
Simflowny 3: An upgraded platform for scientific modelling and simulation

C. Palenzuelaa,b,∗, B. Miñanoa, A. Arbonaa, C. Bona-Casasa,b, C. Bonaa,b, J. Massóa,b

aIAC 3, University of the Balearic Islands, Mateu Orfila, Cra. de Valldemossa km 7.5, 07122, Palma, Spain
bDepartament de Fı́sica, University of the Balearic Islands and Institut d’Estudis Espacials de Catalunya, Palma de Mallorca, Baleares E-07122, Spain

Abstract

Simflowny is an open platform which automatically generates
efficient parallel code of scientific dynamical models for differ-
ent simulation frameworks. Here we present major upgrades
on this software to support simultaneously a quite generic
family of partial differential equations. These equations can
be discretized using: (i) standard finite-difference for systems
with derivatives up to any order, (ii) High-Resolution-Shock-
Capturing methods to deal with shocks and discontinuities of
balance law equations, and (iii) particle-based methods. We
have improved the adaptive-mesh-refinement algorithms to pre-
serve the convergence order of the numerical methods, which
is a requirement for improving scalability. Finally, we have
also extended our graphical user interface (GUI) to accommo-
date these and future families of equations. This paper sum-
marizes the formal representation and implementation of these
new families, providing several validation results.

PROGRAM SUMMARY
Program Title: Simflowny
Licensing provisions: Apache License, 2.0
Programming language: Java, C++ and JavaScript
Journal Reference of previous version: Comput. Phys. Comm. 184
(2013) 2321–2331, Comput. Phys. Comm. 229 (2018), 170–181
Does the new version supersede the previous version?: Yes
Reasons for the new version: Additional features
Summary of revisions:
Expanded support for Partial Differential Equations, meshless parti-
cles and advanced Adaptive Mesh Refinement.
Computer:
Simflowny runs in any computer with Docker [1]. Installation details
can be checked in the documentation of Simflowny [2]. It can also be
compiled from scratch on any Linux system, provided dependences
are properly installed as indicated in the documentation.
The generated code runs on any Linux platform ranging from personal
workstations to clusters and parallel supercomputers.
Nature of problem:
Simflowny generates numerical simulation code for a wide range of
models.
Solution method:
Any discretization scheme based on either Finite Volume Methods,

∗Corresponding author
Email addresses: carlos.palenzuela@uib.es (C. Palenzuela),

borja.minano@uib.es (B. Miñano), antoni.arbona@uib.es
(A. Arbona), carles.bona@uib.es (C. Bona-Casas), cbona@uib.es
(C. Bona), joan.masso@uib.es (J. Massó)

Finite Difference Methods, or meshless methods for Partial Differen-
tial Equations.
Additional comments:
The software architecture is easily extensible for future additional
model families and simulation frameworks.
Full documentation is available in the wiki home of the Simflowny
project [2].

References

[1] https://www.docker.com/ [online] (2020)
[2] https://bitbucket.org/iac3/simflowny/wiki/Home [online] (2020)

1. Introduction

We present a significantly upgraded version 3 of Sim-
flowny [1, 2], an open platform for scientific dynamical mod-
els, composed of a Domain Specific Language (DSL) and a
web based Integrated Development Environment (IDE) with a
user friendly Graphical User Interface (GUI), which automat-
ically generates efficient parallel code for simulation frame-
works. Simflowny has a simple yet ambitious goal: a complete
split of the physics (by introducing the concept of models and
their associated problems) from the numerical methods neces-
sary for a simulation (the discretization schemes), and the auto-
matic generation of the final simulation code (where the parallel

Preprint submitted to Elsevier October 5, 2020

ar
X

iv
:2

01
0.

00
90

2v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 2
 O

ct
 2

02
0

features and other capabilities of the chosen framework will be
leveraged).

Historically, version 1 of Simflowny[1] introduced the basic
DSL, together with a family of PDEs and a first version of the
GUI, and was able to automatically generate code for Cactus
and SAMRAI. Version 2 extended the families of PDEs sup-
ported and introduced a completely revamped GUI, as well as
support for Agent Based Models[2] with BOOST as the frame-
work. In both papers, the DSL for different families of equa-
tions and IDE/GUI side of Simflowny were considered in depth,
but the scalability of the final code has been specifically shown
in the area of Numerical Relativity[3]. This is an important is-
sue, as Simflowny relies on the infrastructure of the framework
for the efficiency of the generated parallel code and its scalabil-
ity. This stronglys depend on the set of physical equations that
one tries to simulate, and the results for the Einstein Equations
are excellent.

This last version of Simflowny generates code for the SAM-
RAI infrastructure[4, 5]. This does not mean that Simflowny
can not generate code for other platforms (such as Cactus or
BOOST, as in previous versions of Simflowny), but that SAM-
RAI is the only framework capable of supporting all the ca-
pabilities of Simflowny 3, as it provides efficient paralleliza-
tion and adaptive mesh refinement (AMR), reaching exascale at
least for some specific problems. Simflowny 3 is open source,
and it is available in the form of compilable source code and
also as a Docker [6] container (see Simflowny’s wiki for further
details 1).

The main purpose of version 3 is to allow for the combi-
nation, into a single problem, of all the different PDE dis-
cretization strategies available in previous versions, including:
(i) standard finite-difference schemes, (ii) High-Resolution-
Shock-Capturing(HRSC) methods for balance law systems, and
(iii) particle methods to solve either a discrete set of particles or
field evolution equations in an unstructured mesh represented
by the particles. The combination of these discretization poli-
cies is performed both in the abstract sense (i.e., without yet
referring to a specific software platform) and also practically
by extending the SAMRAI simulation platform to support all
these discretization methods. Notice that an optimal platform
to evolve a mesh-free system of particles might not be the most
efficient way to solve PDEs on a structured grid, and vice versa.
In particular, SAMRAI was not originally built to support by
default particle simulations. However, as one of our goals is to
simultaneously evolve particles and fields with exascale-level
parallelization and advanced AMR capabilities, we need a sin-
gle platform supporting them both.

Up to the best of our knowledge, we are not aware of any
project that combines an IDE (with a GUI) and a DSL with
automatic code generation that supports a quite generic family
of PDE equations, particle simulations and AMR capabilities.
This is a stringent combination of requirements but it is in no
way complete, as Simflowny does not yet support the usage
of Finite Element (FE) discretizations. We are aware of excel-
lent DSL-based alternative projects which partially satisfy some

1https://bitbucket.org/iac3/simflowny/wiki/Home

of these requirements. For FE automatic computing and parti-
cles, one can use the combination of FEniCS[7], which uses
a DSL based on a Unified Form language[8] for weak formu-
lations of PDEs[9], with LEoPart[10], an add-on for FEniCS
to integrate Lagrangian particle functionality with (Eulerian)
mesh-based FE approaches. For finite differencing (FD), there
is Devito[11, 12], a DSL and code generation framework for
the design of highly optimized FD kernels for use in inversion
methods, which utilizes SymPy to allow the definition of oper-
ators from high-level symbolic equations. A combination of all
these features would be a good basis for supporting wider user
needs and we are currently considering these projects as poten-
tial candidates for supported frameworks in future versions of
Simflowny.

The paper is organized as follows. The current status of Sim-
flowny 3 and the pre-existent functionalities are summarized in
section 2. The new streamlined PDE architecture is described
in Section 3. Section 4 describes the support for discretization
schemes in Simflowny 3, including particles, while Section 5
details the advanced AMR capabilities implemented through
the SAMRAI infrastructure. We illustrate these concepts in
Section 6 with problems based on a dam break, described with
particle methods, and the evolution of charged particles in an
self-consistent electromagnetic field, a scenario that Simflowny
2 could not have addressed. We finish with some final remarks
and conclusions in Section 7.

2. Current status and preexistent functionality

This section summarizes the functionalities of previous ver-
sions of Simflowny, which have been presented in detail in
Refs. [1, 2], together with a full description of the current status
of the platform.

The DSL in Simflowny is based on an XML Schema Defi-
nition (XSD) representation. The XSD schemas prescribe the
structure of the XML documents for models, problems, and dis-
cretization schemes. Whenever algorithms need to be included
in either of these XML documents, this is achieved through
a specific markup language developed for Simflowny, called
SimML (Simulation Markup Language). SimML includes a
full-blown rule specification language (technically speaking,
the language is Turing-complete, meaning that any possible al-
gorithm can be created with it). To insert mathematical expres-
sions in the algorithms and documents, Simflowny leverages
MathML, the standard markup language for representing math-
ematical expressions.

In version 3, the DSL has been streamlined and currently sup-
ports a generalized evolution PDE paradigm, which includes
any sort of spatial derivatives but only first order derivatives in
time. As subcases of this generalized paradigm we may single
out:

• Partial Differential Equations (PDE) written in balance law
form. This family was the only one supported in version
1 of Simflowny. In this scenario the PDEs are written as
an evolution system containing only first order derivatives

2

both in time and space. Space derivatives are always repre-
sented as the derivative of some flux function of the fields,
allowing to use numerical schemes based on Finite Vol-
ume Methods to deal with shocks and discontinuities. The
most typical example of balance law systems is the Euler
equations, but wave equations, Maxwell equations or even
Einstein equations can also be written in this form.

• Evolution PDEs, allowing for almost arbitrary forms of an
evolution system by including spatial derivatives of any
order, which are discretized with standard finite-difference
operators. The only restriction is that the system must
be still first order in time. This is not really a strong re-
striction, as any PDE system can be reduced to a first-
order one by introducing additional variables for the time
derivatives of the evolved fields. Therefore, the restric-
tion is just that the first-order reduction must be used,
rather than the original higher-order version. This fam-
ily of equations was available in version 2 of Simflowny.
One could write in this form some of the examples from
balance law form (e.g., the Einstein, Maxwell and wave
equations) but directly as a second order system in space.
Additionally, it also includes many other equations like the
heat equation, the Navier-Stokes-Korteweg equation (third
order in space), the Cahn-Hilliard equation (fourth order in
space) and the Phase-Field-Crystal equation (sixth order in
space).

Simflowny 3 merges these two families into a single one, al-
lowing any possible combination in the PDEs, in addition to the
preexisting forms. Moreover, it allows for a representation of
these PDEs either on a structured regular mesh, or on a set of
(unstructured) moving point-particles. Obviously, spatial dis-
cretization methods, either finite difference or particle methods,
will depend on the type of representation chosen by the user.

From the computer science point of view, Simflowny is built
on the well-known three-tier architecture: (i) a presentation tier,
implemented as a web browser based IDE with a GUI, (ii) a
logic tier, based on an application server, and (iii) a data tier,
combining native XML databases with bulk data storage. The
current procedure to generate code is similar to the previous
version. The process to convert a mathematical model into a
numerical code can be split in four stages:

1. The representation of the mathematical model, which con-
tains the PDE equations to be evolved.

2. The representation of the problem, which includes the
mathematical model, the domain of the simulation, the
analysis quantities and the initial and boundary conditions
to be applied to evolution fields (in PDEs), as well as the
finalization condition.

3. The representation of the discrete scheme, which converts
the continuous problem into a discrete one by defining the
space and time discretization operators.

4. The generation of the code for the discrete problem into
the simulation framework. These frameworks will essen-
tially play the role of a mesh/particle manager by setting
the domain, distributing the usage of memory of the fields

and parallelizing the workload among the different proces-
sors.

Notice that Simflowny’s four stage structure allows us to
achieve our stated main goal: a complete split of the physics
from the numerical methods and from the parallelization/distri-
bution issues, which are hidden in the framework. Therefore,
we can use the same representation of the discrete problem
(which involves the first three stages) in different simulation
frameworks, which might allow for extended features, higher
scalability and efficiency.

As in previous versions, Simflowny 3 provides support for
the SAMRAI mesh management toolkit [4, 5]. Through SAM-
RAI, Simflowny 3 supports mesh-based discretization schemes
for PDEs, specifically Finite Difference Methods (FDM) and
Finite Volume Methods (FVM). It also supports particle-based
mesh-free Lagrangian methods (i.e., Smooth Particle Hydro-
dynamics, SPH). Simflowny 3 takes full advantage of the par-
allelization capabilities of SAMRAI, and therefore any model
developed on Simflowny can generate optimized parallel code
for this framework. For efficiency reasons, code responsible
for communication is only generated in the parts of the model
which are not local: fluxes and spatial derivatives, while keep-
ing source terms local. Simflowny is thus abstracted from the
implementation details that enable parallelization. Therefore,
at code generation time the only input needed is where, when
and what kind of data synchronization should be called. Paral-
lelization in SAMRAI is provided through MPI using a domain
decomposition paradigm; according to Flynn‘s taxonomy the
simulation codes are SPMD (Single Program, Multiple Data):
all threads execute the same simulation code in a specific do-
main chunk. The number of threads in which the simulation is
divided is set by users at runtime. Furthermore, the capabili-
ties of Adaptive Mesh Refinement are available in Simflowny
by leveraging its implementation in SAMRAI.

3. Evolution PDE

In Simflowny 2 we had two separate families, such that a
PDE could be written either in balance law form to be dis-
cretized with HRSC schemes, or as an Evolution PDE, with
spatial derivatives of any order, to be discretized with standard
finite-difference operators. In Simflowny 3 these two families
are merged into a single Evolution PDE which covers all the
possible combinations of the two options, both at the continuum
and at the discretized level. Simflowny 3 is backwards compat-
ible, in the sense that it is still possible to write any balance law
equation as in version 2, but now it adds the possibility to com-
bine features of balance law equations with the more flexible
conditions of the former Evolution PDE family. Furthermore,
Simflowny 3 also allows for fields to be represented by a set of
particles, in addition (or combined) with the fields represented
within a mesh from version 2.

Currently, the Evolution PDE family allows for arbitrary
forms of evolution equations, including spatial derivatives of
any order. The only restriction is that the system can only in-
volve first time derivatives of the fields. This condition will

3

allow us to use the Method of Lines (MoL), that provides a
clean separation of the spatial and temporal discretization and
help to ensure stability of the discretized system of equations.
In Simflowny 3, in the Evolution PDE, each field has an asso-
ciated representation, namely either on a regular grid or by a
mesh-free set of particles. Each Evolution PDE must be de-
fined within a reference frame, which can be either Eulerian
(i.e., fields evolve on a fixed mesh) or Lagrangian (i.e., fields
co-move with the particle trajectories). Notice that fields on a
Lagrangian frame can only be discretized by a set of particles,
while Eulerian ones can indistinctly use a regular grid or a set
of particles.

The fields represented on a regular grid follows an evolution
equation of the form:

∂tu + ∂iFi(u) = S(u) +L(u, ∂iu)

where u is an array with all the evolved fields, Fi is the flux in
the direction xi, S is the source term and L(u, ∂iu) is any op-
erator depending on the fields and its spatial derivatives of any
order. This form is certainly redundant, since the derivatives of
the fluxes can always be expressed using the L operator. How-
ever, when fluxes are explicitly identified, the model allows for
the application of specific discretization HRSC schemes to the
fluxes to deal with possible discontinuities and shocks appear-
ing in the solution.

The fields represented by a set of mesh-free particles, in ad-
dition to the previous PDE, will include evolution equations to
describe the trajectories of such particles, namely

dxp

dt
= vp ,

dvp

dt
= Rp

where (xp, vp) are the position and velocities of the particle p,
and Rp is a free-function to define some specific trajectories.

As in the version 2 of Simflowny, operators with arbitrary
derivatives of any order can be constructed by using recursive
rules, which can be written formally as

L
(0)
i = fi(u)

L(n)
m =

n−1∑
n=0

∑
i

gi(u)
∏

j

∂k

(
L

(n−1)
l Ci jkl

m

)
where fi, gi are arbitrary functions depending on u but not on its
derivatives, and Ci jkl

m is a generic matrix which in practice will
have only one non-trivial component. Notice that the new Evo-
lution PDE family can also be expressed in a logical abstract
language as

∂tu + ∂iFi(u) = S (u) +
∑

(f (u)D) (1)

D =
∏

∂i(g(u)D) (2)

where, similar to the former definition, f and g are arbitrary
algebraic functions on u, and D is recursive term allowing a
complex set of differential expressions. Both algebraic and re-
cursive terms are optional at every level of the recursion. Let
us stress that it is possible to apply different discretization algo-
rithms to different terms on these equations. For instance, one

could define advective terms, which must be discretized with
one-side finite-difference schemes. Consequently, the evolution
equation terms are grouped by the so called Operators, which
are just a tag/name for a group of terms which are going to be
discretized in the same way.

4. Discretization strategies

One of the new features in Simflowny 3 is the support for
particles, such that a set of PDEs can be discretized and sim-
ulated using mesh-free particle methods, even in combination
with standard structured grid methods within the same simula-
tion. Notice that the discretization of fields on a regular grid is
given just by a formula depending on a fixed number of static
neighboring points. However, the discretization of fields repre-
sented by a set of particles involves a dynamical set of moving
neighbors that might change with time.

4.1. Spatial discretization
Structured grid methods rely on the strong assumption that

the fields evolve on a regular static grid which does not change
with time. Therefore, discrete spatial derivatives of a field U
can be written as a function depending on such field, evaluated
at s neighboring points, namely

(∂xU)i =

s∑
j=−s

bi+ jUi+ j (3)

where bi+ j are constant coefficients and i spans the regular grid
points x = i∆x.

In balance law systems, the derivative of the fluxes can be
treated by using a conservative discretization, namely

(∂xF)i =
1

∆x
(Fi+1/2 − Fi−1/2) . (4)

The reconstructed fluxes at the interfaces, Fi±1/2, need to be
calculated with a monotonic reconstruction in order to deal with
shocks and discontinuities, which can be written generically as

Fi±1/2 =

s∑
j=−s

ci+ jFi+ j (5)

where ci+ j are again constant coefficients and s the stencil of
the method.

Particle methods are more generic and reduce to grid-
methods when the set of particles is chosen to be regular and
static. Here we will focus on short-range particle methods,
where the interaction is mainly dominated by the close-by par-
ticles. A particle may interact with others in a relatively small
finite range (i.e., its neighborhood), defined by an n−sphere sur-
rounding the origin particle with a given radius. Following a
kernel distribution, nearest particles have the strongest influ-
ence. It is still possible to write the discrete spatial derivatives,
evaluated at the particle a, as a sum over the neighboring points,
namely

(∂xU)a =
∑

b

∆Vb Ub Wab(r) (6)

4

where ∆Vb is the volume element associated to the particle b
and Wab(r) is the kernel function, depending on the distance
between particles r = |xb − xa|. The sum over b spans all the
particles in the radius of influence of the particle a, which are
defined as those located at a distance r smaller than the interac-
tion distance (see Appendix A).

Depending on the specific model to be discretized, in addi-
tion to these operators, there might be also interactions between
grid-based and particle-based fields:

• Particle to mesh interaction. Particle-fields influence the
grid-fields. In this case, the required particle-fields are
mapped into the mesh by using a kernel interpolation from
particles in the kernel range of the grid point. Therefore,
the interpolation formula for a mesh node n is approxi-
mated by the following summation over the neighboring
particles:

un =
∑

p

∆Vp up W(~rn − ~rp, h) (7)

where, being ~rn position of mesh node, summation goes
over all the particles p, which have a position ~rp and an
associated volume ∆Vp

• Mesh to particle interaction. Particle-fields require in-
formation from the grid-fields. At every particle, a linear
Lagrange polynomial interpolation is performed with the
nearest surrounding grid nodes to reconstruct that field on
the particle.

up =
∑

n

unln(~rn) (8)

ln(~rn) =

n∏
j=0,n, j

~rp − ~r j

~rn − ~r j
(9)

where n is the set of nodes and respectively ~rn and ~rp po-
sition of a node and the particle.

4.2. Time discretization

We use the Method of Lines to discretize the evolution PDE
of the fields represented either on a structured grid or by a set
of mesh-free particles. Grid-based methods always assume an
Eulerian frame, where the grid is fixed and the fields evolution,
represented with the fixed-position time derivative operator ∂t,
occurs on this static grid. Particle-based methods instead are
naturally semi-Lagrangian, in the sense that time derivative op-
erator Dt follows the particles, although spatial derivatives are
yet computed in the Eulerian frame.

Therefore, it might be required to convert between the Eule-
rian time derivative into a Lagrangian one by using the transfor-
mation rule ∂t → Dt − vk∂k. Let us consider a generic equation
for the field U, namely

∂tU = L(U, ∂U) (10)

whereL is a generic right-hand-side operator which can involve
fields and their derivatives. This equation, in the Lagrangian
frame, translates into

DtU − vk∂kU = L(U, ∂U) (11)

Simflowny allows the setting of a reference frame (either La-
grangian or Eulerian) for each evolution equation in the model.
If a Eulerian reference frame is set in a particle discretized equa-
tion, the extra term vk∂kU is automatically added to the equa-
tion. For Lagrangian particle equations, that term in not re-
quired. Note that grid-based discretizations are only allowed
for equations with an Eulerian framework. Furthermore, Sim-
flowny allows to specify multiple particle species with different
models and evolve them independently.

4.3. Implementation details

The Method of Lines allows an splitting of the spatial and
time discretizations. For this reason, Simflowny also separates
the spatial and time discretization schemes in two different sets,
represented by specific documents in the IDE, and called re-
spectively Spatial Operator Discretization and PDE discretiza-
tion Schema. While the former prescribe all the spatial dis-
cretizations, the latter defines the integration of these abstract
spatial discretizations into the time discretization.

The user can construct the specific procedure for one of
the three different available discretizations (i.e., standard finite-
difference, HRSC methods for fluxes or particle methods) in the
PDE discretization Scheme. Notice that the HRSC methods re-
quire the characteristic speed information and involve complex
algorithms, not appropriate for arbitrary-order derivative terms.
The evolution scheme (i.e., MOL with a specific time integrator
and the spatial discretizations) is chosen in the Discretization
Policy, together with the arbitrary-order derivative operator.

A spatial operator discretization document is used in Sim-
flowny to define how the PDE arbitrary-order spatial derivatives
are going to be discretized from the continuum expression. New
spatial operator discretization documents are added from the
document manager (see Ref. [2]). The main core of this docu-
ment lays within the Discretizations element. The RHS of equa-
tions might include terms having arbitrary-order derivatives and
conservative flux terms. For the first terms, each derivative can
be discretized either directly or recursively. By directly, a sec-
ond order derivative would need a second order discretization.
In a recursive discretization, the second order derivative could
be discretized applying twice a first order discrete operator. Ob-
viously, the result may be different. It is a good practice to al-
ways define a first order discretization, even when higher order
discretizations are also defined, in order to guarantee the dis-
cretization of any arbitrary order PDE.

The algorithm presented in section 5.1 shows how equations
(3-11) fit into the simulation evolution. At the physics level, the
first step requires to perform the interpolation of fields lying in
particles and mesh whose values are needed outside their refer-
ence frame. For example, a field A defined on the mesh refer-
ence frame may be used in particle equations. Consequently,
a Ap field is interpolated in every particle so it can be read

5

when needed. Then, the next step is to perform the spatial dis-
cretization, which is called to calculate the rhs in the skeleton
algorithm. Finally, the final step is to integrate in time. If the
simulation contain particles, one must perform the appropriate
particle movement. The other instructions in the algorithm are
related to refinement capabilities, explained in the next section.

5. Adaptive Mesh Refinement scheme

The AMR algorithm is constructed by using basic blocks
(i.e., routines and functions) provided by SAMRAI, as we sum-
marize below.

5.1. AMR algorithm for grid-based field

There are two refinement tagging strategies provided by
SAMRAI and integrated in Simflowny: Fixed Mesh Refine-
ment (FMR), where the user specifies statically a set of boxes
where the refinement is located, and Adaptive Mesh Refinement
(AMR), where the user sets a criteria used to calculate dynam-
ically the cells to be refined. Both types of tagging strategies
can be combined in the same simulation. The tagging during
a simulation with AMR might change with time, needing new
refinement areas or disposing of older ones. This re-meshing
procedure is periodically run and it is parameterized for every
simulation.

If a new refinement box is added when the simulation has
already started, the solution in these new points is interpolated
from the coarser level, a procedure usually known as prolon-
gation. The complementary procedure, called restriction, con-
sists on transferring the information from the fine levels to the
coarser ones. Notice that the restriction procedure is straightfor-
ward for grid-based methods, as the data can be copied directly
in the overlapping points from different levels (i.e., from fine to
coarse).

The algorithm skeleton is as follows:
The previous algorithm is similar for every level. However,

prolongation, restriction and number of executions depend on
whether sub-cycling in time is active. When using sub-cycling
time integration, each level in the hierarchy runs for the longer
possible ∆t while satisfying the Courant-Friedrich-Levy (CFL)
condition to ensure stability. This implies that if the ratio be-
tween spatial resolutions on two consecutive refinement levels
is r, the fine level will have a smaller timestep ∆t/r, so the evo-
lution on the children level must be repeated r-times to reach
parent ∆t. Sub-cycling requires a larger number of prolonga-
tion steps (i.e., red arrows) compared to the case without sub-
cycling, as it is shown in Figure 1 for a third order Runge-Kutta
(RK) time integrator. Due to the time misalignment on the RK
sub-steps, a time interpolation must be performed in the coarser
level, which might lead to a reduction of the accuracy if it is
not performed carefully [13, 3]. Although the prolongation is
straightforward in the no sub-cycling case, the coarser levels
run slower than they could, as the value of ∆t must fit to the
Courant constraint in the finest level. Currently, there are two

Algorithm 1 Evolution algorithm skeleton
1: initialization
2: refinement tagging
3: while not simulation end do
4: for all level do
5: for all time integration step do
6: meshToparticle interpolation [Eqs. 8 and 9]
7: particleTomesh interpolation [Eq. 7]
8: calculate rhs [Eqs. 3, 4, 5 and 6]
9: integrate time [Eqs. 10 and 11]

10: move particles
11: if last time integration step then
12: restrict from level to level-1
13: synchronization(level - 1)
14: end if
15: synchronization(level)
16: prolong from level-1 to level (prepare ghost

zones)
17: calculate physical boundaries
18: end for
19: if has to regrid(level) then
20: refinement tagging(level)
21: end if
22: end for
23: end while

available time integration strategies in Simflowny: with or with-
out sub-cycling.

5.2. AMR algorithm for particle-based field
The concept of AMR for particles is more diffuse, as one

could add more particles from the beginning or the dynamics
could focus them in a particular region, effectively increasing
the accuracy of the solution. However, our aim is to add in-
stantly more particles in a region where the grid has been re-
fined. The challenges of running multi-resolution particle simu-
lations in general imply processes of creation and destruction of
particles. We will follow instead a simpler method commonly
known as Multi Level Multi Domain(MLMD) approach [14].

The MLMD approach consists on a collection of different
levels where particles are evolved independently by following
the full physical description, and then interlocked to the others
through an exchange of information. Particles are created in
each level of the grid they belong as it is created, and they re-
main bounded to this level from there on, not being allowed to
perform a transition to other coarser or finer levels. Refined par-
ticles are destroyed when they exit their original domain, and
new refined particles are created on the level from the coarse
grid particle distribution at the boundary cells of the refined
grids.

The algorithm of particle splitting creates, for each particle,
a number of children particles given by a refinement ratio times
the dimension. For instance, in a two-dimensional simulation
with refinement ratio of 2, each single coarse particle would
split into 4 fine particles. These new particles are shifted in
space, keeping the same physical fields as parent particle pp.

6

Figure 1: Synchronization between two levels with no sub-cycling (left) and
with sub-cycling (right), using a Runge-Kutta with three sub-steps. Prolonga-
tion between levels is denoted with red arrows, while that restriction is denoted
with green ones.

The volume of the parent particle is evenly distributed all over
the new set of children particles cp.

Vpp =
∑
cp

Vcp (12)

More detail and properties of this method are explained in
detail in [15] (Algorithm S1).

An interesting characteristic of MLMD systems is that inter-
action between coarse and fine levels only occurs at fine bound-
ary zones. Coarser particles create new finer particles at ar-
eas enforcing continuity, however, those finer particles (so as
coarser particles) are free to evolve. Consequently, a different
evolution across the levels is possible in the overlap areas sim-
ulated by different levels.

The possibility of obtaining different dynamics across the
levels, within the limits of boundary continuity, is considered
a point of strength in MLMD, since it shows the capability of
refined levels to evolve according to dynamics not accessible,
because of the reduced resolution, to the coarser levels. This
characteristic is one of the major differences from classic AMR
systems: while AMR aims at consistency in the overlap area
across the levels, MLMD only enforces particle continuity at
grid interfaces and aims an efficient interlocking between the
levels in the overlap areas.

6. Examples

The new functionalities on particle-based methods are shown
by presenting two non-trivial examples. The first one is the
damn break, which contains only fields described by particles.
The second example is the consistent evolution of charge par-
ticles interacting with an electromagnetic field, involving both
particles and grid-based fields, as well as the interaction be-
tween both of them. Notice that every document (i.e., schema,
model and problem) used in the examples of this article is avail-
able in the Simflowny database2.

2Default Simflowny installation provides a database with several models,
including the ones described in this paper

6.1. Dam break

Figure 2: Simulation evolution for Dam Break with AMR with ∆t of 0.5.

The first test is the dam break, a family of problems which
consists on the study of a free falling mass of water with a
given configuration, which starts at an initial location and flows
all over the simulation domain, interacting with the environ-
ment. This problem is discretized with a particle-based method
(Smoothed Particle Hydrodynamics, or SPH). In this problem,
water is described by the Navier-Stokes equations for an almost
incompressible fluid (i.e., Stokes’s stress constitutive equation),
under the force of gravity, namely

dρ
dt

= −ρ∇ · ~v (13)

d~v
dt

= −
1
ρ
∇P +

µ

ρ
∇2~v + ~g (14)

7

Figure 3: Simulation evolution for Dam Break with AMR with ∆t of 0.5.
Coarse particles in blue, fine particles in red.

where ρ is the density, ~v the velocity vector, µ is the dynamic
viscosity, ~g = (0, 9.8) is the (constant) gravity vector, and the
pressure P is given by the equation of state P = P0+(ρ

ρ0

γ
−1) ρ0c2

0
γ

with γ = 7, c0 = 65 and ρ0 = 1028.
We consider a problem in a 2D domain in Cartesian coordi-

nates (x, y), with a initial setting consisting on a bed of water
10 units long and 1 tall. On the top center of that bed there is
a square of water with side 2 (see top panel of Figure 2). Ini-
tial values for density and velocity are obtained assuming an
equilibrium configuration, namely

ρ(t = 0) = ρ0
1.0 + ρ0gy(H − y)γ

ρ0c2
0

1
γ

, ~v(t = 0) = 0 (15)

The boundary conditions in this simulation are simple reflective
walls. There is no physical wall, but just a change of sign on the
velocity component perpendicular to the wall when a particle
crosses the boundary, so that the particle is repelled back into

the domain.
The discretization is performed by using the Method of

Lines, with a Predictor-Corrector scheme for the time inte-
gration. The spatial derivatives are discretized by using parti-
cle methods, in particular the Smoothed-Particle Hydrodynam-
ics(SPH) approach [16]. The total number of particles in this
run is 21600. The dynamics of the flow, with a time sequence
from the initial break on, is displayed in Figure 2.

This problem is also convenient to show the behavior of par-
ticle multi-resolution. For this example, there are 1400 parti-
cles on the coarsest level. We place a fixed refined box be-
tween x = [4.5, 5.5] and y = [0.8, 2.0] in the previous domain,
containing 144 coarse particles, which are split following the
MLMD algorithm into 576 particles on the finest level. As it
can be observed in Figure 3, the initial refined particles start
to fall until all of them disappear from the refined-box region.
When the water flow comes again to the refined-box area, new
fine particles are created and evolve freely inside that area.

This example can be reproduced easily
in Simflowny by following the tutorial in
https://bitbucket.org/iac3/simflowny/wiki/DamBreakTutorial.

6.2. Particles in an electromagnetic field

We consider now two different species of charged particles
(electrons and ions) moving in a self-generated electromag-
netic field (EM). This system can be modeled by using Maxwell
equations with a current source produced by the movement of
these charged particles, which move under the influence of a
Lorentz force. The equations of motion of the system for mul-
tiple species (in our case s = {ions, electrons}) are given by

∂t ~E = c2∇ × ~B − ~J/ε0 (16)
∂t~B = −∇ × ~E (17)
dρs

dt
= −ρs∇ · ~vs (18)

d~vs

dt
= (qs/ms)

(
~E + ~vs × ~B

)
(19)

d~xs

dt
= ~vs (20)

where ρs is the electric charge density of each species, ~vs its
velocity and ~xs its position. Here qs/ms is a parameter of the
model, different for each species, that determines the ratio of
charge and mass of the particles being considered. The total
charge density ρ and the total electric current density ~J, sources
of Maxwell field equations, are computed from the particle dis-
tribution as

ρ =
∑

s

ρs = ρe + ρi (21)

~J =
∑

s

ρs~vs = ρe~ve + ρi~vi (22)

Notice that the EM fields are coupled to the particles through
the sources, while the particle trajectories depend directly on
the EM fields.

8

The EM fields are discretized on a three-dimensional grid,
while charged particles are naturally described through particle-
fields. Notice that this model has therefore no direct equivalent
one including only grid-based fields.

Figure 4: S5

For this test simulation we set 183 particles (108 electrons
and 75 ions), alternating electrons with ions at the initial time.
The initial conditions for fields are given by

ρe = −ρi = ρ0 , ~vs = (0.1, 0.02, 0) (23)
~Js = ~Es = 0 , ~Bs = (1, 0, 0)

The discretization of this model also relies on the Method
of Lines, using a fourth-order Runge-Kutta for the time in-
tegration. The spatial derivatives are discretized by using
a Smoothed-Particle Hydrodynamics (SPH) scheme for the
particle-based fields, while the grid-based ones are discretized
with High-Resolution-Shock-Capturing methods. We use the
same specific method as in Ref. [17], namely a flux-splitting
approach [18] combined with the MP5 reconstruction [19].

For the sake of clarity, the trajectories of two charged par-
ticles, one of each species, are displayed in Figure 4. As ex-
pected, they follow an spiral trajectory (blue and red) around
the magnetic field lines (in black).

It is easier to analyze the dynamics of the particles by dis-
playing a two-dimensional slice. In Figure 5 the velocity vec-
tors are shown, for each type of particle, together with the
magnetic field lines and the z-component of the electric field.
The initial set of particles move following a helical path, each
species rotating in opposite sense as they move along the z-
direction, and modifying the electric and magnetic fields as they
move around.

We can also test the multiple resolution particle features by
setting a refined box in the center of our domain. In Figure 6

such case is displayed, where for visualization purposes the par-
ticles in the coarse grid have a size bigger than the (more nu-
merous) particles defined in the finest level. Notice that parti-
cles split to create new ones as they enter into the refinement
area.

Figure 5: Lorentz force experiment. Ions (red) and electrons (blue) have in-
fluence on the Electric field (z component in picture). Horizontal black lines
represent the magnetic field.

Figure 6: Lorentz force experiment with refinement. Ions (red) and Electrons
(blue) have different sizes, smaller particles in finer level, larger in coarsest
level.

As in the previous case, this example can be repro-
duced easily in Simflowny by following the tutorial in
https://bitbucket.org/iac3/simflowny/wiki/PICTutorial

7. Conclusions and future work

We have presented version 3 of Simflowny, an open plat-
form which automatically is capable of generating efficient par-
allel code of scientific dynamical models for different simu-
lation frameworks. We have introduced a new generic family
of PDEs, together with several changes in the platform to dis-
cretize it with either standard finite differences, HRSC meth-
ods or mesh-less particle based methods. We have also imple-
mented necessary improvements for advanced adaptive mesh
refinement and several adaptations to the GUI. We have illus-
trated and validated the new generic family and the particle

9

methods with two examples: the dam break and charged par-
ticles on an electromagnetic field.

Simflowny 3 has now full support for a wide family of PDE
equations and combines structured grids with mesh-less parti-
cles, all with advanced AMR, but it still lacks support for other
extended methods like Finite Elements. A graphical IDE is
an advantage for most users, but more advanced programmers
might prefer simpler APIs not based on XML. For this reason,
we are reevaluating our roadmap for future versions. On the
one hand, we are following the advances in other DSL based
projects for automatic generation of code[7, 10, 11], as they can
provide new frameworks for our platform, which might sup-
port also Finite Elements. Our semantic simulation language
SimML, together with our GUI web-based IDE, already has all
the underpinnings for producing code for these projects. On
the other hand, we also plan to extend the support for other
programmatical interfaces. Finally, we will also continue ex-
panding the open database of available models.

Acknowledgements

We acknowledge support from the Spanish Ministry
of Economy and Competitiveness grant AYA2016-80289-P
(AEI/FEDER, UE). We acknowledge PRACE for awarding us
access to MareNostrum at Barcelona Supercomputing Center
(BSC), Spain, with the time granted through the 17th PRACE
regular call (project Tier-0 GEEFBNSM, P.I. CP).

Bibliography

References

[1] Arbona, A. et al., Computer Physics Communications 184 (2013) 2321 .
[2] Arbona, A. et al., Computer Physics Communications 229 (2018) 170 .
[3] Palenzuela, C. et al., Class. Quant. Grav. 35 (2018) 185007.
[4] Wissink, A. M., Hornung, R. D., Kohn, S. R., Smith, S. S., and Elliott,

N., Large scale parallel structured AMR calculations using the SAMRAI
framework, in Supercomputing ’01: Proceedings of the 2001 ACM/IEEE
conference on Supercomputing (CDROM), pages 6–6, New York, NY,
USA, 2001, ACM.

[5] Gunney, B. T. N. and Anderson, R. W., Journal of Parallel and Distributed
Computing 89 (2016) 64.

[6] Merkel, D., Linux J. 2014 (2014).
[7] Logg, A., Mardal, K.-A., and Wells, G., Automated solution of differential

equations by the finite element method: The FEniCS book, volume 84,
Springer Science & Business Media, 2012.

[8] Alnæs, M. S., Logg, A., Ølgaard, K. B., Rognes, M. E., and Wells, G. N.,
ACM Transactions on Mathematical Software 40 (2014).

[9] Logg, A., Archives of Computational Methods in Engineering 14 (2007)
93.

[10] Maljaars, J. M., Richardson, C. N., and Sime, N., arXiv.gov 1912.13375
(2019).

[11] Louboutin, M. et al., Geoscientific Model Development 12 (2019) 1165.
[12] Luporini, F. et al., CoRR abs/1807.03032 (2018).
[13] Mongwane, B., Gen.Rel.Grav. 47 (2015) 60.
[14] Innocenti, M., Lapenta, G., Markidis, S., Beck, A., and Vapirev, A., Jour-

nal of Computational Physics 238 (2013) 115 .
[15] Lapenta, G., Journal of Computational Physics 181 (2002) 317 .
[16] J.J., M., Reports on Progress in Physics 68 (2005) 1703.
[17] Liebling, S. L., Palenzuela, C., and Lehner, L., arXiv e-prints (2020)

arXiv:2002.07554.
[18] Shu, C.-W., Essentially non-oscillatory and weighted essentially non-

oscillatory schemes for hyperbolic conservation laws, pages 325–432,
Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

[19] Suresh, A. and Huynh, H., Journal of Computational Physics 136 (1997)
83 .

[20] Mattson, W.; B. M. Rice, Computer Physics Communications 119 (1999)
135.

Appendix A. Summary on particle discretization

Our particle methods rely on Smooth-Particle-
Hydrodynamics, where the particle discretization is an
interpolation method that allow us to write down any field as
a function of its values computed in any finite set of arbitrary
points (i.e., the particles). Generically, any field A(~r) can be
interpolated by using the integral formula

< A(~r) >=

∫
A(~r′) W(~r − ~r′, h)d~r′ , (A.1)

where the integration is performed in all the space coordinates
and W(~r − ~r′, h) is the kernel function, which depends on the
smoothing length h and must satisfy the following two basic
conditions,∫

W(~r−~r′, h)d~r′ = 1 , lim
h→0

W(~r−~r′, h) = δ(~r−~r′) . (A.2)

Therefore, the interpolation formula Eq. (A.1) is approxi-
mated by the following summation over the neighboring par-
ticles:

< A(~r) >=
∑

b

∆Vb A(~rb) W(~r − ~rb, h), (A.3)

where summation goes over all the particles b, which have a
position ~rb, velocity ~vb and an associated volume ∆Vb.

One of the main advantages of particle methods is that we can
build a differentiable interpolation of any field by using its val-
ues on the particles and a differentiable analytical kernel. Con-
sequently, derivatives of the field can be obtained without using
finite differences on a grid. For instance, in order to compute
∇A, we can just take the derivative of Eq. (A.1), namely

< ∇A(~r) >=
∑

b

∆Vb A(~rb)∇W(~r − ~rb, h). (A.4)

The previous expressions can be used to compute the field
and its gradient at the a, namely

< Aa > =
∑

b

∆Vb Ab Wab, (A.5)

< ∇Aa > =
∑

b

∆Vb Ab∇aWab (A.6)

where we have simplified the notation by defining Ab ≡ A(~rb)
and Wab ≡ W(~ra − ~rb, h). If the kernel is radially symmetric,
then W(~ra − ~rb, h) = W(~rb − ~ra, h) = W(|~rb − ~ra|, h), that is,
Wab = Wba.

One way to prevent inconsistencies near the boundaries,
where there is not an isotropic distribution of particles, is by
a suitable normalization of the previous particle formulas. For
instance, the averaged value of the function can be normalized
as:

< Aa >=

∑
b ∆Vb AbWab∑

b ∆Vb Wab
. (A.7)

10

http://arxiv.org/abs/2002.07554

Notice that if the density ρ is an evolved field, the associated
volume can be estimated as ∆Vb = mb/ρb, where mb is the par-
ticle mass and ρb its associated density.

The first derivative can be estimated in a similar way,

< ∇Aa >=

∑
b ∆Vb [Ab − Aa]∇aWab∑

b ∆Vb
[
~rb − ~ra

]
∇Wab

(A.8)

which satisfies that it is zero for a constant field and constant
for a linear one.

Appendix B. Details on particle implementation

Currently, Simflowny generates code for SAMRAI, whose
current implementation is exclusively based on structured
meshes. This framework does not provide support for parti-
cles, but provides an open generic type to allow users to imple-
ment any desired structure in cells. Taking advantage of this
functionality, it has been possible to implement particle sup-
port. The code generated by Simflowny extends the SAMRAI
functionality as follows:

• Every cell in the mesh contains an object with the list of
particles located in that cell. There is one list for each
particle species.

• Each particle species contains its respective information
(fields, variables, and unique id) and methods for access-
ing that information.

• Methods have been developed to output particle informa-
tion to disk in order to visualize simulation results.

• Methods for particle interpolation between levels have
been added following the directives of MLMD, explained
in Section 5.

Depending on its position, each particle belongs to a certain
single cell. Provided particle cell locality, getting the particle’s
neighborhood consists on looping over close cells and compar-
ing distances with particles on those cells. The number of close
particles to cover can be calculated from the kernel radius of
particle-based scheme and underlying mesh cell resolution. No-
tice that these methods of binding lists of particles to each cell
are also widely used in other simulation areas, such as molecu-
lar simulations[20].

The following text is an extract of the internal XML code in-
ternally representing the discretization policy from the example
Particles in an electromagnetic field.
<?xml v e r s i o n =”1 .0” e n c o d i n g =” u t f −8”?>
<mms: P D E D i s c r e t i z a t i o n P o l i c y . . . >

. . .
<mms: m e s h V a r i a b l e s>

<mms: m e s h V a r i a b l e>Bx< /mms: m e s h V a r i a b l e>
<mms: m e s h V a r i a b l e>By< /mms: m e s h V a r i a b l e>
<mms: m e s h V a r i a b l e>Bz< /mms: m e s h V a r i a b l e>
<mms: m e s h V a r i a b l e>Ex< /mms: m e s h V a r i a b l e>
<mms: m e s h V a r i a b l e>Ey< /mms: m e s h V a r i a b l e>
<mms: m e s h V a r i a b l e>Ez< /mms: m e s h V a r i a b l e>

< /mms: m e s h V a r i a b l e s>
<mms: p a r t i c l e V a r i a b l e s>

<mms: s p e c i e s>
<mms: name> i o n< /mms: name>

<mms: p a r t i c l e V a r i a b l e> r h o i< /mms: p a r t i c l e V a r i a b l e>
<mms: p a r t i c l e V a r i a b l e>v x i< /mms: p a r t i c l e V a r i a b l e>
<mms: p a r t i c l e V a r i a b l e>v y i< /mms: p a r t i c l e V a r i a b l e>
<mms: p a r t i c l e V a r i a b l e> v z i< /mms: p a r t i c l e V a r i a b l e>
<mms: p a r t i c l e V a r i a b l e> J x i< /mms: p a r t i c l e V a r i a b l e>
<mms: p a r t i c l e V a r i a b l e> J y i< /mms: p a r t i c l e V a r i a b l e>
<mms: p a r t i c l e V a r i a b l e> J z i< /mms: p a r t i c l e V a r i a b l e>
<mms: v e l o c i t i e s>

<mms: v e l o c i t y>
<mms: component>x< /mms: component>
<mms: f o r m u l a>

<mt : math>
<mt : c i>v x i< / mt : c i>

< / mt : math>
< /mms: f o r m u l a>

< /mms: v e l o c i t y>
. . .

< /mms: v e l o c i t i e s>
<mms: volume>

<mt : math>
<mt : a p p l y>

<mt : d i v i d e />
<mt : c i>q< / mt : c i>
<mt : c i> r h o i< / mt : c i>

< / mt : a p p l y>
< / mt : math>

< /mms: volume>
< /mms: s p e c i e s>
<mms: s p e c i e s>

<mms: name> e l e c t r o n< /mms: name>
<mms: p a r t i c l e V a r i a b l e> r h o e< /mms: p a r t i c l e V a r i a b l e>
. . .
<mms: v e l o c i t i e s>

. . .
< /mms: v e l o c i t i e s>
<mms: volume>

. . .
< /mms: volume>

< /mms: s p e c i e s>
. . .

The previous extract shows the electric and magnetic field
components (Ex, Ey Ez, Bx, By, Bz) being defined as mesh
variables; and then two particle species (ion and electron) de-
fined, each one with their own fields, velocity components and
volume. This XML description is internal, as Simflowny pro-
vides a GUI to ease data introduction. A complete User Guide
can be found in our wiki page3.

3https://bitbucket.org/iac3/simflowny/wiki/UserGuide

11

	1 Introduction
	2 Current status and preexistent functionality
	3 Evolution PDE
	4 Discretization strategies
	4.1 Spatial discretization
	4.2 Time discretization
	4.3 Implementation details

	5 Adaptive Mesh Refinement scheme
	5.1 AMR algorithm for grid-based field
	5.2 AMR algorithm for particle-based field

	6 Examples
	6.1 Dam break
	6.2 Particles in an electromagnetic field

	7 Conclusions and future work
	Appendix A Summary on particle discretization
	Appendix B Details on particle implementation

