GPU acceleration of an iterative scheme for gas-kinetic model equations with
memory reduction techniques

Lianhua Zhu®*, Peng Wang?®, Songze ChenP, Zhaoli Guo®, Yonghao Zhang?®

@ James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ, UK
bState Key Laboratory of Coal Combustion, School of Energy and Power, Huazhong University of Science and Technology, Wuhan, 430074,
China

Abstract

This paper presents a Graphics Processing Unit (GPU) acceleration of an iteration-based discrete velocity method (DVM)
for gas-kinetic model equations. Unlike the previous GPU parallelization of explicit kinetic schemes, this work is based
on a fast converging iterative scheme. The memory reduction techniques previously proposed for DVM are applied for
GPU computing, enabling full three-dimensional (3D) solutions of kinetic model equations in the contemporary GPUs
usually with a limited memory capacity that otherwise would need terabytes of memory. The GPU algorithm is validated
against the direct simulation Monte Carlo (DSMC) simulation of the 3D lid-driven cavity flow and the supersonic rarefied
gas flow past a cube with the phase-space grid points up to 0.7 trillion. The computing performance profiling on three
models of GPUs shows that the two main kernel functions can utilize 56% ~ 79% of the GPU computing and memory
resources. The performance of the GPU algorithm is compared with a typical parallel CPU implementation of the
same algorithm using the Message Passing Interface (MPI). The comparison shows that the GPU program on K40 and
K80 achieves 1.2 ~ 2.8 and 1.2 ~ 2.4 speedups for the 3D lid-driven cavity flow, respectively, compared with the MPI

parallelized CPU program running on 96 CPU cores.

Keywords: GPU, CUDA, Discrete Velocity Method, Gas-Kinetic Equation, High Performance Computing

1. Introduction

Rarefied gas flows appear in wide ranges of application
areas such as the space vehicles re-entery, vacuum sciences,
and Microelectromechanical systems.

The dominant numerical method for rarefied gas flows
remains to be the Direct Simulation Monte-Carlo (DSMC)
method [I} 2] which can be viewed as a stochastic approach
to solving the Boltzmann equation. However, with the
significantly improved computing power nowadays, the de-
terministic methods solving the Boltzmann equation or its
model equations are gaining popularity [3}4]. These deter-
ministic approaches include the discrete ordinate method
(DOM) and the discrete velocity method (DVM), which
were proposed earlier [5 [6] but have largely been lim-
ited to one- or two-dimensional (2D) simulations. Com-
pared with the DSMC method, these deterministic meth-
ods are free from statistical noise, thus they are particu-
larly preferable for low speed flows [3, [7HIT]. More impor-
tantly, the deterministic approach has greater flexibility
in designing efficient numerical schemes, e.g., asymptotic-
preserving schemes [12H20], implicit schemes [2IH26] and
high-order schemes [27H30)].

*Corresponding author
Email addresses: 1.zhu@strath.ac.uk (Lianhua Zhu),
yonghao.zhang@strath.ac.uk (Yonghao Zhang)

Preprint submitted to Computer Physics Communication

However, even with advanced numerical algorithms and
simplified kinetic models, direct simulations of practical
3D problems using DVM are still computationally expen-
sive regarding both the floating-point operations and the
memory requirement, due to the sheer number of grid
points in the phase space including the physical space and
the molecular velocity space. For practical simulations, es-
pecially those involving high speed flows, massively paral-
lel supercomputing facilities are indispensable [31], 22| [32-
37]. Various techniques have been proposed to reduce the
grid points, e.g., the adaptive local refinement on the spa-
tial and velocity grids [38H42]. However, efficient paral-
lelization on such non-regular grids can be a challenge es-
pecially for dynamic adaptive mesh refinement (AMR),
where sophisticated load-balancing techniques are neces-
sary. We note that for the lattice Boltzmann method
(LBM), a special DVM scheme with minimum discrete ve-
locity set, the link-wise artificial compressibility method
(LWACM) has been proposed as an alternative approach
that can eliminate the need to store the discrete distri-
bution function [43] [44]. But this approach is specially
designed for continuum flows and deals with only macro-
scopic variables instead of molecular distribution functions.
In this article, we mainly discuss the computational chal-
lenges of the general DVM simulation of rarefied gas flows.

The enormous computing cost of deterministic solvers
for the gas-kinetic equations makes the adoption of emerg-

August 21, 2019

ing heterogeneous parallel computing platforms such as
GPU and Intel Phi co-processors appealing. Programs
executed on such platforms are written with specialized
programming frameworks such as CUDA and OpenCL.
Computationally intensive parts of the algorithms are off-
loaded to the accelerators which have onboard memory,
and the computed results are copied back to the CPU
memory. GPU, in particular, has achieved great success
in the grid-based LBM [45H51] and particle-based DSMC
method [52H54]. For more general DVM simulations, GPUs
have not been fully exploited [55HGT]. Frezzotti et al. re-
ported a parallelization of a BGK-equation solver using
an explicit DVM scheme and evaluated its performance
on an Nvidia GTX-260 GPU [55]. The reported speedup
is over 300 compared with a serial program on a contem-
porary CPU for the 2D lid-driven cavity flow with 3D
velocity grid configuration (we use the abbreviation like
2D3V for 2D physical space and 3D molecular velocity
space hereinafter). However, the maximum grid size was
limited to 1602 x 202 as there was only 896 MB GPU mem-
ory. Later, they extended the implementation to the full
Boltzmann equation, achieving a speedup over 400 [56]
on the same device with the grid size up to 1922 x 183.
Kloss et al. reported a GPU accelerated solver for the
full Boltzmann equation with a conservative projection
method and achieved a speedup up of 150 with a maximum
grid size of 1602 x 20% [58]. Overstays and Crocke pre-
sented a similar GPU implementation to solve the Boltz-
mann equation and achieved an overall speedup around 50
on a low-end GPU [6I] with the maximum grid size being
128 x 64 x 18 x 18 x 9. Zabelok et al. demonstrated a GPU
acceleration of the 3D3V DVM module in their Unified
Flow Solver (UFS) with a grid of 20000 x 323 on a single
GPU with the help of AMR in 3D physical space. Their
reported speedup is 20 ~ 50 [60]. The above literature
reveals that except for Zabelok’s work [60], all of the im-
plementations of GPU accelerated DVM were restricted to
2D problems, and the primary reason is the limited mem-
ory size on a single GPU.

Even though the global memory capacities on contem-
porary GPU devices have been growing, they are still rel-
atively small (4 ~ 16 GB) compared with the CPU nodes
and offer much fewer FLOPS. The memory size restriction
can be technically mitigated with multi-GPU implementa-
tions, but the high-volume data transfer between multiple
GPU devices may lead to new difficulties [62]. Another
common feature of the above implementations is that they
all use explicit discretization schemes for the convection
term, which makes the stencil computations more suit-
able than an implicit/iterative scheme on GPUs because
each computation stencil evolves only the old-time-step
distribution function of neighbor grid nodes. The stencil
computations of all spatial nodes in a time step can be ex-
ecuted concurrently independent of each other. However,
for steady-state rarefied gas flows, we usually prefer im-
plicit or iterative DVM schemes; unlike explicit schemes,
the time steps in implicit schemes are not restricted by the

Courant—Friedrichs-Lewy (CFL) condition [21, 63 23] 25].
In iterative schemes for the steady-state gas kinetic equa-
tion, the boundary information can propagate quickly into
the whole domain, achieving fast convergence [64, 20].
However, their parallelization is hindered by the data de-
pendence in the physical space in a single time step (iter-
ation), especially on massively fine-grained parallel com-
puting devices like GPUs.

Here, we propose a GPU acceleration algorithm to solve
a Boltzmann model equation [65] with memory reduction
techniques that are well known to the rarefied gas flow
community but have never been applied on GPUs [66].
The aim is to address the two issues discussed above, i.e.,
the GPU memory size barrier and the difficulty in par-
allelizing the iterative/implicit scheme on a GPU. In this
algorithm, the memory reduction technique in the velocity
space is applied to reduce the number of discrete distribu-
tion functions to be stored. The storage in the physical
space is further reduced from 3D to essentially 2D by al-
locating storage space of only two slices of spatial cells
in the first two dimensions, and reuse the storage space
repeatedly when marching along the third dimension.

With these two techniques, the required memory space
can be significantly reduced. In addition, the data depen-
dence in the physical space can be avoided by paralleliz-
ing in the molecular velocity space with each GPU thread
mapped to one discrete velocity, which is different from all
the previous implementations [55, [60] on GPUs. We note
this parallelization strategy has been routinely used in the
conventional CPU platform.

Combination of the memory reduction techniques and
the GPU parallelization enables full 3D solution of kinetic
model equations on a single GPU. This approach is ex-
pected to greatly accelerate the DVM simulations of high-
speed flow where more discrete velocities are needed or the
low-speed flows such as thermally induced flow where the
DSMC method is very inefficient.

The remaining of the paper is organized as follows. In
Sec. |2, we introduce the Shakhov model equation [65] to
demonstrate our algorithm and explain how the memory
occupation can be dramatically reduced in both the molec-
ular velocity and physical spaces. In Sec. [3| we give a sim-
ple introduction to the GPU programming paradigm us-
ing the CUDA framework and present the algorithms. In
Sec. [4] the implemented GPU programs are verified with
the lid-driven cubic cavity flow and the supersonic flow
past a cube. In Sec. the parallel performance of the
GPU programs is profiled on several different GPU mod-
els, and the speedup is compared with an MPI paralleliza-
tion. The performance bottlenecks at various conditions
are also identified. Section [6l concludes the article with our
main findings and discussions for further development.

2. The numerical method

2.1. The Shakhov model equation

The parallel implementation is based on an iterative
scheme for the steady-state Boltzmann model equation.
In this study, we use the Shakhov model [65] to demon-
strate our implementation which is also applicable to other
model equations. The governing equation of the velocity
distribution function f(x, &) reads as

45
gvr=-1-1 (1)

where 7 is the relaxation time and is related to the local
viscosity u and pressure p by 7 = p/p. f° is defined as

. c-q c?
S =M 1+(1—Pr)5pRT (RT —5)] , (2)

with

p c?
=g (Cmmr) @

where Pr is the Prandtl number and ¢ = € — U is the pe-
culiar velocity with U being the hydrodynamic velocity; ¢
is the magnitude of ¢. For a monatomic gas, Pr equals to
2/3. The macroscopic variables such as the density p, ve-
locity U, temperature T', and heat flux g can be calculated
from the moments of the distribution function,

p= / fde, (4)

o = [erae (5)
0B =3 [€ (6)
a=j [erde, (7)

where pE = 1/2pU? + C,T is the total energy with C,
being the heat capacity [(3/2)R for monatomic gases]. The
pressure is related to the density and temperature by p =
pRT.

In DVM, the molecular velocity space is first discretized
with a chosen 3D velocity grid {€,]a = 1,2,...,M}. The
discrete form of the governing equation is then expressed
as

£a'vfa:_%[fa_fg]’ (8)

where f, is the distribution function of &, and f2 is the
Shakhov-corrected equilibrium. The macroscopic variables
are evaluated by taking numerical integrations of f, as

follows,

p:Z’LUafOH (9)

pU = Zwagafou (10)
PE = %Zwa(i,z+€i7y+fi’z)fa7 (11)

1
q= 3 Zwaca (Ci,x + Ci,y + ci,z) fas (12)

where w, are the coefficients for the numerical quadra-
tures.

2.2. Iteration scheme with memory reduction technique

Here we use an iteration scheme to solve the discrete-
velocity version of the governing equation, i.e. Eq. . In
this scheme we only need to store the distribution function
of one discrete velocity, thus dramatically reducing the
memory requirement from 6D to 3D for a full 3D problem.
In the following, we first introduce the iterative scheme
and then discuss its favorable parallelization approaches.

Equation is solved using the following scheme,

b VAT =l -, (13)

where n denotes the index of iteration steps. The f2 cal-
culated from macro variables is treated explicitly. Given
£ or equivalently the moments at the nth iteration step,
and assuming the spatial gradient is evaluated with an up-
wind scheme, the f7*! can be updated by a spatial sweep
sequentially along the characteristic direction for each dis-
crete velocity [66, [64]. In the original work of Ref. [64],
the authors proposed to rewrite the above formula in a
delta form and use a central scheme to attain 2nd-order
accuracy, while introducing an inner sub-iteration loop in
each iteration to recover the old distribution function. In-
troducing the inner sub-iteration loop increases the overall
computing time, and the more complex stencil computa-
tion makes the method more difficult to parallelize. In this
work, we employ a lst-order upwind scheme for the gradi-
ent discretization; so the above difficulty is avoided albeit
with the expense of lower accuracy. The accuracy of the
1st-order scheme will be formally evaluated in Sec. [4]

At the beginning of the iteration, f5°0 is set to the equi-
librium state based on the initial (usually uniform) macro-
scopic fields. Then the spatial field of the distribution
function for each discrete velocity is updated in a spatial
sweeping manner on a Cartesian grid. The computational
stencil is determined by the signs of the discrete velocity
components. For example, assuming we are currently pro-
cessing the discrete velocity &, with &, (z.4,.3 > 0, when
the spatial sweep approaches to an inner cell with spatial
index (i, j, k), the distribution function fgﬂ . is updated
from the following 1st-order upwind discretization formula:

+1 +1 +1 +1
é (f;l,i,j,k f(;lz 1]k>+£ (fg,’b,jk fg’bj 1k>
«,T oy

Ax; Ay;
+a,z (fn+lk an

i,5,k—1 _ 1 fn+1 7fsun
Az = \Jaigk T Jasigk)

Ti,j.k
(14)

in which f"ﬁlj k,f"Hl k,f’”,i , are already known be-
cause they are 1nf0rmat10n on the upwind cells and have
been calculated before we process the cell (i, j, k).

Because the same sweeping procedure for each discrete
velocity can be executed individually without interaction
with the other discrete velocities, we can allocate the mem-
ory space for a single discrete velocity and process all
the discrete velocities sequentially using the same storage
space. Once the whole field of the distribution function
of a specific discrete velocity is updated, its contributions
are added up to the moments of the new iteration step.
In this way, the same memory space is used repeatedly
for all the discrete velocities. After all discrete velocities
have been processed, the updating of new moments is also
completed. The iteration is repeated until it converges by
the following definition,

n+1 — \/Z Mn+1)
2 (Mp)?

where M € {p, pU, pE}, €. is the convergence criterion,
and the summations take over all of the cells. Using double-
precision floating-point calculations, the €™ can decrease to
zero by machine precision as the iteration continues. But
we stopped the iterations by setting e, = 1 x 1072, be-
cause the changes in the macro variable fields with the
number of iterations are already sufficiently small under
this setting. Boundary conditions are processed when the
sweeping starts or approaches the domain boundaries. The
overall algorithm of the iterative scheme is illustrated in
Algorithm

By analyzing the data dependence in the algorithm,
we can find the best parallelization strategy. Clearly, due
to the directional spatial sweep, each stencil computation
depends on its upwind-cell information; thus, it is not
straightforward to parallelize the sweeping in the physi-
cal space. In the traditional multi-core CPU approach,
the classical domain decomposition in the physical space
(multi-block parallelization) can partially solve this prob-
lem where the deterioration of convergence caused by the
desynchronization between blocks is negligible due to the
coarse granularity of the decomposition [22, B7]. How-
ever, with the fine-grained GPU architecture, the desyn-
chronization can dramatically deteriorate the convergence
rate. One possible strategy is to decompose the domain
among the diagonal sweeping wavefront, but it requires
careful consideration for load balance and the parallelism
is limited by the relative small wavefront size [67H69]. As

— (M]")?]

< €, (15)

Algorithm 1 The algorithm of the iterative scheme

Allocate the f"*! and f fields for a single discrete
velocity.
Initialize p™, U™, T™ as uniform fields.
e"tl + 1.0.
while ! < ¢, do
Initialize p"*L, (pU)" L, (pE)" T as
zero moments fields.
for &, € {galfa,{z,y,z} > 0} do
for k « 1,NZ; j < 1,NY; i+ 1,NX do
Handling boundary condition when any of
{i, j, k} starts from boundaries.
Calculate ff’” from Eq.
Update fgﬂ» » by Eq. (T4).
Add f"Jrl s contribution to moments.
n+1 (pU)nJrl (pE)n+l by Eq @
Handling boundary condition when any of
{i, j, k} reaches boundaries.
end for
end for
for &, € {galga {z,y} = 0,8a,> < O} do
> Spatial sweep.

end for
. > Other 6 octants of discrete velocities.
Calculate Ut 77 from pn L (pU) L,

(pE)™ .
Calculate e"™! by Eq. (15).
n<+n+ 1.
end while

the sweeping of each discrete velocity is independent of
each other, the parallel computing in the molecular veloc-
ity space is much simpler. The communication only occurs
at the stage of moments calculations. The parallelization
in the molecular velocity space with Message Passing Inter-
face (MPI) is straightforward in the same way as reported
in the literature including Refs. [3, B1L 66, 64 [70] et al. In
these MPI implementations, each MPI process handles a
subset of discrete velocities, and the MPI communications
occur only during the calculation of the moments by global
reductions of the partial moments pre-calculated on each
MPI process. The total memory will increase with the
number of parallel processes or threads. For MPI with
distributed memory (multi-node) parallelization, the to-
tal memory requirement will not be an issue. However,
for GPU parallelization with several thousands of tiny
threads, the total memory occupation can be consider-
able and may exceed the memory capacity. We will show
a memory reduction technique in the following section to
tackle this problem.

3. GPU implementations

3.1. GPU programming introduction

GPU enables massively parallel computing supported
by the advances in both hardware and software. A single
GPU board nowadays contains thousands of light-weight
streaming processors (SPs or cores) grouped into dozens of
streaming multiprocessors (SMs) and it can provide sev-
eral teraflops computing power. The GPU hardware also
comes with a hierarchical system of memories, registers,
and caches to enable high-bandwidth and low-latency feed-
ing of data to the processors. Meanwhile, there are ap-
plication programming interface (API) models that sup-
port general purpose computing on GPU devices by ex-
tensions of the popular programming language such as
C++. The most widely adopted GPU programming API
model is Nvidia’s CUDA, the others include the OpenCL
and DirectCompute. Since in this work, we implement
our algorithm using CUDA, here we briefly explain the
related concepts in the CUDA environment. Note that
the algorithms presented here can also be implemented
in other frameworks like OpenCL in principle since the
programming metrologies in the different frameworks are
similar [71] and we do not use any exclusive CUDA feature.

CUDA employs a hierarchical organization of threads.
The fine-grained computing tasks are mapped to a logical
grid of threads. The thread grid is divided into thread
blocks, each contains the same number of threads and are
dynamically scheduled to the SMs. The threads execute
special functions called kernels. To realize the full poten-
tial of GPU, the data and thread organization and kernel
function implementations have to follow a few principles,
including:

e keeping memory accesses coalesced in a half-thread
warp (consecutive 16 threads);

e avoiding frequent data transfer between the CPU
and GPU ends;

e using the on-chip shared memory to make the threads
in a thread block work together effectively;

e limiting the usage of registers and shared memory
in the kernels to ensure that enough thread blocks
can reside on SMs (quantified as SM occupancy com-
mounly).

The major floating-point operations in the iterative
scheme described in Sec. 2] come from the spatial-sweep
and moment-evaluation procedures, i.e. Eqs. and @
respectively. For each procedure, we implement an indi-
vidual kernel function because the two procedures have dif-
ferent data dependence patterns. The spatial-sweep pro-
cedure has data dependence only in the physical space
while the moment-evaluation procedure only in the ve-
locity space. The two kernels are explained in detail in
Sec. 3.2 and Sec. 3.3.

3.2. Spatial-sweep kernel with further memory reduction

As explained above, the spatial-sweep procedure is in-
trinsically sequential in the physical space while each dis-
crete velocity is independent of the other discrete velocities
in the molecular velocity space. Therefore, for the sweep-
ing procedure, we map each thread to one discrete velocity.
The thread grid size can be set as a fraction of the total
number of discrete velocities as we can process the discrete
velocities with a batch-by-batch manner (see Fig. and the
main iteration procedure in Algorithm . But it should
still be sufficiently large to make sure there are enough
thread blocks to populate the SMs. One natural choice of
the batch size is an octant of the discrete velocity grid as
there are eight sweeping directions from the eight corners
of the domain. The required memory is proportional to the
thread grid size. For modern GPU containing thousands of
cores, this requirement will exceed the global memory ca-
pacity. Here we take Nvidia’s Tesla K40 GPU as an exam-
ple, which has 2880 cores and 12GB memory. When sim-
ulating a problem with the physical grid size of 128> using
single-precision float, the modest estimation of the stor-
age space exceeds 1283 x 2880 x 4/230 = 22.5GB > 12GB.
Therefore, it is necessary to reduce the memory occupation
further.

To this end, we employ the idea presented in Ref. [66]
to store the distribution function of only two slices of cells
(as illustrated in Fig. . We note that when updating
the newer-step distribution function using a lst-order up-
wind scheme, all stencil points reside in the current slice
and the upwind slice [refer to Eq. } The storage space
is reused when marching along the Z-direction. Such a
configuration reduces memory consumption dramatically.
Take the simulation with an N3-by-M?3 phase-space grid
for example. The modest estimation of the storage in
a single-precision conventional implementation would be
4N3M?3 bytes. With the memory reduction techniques,
and assuming the velocity grid batch size is B (refer to
Fig. , the memory occupation will be 4 x 2N2B bytes,
where the “2” comes from the “two” slices of cells. In this
work, we choose B to be (M/2)3 as illustrated in Fig.
Thus, the memory reduction is 4N times. The batch size
B can be even smaller for larger velocity grid size then the
reduction can be even more significant. The layout of the
thread grid is illustrated in Fig. 3| and the kernel function
implementation is detailed in Algorithm [3]

3.3. Moment-evaluation kernel

Each time after the distribution functions of the cells in
one slice are updated, the moment-evaluation kernel adds
up their contributions to the temporary moment variables.
As the summations are local operations in the physical
space, we map each thread block to one cell in the 2D
slice. All the threads in the same block work collabora-
tively using the shared memory, to sum up the distribu-
tion functions. The layouts of the thread grids and blocks
are illustrated in Fig. [d The moment-evaluation kernel

Algorithm 2 Main iteration procedure
function ITERATION

for d + 0,7 do > Loop through the 8 discrete velocity groups
Setting parameters for the dth velocity group

if d > 3 then > For the velocity groups above the £, = 0 plane in the molecular velocity space

for k + 1,NZ do > Sweeping along the Z1 direction

SWEEP_KERNEL(d, k, £SliceA, £SliceB, moments0ld, ...)
MOMENT_KERNEL(d, k, £SliceA, £SliceB, momentsNew, ...)

end for
else > For the velocity groups below the £, = 0 plane in the molecular velocity space
for k + NZ,1 do > Sweeping along the Z~ direction

SWEEP_KERNEL(d, k, fSliceA, fSliceB, moments01d, ...)
MOMENT_KERNEL(d, k, £S1liceA, £SliceB, momentsNew, ...)
end for
end if
end for
SWAP_MOMENT_KERNEL (moments01ld, momentsNew) > Swapping the moments variables
end function

Algorithm 3 Spatial-sweep kernel function, using the lid-driven cubic cavity flow as an example.
function SWEEP_KERNEL(d, k, £S1iceA, £SliceB, moments0ld, ...)

tid ¢ threadId.x > Thread id.
Define shared memory variables for moments densL [NX2], vxL[NX2], vyL[NX2], vzL[NX2],

switch d do > Different entry points for the 8 discrete velocity groups.

case (> For the discrete velocity group 0, i.e., with £; <0, &, <0, £ <0

if k==NZ then > The slice near the boundary

for j «+ 1,NY do
for i + 1,NX do
Update £SliceA[j] [i] [tid] as Maxwell boundary
end for
end for
end if
for i < 1,NX do > The shaft near the boundary
Update £S1liceB[NY+1] [i] [tid] as Maxwell boundary
end for
for j < 1,NY do
if tid < NX + 2 then
Collaboratively load the moment variables from moments01d to densL[], vxL[],

end if
Update £SliceB[j] [NX+1] as Maxwell boundary > The cell near the boundary
for i + NX,1 do > Stencil computation

Calculate equilibrium distribution function feq using the moments in the shared memory.
Calculate geometric, discrete velocity and 7 related coefficients as a, b, c, d, e
fSliceB[j][il[tid] = (- a*fSliceB[j][i+1][tid]] - b*fSliceB[j+1][i] [tid]
- cxfSliceA[j][i] [tid] + d[il*feq) * e
end for
end for
case 1 > For the discrete velocity group 1, i.e., with £, >0, &, <0, £ <0
Do similar loops as case 0.

. > For the discrete velocity groups 2 — 6.
case 7 > For the discrete velocity group 7, i.e., with §; >0, §, >0, £, >0
Do similar loops as case 0.
end function

Ts‘y

).
f

0

Figure 1: The discrete velocity grid is divided into smaller subsets
such that distribution functions of each subset can be held on the
GPU global memory. In this work, we divided them into eight oc-
tants as shown in this figure (M is the number of velocity points in
each dimension). This is a natural choice since in each of the octants
all the three components &, & and &, of the discrete velocities have
the same signs and they share the same spatial-sweep direction. For
a larger velocity grid where an octant of the discrete velocity cannot
fit into the GPU global memory, the division needs to be finer.

M/2 /
3

z

M)2

slicek —1
slice k

A

Figure 2: Illustration of the spatial-sweep storing the distribution
functions of only two slices. The sweeping direction is (0,0,0) —
(X*T,Y*,Z1+). The highlighted cell in yellow color is the current
cell being updated and the green cells are the upwind stencil cells
(colorful online). The two slices are marching along the 0 — Z+
direction.

is outlined in Algorithm [where the reduction operation
using the shared memory is given in detail.

3.4. Boundary condition

We use the Maxwell diffuse boundary condition for the
solid walls. The free-stream boundary condition is used
for the external boundary in the supersonic flow case.
The boundary condition treatments are embedded in the
spatial-sweep and moment-evaluation procedures. In the
Maxwell diffuse boundary, the velocity distribution func-
tion of the emitting (reflected) particles is:

n+l _ pg ggc :| (16)
o (27 RT,,)3/2 ’

P [_ 2RT,

where pl; is the density determined by non-penetration

condition:
t= e X fitan (17)
pw - RT aSa w

v €y <0

Note that p? is calculated using the last step (n) value
of the distribution function, because it is impossible to get
the distribution functions of other discrete velocities at the
newer step in the iterative scheme. This mismatch will in-
duce a total mass change in internal flows. As a remedy, we
uniformly scale the density field such that the total mass is
unchanged. For the free streaming boundary, the distribu-
tion function of the particles entering the computational
domain is set to be the equilibrium distribution based on
the free stream gas state. When the spatial sweep reaches
a solid wall, the density fluxes of the outgoing particles are
accumulated during the moment-evaluation procedure.

4. Validation

In this section, we validate our GPU algorithm im-
plementation using the canonical lid-driven cubic cavity
(LDCC) flow and the supersonic gas flow past a cube. We
first ensure the GPU programs give identical results as the
CPU versions implementing the same scheme. Then we
compare the results of our GPU programs with a highly ac-
curate 2nd-order solution for the LDCC flow. The DSMC
solutions as extra references are also obtained for the two
test cases using the open source dsmcFoam solver [72]. We
use the DSMC method for validation because this method
has been recognized as a reliable benchmark tool for vali-
dating other numerical methods solving rarefied gas flow.
In addition, using the open source DSMC solver, the re-
sults can be reproduced easily. However, we should note
that because the DSMC method solves the full Boltzmann
equation while our DVM program solves the Shakhov model
equation. As a result, systematic minor differences among
their solutions are expected, especially for the temperature
fields in the transition regime [73] 19 [I3] [16].

The gas media in following simulations is argon. Its vis-
cosity changes with the temperature as g = piyef(T/Tret)®

Block 1 Block 2 Block 3 Block NY /N,
e N e N e N e N

Cell 1
Cell 2
Cell 3

000 O O

[e]

o
[e]

Cell Ncell

Figure 3: The layout of the spatial-sweep kernel, in which, N, is the number of the cells in a 2D slice of the XY plane (see Fig. [2)), i.e.,
Neeit = Nz X Ny, Ngv (6 =0,1,...,7) is the number of discrete velocities in the th batch, and N, is the size of the thread blocks.

Blocm
TYTTIT
TITTIT

Block 1,3

§$55833858

o

Block N, N,

§$5383388

1 2 3 NY /N,

Figure 4: The layout of the moment-evaluation kernel. Each thread block is mapped to one cell in the 2D slice (see Fig. . The threads
in each block collaboratively add up the distribution function of all discrete velocities of the currently processed batch to the temporary
moments. Ngv (0 =0,1,...,7) is the number of discrete velocities in the 6th batch. N is the size of the thread blocks.

Algorithm 4 Moment-evaluation kernel function for the cavity flow.

function MOMENT_KERNEL(d, k, £SliceA, fSliceB, momentsNew, .. .)

tid < threadId.x
i< blockIdx.x
j < blockIdx.y

> Physical cell index in X direction.
> Physical cell index in Y direction.

Allocate shared memory for moments as mom [8] [BLK_SIZE] and initialize to zeros

for b < 1,dvGrpSize/BLK_SIZE do
dvId = b * BLK_SIZE + tid
fTmp = £SliceB[j] [i] [dvId]
fSliceA[j][i] [dvId] = £Tmp

Accumulate £Tmp’s contribution to mom[0] [tid],

end for
for s «+ BLK_SIZE/2,0 do
if tid < s then
for m« 0,7 do
mom [m] [tid] += mom[m] [tid+s]
Synchronize threads
end for
end if
end for
if is thread 0 then
momentsNew < mom[] [0]
end if
if i, j or k near boundary then
Update solid boundary information
end if
end function

> Add BLK_SIZE discrete velocities per time.

.., mom[7] [tid]

> Parallel reduction with sequential addressing.

> Only one thread writes the data from the shared memory to the global memory.

> Extrapolate the wall densities needed for the next iteration step.

with w = 0.81, which is consistent with the variable hard
sphere model in the DSMC method at Tyt = 273.15 K.
The reference viscosity et is calculated as

— 5ﬁ pref>\ref
Href 3 /72R7-,ref)

where p.of and Ao are the reference pressure and mean-
free path, respectively.

(18)

4.1. Lid-driven cubic cavity flow

The lid-driven cubic cavity flow is illustrated in Fig.
The inner walls are maintained at a uniform temperature
of T, = 273.15K. The lid moves in the X direction with a
velocity of U,, = 0.1v/2RT,,. The Knudsen number is 1.0
based on the initial constant pressure and the side length
of the cavity. The DSMC simulation uses the uniform 643
grid. An average of 20 particles are initialized in each
cell. The DSMC simulation is run without sampling in
the initial 20,000 steps and then run with sampling for a
further 6 million steps to output the results.

The 1st-order scheme enables GPU computation with
much larger grid sizes but sacrifices the accuracy compared
with the commonly used 2nd-order schemes. Therefore, it
is desirable to evaluate the relative advantages of the GPU
parallelized 1st-order scheme. In the following, we will
examine accuracy and computational cost of the 1st-order
scheme compared with a 2-order scheme, together with the

Figure 5: Illustration of the 3D lid-driven cubic cavity flow. The lid
moves in the X direction with the velocity U,,. All the walls are
maintained at the uniform temperature of T,,.

comparison with the DSMC solution. To this end, we have
also implemented the 2nd-order central scheme of Eq.
into a CPU solver, in addition to the GPU accelerated
with a Ist-order solver (see [Appendix A).

The velocity grid used in the 1st-order simulations is
the tensor product of the half-range Gauss-Hermite (hrGH)
quadrature nodes with a size of 28%. While in the 2nd-
solution, a velocity grid based on the special-coordinate
system is used instead (see . The uniform
physical grids with sizes of 323, 643, 96% and 1283 are used
in both the 1st- and 2nd-order simulations.

4.1.1. Accuracy of the 1st-order solutions

We first analyze the relative accuracy of the lst-order
solutions. The contours of the Ist-order solutions on the
XOY symmetric plane are shown in Fig. [f] together with
the 2nd-order reference solutions (see and
the DSMC solutions. The reference DVM solutions agree
well with the DSMC solutions, especially in terms of the
velocity field. We can see the converging trend of the 1st-
order solutions to the reference solutions as the physical
grid refines. Figure [7] shows the temperature contours ob-
tained with the 1st-order scheme on the 1282 grid, together
with the DSMC solution, from which we can observe the
overall good agreements between them despite the large
statistical noise in the DSMC solution. The quantified
scaled average deviations (Appendix Al of the 1st-order
solutions from the reference solution are listed in Table [Il
The data reveal that as the grid refines, the lst-order so-
lutions converge to the reference solutions gradually but
with much slower rates than the 2nd-order solutions as
shown in Table [Al6l The absolute deviations of the 1st-
order solutions are much larger than those of the 2nd-order
solutions using the same grids.

Table 1: The average deviations of the 1st-order solutions from the
reference solutions [see the definition of E(¥, N) in Eq. (A.2))].

7 E(U,N)

N=32 N=64 N=96 N =128
p T.82E-04 4.25E-04 2.93E-04 2.27E-04
T 131E-04 7.97E-05 6.12E-05 5.23E-05
U, 1.07E-02 5.47E-03 3.63E-03 2.73E-03
U, 6.92E-03 3.67E-03 2.51E-03 1.93E-03

4.1.2. Relative cost of 1st- and 2nd-order solutions

Now we compare the relative cost of the 1st- and 2nd-
order schemes. More thorough performance analysis of the
GPU algorithm will be given in Sec.

Table [lists the wall time to obtain the solutions on
various grids. The GPU program implementing the 1st-
order scheme runs on a Tesla K40 GPU. The 2nd-order
scheme is implicated as an MPI parallelized CPU pro-
gram which runs 96 cores on a high-performance comput-
ing (HPC) facility (ARCHER, the UK’s national HPC ser-

10

vice) with each computing node equipped with two 12-core
Intel Xeon E5-2697 v2 (Ivy Bridge) CPUs. All calculations
are in double precision. To make the comparison simple,
both the Ist- and 2nd-order solutions use the 283-point
hrGH velocity grid.

The wall time to obtain the DSMC solution on the
64> uniform grid with 128 CPU cores is 141 hours. The
table reveals that the 2nd-order scheme requires signifi-
cantly more iteration steps to converge than the 1st-order
scheme. With the same physical grid, the GPU paral-
lelized 1st-order solver gives converged solution in a signif-
icantly shorter (~ 1/20) time. Considering the 1st-order
scheme needs a finer physical grid to achieve similar ac-
curacy, we compare the wall time to obtain the 1st-order
solution on the 1283 grid and the 2nd-order solutions on
the 323, 643 grids. The comparison shows that the GPU
parallelized 1st-order scheme needs shorter wall time than
the 2nd-order scheme with the 64 grid but longer than
that with the 323 grid.

4.1.8. Comparison of the GPU performance with literature

Lastly, we compare our GPU algorithm’s performance
with that of Ref. [55], where the 2D lid-driven cavity flow is
solved by a GPU parallelized explicit scheme of the BGK
equation. In their study, the grid configuration close to
this study is the one with a 642 physical grid and a 202
velocity grid. For this case, the wall time used by their
GPU program is 75.7s. If we extrapolate this time to the
3D case linearly with respect to the number of grid points
in the phase space, and considering that there is no need
to use an additional distribution function for 3D flows,
it would need about 35 hours for our grid configuration
(643 x 283). The much higher computing power of the
K40 GPU explains only partially why the current imple-
mentation is much faster. The primary reason is due to
the adoption of the iterative scheme in this study which is
more efficient than the explicit scheme in Ref. [55].

Table 2: Comparison of the computing time of various cases. The
1st- and 2nd-order schemes are implemented as a GPU and an MPI
parallelized CPU program, respectively. The wall time is measured
by running the corresponding program with a K40 GPU and 96 CPU
cores, respectively. The last row indicates the total wall time to
obtain the DSMC solution with 128 CPU cores. All calculations are
in double precision.

Physical ~ Velocity = Spatial Iteration Wall
grid grid order steps time
323 hrGH 283 2nd 369 423s
643 hrGH 283 2nd 524 4890s
323 hrGH 283 1st 42 28s
643 hrGH 283 1st 42 214s
1282 hrGH 283 Ist 42 1688s
643 — DSMC — 141 hours

2nd-order, N=128
DSMC, N=64
1st-order, N=128
1st-order, N=96
1st-order, N=64
1st-order, N=32

(a) (b) (c)

Figure 6: Comparison of the temperature and velocity contours on the XOY symmetric plane of the 3D cavity using the lst-order DVM
scheme on various grids, the 2nd-order scheme on the N = 128 grid, and the DSMC method on the N = 64 grid. (a) The contours of the
non-dimensional temperature T//Ty,; the contour levels are from 0.996 to 1.006 with a step of 0.001. (b) The contours of the U, velocity,
non-dimensiognalized by +/2RTy,; the contour levels are from -0.005 to 0.035 with a step of 0.01. (c¢) The contours of the U, velocity,
non-dimensioqnalized by +/2RT,,; the contour levels are from -0.018 to 0.018 with a step of 0.004. The contour levels are labeled in each
subfigure. The line legends for all the three subfigures are drawn in the subfigure (b).

T(K)

274.500
274.222
273.944
273.667
273.389
273.111
272.833
272.556
272.228
272.000

Figure 7: Comparison of the temperature iso-surfaces predicted by the GPU accelerated 1st-order DVM and the DSMC method. Physical
grid size in the DVM is 1283 while in DSMC is 643. The velocity grid in the DVM solver is 283 half-range Gauss-Hermite quadrature points.

11

4.2. Rarefied gas flow past a cube

The second case is a supersonic rarefied gas flow past
a cube with Ma = 2 and Kn = 1. The cube size is 13
while the computational domain size is 14 x 12 x 12. The
center of the cube is located at (0,0,0). The computation
domain is illustrated in Fig. The surface of the cube
is maintained at 273K. In the DSMC simulation, we sim-
ulate only a quadrant of the domain due to the two-fold
symmetry. Even though using symmetry boundaries in
the DVM is possible, implementing them in the current
memory-reduced DVM is not straightforward [70]; thus,
we simulate the full domain here to avoid further compli-
cating the algorithm presented above. The full physical
grid size is 181 x 181 x 191. The cell size expands with
a cell-by-cell ratio of 1.02 in the front and lateral sides
of the cube and 1.03 at the rear of the cube. The veloc-
ity grid size is uniform with 483 points in the range of
[~4v2RT,,,42RT,)? and a trapezoidal rule is used to
calculate the moments. The DVM simulation takes ap-
proximately 20 hours with 41 iteration steps on the Tesla
K40 GPU. In the DSMC simulation, each cell has 50 parti-
cles on average and the time step size is 2.0 x 10~"s. The
sampling begins from 1,000 steps and continues for 68,000
steps which take 128.5 hours on 128 CPU cores.

The temperature iso-surfaces around the cube are pre-
sented in Fig. [0} from which an overall agreement between
the DVM results and the DSMC solutions can be found.
Due to the high Knudsen number, the bowl-shaped shock-
wave in front of the cube is very thick. The maximum
temperature in the shock wave region is around 550K,
while the lowest temperature appears at the rear of the
cube due to the blockage effect on the gas molecules by
the cube. Figure[10|shows the detailed comparisons of the
temperature, density and velocities distributions on the
symmetry plane of the computation domain. The overall
good agreement, especially near the wall surface region,
indicates that the DVM prediction is satisfactory. From
these contour plots, we can see the temperature field in
the shockwave region increases as early as * = —3 and the
high-temperature region is restricted to a relatively small
region in front of the cube. The temperature contours lines
far away from the cube show a relatively larger difference
between the DVM and DSMC solutions. The main reason
is the larger statistical noise in the temperature field of the
DSMC solution. The earlier rise of the temperature in the
DVM solution along the stagnation line in the front of the
shockwave is also a well-known problem of the Shakhov
model equation and had been identified in the studies on
shockwave structures [16] [1§].

5. Performance profiling

In this section, we analyze the parallel computing ef-
ficiency and scalability of our GPU algorithm. We also
compare the speedups with an MPI-CPU parallel imple-
mentation of the same iterative scheme. All the testings

12

are based on the 3D lid-driven cavity flow with single-
precision computations. The GPU cards used in the plat-
form include a Tesla K40 GPU, a Tesla K80 GPU and a
Quadro M2000 GPU. The major specifications of the three
GPU models are listed in Table[Bl The M2000 is based on a
newer architecture called Maxwell while the K40 and K80
are based on the older Kepler architecture. The M2000
has fewer streaming cores, but the multiprocessors can
operate at a much higher frequency than the K40/K80.
The commercial K80 card actually contains two GK201
GPUs, while in this study we only use a single GPU on it
and all the data listed in Table [3| are the values of a single
GK201 GPU. The GPU program is developed with CUDA
C++ and is compiled using the Nvidia CUDA Toolkit (ver-
sion 9.2) without the aggressive optimization flags such as
-prec-div=false, -prec-sqrt=false or -use_fast_math.
The host compiler is Intel’s C++ compiler (version 15.0).

The CPU program implementing the same 1st-order
scheme is parallelized with MPI and written in C++. Note
that this CPU program is different from the 2nd-order one
used in The MPI-CPU program is compiled
with the same compiler and Intel MPI library with com-
piling flag ~xHost which enable advanced arithmetical in-
structions such as AVX2 and FMA. The program runs on
an in-house cluster equipped with a 56Gbps InfiniBand
network. Each computing node comprises two Xeon E5-
2680v3 (Haswell) @2.5GHz CPU. The MPI-CPU program
uses the parallelization method as described at the end of
Sec. 2.

5.1. Speedups and comparison with the MPI parallelization

Firstly, we investigate the overall speedups of the GPU
algorithm on different GPU devices. The average wall time
for a single iteration step of the cavity flow case with the
various grid size of physical and molecular velocity space
is measured on different platforms. The results are pre-
sented in Table[d] and the corresponding speedups against
the single-core program are shown in Fig. [II] The mea-
sured GPU global memory consumptions are also listed
in Table 4] to demonstrate the advantage of our mem-
ory reduction techniques. For the two largest grids, i.e.,
643 x 1283 and 643 x 1283, the global memory occupations
are over 4 GB and therefore unable to run on the M2000.
It should be remarked that if we do not use the memory
reduction techniques above, the most conservative estima-
tion (storing only one float variable on each grid point in
the phase space) of the memory occupation can be as high
as 1283 x 643 x 4/10'2 = 2.2 TB.

Several interesting patterns can be observed from the
table and chart. First, when the velocity grid is 64 or
larger, both the K40 and K80 achieve speedups around
190. It is much higher than the cases with the 323 ve-
locity grid which is only around 100. This contrast can
be easily explained. As there are over two thousand cores
on K80/K40, when simulating the cases with the 323 ve-
locity grid, the thread grid size of the sweepSlice ker-
nel is only 16% = 4096, meaning that there is simply not

(|
L

12

~$0]
ke

Y-Z plane

12 6) 8 |
X-Y plane

Figure 8: Schematic diagram of the rarefied gas flow past a cube.

(a)

T
518.985 z
491.670

464.355

437.040

409.725

382.410 X
355.095

327.780
300.465
273.150
245.835

(b)

Figure 9: Temperature iso-surfaces predicted by (a) the GPU accelerated DVM simulation and (b) the DSMC simulation.

enough parallelism for the GPUs to fulfill their comput-
ing potential. Second, comparing the speedups among the
three GPUs, we can find that the K40 is about 20% faster
than the K80, this is reasonable as the number of cores
and memory bandwidth of the K40 are relatively higher
than those of the K80, while their other configurations are
almost the same. The M2000 performs better than the
other two with the 323 velocity grid even though it has
much fewer streaming processors and smaller global mem-
ory bandwidth. This means that for these cases, the com-
puting power and high memory bandwidth on K40/K80 is
not fully used. Lastly, we consider the performance of the
MPI-CPU program. When running with 96 CPU cores,
the MPI parallelization can achieve a speedup around 70,
which means the strong scaling parallel efficiency is around
73%, and is typical for the collective communications of
the MPI_Allreduce when reducing a large chunk of data.
We note that with more CPU cores, the efficiency of the
MPI-CPU program with the velocity space decomposition
strategy will deteriorate quickly [74].

5.2. Kernel performance analysis

We now analyze the two major kernels’s performance,
i.e. sweepSlice and momentSlice (Algorithms [3] and
using the lid-driven cavity flow as an example. The Nvidia
visual profiler (nvvp) [75] is employed to measure various
runtime metrics of the kernels. The general metrics are
shown in Table for grid sizes of 643 x 643, 1283 x 64> and
642 x 1283, These metrics indicate how efficient the various
GPU resources are being used by the kernel functions, and
reveal the performance limiters, e.g. memory bandwidth
band, compute band or instruction/memory latencies.

Tableshows for the 643 velocity grid, the sweepSlice
kernel takes slight longer time than the momentSlice ker-
nel. While the situation reverses for the 1283 velocity grid.
This means the momentSlice kernel does not scale equally
well as the sweepSlice kernel.

The SM occupancy of the sweepSlice kernel is around
61% on the M2000/K40 and 96% on the K80. The rela-
tive lower occupancy on M2000 and K40 is due to the
fewer registers available on their SM (64K as opposed to

13

612.7
595.0
589.8
576.6
563.1
535.8
474.8
400.5
272.7

89.9

1.36E-05

8.75E-06
8.62E-06
8.58E-06
8.15E-06
7.73E-06
6.99E-06
5.35E-06

Figure 10: Comparison of various fields on the X-Z symmetric plane of the flow domain: (a) temperature, (b) X-component velocity U, (c)
Z-component velocity U, and (d) density p. In each of the plots, the dashed red lines denote the DVM result, and the solid white lines with

colored background represent the DSMC solution.

128K on K80, see Table . The profiling shows that
the GPU performance on M2000 and K40 is limited by
the instruction and memory fetching latencies, but when
we restrict the kernel to use fewer registers via compiler
flag, the achieved occupancy can be increased to 69% but
the overall computing time is longer due to the increased
instruction and memory dependencies. The sweepSlice
kernel performance on K80 is bounded by the computing,
i.e., the instruction executing speed. A further investiga-
tion using the profiler reveals that both the utilizations
of the load/store and the arithmetic function units on the
K80 reach around 75%. In the momentSlice kernel, each
thread requires only 32 registers but each thread block
needs 8208 bytes of shared memory. On the K40, the SM
occupancy is limited by the shared memory size which only
has 48 KB per SM. While on the M2000 and K80, which
have more shared memory (see Table [3), the SMs are al-
most fully occupied. On K40 and K80, the performance
is limited by shared memory bandwidths, which are mea-
sured at 1.5 TB/s and 1.3 TB/s respectively, close to the
hardware limits.

We also investigate the effect of workload on the ker-
nel performance with larger grid sizes: 642 x 1282 and

14

1283 x 643. It should be noted that a velocity grid size
as large as 1283 is too expensive for most practical ap-
plications. In practice, the large velocity grid size can be
avoided using more sophisticated velocity grids such as
non-uniform or adaptive velocity grids, and conservative
moment-evaluation procedures. Here we use the large ve-
locity grid as an extreme case to explore the upper limit
of the kernels’ performance under the condition of suffi-
ciently abundant parallelism. For example, with the 1283
velocity grid size, each SM on the K40 can be populated
with at least 68 thread blocks, which are enough to satu-
rate the SMs and minimize the trail effect (some SMs get
one thread block less than others due to the round-robin
scheduling policy and the number of SM not dividing the
total number of thread blocks).

Table[5]shows the overall GPU computing and memory
utilization levels of the two kernel functions on the three
GPUs are from 56% to 79%, by considering the main per-
formance limiter for each kernel function using each GPU.

Table 3: Specifications of the three different GPUs used in the performance evaluation. For all the GPUs, the GPU auto-boost feature is
turned off and the fixed SM frequencies are sustainable in all the workloads. The measured global memory accessing bandwidth is obtained
from the bandwidthTest program in the NVIDIA_.CUDA_SAMPLES. = The parameters for K80 GPU card are for a one of its two
GK201_GPUs inside.

GPU Model Number Device SM Bandwidth Peak single Max shm Max reg

of SP memory frequency theoretical precision per SM per SM
Quadro M2000 768 4 GB 1088 MHz 106 GB/s 1.786 TFLOPS 96 KB 64 K
Tesla K40 2880 12GB 745 MHz 288 GB/s 4.29 TFLOPS 48 KB 64 K
Tesla K80* 2496 12GB 745 MHz 240 GB/s 4.11 TFLOPS 112 KB 128 K

Table 4: Average computing time (s) for a single iteration step and GPU global memory occupations on different platforms for the lid-driven
cavity flow case. All profile runnings use single precision. The last two cases on the M2000 GPU are not available due to its insufficient global
memory capacity.

Physical Velocity CPU MPI Program GPU Program GPU
grid N grid M 1 core 96 cores M2000 K40 K80 memory
323 323 53.50 s 0.68 s 0.48 s 0.55 s 0.57 s 75 MB
323 643 424.56 s 4.92 s 3.29 s 2.15s 2.52s 347 MB
643 323 429.32 s 6.20 s 3.77 s 4.33 s 442 s 206 MB
643 643 3097.39 s 43.29 s 26.33 s 16.57 s 19.80 s 1205 MB
643 1283 24366.40 s 358.41 s — 127.56 s 132.84 s 9242 MB
1283 643 25020.61 s 371.02 s — 131.04 s 156.47 s 4703 MB
250
MPI 96 cores M2000 GPU K40 GPU K80 GPU
200 1
o 150 A
3
o
0
[eR
CARRTVIOJ B N SSaa | | B | | SN | S—— |]
50
0

T T T T T T
323 x 323 643 x 322 322 x 643 643 x 64 1283 x 64° 643 x 128>
Grid size M x N

Figure 11: Speedup for the lid-driven cavity flow case with various grid sizes based on the data in Table [4f The dashed black line indicates
the theoretical speedup (96) of the CPU program using 96 cores versus using one core. The data of the M2000 GPU on the two largest grid
sizes are not available due to insufficient global memory.

15

Table 5: Utilization metrics of GPU resource for the sweepSlice and momentSlice kernels. The data are retrieved from Nvidia Visual Profiler
(nvvp). The test case is the lid-driven cubic cavity flow with the grid size of 643 x 643. The latency in the table stands for instruction and
memory latencies. The relative runtime is the ratio the kernel execution time to the overall computing time for a single iteration step.

Kernel GPU Achieved Compute Memory Device memory Performance Relative
model occupancy utilization utilization throughput limiter runtime
Physical grid size 642, velocity grid size 643.

M2000 60.1% 64% 55% 53.4 GB/s latency 58.0%

sweepSlice K40 61.6% 65% 33% 112.5 GB/s latency 51.6%

K80 95.5% 78% 46% 90.4 GB/s compute 53.9%

M2000 99.7% 42% 56% 52.5 GB/s latency 42.0%

momentSlice K40 61.3% 30% 78% 84.2 GB/s memory 48.4%

K80 98.4% 31% 76% 73.7 GB/s memory 46.1%

Physical grid size: 1283, velocity grid size: 643.
. K40 61.6% 59% 47% 128.8 GB/s latency 51.4%
sweepSlice

K80 95.6% 79% 46% 91.6 GB/s compute 53.6%

) K40 61.4% 31% 75% 84.0 GB/s memory 48.6%
momentSlice

K80 98.4% 30% 76% 73.8 GB/s memory 46.4%

Physical grid size: 643, velocity grid size: 1283.
. K40 62.4% 58% 48% 143.1 GB/s latency 48.0%
sweepSlice

K80 98.7% 78% 58% 139.4 GB/s compute 43.1%

. K40 62.1% 29% 78% 163.3 GB/s memory 52.0%
momentSlice

K80 99.4% 30% 7% 157.8 GB/s memory 56.9%

6. Conclusion and discussions

In summary, an efficient memory-reduced DVM for ki-
netic model equations has been developed to enhance GPU
acceleration. Different from the previously reported GPU
accelerations of kinetic equation that use explicit schemes,
the current implementation is based on a fast converg-
ing iterative scheme. The memory reduction techniques
in both the molecular velocity and the physical spaces re-
duce memory requirements significantly from terabytes to
gigabytes, enabling a full 3D simulation on a single GPU.
The test cases with up to 0.7 trillion phase-space grid
points demonstrated the capability of the proposed GPU
algorithm in simulating large-scale 3D flows on a single
GPU. The performance profiling on different GPUs shows
that our kernel function implementations have good uti-
lization levels of the GPU resources. Depending on the
GPU devices and phase-space grid sizes, the speedups for
the lid-driven cavity flow range from 1.2 to 2.8 over the 96-
core running MPI CPU program implementing the same
scheme. Owing to the adoption of the iterative scheme,
our implementation for steady state flows is more efficient
than those using explicit schemes.

The performance of the current implementation bene-
fits from a large velocity grid as 64% or more, where there
is enough parallelism to realize the full potential of high-
end Tesla-series GPUs with thousands of cores. However,
the current trend in the latest released GPUs is that the

16

number of cores is increasing even more, e.g., 5120 on the
V100 GPU released in 2017. In such a case, to fully utilize
improved computing power in the future, more parallelism
in the algorithm should be applied other than using only
the molecular-velocity-space parallelization. Another pos-
sible improvement in the future is to extend the 1st-order
upwind scheme to 2nd-order by storing three consecutive
slices of cell’s distribution functions thus the 2nd-order up-
wind stencil points are available for each grid point in the
physical space during the spatial-sweep procedure. Using
a high-order scheme can reduce the physical grid points
significantly as has been demonstrated during the grid-
independence study for the lid-driven cavity flow.

Acknowledgments

This project leading to this paper has received fund-
ing from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sklodowska-Curie
grant agreement number 793007. Financial support from
the UK Engineering and Physical Sciences Research Coun-
cil (EPSRC) under Grant No. EP/M021475/1 is gratefully
acknowledged. S. Chen acknowledges the financial sup-
port from National Science Foundation of China (Grants
No. 91530319). Z. Guo acknowledges the financial support
from National Science Foundation of China (Grants No.
11702223). Computing time during the program develop-
ment & testing on the ARCHER is provided by the UK

Consortium on Mesoscale Engineering Sciences (EPSRC
Grant Nos. EP/L00030X/1 and EP/R029598/1). L. Zhu
thanks Dr. Minh-Tuan Ho from University of Strathclyde
for discussions of the relation between the numerical quadra-
ture and the ray effect.

Appendix A. The second order reference solution

A 2nd-order scheme has been implemented on the CPU
platform, to provide highly accurate reference solution when
evaluating accuracy of the 1st-order scheme in Sec.[d] The
2nd-order scheme is based on the “delta” form of Eq. ,

b VST 4 AfT = 0 VN g 197,

(A1)
where Afntl = fntl _ fn The gradient terms on the
left- and right-hand sides (LHS and RHS) are discretized
using the lst-order upwind and 2nd-order central schemes,
respectively. The 2nd-order central-scheme-based solution
is attained as the iteration converges and the LHS ap-
proaches to zero [64]. Because the f” term at the RHS of
Eq. is needed when solving A f7*1, the distribution
functions of all discrete velocities are stored. This require-
ment leads to huge memory consumptions; thus, we only
implemented it on the CPU platform.

The higher-order scheme and finer physical grids in the
reference solutions magnify the ray effect which is caused
by the discontinuous velocity boundary condition at the
leading and trailing edges of the moving lid [76-79]. The
ray effect appears in high-Kn flows as discontinuities in the
distribution function and non-smoothness in the macro-
scopic fields. Unlike in the 1st-order scheme, here we
use a spherical-coordinate-based discrete velocity grid [79],
which is found to produce much weaker ray effect than
the tensor product based quadratures in the Cartesian-
coordinate. The spherical-coordinate-based velocity grid
we used is the tensor product of

e the 4 positive nodes of the 8th-order hrGH quadra-
ture as radial nodes;

e 160 uniformly distributed polar angles in [0, 27] on
the XOY plane;

e the inverse cosine values of the 12th-order Gauss-
Legendre quadrature nodes as azimuthal angles.

The grid independence of the 2nd-order solutions is ver-
ified by calculating the following scaled average deviations
of the coarser-grid solutions from the reference solutions
on the 1283 grid,

N
1
E(U,N) = ET > W (128% = N¥) — W (V)]
i,5,k=1

(A.2)

17

in which ¥ = p,T,U,,U,; the corresponding scales are
Vo = prot/(RTw), Tw, Uw, Ui N3 is the grid size, i.e. 323,
643 or 96%; W, ; 1 (N) is the solution of cell (i, j, k) on the
N3 grid, and \I/i7j,;€(1283 — N3) is the linearly interpo-
lated solution on the grid N3 from the reference solution.
The deviations calculated from the coarser-grid solutions
are listed in Table where we can see the quick conver-
gences of the solutions as the grid is refined. The devia-
tions of the 963-grid solutions from the references (on the
128%) ones are less than 0.23%. Therefore, the solutions
on the 1283 grid can be confidently used as the reference
solutions for the 1st-order solution in Sec. [£.1l

Table A.6: The scaled average deviations of the 2nd-order solutions
from the reference solutions on the 1283 grid [see the definition of
the scaled average deviation in Eq. (A.2)].

R E(¥T,N)
N =32 N =64 N =96
P 1.17E-04 3.98E-05 1.32E-05
T 3.72E-05 1.29E-05 4.46E-06
U, 2.17E-03 7.06E-04 2.28E-04
U, 138E-03 4.66E-04 1.53E-04
Reference
References

[1] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation
of Gas Flows, Clarendon Press, 1994.

[2] G. A.Bird, The DSMC Method, CreateSpace Independent Pub-
lishing Platform, 2013.

[3] V. V. Aristov, Direct Methods for Solving the Boltzmann Equa-
tion and Study of Nonequilibrium Flows, Springer Science &
Business Media, 2001.

[4] L. Mieussens, A survey of deterministic solvers for rarefied flows
(Invited), in: ATP Conference Proceedings, Vol. 1628, 2014, pp.
943-951. |doi:10.1063/1.4902695.

[5] J. E. Broadwell, Study of rarefied shear flow by the discrete
velocity method, Journal of Fluid Mechanics 19 (1964) 401-414.
do0i:10.1017/50022112064000817.

[6] J.Y. Yang, J. C. Huang, Rarefied flow computations using non-
linear model Boltzmann equations, Journal of Computational
Physics 120 (1995) 323-339. |[doi:10.1006/jcph.1995.1168.

[7] Y. Sone, Molecular Gas Dynamics: Theory, Techniques, and
Applications, Springer Science & Business Media., 2007.

[8] L. Wu, J. M. Reese, Y. Zhang, Solving the Boltzmann equation
deterministically by the fast spectral method: Application to
gas microflows, Journal of Fluid Mechanics 746 (2014) 53-84.
d0i:10.1017/jfm.2014.79.

[9] J. Meng, Y. Zhang, N. G. Hadjiconstantinou, G. A. Radtke,
X. Shan, Lattice ellipsoidal statistical BGK model for thermal
non-equilibrium flows, Journal of Fluid Mechanics 718 (2013)
347-370. doi:10.1017/jfm.2012.616.

[10] J.-C. Huang, K. Xu, P. Yu, A Unified Gas-Kinetic Scheme
for Continuum and Rarefied Flows III: Microflow Simulations,
Communications in Computational Physics 14 (2013) 1147—
1173. doi:10.4208/cicp.190912.080213a.

[11] L. Wu, M. T. Ho, L. Germanou, X.-J. Gu, C. Liu, K. Xu,
Y. Zhang, On the apparent permeability of porous media in
rarefied gas flows, Journal of Fluid Mechanics 822 (2017) 398—
417.doi:10.1017/jfm.2017.300.

https://doi.org/10.1063/1.4902695
https://doi.org/10.1017/S0022112064000817
https://doi.org/10.1006/jcph.1995.1168
https://doi.org/10.1017/jfm.2014.79
https://doi.org/10.1017/jfm.2012.616
https://doi.org/10.4208/cicp.190912.080213a
https://doi.org/10.1017/jfm.2017.300

(12]

(13]

[14]

(15]

[16]

(17]

(18]

[19]

20]

(21]

(22]

23]

24]

[25]

[26]

27]

(28]

29]

(30]

S. Jin, Asymptotic preserving (AP) schemes for multiscale
kinetic and hyperbolic equations: A review, Lecture Notes
for Summer School on “Methods and Models of Kinetic The-
ory” (M&MKT), Porto Ercole (Grosseto, Italy) (2010) 177-216.
K. Xu, J.-C. Huang, A unified gas-kinetic scheme for continuum
and rarefied flows, Journal of Computational Physics 229 (2010)
T7AT-7764. |[doi:10.1016/7.jcp.2010.06.032

L. Mieussens, On the asymptotic preserving property of the
unified gas kinetic scheme for the diffusion limit of linear kinetic
models, Journal of Computational Physics 253 (2013) 138-156.
doi:10.1016/7.jcp.2013.07.002}

Z. Guo, K. Xu, R. Wang, Discrete unified gas kinetic scheme for
all Knudsen number flows: Low-speed isothermal case, Physical
Review E 88 (2013) 033305. doi:10.1103/PhysRevE.88.033305|
Z. Guo, R. Wang, K. Xu, Discrete unified gas kinetic scheme
for all Knudsen number flows. II. Thermal compressible case,
Physical Review E 91 (2015) 033313. |doi:10.1103/PhysRevE.
91.033313.

S. Liu, P. Yu, K. Xu, C. Zhong, Unified gas-kinetic scheme
for diatomic molecular simulations in all flow regimes, Journal
of Computational Physics 259 (2014) 96-113. doi:10.1016/j.
jcp.2013.11.030!

K. Xu, Direct Modeling for Computational Fluid Dynamics:
Construction and Application of Unified Gas-Kinetic Schemes,
Advances in Computational Fluid Dynamics, World Scientific
Publishing, 2015.

L. Zhu, Z. Guo, K. Xu, Discrete unified gas kinetic scheme on
unstructured meshes, Computers & Fluids 127 (2016) 211-225.
do0i:10.1016/j.compfluid.2016.01.006.

L. Zhu, Z. Guo, Application of discrete unified gas kinetic
scheme to thermally induced nonequilibrium flows, Computers
& Fluidsdoi:10.1016/j.compfluid.2017.09.019.

L. Mieussens, Discrete velocity model and implicit scheme for
the bgk equation of rarefied gas dynamics, Mathematical Mod-
els and Methods in Applied Sciences 10 (2000) 1121-1149.
doi:10.1142/50218202500000562.

V. Titarev, M. Dumbser, S. Utyuzhnikov, Construction and
comparison of parallel implicit kinetic solvers in three spatial
dimensions, Journal of Computational Physics 256 (2014) 17—
33./doi:10.1016/3.jcp.2013.08.051]

Y. Zhu, C. Zhong, K. Xu, Implicit unified gas-kinetic scheme
for steady state solutions in all flow regimes, Journal of Compu-
tational Physics 315 (2016) 16-38. |doi:10.1016/j.jcp.2016.
03.038.

Y. Zhu, C. Zhong, K. Xu, Unified gas-kinetic scheme with multi-
grid convergence for rarefied flow study, Physics of Fluids 29
(2017) 096102. [doi:10.1063/1.4994020.

L. M. Yang, C. Shu, W. M. Yang, J. Wu, An implicit scheme
with memory reduction technique for steady state solutions of
DVBE in all flow regimes, Physics of Fluids 30 (2018) 040901.
doi:10.1063/1.5008479.

P. Wang, M. T. Ho, L. Wu, Z. Guo, Y. Zhang, A comparative
study of discrete velocity methods for low-speed rarefied gas
flows, Computers & Fluids 161 (2018) 33-46. doi:10.1016/j.
compfluid.2017.11.006.

F. Filbet, G. Russo, High order numerical methods for
the space non-homogeneous Boltzmann equation, Journal of
Computational Physics 186 (2003) 457-480. doi:10.1016/
50021-9991(03) 00065-2.

A. Alexeenko, C. Galitzine, A. Alekseenko, High-Order Discon-
tinuous Galerkin Method for Boltzmann Model Equations, in:
40th Thermophysics Conference, American Institute of Aero-
nautics and Astronautics, Seattle, Washington, 2008, p. 4256.
doi:10.2514/6.2008-4256.

C. Wu, B. Shi, C. Shu, Z. Chen, Third-order discrete unified
gas kinetic scheme for continuum and rarefied flows: Low-speed
isothermal case, Physical Review E 97 (2018) 023306. |doi:
10.1103/PhysRevE. 97.023306.

W. Su, P. Wang, Y. Zhang, L. Wu, A high-order hybridizable
discontinuous Galerkin method with fast convergence to steady-
state solutions of the gas kinetic equation, Journal of Computa-

18

32]

[33]

[35]

[36]

37]

[39]

[40]

[41]

[42]

[45]

tional Physics 376 (2019) 973-991. |doi:10.1016/j.jcp.2018.
08.050.

Z.-H. Li, H.-X. Zhang, Gas-kinetic numerical studies of three-
dimensional complex flows on spacecraft re-entry, Journal of
Computational Physics 228 (2009) 1116-1138. doi:10.1016/j.
jcp.2008.10.013

Z.-H. Li, A.-P. Peng, H.-X. Zhang, J.-Y. Yang, Rarefied gas flow
simulations using high-order gas-kinetic unified algorithms for
Boltzmann model equations, Progress in Aerospace Sciences 74
(2015) 81-113. doi:10.1016/j.paerosci.2014.12.002.

G. Dimarco, R. Loubere, J. Narski, Towards an ultra efficient
kinetic scheme. Part III: High-performance-computing, Journal
of Computational Physics 284 (2015) 22-39. doi:10.1016/j.
jcp.2014.12.023!

S. Li, Q. Li, S. Fu, J. Xu, The high performance paral-
lel algorithm for Unified Gas-Kinetic Scheme, in: AIP Con-
ference Proceedings, Victoria, BC, Canada, 2016, p. 180007.
doi:10.1063/1.4967676.

V. A. Titarev, Application of model kinetic equations to hyper-
sonic rarefied gas flows, Computers & Fluids 169 (2018) 62-70.
doi:10.1016/j.compfluid.2017.06.019.

G. Dimarco, R. Loubere, J. Narski, T. Rey, An efficient nu-
merical method for solving the Boltzmann equation in multidi-
mensions, Journal of Computational Physics 353 (2018) 46-81.
doi:10.1016/7.jcp.2017.10.010.

M. T. Ho, L. Zhu, L. Wu, P. Wang, Z. Guo, Z.-H. Li, Y. Zhang,
A multi-level parallel solver for rarefied gas flows in porous
media, Computer Physics Communications 234 (2019) 14-25.
doi:10.1016/7.cpc.2018.08.009)

V. I. Kolobov, R. R. Arslanbekov, V. V. Aristov, A. A. Frol-
ova, S. A. Zabelok, Unified solver for rarefied and continuum
flows with adaptive mesh and algorithm refinement, Journal of
Computational Physics 223 (2007) 589-608. |doi:10.1016/j.
jcp.2006.09.021.

S. Chen, K. Xu, C. Lee, Q. Cai, A unified gas kinetic scheme
with moving mesh and velocity space adaptation, Journal of
Computational Physics 231 (2012) 6643—-6664. doi:10.1016/j.
jcp.2012.05.019.

C. Baranger, J. Claudel, N. Hérouard, L. Mieussens, Locally
refined discrete velocity grids for stationary rarefied flow simu-
lations, Journal of Computational Physics 257, Part A (2014)
572-593. [doi:10.1016/3.jcp.2013.10.014.

S. Brull, L. Mieussens, Local discrete velocity grids for deter-
ministic rarefied flow simulations, Journal of Computational
Physics 266 (2014) 22-46. [doi:10.1016/3.jcp.2014.01.050
S. Zabelok, R. Arslanbekov, V. Kolobov, Adaptive kinetic-fluid
solvers for heterogeneous computing architectures, Journal of
Computational Physics 303 (2015) 455-469. doi:10.1016/j.
jcp.2015.10.003

P. Asinari, T. Ohwada, E. Chiavazzo, A. F. Di Rienzo, Link-
wise artificial compressibility method, Journal of Computa-
tional Physics 231 (2012) 5109-5143./doi:10.1016/3.jcp.2012.
04.027.

C. Obrecht, P. Asinari, F. Kuznik, J.-J. Roux, Thermal link-
wise artificial compressibility method: GPU implementation
and validation of a double-population model, Computers &
Mathematics with Applications 72 (2016) 375-385. doi:10.
1016/j.camwa.2015.05.022.

Z. Fan, F. Qiu, A. Kaufman, S. Yoakum-Stover, GPU Clus-
ter for High Performance Computing, in: Proceedings of the
2004 ACM/IEEE Conference on Supercomputing, SC '04, IEEE
Computer Society, Washington, DC, USA, 2004, pp. 47—. [doi:
10.1109/SC.2004.26.

J. Tolke, M. Krafczyk, TeraFLOP computing on a desktop
PC with GPUs for 3D CFD, International Journal of Com-
putational Fluid Dynamics 22 (2008) 443-456. doi:10.1080/
10618560802238275.

C. Obrecht, F. Kuznik, B. Tourancheau, J.-J. Roux, A new ap-
proach to the lattice Boltzmann method for graphics processing
units, Computers & Mathematics with Applications 61 (2011)
3628-3638. doi:10.1016/j.camwa.2010.01.054.

https://doi.org/10.1016/j.jcp.2010.06.032
https://doi.org/10.1016/j.jcp.2013.07.002
https://doi.org/10.1103/PhysRevE.88.033305
https://doi.org/10.1103/PhysRevE.91.033313
https://doi.org/10.1103/PhysRevE.91.033313
https://doi.org/10.1016/j.jcp.2013.11.030
https://doi.org/10.1016/j.jcp.2013.11.030
https://doi.org/10.1016/j.compfluid.2016.01.006
https://doi.org/10.1016/j.compfluid.2017.09.019
https://doi.org/10.1142/S0218202500000562
https://doi.org/10.1016/j.jcp.2013.08.051
https://doi.org/10.1016/j.jcp.2016.03.038
https://doi.org/10.1016/j.jcp.2016.03.038
https://doi.org/10.1063/1.4994020
https://doi.org/10.1063/1.5008479
https://doi.org/10.1016/j.compfluid.2017.11.006
https://doi.org/10.1016/j.compfluid.2017.11.006
https://doi.org/10.1016/S0021-9991(03)00065-2
https://doi.org/10.1016/S0021-9991(03)00065-2
https://doi.org/10.2514/6.2008-4256
https://doi.org/10.1103/PhysRevE.97.023306
https://doi.org/10.1103/PhysRevE.97.023306
https://doi.org/10.1016/j.jcp.2018.08.050
https://doi.org/10.1016/j.jcp.2018.08.050
https://doi.org/10.1016/j.jcp.2008.10.013
https://doi.org/10.1016/j.jcp.2008.10.013
https://doi.org/10.1016/j.paerosci.2014.12.002
https://doi.org/10.1016/j.jcp.2014.12.023
https://doi.org/10.1016/j.jcp.2014.12.023
https://doi.org/10.1063/1.4967676
https://doi.org/10.1016/j.compfluid.2017.06.019
https://doi.org/10.1016/j.jcp.2017.10.010
https://doi.org/10.1016/j.cpc.2018.08.009
https://doi.org/10.1016/j.jcp.2006.09.021
https://doi.org/10.1016/j.jcp.2006.09.021
https://doi.org/10.1016/j.jcp.2012.05.019
https://doi.org/10.1016/j.jcp.2012.05.019
https://doi.org/10.1016/j.jcp.2013.10.014
https://doi.org/10.1016/j.jcp.2014.01.050
https://doi.org/10.1016/j.jcp.2015.10.003
https://doi.org/10.1016/j.jcp.2015.10.003
https://doi.org/10.1016/j.jcp.2012.04.027
https://doi.org/10.1016/j.jcp.2012.04.027
https://doi.org/10.1016/j.camwa.2015.05.022
https://doi.org/10.1016/j.camwa.2015.05.022
https://doi.org/10.1109/SC.2004.26
https://doi.org/10.1109/SC.2004.26
https://doi.org/10.1080/10618560802238275
https://doi.org/10.1080/10618560802238275
https://doi.org/10.1016/j.camwa.2010.01.054

(48]

[52]

J. E. McClure, J. F. Prins, C. T. Miller, A novel heterogeneous
algorithm to simulate multiphase flow in porous media on mul-
ticore CPU-GPU systems, Computer Physics Communications
185 (2014) 1865-1874. [doi:10.1016/3.cpc.2014.03.012

A. Xu, L. Shi, T. S. Zhao, Accelerated lattice Boltzmann simu-
lation using GPU and OpenACC with data management, Inter-
national Journal of Heat and Mass Transfer 109 (2017) 577-588.
doi:10.1016/j.ijheatmasstransfer.2017.02.032.

A. R. G. Harwood, A. J. Revell, Interactive flow simulation
using Tegra-powered mobile devices, Advances in Engineer-
ing Software 115 (2018) 363-373. |doi:10.1016/j.advengsoft.
2017.10.005.

A. R. G. Harwood, P. Wenisch, A. J. Revell, A Real-Time Mod-
elling and Simulation Platform for Virtual Engineering Design
and Analysis, in: Proceedings of 6th European Conference on
Computational Mechanics (ECCM 6) and 7th European Con-
ference on Computational Fluid Dynamics (ECFD 7), Glasgow,
2018, pp. 11-15.

C. C. Su, M. R. Smith, F. A. Kuo, J. S. Wu, C. W. Hsieh, K. C.
Tseng, Large-scale simulations on multiple Graphics Processing
Units (GPUs) for the direct simulation Monte Carlo method,
Journal of Computational Physics 231 (2012) 7932-7958. doi:
10.1016/7.jcp.2012.07.038!

M. J. Goldsworthy, A GPU-CUDA based direct simulation
Monte Carlo algorithm for real gas flows, Computers & Flu-
ids 94 (2014) 58-68. doi:10.1016/j.compfluid.2014.01.033.
R. Jambunathan, D. A. Levin, CHAOS: An octree-based PIC-
DSMC code for modeling of electron kinetic properties in a
plasma plume using MPI-CUDA parallelization, Journal of
Computational Physics 373 (2018) 571-604. doi:10.1016/j.
jcp.2018.07. 005!

A. Frezzotti, G. P. Ghiroldi, L. Gibelli, Solving model kinetic
equations on GPUs, Computers & Fluids 50 (2011) 136-146.
doi:10.1016/j.compfluid.2011.07.004.

A. Frezzotti, G. P. Ghiroldi, L. Gibelli, Solving the Boltzmann
equation on GPUs, Computer Physics Communications 182
(2011) 2445-2453. |[doi:10.1016/j.cpc.2011.07.002.

A. Frezzotti, G. P. Ghiroldi, L. Gibelli, Direct solution of the
Boltzmann equation for a binary mixture on GPUs, in: AIP
Conference Proceedings, Vol. 1333, 2011, pp. 884-889. doi:
10.1063/1.3562757.

Y. Y. Kloss, P. V. Shuvalov, F. G. Tcheremissine, Solving Boltz-
mann equation on GPU, Procedia Computer Science 1 (2010)
1083-1091. doi:j.procs.2010.04.120.

V. V. Aristov, A. A. Frolova, S. A. Zabelok, V. I. Kolobov,
R. R. Arslanbekov, Acceleration of Deterministic Boltzmann
Solver with Graphics Processing Units, in: AIP Conference Pro-
ceedings, Vol. 1333, Pacific Grove, California, (USA), 2011, pp.
867-872. |doi:10.1063/1.3562754.

S. A. Zabelok, V. I. Kolobov, R. R. Arslanbekov, GPU Ac-
celerated Kinetic Solvers for Rarefied Gas Dynamics, in: AIP
Conference Proceedings, Vol. 1501, 2012, pp. 429-434. doi:
10.1063/1.4769562.

O. Rovenskaya, G. Croce, Numerical investigation of the effect
of boundary conditions for a highly rarefied gas flow using the
GPU accelerated Boltzmann solver, Computers & Fluids 110
(2015) 77-87. [doi:10.1016/] . compfluid.2014.10.015|

S. Zabelok, R. Arslanbekov, V. Kolobov, Multi-GPU Kinetic
Solvers using MPI and CUDA, in: AIP Conference Proceedings,
Vol. 1628, 2014, pp. 539-546. [doi:10.1063/1.4902640.

V. A. Titarev, Implicit high-order method for calculating rar-
efied gas flow in a planar microchannel, Journal of Computa-
tional Physics 231 (2012) 109-134. doi:http://dx.doi.org/
10.1016/3.jcp.2011.08.030}

S. Chen, C. Zhang, L. Zhu, Z. Guo, A unified implicit scheme for
kinetic model equations. Part I. Memory reduction technique,
Science Bulletin 62 (2016) 119-129. doi:10.1016/j.scib.2016.
12.010.

E. M. Shakhov, Generalization of the Krook kinetic relax-
ation equation, Fluid Dynamics 3 (1968) 95-96. doi:10.1007/
BF01029546.

19

[66]

[67]

[78]

[79]

S. Pantazis, D. Valougeorgis, Rarefied gas flow through a cylin-
drical tube due to a small pressure difference, European Journal
of Mechanics - B/Fluids 38 (2013) 114-127. doi:10.1016/j.
euromechflu.2012.10.006.

H. Wasserman, A. Hoisie, A. Hoisie, O. Lubeck, O. Lubeck,
Performance and Scalability Analysis of Teraflop-Scale Parallel
Architectures using Multidimensional Wavefront Applications,
International Journal of High Performance Computing Appli-
cations 14 (2000) 330-346. doi:0.1177/109434200001400405,
S. Moustafa, I. Dutka-Malen, L. Plagne, A. Poncot, P. Ramet,
Shared memory parallelism for 3D Cartesian discrete ordinates
solver, Annals of Nuclear Energy 82 (2015) 179-187. [doi:10.
1016/j.anucene.2014.08.034.

T. Deakin, S. McIntosh-Smith, M. Martineau, W. Gaudin,
An improved parallelism scheme for deterministic discrete or-
dinates transport, International Journal of High Performance
Computing Applications 32 (2016) 555-569. doi:10.1177/
1094342016668978.

L. Zhu, X. Yang, Z. Guo, Thermally induced rarefied gas
flow in a three-dimensional enclosure with square cross-section,
Physical Review Fluids 2 (2017) 123402. doi:10.1103/
PhysRevFluids.2.123402.

D. B. Kirk, W.-m. W. Hwu, Programming Massively Parallel
Processors: A Hands-on Approach, 3rd Edition, Morgan Kauf-
mann, 2016.

T. J. Scanlon, E. Roohi, C. White, M. Darbandi, J. M. Reese,
An open source, parallel DSMC code for rarefied gas flows in
arbitrary geometries, Computers & Fluids 39 (2010) 2078-2089.
doi:10.1016/7.compfluid.2010.07.014,

J. C. Huang, K. Xu, P. B. Yu, A unified gas-kinetic scheme
for continuum and rarefied flows II: Multi-dimensional cases,
Communications in Computational Physics 12 (2012) 662-690.
doi:10.4208/cicp.030511.220911a.

L. Zhu, S. Chen, Z. Guo, dugksFoam: An open source Open-
FOAM solver for the Boltzmann model equation, Computer
Physics Communications 213 (2016) 155-164. doi:10.1016/
j.cpc.2016.11.010

N. Corporation, [Profiler User’s Guide v9.2| (2018).

URL https://docs.nvidia.com/cuda/profiler-users-guide/
index.html

K. Aoki, C. Bardos, C. Dogbe, F. Golse, A note on the prop-
agation of boundary induced discontinuities in kinetic theory,
Mathematical Models and Methods in Applied Sciences 11
(2001) 1581-1595. |doi:10.1142/50218202501001483.

K. Aoki, S. Takata, H. Aikawa, F. Golse, A rarefied gas flow
caused by a discontinuous wall temperature, Physics of Fluids
13 (2001) 2645-2661. |doi:10.1063/1.1389283.

S. Naris, D. Valougeorgis, The driven cavity flow over the whole
range of the Knudsen number, Physics of Fluids 17 (2005)
097106. doi:10.1063/1.2047549.

M. T. Ho, J. Li, L. Wu, J. M. Reese, Y. Zhang, A comparative
study of the DSBGK and DVM methods for low-speed rarefied
gas flows, Computers & Fluids 181 (2019) 143-159. |doi:10.
1016/j.compfluid.2019.01.019.

https://doi.org/10.1016/j.cpc.2014.03.012
https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.032
https://doi.org/10.1016/j.advengsoft.2017.10.005
https://doi.org/10.1016/j.advengsoft.2017.10.005
https://doi.org/10.1016/j.jcp.2012.07.038
https://doi.org/10.1016/j.jcp.2012.07.038
https://doi.org/10.1016/j.compfluid.2014.01.033
https://doi.org/10.1016/j.jcp.2018.07.005
https://doi.org/10.1016/j.jcp.2018.07.005
https://doi.org/10.1016/j.compfluid.2011.07.004
https://doi.org/10.1016/j.cpc.2011.07.002
https://doi.org/10.1063/1.3562757
https://doi.org/10.1063/1.3562757
https://doi.org/j.procs.2010.04.120
https://doi.org/10.1063/1.3562754
https://doi.org/10.1063/1.4769562
https://doi.org/10.1063/1.4769562
https://doi.org/10.1016/j.compfluid.2014.10.015
https://doi.org/10.1063/1.4902640
https://doi.org/http://dx.doi.org/10.1016/j.jcp.2011.08.030
https://doi.org/http://dx.doi.org/10.1016/j.jcp.2011.08.030
https://doi.org/10.1016/j.scib.2016.12.010
https://doi.org/10.1016/j.scib.2016.12.010
https://doi.org/10.1007/BF01029546
https://doi.org/10.1007/BF01029546
https://doi.org/10.1016/j.euromechflu.2012.10.006
https://doi.org/10.1016/j.euromechflu.2012.10.006
https://doi.org/0.1177/109434200001400405
https://doi.org/10.1016/j.anucene.2014.08.034
https://doi.org/10.1016/j.anucene.2014.08.034
https://doi.org/10.1177/1094342016668978
https://doi.org/10.1177/1094342016668978
https://doi.org/10.1103/PhysRevFluids.2.123402
https://doi.org/10.1103/PhysRevFluids.2.123402
https://doi.org/10.1016/j.compfluid.2010.07.014
https://doi.org/10.4208/cicp.030511.220911a
https://doi.org/10.1016/j.cpc.2016.11.010
https://doi.org/10.1016/j.cpc.2016.11.010
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://doi.org/10.1142/S0218202501001483
https://doi.org/10.1063/1.1389283
https://doi.org/10.1063/1.2047549
https://doi.org/10.1016/j.compfluid.2019.01.019
https://doi.org/10.1016/j.compfluid.2019.01.019

	Introduction
	The numerical method
	The Shakhov model equation
	Iteration scheme with memory reduction technique

	GPU implementations
	GPU programming introduction
	Spatial-sweep kernel with further memory reduction
	Moment-evaluation kernel
	Boundary condition

	Validation
	Lid-driven cubic cavity flow
	Accuracy of the 1st-order solutions
	Relative cost of 1st- and 2nd-order solutions
	Comparison of the GPU performance with literature

	Rarefied gas flow past a cube

	Performance profiling
	Speedups and comparison with the MPI parallelization
	Kernel performance analysis

	Conclusion and discussions
	The second order reference solution

