
Computer Physics Communications 255 (2020) 107368

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

PyFrac: A planar 3D hydraulic fracture simulator✩

Haseeb Zia, Brice Lecampion ∗

Ecole Polytechnique Fédérale de Lausanne, Geo-Energy Lab, Gaznat chair on Geo-Energy, School of Architecture, Civil & Environmental Engineering,
EPFL-ENAC-IIC-GEL, Station 18, Lausanne, CH-1015, Switzerland

a r t i c l e i n f o

Article history:
Received 4 September 2019
Received in revised form 5 May 2020
Accepted 7 May 2020
Available online 17 May 2020

Keywords:
Hydraulic fracture
Level set
Fracture propagation
Non-linear moving boundary problem

a b s t r a c t

Fluid driven fractures propagate in the upper earth crust either naturally or in response to engineered
fluid injections. The quantitative prediction of their evolution is critical in order to better understand
their dynamics as well as to optimize their creation. We present an open-source Python implemen-
tation of a hydraulic fracture growth simulator based on the implicit level set algorithm originally
developed by Peirce & Detournay (2008). This algorithm couples a finite discretization of the fracture
with the use of the near tip asymptotic solutions of a steadily propagating semi-infinite hydraulic
fracture. This allows to resolve the multi-scale processes governing hydraulic fracture propagation
accurately, even on relatively coarse meshes. We present an overview of the mathematical formulation,
the numerical scheme and the details of our implementation. A series of problems including a radial
hydraulic fracture verification test, the propagation of a height contained hydraulic fracture, the lateral
spreading of a magmatic dyke and an example of fracture closure are presented to demonstrate the
capabilities, accuracy and robustness of the implemented algorithm.
Program summary
Program title: PyFrac
CPC Library link to program files: http://dx.doi.org/10.17632/gv7yy9mmwj.1
Licensing provisions: GPLv3
Programming language: Python
Nature of problem: Simulation of the propagation and closure of a planar three-dimensional hydraulic
fracture driven by the injection of a Newtonian fluid in a material having heterogeneous fracture
toughness under a non-uniform in-situ stress field.
Solution method: The fully coupled hydro-mechanical moving boundary problem is solved combining a
finite volume scheme for lubrication flow with a boundary element method for elasticity. The algorithm
couples a finite scale discretization of the fracture with the near-tip asymptotic solution of a steadily
moving hydraulic fracture. The fracture front is tracked via a level set approach using a fast marching
method.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Hydraulic fractures (HFs) are a class of tensile fracture propa-
gating in rocks under pre-existing compressive stress in response
to the injection or release of pressurized fluid [1]. They are
routinely engineered in order to increase the production of oil
and gas wells [2]. Hydraulic fractures are also used in the pre-
conditioning of ore body mined via block caving techniques [3,4].
Compensation grouting is another example of their application
in civil engineering [5]. HFs also occur naturally as dykes propa-
gating from deep pressurized magma chamber [6] or as fracture

✩ This paper and its associated computer program are available via the
Computer Physics Communication homepage on ScienceDirect (http://www.
sciencedirect.com/science/journal/00104655).

∗ Corresponding author.
E-mail address: Brice.lecampion@epfl.ch (B. Lecampion).

propagating at glacier beds following sudden fluid discharge [7,8].
Quantitative estimate of the dynamics and extent of hydraulic
fractures is critical in practical applications in order to opti-
mize the engineering design. This is typically done with the help
of numerical models. In addition, numerical modeling can also
help in understanding hydraulic fracture growth in non-trivial
configurations.

Numerical modeling of hydraulic fractures has been an active
area of research since the end of the 1950s. The mathematical
models have evolved from simple geometries with ad-hoc growth
physics to sophisticated three dimensional models — see [9,10]
for the most recent reviews. The numerical modeling of the
propagation of hydraulic fracture is extremely challenging due to
a number of reasons. In addition to the intrinsic moving boundary
nature of the problem, the coupling between the lubrication fluid
flow inside the fracture and the elastic deformation of the rock

https://doi.org/10.1016/j.cpc.2020.107368
0010-4655/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

https://doi.org/10.1016/j.cpc.2020.107368
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2020.107368&domain=pdf
http://dx.doi.org/10.17632/gv7yy9mmwj.1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:Brice.lecampion@epfl.ch
https://doi.org/10.1016/j.cpc.2020.107368
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 H. Zia and B. Lecampion / Computer Physics Communications 255 (2020) 107368

(non-local by essence) is extremely non-linear as the fracture hy-
draulic transmissivity increases with the cube of the local fracture
width. Such a hydro-mechanical coupling yields a complex mul-
tiscale structure of the solution in the near tip region where the
classical linear elastic fracture mechanics asymptote can reduce
to a small boundary layer near the tip while a viscous asymptote
control the far-field behavior. An intermediate asymptote due
to fluid leaking off in the surrounding rock can also appear —
see [11,12] for detailed solutions and experimental validation.
This multi-scale structure of the solution near the propagating
hydraulic fracture front is known to control the propagation of
finite hydraulic fractures which exhibit a competition between
the dissipative processes associated with fluid flow and fracture
creation as well as between the amount of fluid leaking off the
fracture compared to the amount stored within the fracture [13].
Numerical models of HF growth must therefore properly re-
solve these different length scales near the fracture front in
order to yield accurate results. This is particularly challenging
numerically as the extent of the different asymptotic regions can
vary widely as function of the rock and injection properties —
therefore requiring extremely fine meshes in some cases.

We present a Python implementation of a particularly effi-
cient numerical scheme for hydraulic fracture (HF) propagation
denoted as the implicit level set algorithm (ILSA) [14–17]. The
scheme elegantly couples the near-tip asymptotic solution of
a steadily moving hydraulic fracture [11] (valid in the near-
tip region) with a finite discretization of the fracture. By using
the near-tip HF asymptotic solution, the challenging numerical
resolution of the multiscales structure of the solution near the
tip is avoided altogether. As a result, this allows to obtain highly
accurate solutions even on relatively coarse meshes as com-
pared to other fracture propagation algorithms (see [10,18] for
comparisons).

Our Python implementation also includes a number of exten-
sions to the original ILSA scheme. In particular, the developed
solver includes (1) the capability to advance the fracture front im-
plicitly, explicitly or in a predictor–corrector fashion [19], (2) the
modification of the lubrication flow to take into account the
possible transition to turbulent flow [20], (3) the possibility to
account for an anisotropy of fracture toughness and elasticity
[21,22], and finally (4) the capability to handle closure of the
fracture after the end of pumping.

In the following, we briefly describe the underlying mathe-
matical model of HF growth, its solution in the context of the
implicit level set algorithm and discuss some details of our im-
plementation. Several examples are then discussed in order to il-
lustrate the accuracy and capabilities of the developed numerical
code.

2. Mathematical model

PyFrac solves the equations of the classical linear elastic hy-
draulic fracture problem for a three-dimensional planar fracture.
We briefly recall below the governing equations for such class of
problems and refer to [1,10] for a more detailed description of
the underlying physical assumptions.

2.1. Elastic deformation

For a pure opening mode planar fracture (mode I), the quasi-
static balance of momentum of the medium reduces to a single
hyper singular boundary integral equation relating the fracture
width w (normal displacement discontinuity) and the normal
component of the traction vector. In the case of a planar fracture

of area A(t) (evolving with time) in a homogeneous isotropic
material, it further reduces to (see [23,24] for details)

T (x, y, t) − σo(x, y) = −
E ′

8π

∫
A(t)

w(x′, y′, t) dA(x′, y′)
[(x′ − x)2 + (y′ − y)2]3/2

. (1)

where T and σo are the normal components of the applied trac-
tion and the far-field in-situ compressive stress respectively. We
account for the fact that the fracture opening w cannot be neg-
ative. More precisely, upon fracture creation, the fracture may
close but exhibit a residual aperture wa taken as the minimum
between the maximum opening encountered thus far at this
position and a value related to the intrinsic roughness of the
created fracture wr : wa = min (max(w), wr). This results in the
following contact conditions

(w − wa) ≥ 0 (T − p)(w − wa) = 0 (2)

which states that if the fracture is mechanically open at a given
location, the corresponding normal traction on the fracture faces
T (x, y, t) equals the fluid pressure p(x, y, t).

2.2. Lubrication flow inside the fracture

The fluid flow inside the fracture obeys the lubrication approx-
imation [25]. The width averaged mass conservation for a slightly
compressible liquid reduces to (see e.g. [10])
∂w

∂t
+ cf w

∂p
∂t

+ ∇ · q + vL = Q (x, y)δ(x, y), (3)

where vL denotes the velocity of the fluid leaking out of the two
opposite faces of the fracture, and q is the fluid flux within the
fracture. Similarly, for such a lubrication flow, the width averaged
balance of momentum of the fluid reduces to Poiseuille’s law.
Accounting for the possible appearance of turbulent flow (but still
neglecting inertial terms), the fluid flux q = w × v is directly
related to the fluid pressure gradient as [17,26]:

q =
−w3

12µ f̃
(
ReDeq, wR/w

) (∇p + ρg), (4)

where the reduced Fanning friction factor f̃ is defined as:

f̃
(
ReDeq,

wR

w

)
= f

(
4
3
Re,

wR

w

)
/flaminar . (5)

It captures the possible transition to turbulent flow inside the
fracture as function of the local Reynolds number Re = ρwv/µ

and the roughness length scale wR: f is the Fanning friction factor
expression for turbulent flow in pipe (function of the Reynolds
number) and flaminar = 64/Re is the laminar expression such that
f̃ = 1 for laminar flow. Different models for Fanning friction
are available in our implementation — notably the one described
in [27,28].

The leak off fluid velocity vL is evaluated using the Carter’s leak
off model (see e.g. [10] for discussion):

vL =
2CL(x, y)

√
t − t0(x, y)

. (6)

where CL [L.T−1/2] is the Carter’s leak-off coefficient which de-
pends on the rock and fracturing fluid properties.

2.3. Boundary conditions

PyFrac assumes that the fluid and fracture front coincides: a
condition typically encountered when the in-situ normal com-
pressive stress σo is sufficiently large (see [29] for discussion).
As a result, at the fracture front, besides the condition of zero



H. Zia and B. Lecampion / Computer Physics Communications 255 (2020) 107368 3

Fig. 1. Schematic of the finite discretization of the fracture plane with the
fracture front cutting through the background Cartesian grid. At any time, the
cells are classified as either tip (near the front) or channel cells. Among the
channel cells, the center of the cells adjacent to the tip cells are taken as survey
points and are used to couple the finite discretization with the near-tip hydraulic
asymptotic solution.

fracture width, the component of the fluid flux q(x, t) normal to
the fluid front also vanishes:

w(xc, t) = 0, q(xc, t) · n(xc, t) = 0, xc ∈ C(t), (7)

where C(t) denotes the fracture front at time t and n(xc, t) its cor-
responding normal. Moreover, the hydraulic fracture is assumed
to be propagating in quasi-static equilibrium. As a result, the
stress intensity factor everywhere along the fracture front is equal
to (or below for a stagnant front) the fracture toughness of the
rock. This results in the following propagation condition:

(KI (xc, t) − KIc(xc, α)) ≤ 0 (8)
(KI (xc, t) − KIc(xc, α)) × V (xc) = 0 xc ∈ C(t). (9)

where V (xc) ≥ 0 is the local fracture propagation velocity. The
fracture toughness of the material KIc can possibly be function of
position (inhomogeneous material) as well as of the propagation
direction α in the case of a material with an anisotropic fracture
toughness (see [21] for details).

3. Numerical solution

In this section, We outline some details of our implementation
of ILSA. We refer to the description given in [14,15,17] for more
details.

3.1. Discretization

The hydraulic fracture is discretized using a fixed Cartesian
mesh with rectangular cells of sizes ∆x, ∆y - see Fig. 1. The
algorithmmarches forward in time from a known solution at time
tn which consists of the location of the fracture front (intersecting
the background grid), width and fluid pressures at the center of
the cells located inside the fracture.

Using the distributed dislocation technique, the elasticity
equation (1) is collocated at the center of each cell within the
current fracture footprint assuming a piece-wise constant value
of fracture width in each cell. It results in a dense linear system
for an open fracture loaded by a fluid (where T = p in Eq. (1)).
The fluid pressure pi,j at cell (i, j) located in an open part of the

fracture (see Fig. 1) is linearly related to the opening in all the
other cells

pi,j − σo i,j = Ei,j;k,lwk,l, (10)

where Ei,j;k,l is the elastic contribution of cell (k, l) on cell (i, j)
and summation is performed on repeated indices. If the fracture
is mechanically closed, the width wi,j equals the residual aperture
wa, and the corresponding traction Ti,j is now unknown (see
Eq. (2)).

The lubrication equation (3) is discretized using a cell centered
finite volume method. Using a backward-Euler time integration
scheme, one obtains the following equation for cell (i, j) over the
time step of size ∆t:

∆wi,j = [A p]i,j − [C∆p]i,j + Gi,j + ∆t Qi,j − Li,j, (11)

where the fluid flux across the cell edges is approximated by
central finite difference resulting in a five point stencil:

[A p]i,j =
∆t
∆x2

(
Ki+1/2,jpi+1,j − (Ki+1/2,j + Ki−1/2,j)pi,j + Ki−1/2,jpi−1,j

)
+

∆t
∆y2

(
Ki,j+1/2pi,j+1 − (Ki,j+1/2 + Ki,j−1/2)pi,j + Ki,j−1/2pi,j−1

)
(12)

The fracture fluid transmissivity Ki−1/2,j at the cell edge (i−1/2, j)
(and similarly for the other edges) is given by

Ki−1/2,j =
w3

i−1/2,j

12µ f̃ (ReDeq i−1/2,j, wR/wi−1/2,j)
, (13)

where the width and Reynolds number are averages of the two
neighboring cells. These transmissivities are non-linearly depen-
dent on the current estimate of fracture width.

For a gravity vector aligned along the y axis of the grid, the
gravity term Gi,j is given by

Gi,j =
∆t
∆y

(Ki,j+1/2 − Ki,j−1/2)ρg, (14)

while the effect of fluid compressibility is strictly local and reads

[C∆p]i,j = cf

(
wn

i,j +
∆wi,j

2

)
∆pi,j. (15)

Qi,j contains the fluid injection rate (only non-zero in the injection
cell). The leak-off contribution Li,j for cell (i, j) over the time-step
is approximated as [14]:

Li,j = 4CL∆t
(√

tn + ∆t − to i,j −
√
tn − to i,j

)
(16)

where to i,j is the time at which the fracture front has first passed
through the center of cell (i, j) (also refereed to as the trigger time
for leak-off).

3.2. Elasto-hydrodynamics solver

For a known trial position of the fracture front at time t + ∆t ,
the non-linear coupling between the discretized lubrication (11)
and elastic (10) equations can be re-written in a matrix form.
Taking the increment of width and pressure in all cells within
the fracture footprint as the primary unknowns, one obtains
the following non-linear system when no width constraints are
active:[

E −I
I −L(∆w)

][
∆w
∆p

]
=

⎡⎣ 0
A(∆w) · pn

+ G(∆w) + S  
FL

⎤⎦ .

(17)

In the previous equation, I denotes the identity matrix. The elas-
ticity block E is dense, while L(∆w) = A(∆w) − C(∆w) is



4 H. Zia and B. Lecampion / Computer Physics Communications 255 (2020) 107368

sparse (notably the effect of compressibility C is strictly diagonal).
We have also highlighted the non-linear dependence of L on the
current fracture width increment, and defined S = ∆t Q − L
combining the injection sources and leak-off sink terms.

As previously mentioned, the implicit level set algorithm in-
corporates the near tip asymptotic solution for a steadily moving
hydraulic fracture near the fracture front. This is done by iden-
tifying the cells intersecting with the fracture front (denoted as
tip cells) and the cells within the fracture apart from the tip
cells (called channel cells). The fracture widths of the tip cells are
imposed according to the HF tip solution which depends on the
current estimate of the local fracture velocity. The pressure in the
flow equation (11) is substituted with width using the elasticity
equation (10) for mechanically open channel cells (denoted with
a superscript C). In addition to imposing the fracture width in
the tip cells, we also enforce the minimum width constraint (2)
everywhere — and denote the corresponding set of cells with
active constraints with a superscript A.

After imposing the width according to the HF tip asymp-
tote and the active minimum width constraints in the set of
tip (denoted with a superscript T ) and active cells (superscript
A) respectively, the nonlinear system (17) can be re-written to
solve for the increment of width ∆w in the channel cells and
increment of fluid pressure ∆p in the tip cells (T ) and the cells (A)
with an active width constraint. The final non-linear system can
be expressed in the following format highlighting the different
sub-blocks:⎡⎣ICC − LCCECC

−LCT
−LCA

−LTCECC
−LTT

−LTA

−LACECC
−LAT

−LAA

⎤⎦⎡⎣∆wC

∆pT

∆pA

⎤⎦
=

⎡⎣ FCL + LCCbC

FTL − ∆wT
+ LTCbC

FAL − ∆wA
+ LACbC

⎤⎦ (18)

where the different matrix sub-blocks are defined with respect to
the channel (C), tip (T ) and active (A) cells. We have also defined

bC
= ECT∆wT

+ ECA∆wA (19)

and the increment of width in the tip and active cells are simply
given by:

∆wT
= wT

− wnT (20)
∆wA

= wA
a − wnA, (21)

where wT represents the vector of width in the tip cells evaluated
using the HF tip asymptote [11] and wA

a is the vector of minimum
residual width. The vectors (e.g. FCL ) on the right hand side of
Eq. (18) are short notation for the right hand side appearing in
the system of Eq. (17).

The non-linear system (18) is solved iteratively using a simple
fixed-point scheme which has proven to be robust and accu-
rate. Convergence is reached when the L2 norm of subsequent
estimates of the increment of width and pressure are below
a prescribed tolerance (in relative term) - typically 10−6. The
inequality constraints are checked after convergence and the set
of active cells updated if required (and the system subsequently
re-solved until convergence of the active set). Due to its non-
linear nature and the fact that the previous system needs to be
solved for each trial position of the fracture front, it is the most
critical part of the solver from a computational point of view.

It is also worthwhile to note that in the case of an inviscid
fluid (zero viscosity/toughness dominated propagation), the fluid
pressure is uniform inside the fracture (in the absence of gravity).
In that limiting case, a simpler set of equations can be solved
combining elastic deformation and global volume balance in

order to solve for increment of width and a single fluid pressure
increment (see e.g. [14] for details).

3.3. The fracture propagation algorithm

The fracture front is represented by a level set function and its
new position at the end of the time step is obtained iteratively in
a fully implicit manner in the original ILSA scheme [14].

Once the non-linear elasto-hydrodynamics system (18) has
been solved for a given trial position of the fracture front, the esti-
mate of the new width in the cell just behind the tip cells (survey
points in Fig. 1) is used in combination with the HF tip solution in
order to obtain the local closest distance s from the survey point
to the fracture front. This is performed by inverting the HF tip
asymptotic solution giving the fracture width as function of the
closest distance to the fracture tip. The closest distance to the
fracture front obtained in all the cells behind the tip cells provide
an initial condition to solve for the signed distance to the fracture
front (i.e. the level set function) in all the grid cells. The solution
of this Eikonal equation is performed via a fast marching method.
The fracture front can then be reconstructed using a piece-wise
linear approximation within each cell. Subsequently, the width
in the tip cells for this new position of the fracture front can
be imposed using the HF near tip asymptotic solution (using the
local fracture front velocity). More precisely, the volume of the
tip cells is prescribed to ensure proper volume conservation. The
algorithm then re-solve the non-linear elasto-hydrodynamics sys-
tem to obtain a new estimate of the fracture width increment and
tip pressure. Convergence is reached when subsequent estimate
of the level set function at all survey points falls below a given
tolerance (in relative term) - typically 10−3.

It is interesting to point out that besides a fully implicit
scheme, we also provide an explicit as well as predictor–corrector
version of the scheme. In the original fully implicit version of the
scheme, the first trial position of the new fracture front is kept as
its value at the end of the previous time-step. The fully explicit
version estimates the new position of the fracture front from the
local velocities obtained at the end of the previous time-step (and
thus no iteration on the fracture front position is performed). The
predictor–corrector version subsequently iterates from the trial
position obtained explicitly. More details and comparisons of the
difference scheme are discussed in [19]. By default, PyFrac uses
a predictor–corrector scheme but such a choice can be modified
by the user if desired.

A complete summary of the algorithm over one time-step
is shown in the form of a flow chart in Fig. 2. Note that the
value of the time-step is automatically adjusted from the current
knowledge of the fracture front velocity — see [19] for more
details.

3.4. Fracture closure

Fracture closure is solely modeled via the contact condition (2)
at the level of the grid. The algorithm classifies the fracture front
as either propagating or stagnant. In other words, the fracture
front described by the level set does not recede but the fracture
can close. The fracture is assumed closed in the cells where the
faces of the fracture come into contact: when the fracture width
becomes equal to the minimum residual width wr - a given input
akin to a material property. Although the fracture front does not
recede, there is a front of closing cells which can be seen as a
receding front. The direction of this ‘receding front’ is resulting
from the coupling between fluid flow/leak-off/elasticity and the
contact condition via the injection flow rate history.

For a stagnant fracture front, the fracture propagation condi-
tion is not fulfilled anymore: the local stress intensity factor KI



H. Zia and B. Lecampion / Computer Physics Communications 255 (2020) 107368 5

Fig. 2. The algorithm used by PyFrac to advance a time step. The predictor corrector, implicit and explicit front advancing schemes are shown in blue, red and green
colors respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

is below the fracture toughness KI < KIc . Following a procedure
discussed in [17], the stress intensity factor is then computed
from the width of the ribbon cells. The width of the corresponding
tip cells are set according to the linear elastic fracture mechanics
asymptote using the computed KI : w =

√
32/π KI

E′ s1/2, with s the
distance normal to the fracture front. The tip element volumes,
to be imposed in the tip cells, are computed by integrating this
width in a similar way than for a propagating front (see [17] for
details).

4. Implementation

PyFrac makes extensive use of NumPy [30] and SciPy [31]
routines. The implementation details of the computationally ex-
tensive routines of PyFrac are briefly discussed below.

Assembly of the elasto-hydrodynamic system. The elasto-
hydrodynamic system (18) requires multiple matrix products of

the dense matrix resulting from the boundary integral elastic
equation with the sparse finite lubrication matrix (resulting from
the five point stencil finite difference), which is function of
the current width estimate. PyFrac uses the compressed sparse
column matrix provided by SciPy for the lubrication matrix and
the standard 2-dimensional NumPy array for the dense elastic
matrix. The dot product routine provided by SciPy for sparse
matrix product is used for efficiency.

Solution of the elasto-hydrodynamic system. The non-linear elasto-
hydrodynamic system is solved via fixed point iterations, which
converts it into a series of linear systems. PyFrac uses the linear
solver provided by NumPy, which is basically a Python wrapper
for the highly efficient direct linear solver provided by LAPACK.

Root finding. The HF tip asymptotic solution is evaluated by an
efficient approximation provided by Dontsov and Peirce [32] in
the form of an implicit function. To evaluate the tip asymptote as
well as to invert it, root finding is required for both inverting the



6 H. Zia and B. Lecampion / Computer Physics Communications 255 (2020) 107368

tip asymptote and to evaluate its integral over the tip cell. PyFrac
uses the implementation of Brent’s method provided by SciPy to
find the root of the implicit function.

4.1. Memory requirements

PyFrac is a memory intensive application. The large memory
demand mainly arises due to storage of the elasticity matrix
and the tangent elasto-hydrodynamics linear system (18), both
of which have a size of the order of (nx × ny)2 elements, where
nx and ny are the total number of elements in the x and y
directions of the grid respectively. For example, a simulation with
200 cells in both the x and y directions requires about ∼27 GB of
storage. Keep in mind that due to the use of the HF tip asymptotic
solutions, ILSA requires a much smaller number of elements to
achieve the same level of accuracy as compared to traditional
numerical methods used in fracture mechanics. For example, for
a radial fracture benchmark, ILSA requires about ∼200 times
less elements as compared to a finite element based method to
achieve the same level of accuracy [18]. To reduce the memory
requirement, PyFrac stores the elasticity matrix in single preci-
sion which brings down the memory requirement from ∼27 GB
to ∼20 GB in the case of a 200 × 200 grid. Note that the pseudo-
Toeplitz structure of the elasticity matrix for a rectangular grid
could be used to further reduce the memory requirement but
would require the development of specific matrix–matrix and
matrix–vector dot products routines in order to efficiently built
the elasto-hydrodynamic system.

4.2. Classes

Although PyFrac makes use of object orientated programming
to structure the code, we use it cautiously in order to avoid
computational overhead. Central to the code is the Fracture

class which stores the state of the fracture at a given time.
Advancing of the solution in time is done by a class denoted as
Controller. We briefly describe the different classes and their
methods.

• Fracture: This class stores the information about the state
of the fracture at a given time including the width, the
fluid pressure, the net pressure, the location of the front,
the velocity of the front, the classification of the grid cells
(Channel, survey or Tip) containing the fracture and some
other parameters. Methods to initialize a fracture to be
advanced in time are also provided in the class. A fracture
can be initialized with a footprint of arbitrary geometry with
a given pressure or with limiting case analytical solutions
for a set of radial and height contained fracture geome-
tries. Visualization methods for different fracture variables
such as the footprint, width, pressure and others are also
available.

• CartesianMesh: This class defines a regular rectangular
mesh with the given dimensions. The class is fairly simple
as the mesh is regular and fixed. It stores the coordinates of
the cell centers where the fracture width and pressure are
evaluated. The coordinates of the vertices and their connec-
tivity to the cells are also stored. A function to visualize the
mesh in 2D and 3D is provided by the class.

• Controller: The Controller class is responsible for advanc-
ing the solution via appropriate time stepping according to
the directives given by the SimulationProperties class.
Re-attempts are made with slightly smaller or larger time
steps in the case where a time step fails to converged in
the prescribed number of iterations. If a time step fails even
after re-attempts, the simulation is started again from the

state of the fracture before the last five time steps. The
Controller class is also responsible for saving the result to
the file system for further post-processing or for visualizing
the results during the simulation.

• Property classes: Property classes is a set of classes de-
scribing the material and fracturing fluid properties, and
other simulation parameters. PyFrac defines and uses the
following property classes:

– MaterialProperties: The parameters describing the
properties of the material are stored in these proper-
ties class. These parameters include the plane strain
modulus, the fracture toughness, the Carter’s leak off
coefficient, the in-situ confining stress, the grain size
and the minimum residual width. The parameters that
can vary spatially can be provided in the form of an ar-
ray giving their value for each cell of the grid, or in the
form of a function taking the coordinates as argument
and returning the value of the parameter at the given
coordinates. If the material has an anisotropic fracture
toughness, the variation of the fracture toughness with
the propagation direction can be specified in the form
of a function.

– FluidProperties: This class stores the parameters
describing the properties of the injected fluid such as
the viscosity, compressibility and its density. A flag
controls the use of friction factor model to account for
the occurrence of turbulent flow.

– InjectionProperties: This class stores the injection
parameters such as the injection rate history and the
source location. Variable injection rate can be specified
by giving a list of injection rate values and the time
period for which they apply.

– SimulationProperties: This class stores all the nec-
essary directives for the controller to run the simula-
tion. These include the numerical parameters such as
the tolerances and maximum allowable iterations for
the different iterative loops of the algorithm, the pa-
rameters for simulation time and time stepping, the di-
rectives for output and visualization, the type of solvers
to be used and some other miscellaneous directives. A
total of about 45 simulation parameters and directives
are stored by this class, details of which can be seen in
the source code and its documentation.

– PerformanceProperties: This class stores the perfor-
mance data of an iteration that can be used to profile
the computational performance of the code.

– PlotProperties: This class stores the parameters to
be used for plotting the post-processed results. The
purpose of the class is to bundle the parameters which
will be used for plotting across all of the visualization
routines of PyFrac.

4.3. Additional features

• Post processing and visualization: PyFrac provides all the
necessary routines to post process and visualize the re-
sults. Fracture parameters including footprint, width, fluid
and net pressure, front velocity, maximum/minimum/mean
distance between injection point and front, fluid velocity,
fluid flux, Reynold’s number, fracture volume, leaked off
volume, fracturing efficiency and aspect ratio of the fracture
can be visualized. These parameters can be plotted on the
complete mesh, on a slice perpendicular to the plane con-
taining the fracture, or on a specified point in the spatial
domain. The routines utilize the matplotlib library. Apart



H. Zia and B. Lecampion / Computer Physics Communications 255 (2020) 107368 7

Fig. 3. Viscosity storage to toughness leak off transition of a penny shaped hydraulic fracture. The fracture radius (left) and fracture efficiency (right) obtained using
PyFrac are displayed against the semi-analytical solutions [33,34] obtained with the code provided by Dontsov [35] for reference.

from these routines to plot the numerical results, routines
are also provided to visualize analytical solutions for radial
and height contained fracture geometries.

• Computational Performance profiling: PyFrac has the ca-
pability to monitor and record the performance of com-
putationally costly routines, which can help in assessing
the overall performance of the code. These computational
routines typically involve an iteration such as the fracture
front iteration, the fixed point iteration or a root finding
algorithm. The performance data is stored in Performan-
ceProperties class objects, which are stored in the form of
a tree. A node stores performance data such as the CPU
time taken, the number of iterations taken to converge,
a list of norms evaluated after each iteration and some
related information for a particular run of a routine. For
each node, the performance data for subroutines under that
routine are stored in the deeper branches of the tree. For
example, for each node storing information about a time
step attempt, the performance data for the fracture front
iteration is stored as a branch in a deeper level. For each of
this fracture front node, the performance data for the fixed
point iteration is stored in a still deeper level of the tree.
Functions to post-process the saved performance data and
its visualization are also provided.

• Remeshing: Once the fracture front reaches the end of the
computational domain, PyFrac provides the capability to
remesh it to automatically increase its size by a factor. This
is done by making a new mesh with the same number of
cells as the original mesh but having dimensions scaled up
by a given factor (2 by default). By doing this, the elasticity
matrix of the new scaled mesh can be evaluated by dividing
the old elasticity matrix with the scaling factor, allowing
to avoid its revaluation upon remeshing. The variables are
projected onto the new coarse mesh in a way to ensure
proper volume conservation. The current fracture front is
also projected onto the new mesh by interpolating the level
set from the old mesh onto the new mesh and construct-
ing the front on the new mesh using the Fast Marching
Method. Remeshing allows to simulate fracture propagation
over long time and length scale with a relatively small
computational cost. Of course, such a feature must be used
with care when accounting for the presence of material or
in-situ stress heterogeneities.

• symmetric fracture: The memory and computational re-
quirements can be significantly reduced for strictly sym-
metric fractures. For the case of an inviscid fracturing fluid
(zero viscosity), PyFrac provides the possibility of solving for
only one quadrant for fractures that are symmetric along the

x and y axes. This reduces the memory requirement by a
factor of ∼16 and computational requirement by a factor of
∼64 for the linear system solver, the most computationally
costly subroutine of the code.

5. Examples

5.1. Radial hydraulic fracture verification test

We first demonstrate the accuracy of PyFrac on the case of
a radial (penny-shaped) hydraulic fracture propagating in a uni-
form permeable medium. The fracture starts propagating in the
viscosity dominated regime and gradually transitions to tough-
ness and finally to leak-off dominated regime (see [33,34] for dis-
cussion of the reference solution). Here, a simulation is performed
for a medium having a fracture toughness KIc of 0.156 MPa

√
m,

a plane strain elastic modulus E ′ of 35.2 GPa and a leak-off
coefficient CL of 0.5× 10−6 m/

√
s. The incompressible fluid (cf =

0) driving the fracture growth has a viscosity µ of 8.3×10−5 Pa s
and is injected at a constant rate Qo of 0.01 m3/s. The simulation
is started with a square domain of [−5, 5, −5, 5] m divided into
41 cells in both the x and y directions.

Fig. 3 displays the evolution of fracture radius (left) and frac-
ture efficiency (right) with time. The fracture efficiency is defined
as the ratio of the volume of the fluid currently present in the
fracture to the total volume injected. Fig. 4 displays the width
(left) and pressure (right) profiles along slices made at the pos-
itive x-axis at t = [1170, 2270, 313 775, 2 096 374, 9 929 186] s.
A very good agreement between the numerical solution and the
reference solution can be seen in both figures.

5.2. Height contained hydraulic fracture

This example simulates a hydraulic fracture propagating in
a layer bounded with high stress layers from top and bottom,
causing its height to be restricted to the height of the middle
layer. The top and bottom layers have a confining stress of 7.5
Mpa, while the middle layer has a confining stress of 1 MPa (see
Fig. 6). The fracture initially propagates as a radial fracture in the
middle layer until it hits the high stress layers on the top and
bottom. From then onwards, it propagates with the fixed height
of the middle layer.

The parameters used in the simulation are as follows:

E ′
= 35.2 GPa, KIc = 0, µ = 1.1 × 10−3 Pa s, Q = 0.001 m3/s.

A rectangular domain with dimensions of [−20, 20, −2.3, 2.3] m
is used for initial propagation. As the fracture grows and reaches
the end of the domain, a remeshing is done to double the size of



8 H. Zia and B. Lecampion / Computer Physics Communications 255 (2020) 107368

Fig. 4. The width (left) and pressure (right) profiles at selected times (t = [1170, 2270, 313 775, 2 096 374, 9 929 186] s) along the positive x-axis. The reference
solution [33] obtained with the code provided by Dontsov [35] at these times is also shown for reference.

Fig. 5. Transition from radial to PKN (height contained) geometry. The time evolution of the fracture half length along x-axis (left) and the fracture width at injection
point (right) calculated with PyFrac. The analytical viscosity dominated radial and PKN solutions are also shown for reference.

the domain to [−40, 40, −4.6, 4.6]. The domain is divided into
125 cells in the x direction and 35 cells in the y direction.

Fig. 5 shows the evolution of the fracture length (left) and
fracture width at injection point (right) with time. Expectedly,
the solution first follows the viscosity dominated radial frac-
ture solution and then transitions to height contained regime
for which the classical PKN [36] solution is applicable. The er-
ror introduced in the solution at about 2 s is due to remesh-
ing. Fig. 6 shows the footprint and the width of the fracture at
t = [1, 5, 20, 50, 80 110 140] s. It can be seen that the footprint
matches closely to the radial fracture solution initially and then
to the PKN solution.

5.3. Lateral spreading of a Dyke at neutral buoyancy

This example demonstrates the capability of PyFrac to sim-
ulate buoyancy driven fractures. Here, we simulate propagation
of a dyke after a pulse injection of basaltic magma at a depth
of 4.2 Km. The magma fractures the surrounding rock towards
the surface as a dyke and reaches a layer with lower density
at a depth of 1.3 Km: actually reaching neutral buoyancy. As a
result, the propagation is then arrested vertically and the dyke
spreads horizontally. For this simulation, we take values of the
rock and magma parameters similar to the one reported in [37].
We notably set the plane strain modulus of the rock to E ′

=

1.2 GPa and its fracture toughness to KIc = 6.5 Mpa
√
m. The

density of the rock is taken as ρr = 2700 Kg/m3 for the lower
layer (below 1.3 km from the surface) and ρr = 2300 Kg/m3 for

the upper layer (see Fig. 7). The pulse release of magma is done
by injecting with an injection rate of 2000 m3/s for the first 500
s amounting to a total injected volume of 106 m3. For magma,
we have used a density of ρf = 2400 Kg/m3 and a viscosity of
30 Pa s. The simulation is performed with a mesh having 83 cells
in both x and y dimensions.

Fig. 7 shows the evolution of the footprint of the dyke as it
propagates with time (for t = [53.59, 357.61, 702.45, 1129.1,
2855.14, 13173.53, 51145.96, 568317.8] s). The confining stress
vs depth along with the lithostatic pressure profile (taken as the
minimum in-situ stress in this example) induced by both the
low and high rock densities is also shown for reference. It can
be seen that the dyke initially propagates upwards rapidly (v ∼

2.7 m/s) but its velocity drops with time. 14 h after release, as it
is spreading laterally, it has almost stopped (v ∼ 1 cm/s). It comes
to a complete arrest at around 157 h after the pulse injection. The
evolution of the width of the dyke after the pulse release is shown
in Fig. 8.

5.4. Fracture closure

In this example, we show the capability of PyFrac to handle
fracture closure. The simulation consists of a 100 min injection of
water at the rate of 10−3 m3/s into a rock with a plane strain
elastic modulus of E ′

= 42.67 GPa and fracture toughness of
KIc = 0.5 Mpa

√
m. The minimum aperture wr upon closure is

set to 1 µm. The fracture is initiated in a layer that is bounded
by layers having higher confining stress. The layer on top is set



H. Zia and B. Lecampion / Computer Physics Communications 255 (2020) 107368 9

Fig. 6. Fracture footprint and the fracture width at t = [1, 5, 20, 50, 80, 110140] s for the height contained fracture propagation example. The solution initially agrees
with the viscosity dominated radial solution (shown in blue) and later on transitions to the PKN solution (shown in red). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. The footprint of the dyke at t = [53.59, 357.61, 702.45, 1129.1,
2855.14, 13173.53, 51145.96, 568317.8] s. The two layers with different den-
sities and the resulting in-situ confining stress (black line) as a function of the
depth is also shown. The dotted red and blue lines show the lithostatic pressure
for the case of homogeneous rocks with densities of 2300 Kg/m3 and 2700 Kg/m3

respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 8. The opening width of the dyke after the pulse injection at t = [702.45,
1129.1, 2855.14, 13173.53, 51145.96, 568317.8] s.

to have a small height, allowing the fracture to break through
and accelerate upwards in another layer (see Fig. 9). The rock
is taken to be permeable with a Carter’s leak off coefficient of
CL = 10−6 m/

√
s. The simulation is performed in a rectangular

domain with the dimensions of [−90, 90, −66, 66] m, which is
divided into 41 and 27 cells in the x and y directions respectively.

Fig. 9 shows the footprint of the fracture at t = [240, 1028,
2211, 3322, 4644, 6000, 10 388] s in combination with the corre-
sponding in-situ confining stress. It can be seen that the fracture
continues to slowly grow even after the injection has stopped
at 6000 s until it comes to a complete stop at 10 388 s. Due to
fluid leak off, the fracture starts to close with time starting from
7672 s. Fig. 10 displays the closure of the fracture with time.

Fig. 9. The footprint of the fracture at selected times for the fracture closure
example, including the time at which the injection stops (6000 s). The fracture
stops propagating after 10 388 s.

The cells displayed in red are mechanically closed (active width
constraint). It can be observed that the fracture starts to close
from its tip, first in the high stress layers. At around 14 693 s, the
fracture is fully closed in both the high stress layers, while two
separate parts of the fracture are still open. As the fluid continues
to leak off in the surrounding rock, the fracture finally fully closes
at around 4.4 h (t = 15 835 s).

6. Conclusions

In this paper, we have presented PyFac, a python based imple-
mentation of the implicit level set algorithm for the simulation
of the growth of a planar three-dimensional hydraulic fracture.
The solver has been extensively verified against known semi-
analytical solutions of planar HF growth in simple geometries
(radial, height contained hydraulic fractures in different propaga-
tion regimes). Besides the examples described previously (whose
scripts are included with the source code), a number of other
tests and examples are also provided in this release. PyFrac has a
number of additional features compared to the original ILSA al-
gorithm: in particular, the ability of model anisotropy in fracture
toughness as well as elasticity, turbulent flow, heterogeneities
of toughness among others. The current solver could also be
extended to account notably for non-Newtonian fracturing fluid
rheologies, multiphase fluids (e.g. proppant, slurry) and piece-
wise heterogeneous elasticity. Additional code optimization could
certainly further bring down the simulation cost. We hope PyFrac



10 H. Zia and B. Lecampion / Computer Physics Communications 255 (2020) 107368

Fig. 10. Fracture width at different times for the fracture closure example. The cells outlined in red are mechanically closed (wr = 10−3 mm here). The fracture
starts to close at around t = 7672 s in the bottom high stress layer which gets fully closed at t = 9660 s. Closure then continues from the tip inwards (t = 12 435
s) until both the high stress layers are closed at t = 14 693 s, dividing the fracture into two open regions. The complete fracture finally fully closes at t = 15 835 s.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

will foster benchmarking and reproducibility as well as the use of
open-source codes in the hydraulic fracturing community.

CRediT authorship contribution statement

Haseeb Zia: Conceptualization, Methodology, Investigation,
Software, Validation, Visualization, Writing - original draft. Brice
Lecampion: Conceptualization, Methodology, Software, Valida-
tion, Funding acquisition, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

This work was funded by the Swiss National Science Founda-
tion under grant #160577.

References

[1] E. Detournay, Annu. Rev. Fluid Mech. 48 (2016) 311–339, http://dx.doi.org/
10.1146/annurev-fluid-010814-014736.

[2] M.J. Economides, K.G. Nolte, in: Schlumberger (Ed.), Reservoir Stimulation,
John Wiley & Sons, 2000.

[3] A. Van As, R. Jeffrey, Hydraulic Fracture Growth in Naturally Fractured
Rock: Mine Through Mapping and Analysis, University of Toronto Press,
Toronto, Ont, 2002.

[4] Q. He, F.T. Suorineni, J. Oh, Rock Mech. Rock Eng. 49 (12) (2016)
4893–4910, http://dx.doi.org/10.1007/s00603-016-1075-0.

[5] R. Essler, E. Drooff, E. Falk, Advances in Grouting and Ground Modification,
2000, pp. 1–15.

[6] E. Rivalta, B. Taisne, A. Bunger, R. Katz, Tectonophysics 638 (2015) 1–42.
[7] C.J. van der Veen, Geophys. Res. Lett. 34 (1) (2007).
[8] V. Tsai, J.R. Rice, J. Geophys. Res. - Earth Surf. (2010).
[9] J. Adachi, E. Siebrits, A. Peirce, J. Desroches, Int. J. Rock Mech. Min. Sci. 44

(5) (2007) 739–757, http://dx.doi.org/10.1016/j.ijrmms.2006.11.006.
[10] B. Lecampion, A.P. Bunger, X. Zhang, J. Nat. Gas Sci. Eng. 49 (2018) 66–83,

http://dx.doi.org/10.1016/j.jngse.2017.10.012.
[11] D.I. Garagash, E. Detournay, J.I. Adachi, J. Fluid Mech. 669 (2011) 260–297,

http://dx.doi.org/10.1017/s002211201000501x.
[12] A.P. Bunger, E. Detournay, J. Mech. Phys. Solids 56 (11) (2008) 3101–3115.

http://dx.doi.org/10.1146/annurev-fluid-010814-014736
http://dx.doi.org/10.1146/annurev-fluid-010814-014736
http://dx.doi.org/10.1146/annurev-fluid-010814-014736
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb2
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb2
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb2
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb3
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb3
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb3
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb3
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb3
http://dx.doi.org/10.1007/s00603-016-1075-0
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb5
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb5
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb5
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb6
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb7
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb8
http://dx.doi.org/10.1016/j.ijrmms.2006.11.006
http://dx.doi.org/10.1016/j.jngse.2017.10.012
http://dx.doi.org/10.1017/s002211201000501x
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb12


H. Zia and B. Lecampion / Computer Physics Communications 255 (2020) 107368 11

[13] D. Garagash, in: F. Borodich (Ed.), IUTAM Symposium on Scaling in Solid
Mechanics, in: IUTAM Bookseries, vol. 10, Springer, Dordrecht, 2009,
pp. 91–100.

[14] A. Peirce, E. Detournay, Comput. Methods Appl. Mech. Engrg. 197 (33)
(2008) 2858–2885, http://dx.doi.org/10.1016/j.cma.2008.01.013.

[15] A. Peirce, Comput. Methods Appl. Mech. Engrg. 283 (2015) 881–908, http:
//dx.doi.org/10.1016/j.cma.2014.08.024.

[16] A. Peirce, Phil. Trans. R. Soc. A 374 (2078) (2016) 20150423, http://dx.doi.
org/10.1098/rsta.2015.0423.

[17] E. Dontsov, A. Peirce, Comput. Methods Appl. Mech. Engrg. 313 (2017)
53–84, http://dx.doi.org/10.1016/j.cma.2016.09.017.

[18] B. Lecampion, A. Peirce, E. Detournay, X. Zhang, Z. Chen, A.
Bunger, C. Detournay, J. Napier, S. Abbas, D. Garagash, Effective and
Sustainable Hydraulic Fracturing, InTech, 2013, http://dx.doi.org/10.5772/
56212.

[19] H. Zia, B. Lecampion, Int. J. Numer. Anal. Methods Geomech. 43 (6) (2019)
1300–1315, http://dx.doi.org/10.1002/nag.2898.

[20] B. Lecampion, H. Zia, J. Fluid Mech. (2019).
[21] H. Zia, B. Lecampion, W. Zhang, Int. J. Fract. 211 (1–2) (2018) 103–123,

http://dx.doi.org/10.1007/s10704-018-0278-7.
[22] F. Moukhtari, B. Lecampion, H. Zia, J. Mech. Phys. Sol. 137 (2020) 103878,

http://dx.doi.org/10.1016/j.jmps.2020.103878.
[23] S.L. Crouch, A.M. Starfield, F. Rizzo, J. Appl. Mech. 50 (1983) 704.

[24] D.A. Hills, P. Kelly, D. Dai, A. Korsunsky, Solution of Crack Problems: The
Distributed Dislocation Technique, Vol. 44, Springer Science & Business
Media, 1996.

[25] G. Batchelor, An Introduction to Fluid Dynamics, Cambridge University
Press, Cambridge, UK, 1967.

[26] H. Zia, B. Lecampion, Int. J. Solids Struct. 110 (2017) 265–278.
[27] S.-Q. Yang, G. Dou, J. Fluid Mech. 642 (2010) 279–294.
[28] B.H. Yang, D.D. Joseph, J. Turbul. (10) (2009) N11.
[29] D. Garagash, E. Detournay, Trans. Amer. Soc. Mech. Eng. J. Appl. Mech. 67

(1) (2000) 183–192, http://dx.doi.org/10.1115/1.321162.
[30] T. Oliphant, NumPy: A guide to NumPy, Trelgol Publishing, USA, 2006,

[Online] URL http://www.numpy.org/. (Accessed 5 May 2020).
[31] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific tools

for Python, 2001, [Online] URL http://www.scipy.org/. (Accessed 5 May
2020).

[32] E. Dontsov, A. Peirce, J. Fluid Mech. 781 (2015).
[33] M.V. Madyarova, Fluid-Driven Penny-Shaped Fracture in Elastic

Medium (Ph.D. thesis), University of Minnesota, 2003.
[34] E. Dontsov, R. Soc. Open Sci. 3 (12) (2016) 160737, http://dx.doi.org/10.

1098/rsos.160737.
[35] E. Dontsov, R. Soc. Open Sci. (2016) http://dx.doi.org/10.5061/dryad.gh469.
[36] T. Perkins, L. Kern, J. Pet. Technol. 13 (09) (1961) 937–949.
[37] P. Traversa, V. Pinel, J. Grasso, J. Geophys. Res.: Solid Earth 115 (B1) (2010).

http://refhub.elsevier.com/S0010-4655(20)30158-2/sb13
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb13
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb13
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb13
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb13
http://dx.doi.org/10.1016/j.cma.2008.01.013
http://dx.doi.org/10.1016/j.cma.2014.08.024
http://dx.doi.org/10.1016/j.cma.2014.08.024
http://dx.doi.org/10.1016/j.cma.2014.08.024
http://dx.doi.org/10.1098/rsta.2015.0423
http://dx.doi.org/10.1098/rsta.2015.0423
http://dx.doi.org/10.1098/rsta.2015.0423
http://dx.doi.org/10.1016/j.cma.2016.09.017
http://dx.doi.org/10.5772/56212
http://dx.doi.org/10.5772/56212
http://dx.doi.org/10.5772/56212
http://dx.doi.org/10.1002/nag.2898
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb20
http://dx.doi.org/10.1007/s10704-018-0278-7
http://dx.doi.org/10.1016/j.jmps.2020.103878
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb23
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb24
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb24
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb24
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb24
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb24
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb25
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb25
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb25
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb26
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb27
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb28
http://dx.doi.org/10.1115/1.321162
http://www.numpy.org/
http://www.scipy.org/
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb32
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb33
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb33
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb33
http://dx.doi.org/10.1098/rsos.160737
http://dx.doi.org/10.1098/rsos.160737
http://dx.doi.org/10.1098/rsos.160737
http://dx.doi.org/10.5061/dryad.gh469
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb36
http://refhub.elsevier.com/S0010-4655(20)30158-2/sb37

	PyFrac: A planar 3D hydraulic fracture simulator
	Introduction
	Mathematical model
	Elastic deformation
	Lubrication flow inside the fracture
	Boundary conditions

	Numerical solution
	Discretization
	Elasto-hydrodynamics solver
	The fracture propagation algorithm
	Fracture closure

	Implementation
	Memory requirements
	Classes
	Additional features

	Examples
	Radial hydraulic fracture verification test
	Height contained hydraulic fracture
	Lateral spreading of a Dyke at neutral buoyancy
	Fracture closure

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References


