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Precision measurements of charged cosmic rays have recently been carried out by space-born (e.g.
AMS-02), or ground experiments (e.g. HESS). These measured data are important for the studies
of astro-physical phenomena, including supernova remnants, cosmic ray propagation, solar physics
and dark matter. Those scenarios usually contain a number of free parameters that need to be
adjusted by observed data. Some techniques, such as Markov Chain Monte Carlo and MultiNest,
are developed in order to solve the above problem. However, it is usually required a computing
farm to apply those tools. In this paper, a genetic algorithm for finding the optimum parameters
for cosmic ray injection and propagation is presented. We find that this algorithm gives us the same
best fit results as the Markov Chain Monte Carlo but consuming less computing power by nearly 2
orders of magnitudes.

Program summary
Operating system: Linux
Programming Language: C
Software Package: ROOT
Libraries: cmath, cstdio, cstdlib, ctime
Optional Software Package: DRAGON

I. INTRODUCTION

Energy spectra of cosmic rays (CRs) are essential for
the investigation of astro-physical phenomena in the uni-
verse. Nowadays, more independent measurements of
these spectra have been or are going to be published
by new-generation experiments in space or on balloon,
such as the Alpha Magnetic Spectrometer (AMS-02),
the Advanced Thin Ionization Calorimeter (ATIC-2), the
Calorimetric Electron Telescope (CALET), the Cosmic
Ray Energetics and Mass (CREAM), the DArk Mat-
ter Particle Explorer (DAMPE), the Fermi Large Area
Telescope (Fermi-LAT) and the Payload for Antimat-
ter Matter Exploration and Light-Nuclei Astrophysics
(PAMELA), and by those on ground, such as the High
Energy Stereoscopic System (HESS), the Cherenkov
Telescope Array (CTA) and the Large High Altitude Air
Shower Observatory (LHAASO).

The origin of the CRs and their experiences in the
Galaxy together affect their spectra measured within our
solar system. Thus, these spectra contain information
about CR acceleration processes and their transport ef-
fect. On top of that, signal from extra sources, including
nearby sources and dark matter, can be extracted from
spectral data of elementary particles.

The latest data of proton and nuclei spectra have chal-
lenged our conventional models based on linear diffusive-
shock-acceleration (DSA) with homogeneous propaga-
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tion in the interstellar medium (ISM) [1, 2]. These tradi-
tional models usually contain at least six free parameters,
i.e. the spectral index of primary particle injection, the
halo size, the convection wind velocity, the Alfvén veloc-
ity, the diffusion coefficient normalization as well as its
spectral index.

For instance, PAMELA [3] reported a spectral hard-
ening in proton and helium spectra at around 200
GeV/nucleon and the different spectral indices for proton
and helium, which have been confirmed later by AMS-
02 [4, 5]. This anomaly has also been partially observed
by ATIC-2 [6] and CREAM [7, 8] at high energy range.
More recently, AMS-02 discovered the same spectral fea-
ture in the fluxes of other primary (i.e., accelerated in
Galactic sources) nuclei (including carbon and oxygen)
[9]. Moreover, the fluxes of secondary (i.e., spalled) nu-
clei (including lithium, beryllium, and boron) have a
more significant hardening than those of primary ones
[10]. These unexpected features stimulate investigation
by the theoretical astrophysics community, including new
mechanisms in the CR injection [11, 12] or propagation
processes [13–15]. These implementations introduce at
least three more free parameters in the model.

The CR positron flux measured by PAMELA [16] and
AMS-02 [17, 18] shows a significant excess above ∼30
GeV and a cutoff at ∼200 GeV. Moreover, the spectra
of CR leptons with a softening behavior at ∼0.9 TeV
have been measured by DAMPE [19] and HESS [20], and
confirmed by CALET [21]. These exciting features have
triggered models involving: (i) nearby sources [22]; (ii)
pulsars [23–28]; or (iii) dark matter [29–33]. These mod-
els usually contain at least two free parameters.

Time variation of CR fluxes can also be a tool for
studying solar physics. Solar modulation of CRs can be
described by the Parker’s transport equation [34]. Adopt-
ing Force-Field approximation [35], one can derive an an-
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alytical solution from that equation, which contains only
one free parameter, i.e. the solar modulation poten-
tial. However, the accuracy of this approximation can
not satisfy the precision of the recent CR data. Parti-
cle drifts and adiabatic losses need to be taken into ac-
count in the models in order to explain the new phenom-
ena, e.g. mass and charge-sign dependent modulation
[36, 37]. Some numerical solutions [38–40] have been pro-
posed and usually involve more than ten free parameters.
The computations of those solar modulation models are
very CPU/time consuming. One can reconstruct local
interstellar spectra of CRs with these numerical pack-
ages in order to study the CR diffusion in the Galaxy,
especially in the energy range below 10 GeV.

To explain all the charged CR spectra simultaneously,
one should scan the parameters in the multi-dimensional
space to find the maximum likelihood. In reality, it is
not possible to derive an analytical solution for this max-
imum likelihood estimation, because the model contains
too many parameters [41] and the solutions in realistic
model of CR propagation are numerical. Fortunately, the
problem can be solved numerically by optimization algo-
rithms. Recent work has proved that a bayesian analysis
can be a powerful tool to achieve this goal. In particular,
Markov Chain Monte Carlo (MCMC) [42–46] and Multi-
Nest [47] are the most popular techniques in practical
applications. With the inputs of priors, the probabil-
ity distributions of the parameters before data are taken
into account, and observations of the system, bayesian
inference gives us the outputs of the posteriors, the con-
ditional probability distributions of the parameters with
the given data. In reality, the bayesian analyses on the
CRs require a lot of computing resources. In this work,
we propose an alternative technique, a genetic algorithm
[48–50], to obtain the optimal parameters. Genetic al-
gorithms give best fit results compatible with MCMC
while consuming much less computing power. It should
be noted that the genetic algorithm does not provide the
parameter uncertainties, and that it cannot fully replace
but is complementary to MCMC.

This paper is organized as follows. In Sect. II , we in-
troduce the CR propagation model and show the details
of our genetic algorithm. In Sect. III, the best fit results
about the propagation parameters are shown, and a com-
parison with the MCMC method is offered in terms of the
match with the experimental data and the computational
efficiency. We summarize our results in Sect. IV.

II. CALCULATIONS

A. Cosmic Ray Propagation Model

We consider that the propagation of all CR species in
a two-dimensional model follows the transport equation
with boundary conditions at r = rmax and z = ±L as:

∂ψ

∂t
= Q+ ~∇ · (D~∇ψ)− ψΛ +

∂

∂E
(Ėψ), (1)

where ψ = ψ(E, r, z) is the the particle number density as
a function of energy and space coordinates. The source
term Q contains a primary term and a secondary pro-
duction term as Qpri and Qsec =

∑
j Λspj ψj , the latter

from spallation of heavier j-type nuclei with rate Λspj .
Λ = βcnσ is the destruction rate for collisions of gas nu-
clei with density n at velocity βc and cross section σ; c is
the speed of light and β = v/c is the velocity of the par-

ticle v divided by the speed of light. The term Ė = −dEdt
describes ionization and Coulomb energy loss, as well as
radiative cooling of CR leptons. The spatial diffusion
coefficient D in the cylindrical coordinate system (r, z),
with radius RC of ∼ 20 kpc and half-height L, can be
parameterized as

D(ρ, r, z) = D0(z)βη
(
ρ

ρ0

)δ(z)
, (2)

where ρ ≡ pc/(Ze) is defined as the particle magnetic
rigidity, proportional to the particle momentum p and
the inverse of particle charge Ze. δ(z) is the index of
the power-law dependence of the diffusion coefficient on
the rigidity. D0(z) is the normalization of the diffusion
coefficient at the reference rigidity ρ = 0.25 GV. In the
spatial-dependent propagation model [14, 46, 51] adopted
in this paper, δ(z) equals δ0 in the region of |z| < ξL
(inner halo) and δ0 + 4 when |z| ≥ ξL (outer halo).
Moreover, the normalization D0 remains the same in the
inner halo and becomes χD0 in the outer halo. There
is a connecting function of the type F (z) = (z/ξL)n for
the smooth transition of the parameters χ and 4 across
the two zones. The exponent η is set to be -4 in order to
reproduce proton and nuclei spectra in the energy range
below 20 GV. The injection spectral indices of all the
nuclei whose z > 1 all equal to υ while that of proton is
υ +4υ.

In summary, the free parameters are D0, ξ, L, χ, δ,
∆, ν and ∆ν in this work. They can be computed nu-
merically with the propagation function (i.e. Eq.1) and
the observed CR data (i.e. cosmic ray proton (p), helium
(He) and carbon (C) fluxes, and Boron-to-Carbon (B/C)
and Beryllium-10-to-Beryllium-9 (10Be/9Be) flux ratios).
Technically, the solution is obtained from the DRAGON
code [52], which is similar to GALPROP [38]. It takes
around 150 seconds for a run in an 8-thread machine.
In this paper, the propagation parameters are computed
with a Genetic Algorithm, which will be introduced in
next section.

B. Genetic Algorithm

The Genetic Algorithm is often used in optimization or
search problems to generate high-quality solutions even
in a complex parameter space. This algorithm, as its
name would suggest, is composed of processes of muta-
tion and selection. One generation involves one mutation
process and one selection process. It gives an optimized
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FIG. 1: The flowchart of the genetic algorithm.

solution after some generations. To simplify our problem,
we would like to discuss the scenario with independent
parameters first and leave the problem with correlated
parameters at the end of this section. As is shown in
Fig.1, the algorithm can be expressed in the following
steps:

step 1 The given parameter set P mutates into n vectors
as the first population.

step 2 The fitness functions F (P)s of all the vectors are
evaluated.

step 3 F (P)s are compared with each other and with the
maximum one, F (Pm). The updated F (Pm) is
stored.

step 4 If a stopping criterion is met, the process is
stopped; otherwise the process is repeated from
step 1.

The fitness function, equivalent to the likelihood func-
tion of the MCMC method, in Fig.1 is defined as,

F (P) = e−
1
2χ

2(P), (3)

where the χ2(P) describes the difference between experi-
mental data and theoretical calculations from parameter
set P,

χ2 (P) =

ND∑
k=1

(
yexpk − ythk (P)

σk

)2

. (4)

In Eq.A1, k is the iterator for going through the ND data
points, while yexpk , ythk (P) and σk are the experimental
value, theoretical prediction and uncertainty of the kth
data point (with the consideration of solar modulation
uncertainty introduced by the Force-Field approximation
[35]) respectively.

The stopping criterion can be defined according to the
practical problem. In our case, it is sufficient to stop the
process when it can not find a better solution after 8n
(=64 in this work) generations.
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FIG. 2: The flowchart of the roulette wheel selection

1. The mutation

As one of the important steps, the mutation process
generates n vectors based on the current P in the n-
dimensional parameter space. In the case with indepen-
dent parameters, the mutations of P, i.e. Ni = Pi −P,
are orthogonal in order to obtain the highest efficiency
of the scan. Technically, the mutation process can be
explained as the following steps:

step a A random number |N| is generated.

step b A set of n-dimensional unit orthogonal basis, Ii for
the ith vector, is built by Gram-Schmidt process.

step c Let Ni = |N| · Ii.

step d The ith vector is generated as Pi = P + Ni.

2. The selection

In case the process falls into a local maximum point,
the roulette wheel selection is used to select P for the
next generation. The probability to select one vector
is proportional to its fitness function. As is shown in
Fig.2, the steps of roulette wheel selection can be listed
as follows:

step i The fitness function F (P)s of all the points are
calculated according to Eq.3.

step ii The sum of all the fitness functions is

F =

n∑
i=1

F (Pi), (5)

step iii A uniform random number l ∈ [0,F ] is gener-
ated.

step iv The sums of F (Pi) up to i=k, Fk =
∑k
i=1 F (Pi),

are calculated, where k is looped from 0. When
Fk is greater than l, the process is stopped and
the Pk is selected.



4

3. Treatment of correlated parameters

In the scenario with correlated parameters, which is
the actually relevant scenario in CR astrophysics, the
mutation process discussed in Sect. II B 1 is not efficient.
This problem, however, can be easily transformed into
a problem with independent parameters, which we have
discussed in Sect. II B 1. To quantitatively describe the
linear correlations between each two variables, we define
the covariance matrix M as,

Mij ≡ XiXj , (6)

where X is a vector noted by

〈X| = (p1 − p̄1, p2 − p̄2, · · ·, pn − p̄n), (7)

with an n-dimension random parameter 〈p| = (p1 · · · pn).
Thus, Xi denotes pi − p̄i in Eq. 6. If M is diagonal,
the parameters are not linearly correlated. Otherwise,
we need to find the vector X′ satisfying X ′iX

′
j = aiδij ,

where ai = X′ii is the non-zero element of X′, and δij is
the Kronecker delta.

We define a matrix U that satisfies

|X ′〉 = U|X 〉. (8)

We can easily get

X ′iX
′
j = UilXlUjmXm = UilXlXmU

T
mj . (9)

If we define a diagonal matrix D, we find

aiδij = UilXlXmU
T
mj (10)

and

D = UMUT. (11)

We need to find the eigenvectors of M and combine them
to get U and X′ [53].

In summary, we can make use of the prior to set 〈p̄| =
(p̄1 ··· p̄n) and some test runs to get the covariance matrix
M as the first step. We rotate the parameter space to
diagonalize M as the second step. After that, we execute
the parameter scan in the new space with the Genetic
Algorithm. If we do not have the covariance matrix in
the first place to rotate the parameter space, the Genetic
Algorithm works less efficiently.

III. RESULTS

In this section, we compare the Genetic Algorithm with
the MCMC method. As mentioned in Sect. II A, the
fit is operated in a 8-dimension space with the degree
of freedom of 155. We take the best fit parameters in
Ref. [46], where AMS-02 B/C data were not included,

p unit
GA MCMC

best-fit best-fit 1σ-low 1σ-up

L kpc 6.70 6.70 . . . . . .
D0 1028 cm2 s−1 2.22 2.18 1.84 2.87
δ . . . 0.17 0.19 0.12 0.23
∆ . . . 0.55 0.56 0.51 0.68
ξ . . . 0.17 0.22 0.15 0.33
χ . . . 0.33 0.30 0.21 0.51

∆ν . . . 0.104 0.096 0.090 0.119
ν . . . 2.27 2.29 2.20 2.40

TABLE I: Results of the Genetic Algorithm (GA) and
MCMC scans for the transport and injection

parameters (p) in terms of best-fit values for GA; and
best-fit values and their bounds for 1− σ fiducial ranges

(68% C.L.) for MCMC.
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as the priors. What we are interested in are the bias
of those results as well as the corresponding efficiencies.
We repeated the Genetic Algorithm calculation 100 times
and the calculation by MCMC 700 times, in order to
estimate their average performance.

As expected, Fig. 3, Fig. 4 and Tab. I show that the
best fit result obtained by the Genetic Algorithm is con-
sistent with those obtained by the MCMC method. The
best fit results are the maximum likelihood results found
by these two methods. These plots show that there is no
bias in the Genetic Algorithm.

In order to quantify the computing speed, one can look
into the goodness of the model as a function of genera-
tions in Fig. 5. In our case, 8 trials are performed by
one generation. The errors show the standard errors on
the mean values. The best χ2 drops and its correspond-
ing p-value, defined as the cumulative distribution func-
tion value for the chi-square distributions for the given
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number of degree of freedom (=155), rises as generation
increases. To make a fair comparison, we plot the same
values as a function of number of trials in the MCMC
process in Fig. 6. On average, the Genetic Algorithm
finds out the best p-value close to 1 after 15 generations,
which is equivalent to 15× 8 = 120 trials, as is shown in
Fig. 5. On the other hand, Fig. 6 tells us that it takes
3000 trials for the MCMC process to find the result with
a p-value greater than 0.9 on average. The Genetic Al-
gorithm is faster than the MCMC process by a factor of
70 to achieve p-value greater than 0.9. This computing
speed estimation shows that the Genetic Algorithm is in
advance for the optimization problem compared with the
MCMC process.

However, the Genetic Algorithm cannot provide the
uncertainty estimation of parameters as MCMC does.
The uncertainties are useful to describe the significance
of the model. To overcome this limitation, one may get
the best fit parameters with the Genetic Algorithm first,
and then set them as the prior to MCMC to estimate the
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FIG. 5: Best χ2 (top) and p-value (bottom) change
with number of generations in the Genetic Algorithm

calculations. In this case, the number of dimension is 8.

uncertainties of the parameters.

IV. CONCLUSION

This work is aimed at solving the best-parameter-
finding problem using less computing power. A Genetic
Algorithm has been developed to achieve this goal. In
particular, we show that the Genetic Algorithm works
quite well for CR propagation studies. Compared with
the existing popular tools, MCMC for instance, the Ge-
netic Algorithm gives fairly good results but 70 times
faster for the same initial condition.

The disadvantage of the Genetic Algorithm is that the
uncertainties of the parameters can not be retrieved. If
the uncertainties are of interest, one can estimate them
with a MCMC process with priors given by the best fit
of the Genetic Algorithm. This combination of the two
tools will give the same performance while requiring less
computing power compared to MCMC alone.

The code is currently written in C language and will be
released in public soon. It will be useful for astro-particle
physics studies with multiple parameters.
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Appendix A: Description and Manual of the Code

This document is about how to run the Genetic
AlgoriThm for cOsmic Ray studies (GATOR). The
source code of GATOR is in C. This example re-
quires ROOT package to be installed (installation
see https://root.cern.ch/downloading-root) in Linux
operating systems. ROOT is used to generate random
variables and is not mandatory.

1. Prerequisite for the Code

The program contains three files: the main pro-
gram “GA0.C”, the chi-square calculation function
“test getchi2.h”, a main program script “main.C” and
a “Makefile”.

2. Description of the chi-square calculation file

The file “test getchi2.h” contains a function, which re-
turns the chi-square value for a given set of input param-
eters. For cosmic ray studies, the chi-square is a value
to describe how the model matches the observed data.
In this document, an example containing 8 parameters is
defined as :

χ2 (P) =

8∑
k=1

(
pk − pBestFitk

σk

)2

, (A1)

where the best fit values pBestFit and sigmas σ are:

pBestFit = (6.69891, 2.17953, 0.189886, 0.559855,
0.216936, 0.303952, 0.0959849, 2.29343),
σ = (2, 1.2, 0.15, 0.15, 0.15, 0.15, 0.04, 0.15).

It will be good to print out the results at the end of
this function. In this example, it is written that:

cout << "Chisqure: " << chi2 << " 155 " ;
for (int i = 0;i<np;i++) cout << p[i] << " " ;
cout << endl;

a. Particular Example for DRAGON

In this paper, the cosmic ray transport code
DRAGON (https://github.com/cosmicrays) is
used compute the model predictions. GALPROP
(https://galprop.stanford.edu/ ) is an alternative code
to obtain the model predictions. The corresponding
chi-square calculation function is in the file “getchi2.h”.
If one wants to adopt this function, he should replace:

#include "test_getchi2.h"

in the file “GA0.C” by

#include "getchi2.h" .

In the file “getchi2.h”, there are basically two steps:
execution of the model computation with DRAGON
and calculation of the chi-squares. In C, the function
”std::system” allows us to execute external program via
a bash script “bc par Be.sh” with the input parame-
ters. This bash script “bc par Be.sh” creates an in-
put file according to the parameters and then execute
DRAGON. The definitions of the chi-squares can be
found in Sect.(Add reference).

3. Execution

One needs to give the initial values, the expected
widths, the lower limits and the upper limits to GATOR,
for instance:

double p[8]={6.71, 1.83, 0.18, 0.58,
0.19, 0.42, 0.096, 2.30};

double sigma_p[8]={2, 1.2, 0.15, 0.15,
0.15, 0.15, 0.04, 0.15};

double p_limitleft[8]={2.5, 0.5, 0., 0.2,
0.08, 0.2, 0.03, 2.0};

double p_limitright[8]={9.5, 5.0, 0.6, 1.2,
0.6, 1.2, 0.15, 2.6};

The script “main.C” serves as an interface inputing
those values to GATOR. It integrates the ROOT com-
mands:

GA0(p,sigma_p,8,p_limitleft,p_limitright);

To compile this program, one should use the command:

make

It will generate an executable file. To execute this
program, one should use the command:

./GA.exe > data txt

4. Extraction of the Results

The results are stored in the file “data.txt”. For in-
stance, to extract the results, one could use the com-
mand:
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cat data.txt | grep Chisqure

After you get the results of all the trials, you can find
the least chi-square one as well as the corresponding vari-
ables at the end of the output file.
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