

Here we continue the example program from section 3.2. In this example we prepare a state transfer problem
and solve it using grape, group, and dgroup. A state transfer problem is encapsulated by a problem object,

auto problem = makeStateTransferProblem (H, psi_0 , psi_t , u, krylovOrder );

Here H is the Hamiltonian, psi 0 is the initial state, psi t is the target state, and u is the initial control field, which
in this case is an exponential ramp. The krylovOrder is the order used internally in the timestepper. This problem
object maintains a control field and is responsible for calculating the corresponding cost functional and gradient.
These quantities are used internally by the optimization algorithm to update the control according to Eq. (15) or
(22). Having set up the problem, we can apply the different algorithms using the simple API listed in Table 2,

// GRAPE

auto GRAPE = makeGrape_bfgs_L2(problem );

GRAPE .optimize ();

const auto u_grape = GRAPE .problem (). control ();

// GROUP

const auto M = 60; // basis size

const auto shapeFunction = makeSigmoidShapeFunction (ts ,0.999);

const auto maxRand = 0.0; // -maxRand < theta_m < maxRand

const auto basis = shapeFunction* makeSineBasis(M,u.metaData (), maxRand );

auto GROUP = makeGroup_bfgs(problem ,basis );

GROUP .optimize (); // begin optimization

const auto u_group = GROUP .problem (). control (); // extract GROUP optimized control

// dGROUP

auto basisMaker = makeBasisMaker([M,maxRand ,&u, & shapeFunction]()

{

return shapeFunction*makeSineBasis(M, u.metaData (), maxRand );

});

auto dGROUP = makeDGroup_bfgs(problem ,basisMaker );

dGROUP .optimize (); // begin optimization

const auto u_dgroup = dGROUP .problem (). control (); // extract dGROUP optimized control

After construction, calling .optimize() begins the optimization algorithm. Once the optimization is completed, the
optimized control fields are extracted by .problem().control(). grape optimizes the control field directly whereas
group uses a reduced basis, which must be supplied by the user – see Table 2. group also uses a shape function
to enforce boundary conditions on the control field Eq. (18). The default shape function makeShapeFunction is a
symmetric sigmoid function depending on parameters like dt and the number of controls, which are conveniently
supplied through u.metaData(). group uses the same basis for the entire optimization whereas dgroup uses a
new basis in each superiteration through the presecription (23). The new basis is constructed from the basisMaker

object.
The result of the dgroup optimization is shown in Fig. 6a where the on-site density is plotted as a function of

time for the optimized control. After the vertical dashed line the density and the control is constant since the target
state is an eigenstate. In Fig. 6 the controls from the other optimization algorithms are plotted. In this example the
algorithms find very similar solutions.

5.2. Control of Gross-Pitaevskii Program – Advanced API

In this section we continue the example program from section 3.1. Here we perform grape, group, and dgroup
optimizations using the more advanced API.

Calculating the gradient Eq. (13) requires the derivative of the Hamiltonian wrt. the control. The default
behavior in the simple API is to calculate the derivate numerically using finite differences. It is more efficient and
accurate to manually supply the analytic derivative

const auto dHdu_func = [&x,p2 ,p4 ,p6]( const real u)

{

auto x_u = x-u;

auto x_u_Pow2 = x_u*x_u;

auto x_u_Pow3 = x_u*x_u_Pow2 ;
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Figure 5: (a) the density of the condensate |ψ(x, t)|2 when
propagated along the optimized dgroup control from the
Gross-Pitaevskii example program. (b) the initial control
u0 and the optimized controls from grape F = 0.992, group
F = 0.992 and dgroup F = 0.994 – see legend.

Figure 6: (a) the on-site density 〈n̂i〉 when propagated along
the optimized dgroup control from the Bose-Hubbard exam-
ple program. (b) the initial control u0 and the optimized
controls from grape, group and dgroup – see legend. All
algorithms have fidelity F = 0.99 and find almost identical
controls.

auto x_u_Pow5 = x_u_Pow2 *x_u_Pow3 ;

return -(2*p2*x_u + 4*p4*x_u_Pow3 + 6*p6*x_u_Pow5 );

};

const auto dHdu = makeAnalyticDiffPotential (makePotentialFunction (dHdu_func ,u_initial ));

auto problem = makeStateTransferProblem (H,dHdu ,psi_0 ,psi_t ,u)

+ 1e -5* Regularization(u)

+ 2e3*Boundaries (u,RVec{-1}, RVec {+1});

Note the resemblance to the cost functional Eq. (7) when initializing the state transfer problem. The last term adds
soft bounds to the optimization problem as in Eq. (16) that penalizes control values outside |u(t)| ≥ 1µm, which is
set by experimental constraints on the control problem [12].

The QEngine allows for arbitrary stopping conditions within its optimization algorithms. After each iteration
the optimizer calls a stopper object to check if the optimization should be stopped. This object is instantiated by
the makeStopper function. Any callable taking the optimizer type as its argument and returning a boolean can be
passed in to this function. In this example we pass an inline lambda into makeStopper using auto& to deduce the
optimizer type.

// Stopper object

const auto stopper = makeStopper ([]( auto& optimizer ) -> bool

{

bool stop = false;

if ( optimizer .problem (). fidelity () > 0.999)

{ std ::cout << "Fidelity criterion satisfied " << std ::endl; stop = true; }

if ( optimizer .previousStepSize () < 1e -7)

{ std ::cout << "Step size too small " << std ::endl; stop = true; };

if ( optimizer .iteration () == 2000)

{ std ::cout << "Max iterations exceeded " << std :: endl; stop = true; }

if (stop)

{std :: cout << " STOPPING " << std :: endl ;}

return stop;

});
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After each iteration the optimizer also calls a collector object and defines what should be displayed, saved, and
so on in each iteration. The collector works similarly to the stopper and is instantiated by the makeCollector

function. In this example the fidelity of the current control is saved to the DataContainer, and a status message is
printed to console.

// Collector object

const auto collector = makeCollector([&dc ,n_steps ]( auto& optimizer ) {

dc[" fidelityHistory"]. append (optimizer .problem (). fidelity ());

std ::cout <<

"ITER " << optimizer .iteration () << " | " <<

"fidelity : " << optimizer .problem (). fidelity () << "\t " <<

"stepsize : " << optimizer .stepSize () << "\t " <<

"fpp : " << round(optimizer .problem (). nPropagationSteps ()/ n_steps ) << "\t " <<

std ::endl;

});

Next we define a line search algorithm that calculates a suitable step size α(k) along the search direction p(k) in
Eqs. (15) and (22). The QEngine supplies an interpolating line search algorithm that can be used out of the box by
calling the makeInterpolatingStepSizeFinder function. It is also possible to create custom line search algorithms.
As a simple example, a constant step size strategy is commented out to show the interface for custom algorithms.

// Stepsize finder object

const auto maxStepSize = 5.0;

const auto maxInitGuess = 1.0;

const auto stepSizeFinder = makeInterpolatingStepSizeFinder (maxStepSize , maxInitGuess);

// const auto constStepSize=makeStepSizeFinder ([]( auto& dir ,auto& problem ,auto& optimizer )

//{

// return 0.01;

//});

Restarting the l-bfgs algorithm is sometimes beneficial as noted in section 4. In this example we simply use the
default option. The optimizer of choice is then created by calling the corresponding make function with the additional
objects defined above.

/// GRAPE

auto GRAPE = makeGrape_bfgs_L2(problem ,stopper ,collector , stepSizeFinder);

collector (GRAPE ); // collect iteration 0

GRAPE .optimize (); // begin optimization

const auto u_grape = GRAPE .problem (). control (); // extract GRAPE optimized control

/// GROUP

const auto M = 60; // basis size

auto maxRand = 0.0; // -maxRand < theta_m < maxRand

const auto shapeFunction = makeSigmoidShapeFunction (ts ,0.999);

const auto basis = shapeFunction*makeSineBasis(basisSize ,u.metaData (), maxRand );

problem .update (0* u); // update problem such that reference control will be u_0 (t)=0

auto GROUP = makeGroup_bfgs(problem ,basis ,stopper ,collector , stepSizeFinder);

// the initial guess is the first element in the basis , so we may set explicitly :

auto cs = GROUP.problem (). coefficients();

cs.at (0).at(0) = initialAmplitude;

GROUP .problem (). update (cs); // set initial coefficient vector \vec c = [0.55 ,0 ,0 ,... ,0]

collector (GROUP );

GROUP .optimize (); // begin optimization

const auto u_group = GROUP .problem (). control (); // extract GROUP optimized control

To perform the optimization and retrieve the optimized control we invoke .optimize() on each optimizer. The
optimization runs until the stopper function returns true. For the group optimizations we use a sine basis Eq.
(18) with no randomization. On construction the reference control and coefficients in Eq. (18) are set to u and
c = [0, 0, 0, . . . , 0]T . We can manually update them to e.g. c = [0.55, 0, 0, . . . , 0]T where 0.55 is the initial amplitude
as illustrated.
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For dgroup we first prepare a shape-function and the BasisMaker as in the Bose Hubbard example program. In
dgroup there is also the possibility to supply a user-defined dressedRestarter object that in each iteration checks if
the algorithm should re-initialize with a new random basis as in Eq. (23), which requires a non-zero bound maxRand

on the random values θm. As a simple example we re-initialize the algorithm every 100 iterations or if there is only
a small decrease in the cost

/// dGROUP

maxRand = 0.1;

const auto basisMaker = makeRandSineBasisMaker (basisSize , shapeFunction , maxRand );

auto restart_func = [tol{ 1e-6 }]( const auto& dGROUP ) mutable

{

auto stepSize = dGROUP .stepSize ();

if (stepSize < tol)

{

std :: cout << "New superiteration in dGROUP algorithm ." << std ::endl;

return true;

}

return false;

};

const auto dRestarter = makeDressedRestarter (restart_func);

problem .update (0* u);

auto dGROUP = makeDGroup_bfgs(problem , basisMaker , stopper , collector , stepSizeFinder , dRestarter );

dGROUP .problem (). update (cs); // set initial coefficient vector \vec c = [0.55 ,0 ,0 ,... ,0]

collector (dGROUP ); // collect iteration 0

dGROUP .optimize (); // begin optimization

const auto u_dgroup = dGROUP .problem (). control (); // extract dGROUP optimized control

Finally the data from all the optimizations is saved into a json file by calling dc.save("gpe-example.json") or
alternatively a mat file with dc.save("gpe-example.mat") if matio has been configured.

The result of the dgroup optimization is shown in Fig. 5a where the condensate density is plotted as a function
of time. The control and the density is constant after the vertical line since the target state is an eigenstate. The
final controls from all the optimization algorithms are displayed in Fig. 5b.

6. Summary and Outlook

We have introduced and described how to use the QEngine. In the example programs we showed how the auto-
syntax combined with factory-functions allows the user to straightforwardly set up optimal control simulations of
ultracold atomic systems. However, the QEngine is limited in the number of physical models it supports e.g. we only
simulate the dynamics of one-dimensional systems in the current version. We plan to release future versions of the
QEngine that can simulate a wider range of dynamics. We also plan to include more sophisticated optimal control
for instance the quality of the gradients can be improved by also taking the temporal discretization into account.
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Appendix A. Units and Nondimensionalization

The SI-unit system usually results in very small numerical values for quantum mechanical simulations, which
makes simulations impractical or infeasible. For this reason it is beneficial to rescale physical quantities into char-
acteristic scales of the problem such that most values are of order unity. This is achieved using a process known
as nondimensionalization where quantities in SI-units are written in product form e.g. a becomes a = αã where α
carries both the dimension of a and a magnitude while ã is a non-dimensional scaling value. This is done for all
quantities and substituted into the equations of motion, which leaves a new set of working equations involving only
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the dimensionless scaling values. As an example consider the GPE example program discussed in section 3.1 where
the relevant quantities are

x = χx̃, t = τ t̃, V = ǫṼ , ψ = ξψ̃, g1D = γg̃1D (A.1)

We may a priori take length to be measured in micrometer and time to be measured in milliseconds.

χ = 1µm, τ = 1ms (A.2)

The three remaining units are chosen conveniently as

ǫ =
~
2

2κmχ2
, ξ =

√

N

χ
, γ =

ǫ

ξ2
, (A.3)

where κ is the kinetic factor. Substituting into the GPE

i
~

τ
ξ
∂ψ̃(x̃, t̃)

∂t̃
=

(

−κ
(

1

κ

~
2

2mχ2

)

∂2

∂x̃2
+ ǫṼ (x̃) + γξ2g̃1D|ψ̃(x̃, t̃)|2

)

ξψ̃(x̃, t̃) (A.4)

Dividing by ǫ and requring ~/τǫ = 1 or equivalently κ = τ~/2mχ2 gives

i
∂ψ̃(x̃, t̃)

∂t̃
=

(

−κ ∂2

∂x̃2
+ Ṽ (x̃) + g̃1D|ψ̃(x̃, t̃)|2

)

ψ̃(x̃, t̃), (A.5)

which is the dimensionless form the GPE solved in the example programs. For the potential we find p̃i by comparing

Ṽ =
V

ǫ
=

∑

i=2,4,6

pi
ǫ
(x− u)i =

∑

i=2,4,6

(

piχ
i

ǫ

)

(x̃− ũ)i =
∑

i=2,4,6

p̃i(x̃− ũ)i (A.6)

In these units the nondimensionalized scaling values used in the simulation for N = 700 are

κ = 0.36537, p̃2 = 65.8392, p̃4 = 97.6349, p̃6 = −15.3850, g̃1D = 1.8299. (A.7)
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[25] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, S. J. Glaser, Optimal control of coupled spin dynamics: design
of nmr pulse sequences by gradient ascent algorithms, Journal of magnetic resonance 172 (2) (2005) 296–305.

[26] A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, G. Gerber, Control of chemical reactions
by feedback-optimized phase-shaped femtosecond laser pulses, Science 282 (5390) (1998) 919–922.

[27] F. Dolde, V. Bergholm, Y. Wang, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, F. Jelezko, P. Neumann, T. Schulte-
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[56] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, I. Bloch, Quantum phase transition from a superfluid to a mott
insulator in a gas of ultracold atoms, nature 415 (6867) (2002) 39.

[57] J. Zakrzewski, D. Delande, Breakdown of adiabaticity when loading ultracold atoms in optical lattices, Physical Review
A 80 (1) (2009) 013602.

[58] S. Rosi, A. Bernard, N. Fabbri, L. Fallani, C. Fort, M. Inguscio, T. Calarco, S. Montangero, Fast closed-loop optimal
control of ultracold atoms in an optical lattice, Physical Review A 88 (2) (2013) 021601.

[59] G. Von Winckel, A. Borz̀ı, Computational techniques for a quantum control problem with h1-cost, Inverse Problems 24 (3)
(2008) 034007.

[60] J. Nocedal, S. J. Wright, Numerical optimization 2nd (2006).
[61] N. Rach, M. M. Müller, T. Calarco, S. Montangero, Dressing the chopped-random-basis optimization: A bandwidth-limited

access to the trap-free landscape, Physical Review A 92 (6) (2015) 062343.

18


	1 Introduction
	2 Overview of QEngine Features
	3 Simulation Example Programs
	3.1 Gross-Pitaevskii Example Program
	3.2 Bose-Hubbard Example Program

	4 Theory of Quantum Optimal Control
	4.1 grape
	4.2 group
	4.3 Dressed GROUP

	5 Optimal Control Example Programs
	5.1 Control of Bose-Hubbard Program – Simple API
	5.2 Control of Gross-Pitaevskii Program – Advanced API

	6 Summary and Outlook
	7 Acknowledgments
	Appendix  A Units and Nondimensionalization

