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Abstract

We present a module to calculate the mobility and conductivity of semi-conducting

materials using Rode’s algorithm. This module uses a variety of electronic struc-

ture inputs derived from the Density Functional Theory (DFT). We have demon-

strated good agreement with experimental results for the case of Cadmium Sulfide

(CdS). We also provide a comparison with the widely used method, the so called

Relaxation Time Approximation (RTA) and demonstrated the improvisation of

the results compared to RTA. The present version of the module is interfaced with

Vienna ab-initio simulation package (VASP).
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Nature of problem: Long-range interactions between electrons and longitudinal optical

(LO) phonons are a major challenge in computing transport in polar semiconductors. Due

to such LO phonons or generally polar optical phonons (POP), electron phonon scattering

requires special attention since they can not be studied using a simple frame work such as

relaxation time approximation (RTA).

Solution method: We have developed a code that calculates mobility and conductivity by

using abinitio inputs with Rode algorithm which treats the interaction between the polar

optical phonons and electrons in a proper way.

1. Introduction

With the ongoing development in the field of density functional theory (DFT),

tremendous progress has been made in obtaining details in the electronic struc-

ture of complex materials important for understanding the physical properties of

the materials in the ground state as well as in the excited state. This resulted in

many computational tools which rely on first-principles approach based on DFT.

To name a few: Vienna Ab initio Simulation Package (VASP) [1]-[5], Quan-

tum Espresso [6], Spanish Initiative for Electronic Simulations with Thousands

of Atoms (SIESTA) [7, 8] etc. The use of DFT obtained results as inputs for the

study of the non-equilibrium properties such as transport is another area which

is developing rapidly for a decade or so. Methods are being developed to study

the transport properties at various levels: From semi-classical Boltzmann level

to Green-Kubo formalism, Landauer formalism, non-equilibrium Green’s func-

tion formalism etc [9, 10, 11, 12]. There are few semi classical method based on

Boltzmann Transport equation (BTE) [13]-[24] for the calculation of transport co-

efficients which use inputs obtained from either first-principles based calculations

or experiments. For example, the code BoltzTrap [25] was developed in a way

that it can accept the abinitio inputs from the DFT-based calculations and is widely

used in scientific community. BoltzTrap is successful in studying the transport

behaviour in variety of materials ranging from conductors, inter-metallics to ther-
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moelectrics. One limitation in such formalism is the use of so called constant

Relaxation time approximation (c-RTA). It is well known that Relaxation time

approximation (RTA) is not appropriate for inelastic scattering mechanisms [26].

The use of c-RTA even more simplifies the problem by assuming a universal con-

stant relaxation time for all elastic and inelastic scattering processes.

In the recent years, there has been an enhanced focus on the next-generation

semiconductors made from two or more elements, particularly one that is strongly

doped or highly degenerated. In specific, the so-called III-V materials are of

present attention due to their very high carrier mobility compared to silicon. One

important point about these compound semiconductors is that, unlike silicon, the

carrier scattering due to the polar optical phonons is very essential, especially the

temperature at which the device would be operational. These scattering processes

are inelastic and one therefore requires a model for carrier transport that can take

proper account of such inelastic scattering from a computational point of perspec-

tive.

In the present work, we have developed a code which is based on the Rode it-

erative method [13, 14, 15] and uses the ab-initio inputs and at present interfaced

with the VASP code. Using such approach in recent studies, we have demonstrated

the effect of inelastic scattering on the transport properties of n-type ZnSe [16] and

AlGaAs2 [17]. The code uses electronic band structure, density of states, phonon

frequencies, dielectric, piezoelectric and elastic tensors as inputs for the simula-

tion. The band structure and density of states must be in VASP output format,

while the other inputs such as the dielectric, elastic and piezoelectric constants

could be either from abinitio calculations or from the experimental results de-

pending on the choice of the user.

In this manuscript, we present a general implementation of AMMCR module

which can be easily interfaced with VASP tool. The module AMMCR is written

in C++. In this module eight types of scattering mechanisms are included, these

are ionized impurity scattering, polar optical phonon scattering due to longitudi-

nal phonon, acoustic deformation scattering, piezoelectric scattering, dislocation

scattering, alloy scattering, intra-valley scattering and neutral impurity scattering.

Out of these eight scattering mechanism any scattering can be included or ex-

cluded from simulation. We have tested AMMCR for CdS and found reasonable

agreement with the experiment. We have also demonstrated that results with the

Rode iterative method is much better than relaxation time approximation (RTA).

This paper is organized as follows: section 2 describes the the Boltzmann trans-

port formalism, Rode algorithm and different scattering mechanisms; section 3

describes the structure of the code; section 4 describes the input files required for
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simulation; test system for Cadmium Sulfide (CdS) is discussed in section 5 and

we conclude in section 6.

2. Theoretical framework

2.1. Solution of Boltzmann Transport Equation via iterative method

The motion of the carriers are described via a probability distribution func-

tion f(r,k,t) in real and momentum space and as a function of time. f(r,k,t) is the

solution of the Boltzmann transport equation given by [26, 27, 28]

∂ f

∂ t
+v ·∇r f +

eE

h̄
·∇k f =

∂ f

∂ t

∣

∣

∣

coll
(1)

Where v is the group velocity of the carriers, E is the applied electric field,
∂ f
∂ t

∣

∣

∣

coll
represents the change in the distribution function with time due to collisions.

For steady state,
∂ f
∂ t

= 0, and assuming spatial homogeneity (∇r f = 0), the

Eq.1 can be written as

eE

h̄
·∇k f =

∫

dk′{s(k′,k) f (k)(1− f (k))− s(k,k′) f (k)(1− f (k′))} (2)

S(k′,k) represents scattering rate for an electron making a transition from a state

k to another state k′. In the presence of low electric field the distribution function

is written as

f (k) = f0[ε(k)]+g(k)cosθ , (3)

Where f0[ε(k)] is the equilibrium distribution function, and cosθ is the angle

between applied electric field and k. g(k) is the perturbation to the equilibrium

distribution function. Higher order terms are neglected here, since transport co-

efficients are calculated under low electric field conditions. Now, we have to cal-

culate the perturbation g(k) to calculate transport coefficients. The perturbation

in distribution function can be obtained by inserting the f (k) and f (k′) from the

Eq.3 to the Eq.2. After some manipulation, g(k) can found as [13, 14, 15, 16, 17]

gk,i+1 =
Si(gk, i)−

eE
h̄
(∂ f

∂k
)

So(k)+
1

τel(k)

. (4)

As gk appears on both the left and right hand sides of the Eq.4, the above equation

should be solved in iterative manner. Here i is the iteration index. 1
τel(k)

is the
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sum of momentum relaxation rates of all elastic scattering rates, Si and So are in

scattering and out scattering operator for inelastic scattering and are given by [15].

So(k) =
∫

[s(k,k′)(1− f ′)+ s(k′,k) f ′]dk′ (5)

Si(gk, i) =
∫

Xgk′,i[s(k
′,k)(1− f )+ s(k,k′) f ]dk′ (6)

where X is the cosine of the angle between the initial and the final wave vectors

and f ′ = f (k′). Since convergence is exponential [15], it requires only a few

iterations for convergence. 1
τel(k)

is given by

1

τel(k)
=

1

τii(k)
+

1

τac(k)
+

1

τpz(k)
+

1

τdis(k)
+

1

τalloy(k)
+

1

τiv(k)
+

1

τni(k)
(7)

where the subscripts el,ii, ac, pz, dis, alloy, iv and ni are stands for elastic, ionized

impurity, acoustic deformation potential, piezoelectric, dislocation, alloy, intra-

valley and neutral impurity scattering processes respectively. For calculating mo-

bility, thermal driving force, v(∂ f
∂ z
) in Eq. 4 is set to zero, only electric driving

force eE
h̄
(∂ f

∂k
) is considered. The carrier mobility µ is given by [13, 14, 15, 29]

µ =
1

3E

∫

v(ε)Ds(ε)g(ε)dε
∫

Ds(ε) f (ε)dε
, (8)

where DS(ε) represents density of states. The carrier velocity v(k) is calculated

from abinito band structure by using relation

v(k) =
1

h̄

∂ε

∂k
. (9)

After calculating mobility electrical conductivity can be calculated by

σ = neµe, (10)

where n is the electron carrier concentration, and µe is the electron mobility.

2.2. Scattering Mechanisms

Eight different types of scattering mechanisms are included in this code. Out

of these eight scattering mechanisms any scattering mechanism can be included in

the simulation. These eight scattering mechanisms are ionized impurity scattering,
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Polar Optical phonon scattering due to longitudinal phonon, acoustic deformation

scattering, piezoelectric scattering, dislocation scattering, alloy scattering, intra-

valley scattering and neutral impurity scattering.

Interaction of electrons with ionized impurity potential results in ionized impu-

rity scattering. Ionized impurity scattering is an important scattering mechanism

at higher doping concentration and at lower temperatures. For ionized impurity

scattering Brooks-Herring approach [30] is used. The momentum relaxation rate

for ionized impurity scattering is given by [15, 29]

1

τii(k)
=

e4N

8πε2
0 h̄2k2v(k)

[D(k)ln(1+
4k2

β 2
)−B(k)], (11)

where ε0 is the dielectric constant and β is the inverse screening length given by

β 2 =
e2

ε0kBT

∫

Ds(ε) f (1− f )dε, (12)

where N is the concentration of ionized impurity and it is given by

N = NA +ND (13)

where NA and ND are the acceptor and donor concentrations respectively. The

expressions for D(k) and B(k) are [15].

D(k) = 1+
2β 2c2

k2
+

3β 4c4

4k4
(14)

B(k) =
4k2/β 2

1+4k2/β 2
+8

β 2 +2k2

β 2 +4k2
c2 +

3β 4 +6β 2k2 −8k4

(β 2 +4k2)k2
c4 (15)

The wave function admixture c(k) is the contribution of p-orbital to the wave

function of the band. It is calculated by projecting the Kohn-Sham wavefunctions

onto the spherical harmonics which are non-zero only within the spheres centering

the ions and this is already implemented in VASP package.

Polar optical phonon (POP) scattering is inelastic and an-isotropic scattering

mechanism. In most of the polar semiconductors POP scattering is dominant

scattering mechanism near room temperature or in the higher temperature region.

The out scattering operator is given by [15]

So = (Npo +1− f−)λ−
0 +(Npo + f+)λ+

0 (16)
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λ+
o = β+[(A+)2ln |

k++ k

k+− k
| −A+cc+−aa+cc+] (17)

β+ =
e2ωpok+

4π h̄kv(k+)
(

1

ε∞
−

1

ε0
) (18)

A+ = aa++
(k+)2 + k2

2k+k
cc+, (19)

Here, a(k) gives the contribution of s-electrons to the band, and in a way sim-

ilar to c(k) it is calculated from the first-principles. k± is the solution of the equa-

tion, ε(k)± h̄ωpo. Any quantity with subscript plus/minus has to be evaluated at

energy corresponding to k+/k−. λo are rate of out scattering. The subscript plus

and minus denotes the scattering by the absorption or emission respectively, so it

is to be evaluated at an energy ε + h̄ωpo for absorption and at energy ε(k)− h̄ωpo

for emission. If the energy of phonons is less than h̄ωpo, the emission of phonons

is not possible and hence λ−
o is to be considered to be zero.

Npo is the number of phonons and is given by [15]

Npo =
1

exp(h̄ωpo/kBT )−1
. (20)

The scattering in operator Si is given by [15]

Si = (Npo + f)λ−
i g−+(Npo +1− f)λ+

i g+ (21)

Here λi is the rate of in scattering. Again, the plus and minus subscriptions indi-

cate absorption and emission, respectively.

λ+
i (k) = β+[

(k+)2 + k2

2k+k
(A+)2ln |

k++ k

k+− k
| −(A+)2 −

c2(c+)2

3
] (22)

Coupling of electrons with non-polar acoustic phonons results in acoustic de-

formation potential scattering. The momentum relaxation rate for acoustic defor-

mation potential scattering is given by [15, 29]

1

τac(k)
=

e2kBT E2
Dk2

3π h̄2celv(k)
[3−8c2(k)+6c4(k)], (23)

Where cel is the spherically averaged elastic constant. ED is acoustic deforma-

tion potential and is given by conduction band shift (in eV) per unit strain due to
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acoustic waves.

Polar scattering due to acoustic phonons is called piezoelectric scattering. Piezo-

electric scattering is important at low doping concentration and at low temperature

in polar materials. The momentum relaxation rate for piezoelectric scattering with

ab-initio parameters is given by [15, 29]

1

τpz(k)
=

e2kBT P2

6πε0h̄2v(k)
[3−6c2(k)+4c4(k)] (24)

where P is a dimensionless piezoelectric coefficient, it is isotropic for zinc blende

structure and anisotropic for wurtzite structure (see the appendix).

The momentum relaxation rate for dislocation scattering is given by [31]

1

τdis(k)
=

Ndise
4k

h̄2ε2
0 c2

l v(k)

1

(1+ 4k2

β 2 )3/2β 4
(25)

In case of alloy there is one more scattering mechanism due to atomic disorder,

known as alloy scattering. The momentum relaxation rate for alloy scattering is

given by [32]

1

τalloy(k)
=

3πk2

16h̄2v(k)
V0U2

alloyχ(1−χ) (26)

The momentum relaxation rate for intra-valley scattering is given by [15]

1

τiv(k)
= (Ne +1− f−)λ−

e +(Ne + f+)λ+
e (27)

where Ne is the phonon occupation number and given by

Ne =
1

exp( h̄ωe

kBT
)−1

(28)

λ+
e is given by

λ+
e =

e2D2
e(Z−1)kk+

2πρ h̄v(k)ωe
(29)

Similarly λ−
e is given by

λ−
e =

e2D2
eZkk−

2πρ h̄v(k)ωe
(30)

where Z is the number of equivalent valleys, De is the intervalley deformation

potential (units of electron volts per meter), h̄ωe is the phonon energy, ρ is the

8



density of the material. If E < h̄ω , λ−
e is considered to zero.

There is one impurity scattering due to non ionized donors called neutral impurity

scattering. Neutral impurity scattering is important at higher doping concentra-

tion and low temperature. For neutral impurity scattering we have used Erginsoy

model[33]. The momentum relaxation rate of neutral impurity scattering is given

by

1

τni

=
80πε h̄v(k)2Nn

e2k2
(31)

where Nn is concentration of neutral impurities in semiconductor.

2.3. Ab-initio Inputs

For calculating transport properties, band structure and density of states of

semiconductor material is required. The required band structure and density of

states are calculated by using the density functional theory (DFT) using a three

dimensional k mesh around the conduction band minimum (CBM). Near CBM

much finer meshing is required to obtain good results, since this near region to

CBM will play a major role at low electric field. To obtain a k-point file in re-

ciprocal space for DFT calculation a program k point generator.cpp is given with

the code. The program is saved in the ‘utility’ folder. The conduction band is

represented by a function of distance from the CBM, by taking the average of the

energy values of the k-points that are at the same distance from CBM. We have

done an analytical fitting of the band with a six degree polynomial, to get smooth

curves for group velocity. The group velocity is calculated by using equation

v(k) =
1

h̄

∂ε(k)

∂k
(32)

The calculated group velocity by the above equation is used to calculate required

different scattering rates. All other inputs required for calculations, low and high

frequency dielectric constant [34, 35], elastic constant, piezoelectric constant and

polar optical phonon frequency ωpo [36] are calculated by using Density func-

tional theory (DFT) by using VASP. The acoustic deformation potential is given

by equation

ED =−V (
∂ECBM

∂V
)
∣

∣

∣

V=V0

(33)

where V is the volume, V0 is the volume under zero pressure and CBM is con-

duction band minima [37, 38]. So, all required inputs are calculated by using

DFT. Only crystal structure of semiconductor material is given as input. So, there
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is no need to heavily depend on experimental data for mobility and conductivity

calculation.

2.4. Simulation Flowchart

Fig. 1 shows the step to calculate mobility and conductivity using AMMCR

code. First, we have to calculate band structure and all other input parameters as

explained in the previous section by using first principles methods. Then analyt-

ical fitting of band structure is done, to obtain a smooth curve for group velocity.

The Fermi level is calculated with smooth band structure obtained after analytical

fitting by using equation,

n =
1

V0

∫ ∞

εc

DS(ε) f (ε)dε, (34)

where DS(ε) represents the density of states at energy ε , where εc represents the

bottom of the conduction band and V0 represents the volume of the cell. Next,

scattering rates are being calculated for different selected scattering mechanisms

by using Eq.s 11, 16, 23, 24, 25, 26, 27, 32. The perturbation in distribution func-

tion g(k) is calculated by using Eq.4, keeping Si(k) = 0, this particular step gives

the results within RTA. To obtain the results beyond RTA, g(k) in is calculated by

iteration till g(k) (or g(ε)) converges. The g(ε) obtained in the above manner is

used to calculate the transport coefficients.

3. Code Layout

Upon unzipping the tar file, the main folder ”AMMCR” contains four sub-

folders: ‘src’, ‘utility’,‘example ’ and ‘manual’. ‘src’ folder contains different

functions to calculate mobility and conductivity. It contains a file ‘main.cpp’, it is

the main file, that calls all other functions for calculation. ‘utility’ folder contains

a file ‘k point generator.cpp’, this file contains a program that will generate a

‘k points file ’ file, containing the k-points required for the DFT simulation of

the band structure using VASP. ‘manual’ contains the user-guide while the folder

‘example ’ contains the example files.

4. Input Files

The execution of AMMCR module requires five files as input. Four input files

EIGENVAL, OUTCAR, PROCAR and DOSCAR are to be obtained by using
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VASP package and one input file input.dat that contains the value of different ma-

terial constants calculated by abinito method as explained in section 2.3. Sample

input files are given in the ‘example’ folder. Typical inputs for a given donor

concentration is given below (for the case of CdS),

32.75 37.75 48.43 61.05 75.55 99.12 123.99 154.08 154.13 171.998 194.67 264.20 299.94 346.74 411.18 # Temperature loop

6.9e15 # Donner conc in cm^-3

0 # Acceptor conc in cm^-3

0 # Neutral impurity conc cm^-3

9.97 # Static dielectric const

6.1 # High frequency dielectric const

0 # Band gap (eV)

1 # Equivalent number of valence band valleys

1 # Equivalent number of conduction band valleys

0 # Density in gm/cm^3

1 1 1 1 0 0 0 0 # Different scatt mechanism included

0 # Dislocation density cm^-2

6.44 # Longitudinal Optical freq in THZ

12 # Acoustic deformation potential in eV

0.141104752018947 # Piezo Electric coefficient (dimensional less)

7.6924e+11 # Longitudianl elastic constant in dyne/cm^2

1.9146e+11 # Transverse elastic constant in dyne/cm^2

0 # Alloy potential in eV

0 # Volume of unit cell in nm^-3

0 # Fraction of atom for alloy

0 # Phonon freq for intravalley scatt in THz

0 # Coupling constant for intravalley scattering in 10^8 eV/cm

0 # Number of final valley for intravalley scattering

0 # Density of state 0 read from DOSCAR; 1 for free electron density

10 # Maximum number of iteration

5. Test System

We have calculated the transport properties of bulk CdS using the AMMCR code.

We have considered the wurtzite structure of CdS (space group No.:186). The

electronic structure calculations were performed within the frame-work of den-

sity functional theory (DFT) with Perdew-Burke Ernzerhof exchange correlation

energy functional which is based on a generalized gradient approximation. Fig. 2
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shows electronic band structure and density of states (DOS) obtained for CdS. We

have calculated all required input parameters by using abinito principle. As an in-

put for the transport calculation within Rodes method, only band structure for one

valley is needed, we have therefore performed non-self consistent calculations of

the band energies in a special k-point mesh around the Γ point with 8531 k-points.

Such an approach enables us to efficiently account for the group velocity. As CdS

has wurtzite structure, it has different dielectric permittivity in parallel and per-

pendicular to the c axis. For calculation isotropic value of permittivity given by

equation

ε =
1

3
(ε‖+2ε⊥) (35)

is used. Calculated value of low and high frequency dielectric constant are 9.97

and 6.1 respectively. We have obtained a abinitio value of polar optical phonon

frequency of 6.44 THz. We have obtained abinito value of lattice constant a0 =
0.420nm and c0 = 0.687nm, 12 eV acoustic deformation potential, 0.10059 and

0.141104 of perpendicular and parallel piezoelectric coefficient. Calculated value

of elastic constant are c11 = 7.77× 1010N/m2 , c13 = 3.72× 1010N/m2, c33 =
8.79×1010N/m2 and c44 = 1.49×1010N/m2 respectively.

Fig 3 and 4 shows scattering rate as a function energy for different doping

concentration ND = 1×1013cm−3 and ND = 1×1015cm−3 at temperatures 30 K

and 300 K. Piezoelectric scattering is considered to be the significant scattering

mechanism at lower temperature and lower doping concentration. At 30 K aver-

age energies of carriers is 3
2
kBT = 0.0038eV , so most of carriers lies in the low

energy region. For CdS at lower temperature the piezoelectric scattering is most

dominant scattering mechanism as in fig 3(a) for doping ND = 1×1013cm−3 while

for doping ND = 1× 1015cm−3 ionized impurity and piezoelectric scattering are

most dominant scattering mechanisms as in fig 4(b). While at room temperature

for both doping concentrations polar optical phonon scattering is the most domi-

nant scattering mechanism for CdS as it is clear in both figures Fig. 3(b) and fig

4(b). So from room temperature to the higher temperature region POP scattering

is most dominant one. In both Fig. 3 and Fig. 4 there is a sudden change in POP

scattering rate after a particular energy, this is due to the fact that if an electron

energy is less than POP energy h̄ωpo = 0.0266eV , the electron can scatter only by

the absorption of optical phonons and if the electron energy is higher than energy

h̄ωpo, then it can scatter through both absorption and emission of phonons.

We have calculated mobility and conductivity of CdS using AMMCR module for

different temperature and doping concentrations. Fig. 5 shows mobility and fig 6

show conductivity as a function of temperature for doping 6.9× 1015cm−3 [39].
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Fig 5 shows good qualitative and quantitative agreement between experimental

and calculated curves. Fig. 5 and fig 6 shows the results obtained with both Rode

algorithm and RTA. Since piezoelectric constant is different in parallel and per-

pendicular to c-axis of CdS crystal, so there are two theoretical curves shown for

both Rode and RTA. At lower temperature there is a deviation between experi-

mental and theoretical curves, this is due to the presence of neutral impurities in

the sample. Rode curve has an average relative error of 10.93 % and RTA curve

has an average error of 37.06 % above 90 K with parallel piezoelectric coefficient.

So, Rode results are much better than RTA results. This is due to POP scattering,

since POP is inelastic as well as an-isotropic scattering mechanism, so it modu-

lated electron energy and it is most dominant scattering mechanism around room

temperature to higher temperature region, so RTA is inappropriate for it. At a

lower temperature, both RTA and Rode show about the same mobility. This is due

to the fact that POP scattering is weak at a lower temperature.

As already mentioned, most of the compound semiconductors are polar in nature.

In a polar semiconductor, usually polar scattering is the most dominant scatter-

ing mechanism.Therefore, AMMCR will serve a better purpose in comparison to

the RTA based codes such as Boltztrap. Fig. 7 shows the contribution of mo-

bility from different scattering mechanisms. Above 70 K polar optical phonon

scattering is most dominant scattering mechanism, below 55 K ionized impurity

scattering is most dominant scattering mechanism and in the intermediate region

acoustic deformation scattering is most dominant scattering. Fig. 8 and fig. 9

shows mobility variation with doping for temperature 77 K and 300 K respec-

tively by assuming a compensation ratio of unity. The curves shows decrease in

mobility with increasing doping concentration, this is due to increase in number of

ionized centers with increasing doping. In the Fig.10, we show the convergence

of the non-equilibrium part of the distribution function. It can be seen that the

convergence is achieved after a few iterations.

6. Conclusion

We presented a module AMMCR to compute mobility and conductivity of semi-

conductor materials. The module is written in C++ and is currently interfaced

with VASP. We have tested the code for CdS and obtained good agreement with

the experimental results.
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8. Appendix

For zinc blende structure piezoelectric coefficient is given by [15]

P2 = h2
14

[(12
cl
)+(16

ct
)]

35
(36)

where h14 is one element of piezoelectric stress tensor and cl , ct are the spherically

averaged elastic constant for longitudinal and transverse modes respectively and

are given by [15] equations

cl = (3c11 +2c12 +4c44)/5 (37)

ct = (c11 − c12 +3c44)/5 (38)

where c11, c12 and c44 are three independent elastic constants. For wurtzite struc-

ture we use piezoelectric coefficients P‖ and P⊥ for mobility measured with elec-

tric field parallel and perpendicular to the c axis of the crystal. For wurtzite struc-

ture piezoelectric coefficients P‖ and P⊥ are given by [15]

P2
‖ = 2ε0

(21h2
15 +18h15hx +5h2

x)

105ct
+ ε0

(63h2
33 −36h33hx +8h2

x)

105cl

(39)

P2
⊥ = 4ε0

(21h2
15 +6h15hx +h2

x)

105ct
+ ε0

(21h2
33 −24h33hx +8h2

x)

105cl

(40)

hx = h33 −h31 −2h15 (41)

where h15, h31 and h33 are the three independent elements of the piezoelectric

stress tensor of wurtzite structure and cl and ct are spherically averaged elastic

constant, there are given by equations [15]

cl = (8c11 +4c13 +3c33 +8c44)/15 (42)

ct = (2c11 −4c13 +2c33 +7c44)/15 (43)

where c11, c13, c33 and c44 are elastic constants.

14
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Figure 1: Flowchart for transport calculation from ab-initio inputs
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Figure 2: Band Structure and Density of states for Wurtzite CdS
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Figure 3: Scattering Rates vs Energy for ND = 1× 1013cm−3
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Figure 4: Scattering Rates vs Energy for ND = 1× 1015cm−3
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Figure 5: Calculated and experimental measured mobility with temperature variation for CdS at

Doping 6.9× 1015cm−3 [39].

23



Figure 6: Calculated conductivity with temperature variation for CdS at Doping 6.9× 1015cm−3

[39]
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Figure 7: Contribution of mobility from different scattering mechanisms at doping 6.9×1015cm−3

[39]
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Figure 8: Calculated mobility for different doping concentration at 77 K
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Figure 9: Calculated mobility for different doping concentration at 300 K
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Figure 10: The evolution of the perturbation part of the distribution function (Eq.4) with respect

to different iterations.

28


	1 Introduction
	2 Theoretical framework
	2.1 Solution of Boltzmann Transport Equation via iterative method
	2.2 Scattering Mechanisms
	2.3 Ab-initio Inputs
	2.4 Simulation Flowchart

	3 Code Layout
	4 Input Files
	5 Test System
	6 Conclusion
	7 Acknowledgments
	8 Appendix

