
ar
X

iv
:2

00
9.

12
25

3v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 2
5

Se
p

20
20

PairDiagSph: Generalization of the Exact Pairing Diagonalization Program for

Spherical Systems

Xiao-Yu Liua,b,c, Chong Qic,∗, Xin Guand, Zhong Liua

aInstitute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
bUniversity of Chinese Academy of Sciences, Beijing 100049, China

cDepartment of Physics, Royal Institute of Technology, Stockholm 104 05, Sweden
dDepartment of Physics, Liaoning Normal University, Dalian 116029, China

Abstract

We present an efficient program for the exact diagonalization solution of the pairing Hamiltonian in spherical sys-

tems with rotational invariance based on the SU(2) quasi-spin algebra. The basis vectors with quasi-spin symmetry

considered are generated by using an iterative algorithm. Then the Hamiltonian matrix constructed on this basis is di-

agonalized with the Lanczos algorithm. All non-zero matrix elements of the Hamiltonian matrix are evaluated “on the

fly” by the scattering operator and hash search acting on the basis vectors. The OpenMP parallel program thus devel-

oped, PairDiagSph, can efficiently calculate the ground-state eigenvalue and eigenvector of general spherical pairing

Hamiltonians. Systems with dimension up to 108 can be calculated in few hours on standard desktop computers.

Keywords: Exact Pairing Solution, Spherical System, Quasi-spin Algebra, Diagonalization.

PROGRAM SUMMARY

Program Title: PairDiagSph.

Licensing provisions: CC by NC 3.0.

Programming language: Fortran 95.

Nature of problem: The exact diagonalization of spherical

pairing Hamiltonian can be achieved in the quasi-spin space.

Solution method: The program generates the basis vectors

via the adjacency excitation algorithm, and diagonalizes

the spherical pairing Hamiltonian by the Lanczos + QR

algorithm.

Restrictions: The total number of spherical must be less than

64; The maximal dimension that can be handled is restricted

by the local RAM capacity.

1. Introduction

In a recent paper [1], we developed an efficient Fock-

space diagonalization program, PairDiag, for solving

the general pairing Hamiltonian in the deformed sys-

tem with time-reversal invariance. In the program, the

basis vector of the Slater determinant is represented by

a binary word, where each bit of the word is associated

∗Corresponding author.

E-mail address: chongq@kth.se

to a pair of doubly-degenerate orbitals and the value of

the bit is set to 1 (or 0) when the corresponding paired

orbital is fully occupied (or empty). In such a repre-

sentation, all binary-based vectors are generated in as-

cending order by the ‘01’ inversion algorithm. The hash

search algorithm acting on the basis for directly locat-

ing all non-zero Hamiltonian matrix elements improves

greatly the efficiency of the Lanczos [2] diagonalization

process.

Many nuclei near closed shells show behaviors of

spherical symmetry. In these rotationally invariant sys-

tems, the single-particle levels from the nuclear shell

model can have degeneracy higher than 2. Based on

the existence of quasi-spin symmetry [3], the subset of

degenerate levels in paired system can be packaged as

a whole with its state labeled by the partial quasi-spin.

The spherical pairing Hamiltonian matrix constructed

on such the quasi-spin basis will have a dimension much

lower than the fermionic Fock space. The exact pair-

ing solution based on the SU(2) quasi-spin algebra is

presented in Refs. [4, 5]. However, in actual diagonal-

ization calculations, the generation of quasi-spin basis

vectors was usually achieved via the trial and error ap-

proach which is time-consuming, and the time complex-

ity of the matrix diagonalization was also high. There-

fore, our earlier studies [6, 7] were very much limited to

Preprint submitted to Computer Physics Communications September 28, 2020

http://arxiv.org/abs/2009.12253v1

small spaces with dimension less than 105.

In this work, we present an extension of the exact

pairing solver from PairDiag [1] for deformed systems

to a new program, PairDiagSph, for spherical systems

based on the SU(2) quasi-spin algebra. In the program

PairDiagSph, we continue the efficient diagonalization

method of using the search algorithm to directly locate

all non-zero Hamiltonian matrix elements, while extend

both the vector generation and hash search algorithms

to the quasi-spin basis system. With the OpenMP paral-

lel [8] PairDiagSph module, the calculation of spherical

pairing Hamiltonian for systems with dimension up to

108 can be completed within hours on standard desktop

computers. The developed adjacency excitation algo-

rithm, as a general solution to the balls-into-boxes prob-

lem, can also be transplanted to related applications.

2. The General Pairing Hamiltonian and Quasi-spin

Algebras

The general pairing Hamiltonian in deformed sys-

tems with time-reversal invariance is given by

Ĥ =
∑

i

ǫi(a
†
i
ai + a

†
ī
a

ī
) +
∑

ii′

Gii′a
†
i
a
†
ī
a

ī′
ai′ (1)

where i and ī are a pair of degenerate time-reversed

orbitals, ǫi and Gii′ are the orbital-dependent single-

particle energies and pairing interaction strength, a
†
i

and

a
i

is the particle creation and annihilation operator, re-

spectively. In Ref. [1], we developed a Fock-space di-

agonalization program to solve this Hamiltonian. For

spherical systems with rotational invariance, the pairing

Hamiltonian can be generalized [4, 5] as

Ĥ =
∑

jm

ǫ ja
†
jm

a jm +
1

4

∑

j j′

G j j′

∑

mm′

a
†
jm

ã
†
jm

ã j′m′a j′m′ (2)

where ã jm = (−1) j−ma j−m, j represents a single-particle

orbitals with angular momentum j and degeneracy 2 j +

1, ǫ j are the single-particle energies for the involved or-

bitals, G j j′ are the pairing interaction strength between

the orbital j and j′. In the present work, we will solve

this Hamiltonian based on quasi-spin [3] algebras.

The Hamiltonian in Eq. (2) can be rewritten as

Ĥ =
∑

j

(

ǫ j(2Lz
j
+ Ω j) +G j jL

+
j L−j

)

+
∑

j, j′

G j j′L
+
j L−j′ (3)

by introducing the quasi-spin L±
j

and Lz
j
operators [5, 9,

10, 11] for each single j shell as

L+j =
1

2

∑

m

a
†
jm

ã
†
jm

L−j = (L+j)† =
1

2

∑

m

ã jma jm

Lz
j
=

1

2

∑

m

(a
†
jm

a jm −
1

2
) =

1

2
(N j −Ω j)

(4)

where N j is the particle number and Ω j = (2 j+ 1)/2 is

the pair degeneracy. Based on the following commuta-

tion relations

[L+j , L
−
j′] = 2δ j j′L

z
j

[Lz
j
, L±j′] = ±δ j j′L

±
j

(5)

we see that these quasi-spin operators form an SU(2)

algebra with L±
j

and Lz
j

corresponding to the rais-

ing/lowering and the z-component angular momentum

operators, respectively. The square of quasi-spin with

eigenvalue L j(L j+1) can be defined as L2
j
= L+

j
L−

j
+

(Lz
j
)2 − Lz

j
. The maximum value of L j is Ω j/2 for the

fully paired orbital. L j could also take lower values as

(Ω j−s j)/2 due to the Pauli blocking from the s j unpaired

particles in the j-th orbital, and s j is usually called the

seniority number [3] which is conserved under the pair-

ing Hamiltonian. With the quasi-spin symmetry, we

can use L j and Lz
j

to label a state of a single j shell as

|L j, L
z
j
〉.

In a system of m shells with N =
∑m

j N j particles and

fixed seniority S =
∑m

j s j, there will be n= (N−S)/2 par-

ticle pairs formed, and we can define for the j-th shell

the pair number n j and the effective pair degeneracy ω j

as

n j =
(N j − s j)

2

ω j = Ω j − s j

(6)

For such a orbital with fixed s j, it is more convenient to

use only the pair number n j to label its state as |n j〉. We

can construct quasi-spin basis vectors for the system as

|n1, n2, · · ·, nm〉 exhausting all possible solutions of n =
∑m

j n j with constrains 0≤n j≤ω j. Then, the Hamiltonian

matrix in Eq. (3) can be constructed on this basis by

using the following relations

L j|n j〉 =
Ω j − s j

2
|n j〉 =

ω j

2
|n j〉

Lz
j
|n j〉 =

N j − Ω j

2
|n j〉 = (n j −

ω j

2
)|n j〉

L±j |n j〉 =
√

(L j ∓ Lz
j
)(L j ± Lz

j
+ 1) |n j±1〉

(7)

2

Diagonal elements from the first term of the Hamilto-

nian become

〈· · · , n j, · · · |Ĥ| · · · , n j, · · · 〉 =
∑

j

(

2ǫ jn j +G j jn j(ω j − n j + 1)
)

+
∑

j

ǫ js j
(8)

Non-diagonal elements described by the second term

which scatters a pair between the orbital j and j′ are

〈· · ·, n j+1,· · ·, n j′ ,· · · |Ĥ| · · ·, n j,· · ·, n j′+1,· · · 〉 =

G j j′

√

(n j + 1)(ω j − n j)

√

(n j′ + 1)(ω j′ − n j′)
(9)

From Eqs. (8) and (9) one can see that a system under

the spherical pairing Hamiltonian with fixed seniority

can be viewed as the sum of two subsystems: One is a

non-interactive subsystem of S unpaired particles which

will contribute a term
∑

jǫ j s j equally to all diagonal el-

ements; And the other one is a seniority-zero subsystem

of N−S paired particles distributed in orbitals with pair

degeneracy reduced to ω j=Ω j−s j.

3. Principles of the Method

In the present PairDiagSph program, we solve the

spherical pairing Hamiltonian in Eq. (2) or Eq. (3) for a

given seniority via the quasi-spin-space diagonalization

to get the ground-state eigenvalue and the correspond-

ing eigenvector. In the following content, we will focus

on the solution for seniority-zero systems. The method

used can be divided into two parts: Firstly generating

the seniority-zero quasi-spin basis; Then diagonalizing

the Hamiltonian matrix constructed on the basis.

3.1. Basis Generation

Let us consider a seniority-zero system of m shells

with degeneracy ω j=1,2,··· ,m, if there are n (n ≤
∑m

j ω j)

particle pairs placed, the basis with quasi-spin sym-

metry considered should consist of all possible vectors

|n1, n2, · · ·, nm〉 in which n=
∑m

j n j and 0≤n j≤ω j. Each

vector can be represented by a binary word in the com-

puter, while ω j consecutive bits of the word being asso-

ciated to the shell j, with the number of bits occupied by

‘1’ in the segment depending on the corresponding oc-

cupation n j. For each degenerate orbital, we will place

all n j occupied bits from the lowest digit side of the seg-

ment to uniquely mark the state out of all other different

permutations since the pair number is the only infor-

mation needed. Following the rules above, a set of bi-

nary numbers with n occupied bits distributed in the first
∑m

j ω j digits is equivalent to the seniority-zero quasi-

spin space for the system. In the case where 3 pairs

occupy 3 shells with degeneracy ω1,2,3 = {4, 2, 1}, a set

of 6 binary numbers from 0.00.0111 to 1.11.0000

(in which the decimal points are just for separating dif-

ferent orbitals) can be used to represent the basis from

|3, 0, 0〉 to |0, 2, 1〉.

Algorithm 1 Adjacency excitation algorithm. f (i) and

l(i) correspond to fi and li in the text, respectively.

BTEST(), IBCLR(), and others refer to the Fortran in-

trinsic bit manipulation functions

Input: integer Iin

Output: integer Iout

Itail = 0

for i = 1, · · · , m do

if (BTEST(Iin, f (i))) then

for j = f (i), · · · , l(i) do

if (BTEST(Iin, j)) then

Iin = IBCLR(Iin, j)

Itail = IBSET(ISHFT(Itail, 1), 0)

else

exit

end if

end for

if (!BTEST(Iin, l(i + 1))) then

for j = f (i + 1), · · · , l(i + 1) do

if (!BTEST(Iin, j)) then

Iin = IBSET(Iin, j)

Itail = ISHFT(Itail, -1)

exit

end if

end for

exit

end if

end if

end for

Iout = Iin + Itail

return Iout

For a system of n identical pairs in m given shells,

there is no simple formula to calculate the space di-

mension directly, this number is usually counted after

all possible vectors are created. In the present program,

an iterative approach developed based on the ‘01’ inver-

sion algorithm [1] was used to generate all the binary-

based vectors. Every iteration of the approach takes a

binary integer in the space as input, and searches from

the first shell (which represented by a segment of ω j

consecutive bits) until the 2 adjacent shells with a spe-

cific pattern is found, where the lower shell is filled by

at least 1 pair while the higher shell is not fully occu-

pied. Then 1 occupied bit in the lower orbital will be

3

moved to the higher orbital, and all bits ‘1’ below this

higher will be moved to refill this integer from the low-

est digit. After the two steps, a larger integer in the set

is obtained which will be the input for the next iteration.

Since in every iteration there will be one pair being ex-

cited to its adjacent higher orbital, we call this method

the adjacency excitation algorithm. If the degeneracy of

each orbital is ω j=1, the described adjacency excitation

algorithm will be simplified to ‘01’ inversion algorithm.

Since we have stipulated that the occupation of each

shell starts from its lowest digit in the bit segment, the

shell must be empty if the corresponding first digit is

empty, and the shell will be full only after the last

digit is occupied. For a state 001.1111.00000 in a

system where 5 pairs occupy 3 shells with degeneracy

ω1,2,3 = {5, 4, 3}, the 1st bit in vacancy indicates the 1st

shell is empty, the fully occupied 2nd shell can be re-

flected in the occupied 9th bit, and based on status of

the 10th and the 12th bits, we know the 3rd shell is oc-

cupied but not fully. In a system with given degeneracy

for m shells, the position of the first and the last dig-

its in the segment corresponding to the i-th orbital can

be calculated as fi = 1+
∑i−1

j ω j and li =
∑i

jω j. With

these definition, a pseudocode of the adjacency excita-

tion algorithm based on Fortran bit operations is shown

in Algorithm 1. In the practical calculation for a space

with dimension n, the minimum and the maximum vec-

tors in the space representing the start and the end of the

iteration must be specified in advance, and the remain-

ing vectors can be generated from the minimum within

n−1 times of iteration. So, the time complexity the al-

gorithm over the entire space can be roughly estimated

as a linear order O(n).

For the previous example with the minimum

0.00.0111 and the maximum 1.11.0000, the itera-

tion should start at 0.00.0111 and end when the out-

put reaches 1.11.0000. In the first iteration, a pair in

the first shell needs to be excited to the second to form

the output 0.01.0011. In the same way 0.11.0001 is

the second output. For the input 0.11.0001 in which

the second shell is fully occupied, 1.01.0001 is ob-

tained after moving a pair from the second shell to the

third, then the remaining pairs below the third shell

need to be de-excited to the lowermost to get the output

1.00.0011. Iteratively, 1.01.0001 and 1.11.0000

will be created in order, and then the iteration should

be terminated as the 1.11.0000 reaches the maximum.

With five iterations, all six integers obtained are summa-

rized in Table 1, in which the indexes are assigned in the

order of generation. In PairDiagSph program, a 64-bit

integer is used to represent a basis vector and all the gen-

erated integers are stored sequentially in an 1D array.

Table 1: Index and binary values of all integers and the corresponding

wave function |n1 , n2 , n3〉 in the space of 3 pairs in 3 degenerate shells

of ω1,2,3 = {4, 2, 1}. The decimal points in the binary values are just

for separating different orbitals. The decimal values shown displays

the ascending order.

Index Binary value |n1, n2, n3〉 Decimal value

1 0.00.0111 |3, 0, 0〉 007

2 0.01.0011 |2, 1, 0〉 019

3 0.11.0001 |1, 2, 0〉 049

4 1.00.0011 |2, 0, 1〉 067

5 1.01.0001 |1, 1, 1〉 081

6 1.11.0000 |0, 2, 1〉 112

The capacity
∑m

j ω j of the system should be less than 64

due to the sign bit. Since the vector array is strictly in

ascending order and organized by special combination

rules, the index i of any element can be calculated via

search algorithm from its binary value |i〉 which repre-

sent a specific quasi-spin wave function |n1, n2, · · ·, nm〉.

3.2. Vector Search

In PairDiagSph program, an efficient hash search

algorithm with the time complexity O(1) is built to

locate the index i of an element |i〉 in the generated

basis array. For all basis vectors in a p-pairs system

with given degeneracy, We define N
p

d
as the minimum

number of iterations required to generate a binary-based

vector with the d-th (
∑

jω j ≥d≥ p) digit occupied from

the minimum vector. For the first 4 items in Table 1, we

can get in that 3-pairs system N3
3
= 0, N3

5
= 1, N3

6
= 2,

and N3
7
= 3. Except for N

p
p = 0, the value of N

p

d
with

d > p is degeneracy dependent. With the definition of

N
p

d
, the index of any vector in an untruncated space

generated by the adjacency excitation algorithm can be

expressed as the sum of a series N
p

d
with different p

and d. Let us take a vector 0011.01111.001.0001

as an example, we first need N8
14

steps of itera-

tion to generate the vector 0011.00000.011.1111

from the minimum 0000.00000.011.1111, then

another N6
11

steps are needed to convert the vector

0011.00000.011.1111 to 0011.01111.000.0011,

finally, vector 0011.01111.001.0001 will be

obtained after N2
5

times of iteration based on

0011.01111.000.0011. So its index can be counted

as i = 1+N8
14
+N6

11
+N2

5
. For an arbitrary vector |i〉 in a

system, we can define for the i-th shell the pi =
∑i

jn j

and di = ni+
∑i−1

j ω j, then the hash function i= f (|i〉) for

the search can be written as

f (|i〉) = 1 +

m
∑

j

(1 − δn j,0)N
p j

d j
(10)

4

Table 2: In the space of 3 pairs in 3 degenerate orbitals of ω1,2,3 =

{4, 2, 1}, all the binary-based vectors, hash equations, and the corre-

sponding solutions.

Index Binary value Equation Solution

1 0.00.0111 1=1

2 0.01.0011 2=1+N3
5

N3
5
= 1

3 0.11.0001 3=1+N3
6

N3
6
= 2

4 1.00.0011 4=1+N3
7

N3
7
= 3

5 1.01.0001 5=1+N3
7
+N2

5
N2

5
= 1

6 1.11.0000 6=1+N3
7
+N2

6
N2

6
= 2

In general, the hash search for a n-pairs system re-

quires all possible coefficients N
p

d
with p ≤ n and d ≤

∑

jω j, and there is no simple formula to calculate them

directly. One feasible way to get these coefficients is to

solve them backwards in the linear equations of all the

hash functions in Eq. (10) with known indexes. In the

basis system, the i-th vector is obtained by performing

the adjacency excitation operation on the (i−1)-th vec-

tor, and only the excitation operation can introduce a

new coefficient in the corresponding i-th hash equation

compared with the (i−1)-th equation. The first equa-

tion with index 1 contains no coefficient and each sub-

sequent equation will introduce at most one unknown

new coefficient, this means these linear equations can be

easily solved in order from the second one till the last,

and it is also undoubtedly correct when we use these

coefficients to calculate the indexes back. Still taking

the vectors in Table 1 as an example, each vector with

its index corresponds to a linear hash equation, and all

these equations listed in Table 2 can be solved easily in

order. In PairDiagSph program, all the required coeffi-

cients are calculated during the generation of the basis

vectors, and then these results are stored in a 2D array

which will be used as a table in the later hash search.

3.3. Matrix Construction and Diagonalization

With the basis generated and the search algorithm

provided, we can now construct the pairing Hamilto-

nian matrix in an efficient way by evaluating all non-

zero matrix elements directly. The diagonal elements

in the Hamiltonian matrix are usually non-zero and the

value of Hi,i can be calculated from Eq. (8). Of all non-

diagonal elements Hi, j, only a small part of them are

non-zero. For a vector |i〉 with index i in a system of

m shells, if we mark one shell of nP > 0 as P and an-

other shell of nV < ωV as V , then “scatter” 1 pair from

shell P to V to form a new vector | j〉= L+
V

L−
P
|i〉, the ma-

trix element Hi, j = 〈 j|Ĥ|i〉 described in Eq. (9) will be

non-zero (if GVP,0). The position of this element (i, j)

in matrix can be obtained by searching the index j of

vector | j〉. Combining the different P and V in |i〉, the

maximum number of such | j〉 and also the non-zero Hi, j

is m(m−1). Still using the previous example in Table 1

with assigning single-particle energies ǫ1,2,3 = {1, 2, 3}
and the constant Gi, j = −0.2 as the overall pairing in-

teraction strength. The Hamiltonian can be expressed

as a 6 × 6 real symmetric matrix. For the first row,

the diagonal element is H1,1 = 〈3, 0, 0|Ĥ|3, 0, 0〉 = 4.8.

The 2 non-diagonal non-zero elements are H1,2 from

|2, 1, 0〉 = L+
2

L−
1
|3, 0, 0〉 with value 〈2, 1, 0|Ĥ|3, 0, 0〉 =

−0.2
√

12, and H1,4 from |2, 0, 1〉 = L+
3

L−
1
|3, 0, 0〉 with

value 〈2, 0, 1|Ĥ|3, 0, 0〉 = −0.2
√

6. The rest rows of the

matrix can also be constructed this way.

For diagonalizing the obtained Hamiltonian matrix,

we use the same Lanczos [12]+QR [13] method as in

the PairDiag program [1]. All the non-zero matrix el-

ements which are mainly used for matrix-vector mul-

tiplication in Lanczos iterations are evaluated directly

“on the fly” to reduce time and space complexity of the

calculation. Depending on the user’s choice, the Pair-

DiagSph program can return the ground state eigenvalue

and eigenvector after Lanc Limit times of iteration,

or perform the restart Lanczos in which the calculation

will be restarted by the ground-state Ritz vector with the

convergence condition | βi/αi| ≤ Lanc Error [1]. In

the program, the adjustable parameters, Lanc Limit,

is the subspace dimension of the Lanczos iteration, and

the larger Lanc Limit will lead to higher quality re-

sults by the cost of more RAM memory. For the cal-

culation with dimension N and Lanc Limit = R, the

memory needed to store the basis and Lanczos/Ritz vec-

tors is about 8N(R+2)×10−9GB in total, which means

at least 41.6GB of memory is required for N = 108 and

Lanc Limit = 50. Users need to adjust Lanc Limit

to fit their local RAM conditions, and a larger value

is recommended whenever possible. Another parame-

ters, Lanc Error, is the convergence threshold for the

restart Lanczos, and the smaller Lanc Error will lead

to higher quality results by the cost of more times of

restart. The predefined Lanc Error = 1×10−5 in the

program meets general accuracy requirements. More

details about the diagonalization process and computa-

tional performance is presented in Ref. [1].

4. Description of the Code

The PairDiagSph code is written in Fortran 95 and

packaged in a Fortran module called PairDiagSph.

The use of the module, as an example shown

in Appendix A, requires the following steps.

5

4.1. Step 0. Declare a Variable of the Type Diag Par

The PairDiagSph module needs to be loaded into

the local program before use. After the loading, a pre-

defined derived data type, Diag Par, will be available

which contains 9 components:

• Shell: Integer(kind=8).

• Pairs: Integer(kind=8).

• Omega: Integer(kind=8),dimension(63).

• Senio: Integer(kind=8),dimension(63).

• SPE: Real(kind=8),dimension(63).

• P F: Real(kind=8),dimension(63, 63).

• Energy Ground: Real(kind=8).

• Monopole Min: Real(kind=8).

• N Occup: Real(kind=8),dimension(63).

Users need to declare a variable of the type Diag Par

in their program, and this variable, a mandatory param-

eter of the calculation, will be used to pass parameters

(with the first 6 components) and receive results (with

the last 3 components).

4.2. Step 1. Initialize the Input Part

The first 6 components in the Diag Par variable

which represent the inputs for the calculation must be

explicitly initialized by users.

• Shell: The total number of shells, m.

• Pairs: The total number of pairs, n.

• Omega: 1D array for the degeneracy,Ω j.

• Senio: 1D array for the seniority, s j.

• SPE: 1D array for the single-particle energy, ǫ j.

• P F: 2D array for the pairing interaction strength,

G j j′ .

The value of Shell (m) should be no more than 63,

and the first m terms of the 1D array (Omega, Senio,

and SPE) and the first m×m part of the 2D array P F

will be used to construct the basis and the Hamiltonian

matrix. Users also need to ensure that 0≤ω j =Ω j − s j

for each shell, and n ≤
∑m

j ω j ≤ 63 for the system. The

pairing interaction matrix G should be initialized in a

real symmetric manner. The total particle number of the

system is N=2n +
∑m

j s j.

There are three parameters that can be optionally ad-

justed in the source code PairDiagSph.f90.

• Lanc Limit: The size of the Lanczos iteration

subspace, the default value is 50 and the recom-

mended range is between 10 and 50 for the ground

state.

• Lanc Error: The convergence threshold for the

restart Lanczos calculation, the default value 1×
10−5 meets general accuracy requirements.

• Print Mode: Only when the value is 0 (default),

the program will print information on the terminal.

4.3. Step 2. Call the Subroutine

There is only one public subroutine that can be called

in the PairDiagSph module.

• Diag Solver(Diag Par, [Mode]): The public

subroutine calculates the pairing Hamiltonian in

Eq. (2) for the system described by the input part

of the Diag Par variable. The optional parame-

ter, Mode, will affect the process of Lanczos, Mode

= 0 (default) corresponds to the restart Lanczos,

and Mode = 1 corresponds to the Lanczos without

restart.

4.4. Step 3. Analyze the Output Part

The results of the calculation is stored in the last 3

components of the Diag Par variable. The occupation

numbers are saved instead of the full eigenvectors to

save space.

• Energy Ground: The eigenvalue of ground state

corresponding to the 〈φg.s.|Ĥ|φg.s.〉.
• Monopole Min: The minimum diagonal element

of the pairing Hamiltonian matrix (this value is not

the HF energy).

• N Occup: 1D array for the occupation numbers

corresponding to (2〈φg.s.|n j|φg.s.〉+s j).

A simple program example for the spherical pair-

ing Hamiltonian using the PairDiagSph module can be

found in Appendix A. Users can modify the program

according to their own requirements. A brief descrip-

tion of the variables and subroutines in the module is

presented in Appendix B.

4.5. Parallelization and Compilation

The parallelization of the program is done for the

matrix construction and diagonalization parts. In the

present program, only OpenMP [8] parallelism has been

implemented. The code runs in OpenMP parallel mode

by default after being compiled with the -fopenmp op-

tion in the provided Makefile. The number of parallel

threads is not set by the code, so the user can set the

environment variable OMP NUM THREADS to the desired

number. The PairDiagSph program has been tested un-

der both the ifort and gfortran compilers in the Linux

system, and we recommend the ifort compiler due to

the higher efficiency and stability shown.

6

Pair Number
100 20 30 40 50

10
0

10
4

10
8

10
12

10
16

D
im

en
si

o
n

Spherical

Deformed

Figure 1: Dimensions of the seniority-zero system as a function of

the pair number for spherical (blue solid line with dot symbol) and

deformed (red dashed line) systems in the model space consisting of

16 orbitals between the magic numbers 20 and 126.

5. Discussion

We now briefly discuss the performance of the Pair-

DiagSph program. The reference machine is a desktop

computer with an Intel Core i7-7700K 4.2GHz×8 CPU

and a total of 47GB memory. The compiler used is the

Intel Fortran compiler (ifort version 19.0.0.117) under

the Ubuntu 16.04 system. We will show below calcula-

tions in the model space consisting of 16 spherical or-

bitals between the magic numbers 20 and 126, includ-

ing 1 f7/2, 2p3/2, 1 f5/2, 2p1/2, 1g9/2, 1g7/2, 2d5/2, 2d3/2,

3s1/2, 1h11/2, 1h9/2, 2 f7/2, 2 f5/2, 3p3/2, 3p1/2, and 1i13/2.

For simplicity, the single-particle energies of these or-

bitals take integers from 1 to 16, and the constant pair-

ing interaction strength Gi j = G is used.

5.1. Dimension of the System

In the defined model space with 16 single j shells

and the degeneracy of each orbital as (2 j + 1)/2, the

total pair capacity of the space is 53. Fig. 1 shows the

relationship between the dimension and the number of

pairs in the space. For comparison, we also plotted the

dimension of the doubly-degenerate deformed systems

in the same model space. Within the quasi-spin symme-

try, we can treat all ω j paired orbitals in a single j shell

identically and ignore the different permutations inside

the shell. This is the reason why the dimension of the

quasi-spin space is greatly reduced (upto six orders of

magnitude for the given example). Even at half-filling

with 26 pairs, the dimension of the system is only about

2.5×108. Under the framework of general pairing Hamil-

tonian in Eq. (1), the dimension of the system in the

fermionic Fock space can be calculated by the binomial

coefficient Cn
m. In that case, the dimension at half-filling

is as large as C26
53
≈ 9.7×1014 which is far beyond the

current computing power.

Table 3: In the system where 5 pairs in the 16 orbitals, numerical

comparisons between PairDiagSph and Lapack. G are the constant

pairing interaction strength, EPairDiagSph and ELapack are the ground-

state eigenvalues, ∆vector is defined as
∑

|V2
PairDiagSph

(i) − V2
Lapack

(i)|,
where VPairDiagSph and VLapack are the calculated ground-state eigen-

vectors.

G EPairDiagSph ELapack ∆vector

-0.2 +04.884881026085 +04.884881026084 3×10−14

-0.4 -27.750623666024 -27.750623666024 1×10−12

-0.6 -70.518391792817 -70.518391792817 1×10−14

Table 4: Numerical comparisons between PairDiagSph and Richard-

son method. EPairDiagSph and ERichardson are the ground-state eigen-

values, Npair varying from 1 to 6 is the pair number in the prede-

fined space. In calculations the constant pairing interaction strength

G = 0.1 is used.

Npair EPairDiagSph ERichardson

1 1.3198280 1.31983

2 2.9451548 2.94515

3 4.8969717 4.89697

4 7.2131106 7.21311

5 10.825833 10.8258

6 14.896384 14.8964

5.2. Comparison with Other Programs

Below we show the numerical performance of Pair-

DiagSph module by comparing with other programs.

First, we use the diagonalization results from the La-

pack package as a reference. In the system where 5

pairs distributed in the 16 shells, we compared the re-

sults of ground state between the two packages with

different pairing interaction strengths (for the calcula-

tions with PairDiagSph, Lanc Limit was set to 50).

In Table 3, we present the ground-state eigenvalues and

the difference of eigenvectors from the two packages

under different constant pairing interaction strengths

G (for eigenvectors in PairDiagSph, the user can ac-

cess Q Matrix in the subroutine Result Output()

described in Appendix B). Compared with Lapack, the

negligible difference between the results indicates that

the diagonalization calculation of PairDiagSph is reli-

able.

For the standard pairing problem (the Hamiltonian in

Eq. (1) with constant interaction strengths G), the eigen-

values can also be obtained by the Richardson algebraic

approach [14, 15]. In Ref [16], a new Numerical al-

gorithm was established for the exact solution of the

standard pairing Hamiltonian based on the Richardson-

Gaudin method [17, 18, 19, 20, 21]. It provides efficient

and robust solutions of the standard pairing Hamiltonian

for both spherical and deformed systems. The key to

7

Table 5: In the system of 7 pairs, numerical comparisons between

PairDiagSph and PairDiag. G are the constant pairing interac-

tion strength, EPairDiagSph and EPairDiag are the ground-state eigen-

values, ∆occup is defined as
∑

|OPairDiagSph(i) − OPairDiag(i)| where

OPairDiagSph and OPairDiag are the calculated occupation munbers of

each orbital.

G EPairDiagSph EPairDiag ∆occup

-0.2 +12.102028246 +12.102028247 1×10−6

-0.4 -32.017674508 -32.017674507 4×10−5

-0.6 -89.528347229 -89.528347233 3×10−6

its success is a procedure that can determine the initial

guesses for the large set nonlinear equations involved

in a controllable and physically motivated manner. In

Table 4, we present the ground-state eigenvalues from

the PairDiagSph and Richardson-Gaudin method for

systems with the constant pairing interaction strengths

G = 0.1 and pair numbers from 1 to 6. Within the given

accuracy, the results from the two calculations are con-

sistent.

For the pairing Hamiltonian in Eq. (2), if we only

consider the time-reversal double degeneracy as the

Hamiltonian in Eq. (1), the exact diagonalization can

also be achieved in the Fock space, and the two dif-

ferent considerations should bring the same result for

the same system. For the exact pairing solution in

time-reversal-invariant systems, we developed a pro-

gram, PairDiag [1], to calculate the ground-state eigen-

value and the occupation numbers from the ground-state

eigenvector. In Table 5, we present the ground-state

eigenvalues and the difference of occupation numbers

from the PairDiagSph and PairDiag for calculations in

the system with 7 pairs under different constant pairing

interaction strengths G. For this system, the dimension

of the quasi-spin-space basis in PairDiagSph is 113372,

while the dimension of the fermionic Fock-space ba-

sis used in PairDiag reaches 154143080. To compare

the occupation numbers with PairDiagSph, we pack-

aged the 53 occupancies from PairDiag into 16. As can

be seen from Table 5, the results from the two methods

are almost the same, but for spherical pairing Hamil-

tonian 2 PairDiagSph is more advantageous because of

the quasi-spin symmetry considered.

5.3. Running Time

The most time-consuming part of the calculation is

the matrix-vector multiplication in Lanczos iterations.

Therefore, the running time of the entire calculation

mainly depends on the total number of iterations and

the time cost per iteration. The total number of itera-

tions can vary depending on interactions, spaces, and

CPU Time vs. Elements Number

Fitted Curve

Elements Number 10()10
0.50 1.0 1.5 2.0 3.02.5 3.5

0

C
P

U
T

im
e

1
0

s

(
)

2

3

6

9

Figure 2: The CPU time per Lanczos iteration with the hash search

as a function of the total non-zero matrix elements number. The solid

points are from the measurements and the dotted curve, y = 2.690×
10−8x, is the result of fitting.

Dimension 10()8
0.50 1.0 1.5 2.0 2.5

0

1

2

3

4
C

P
U

T
im

e
1
0

s

(
)

3

5

Binary Search

Hash Search

Figure 3: The CPU time per Lanczos iteration as a function of the

dimension with the hash search (red dots) and the binary search (blue

dots). The red curve, y = 3.624×10−6 x0.997 , is the fitting for hash

search, and the blue curve, y = 1.409×10−6 x1.135 , is the fitting for

binary search.

also the user’s choice of error tolerance, usually around

50 iterations are needed for a good convergence of the

ground state. The running time of a single iteration is

expected to be proportional to the total number of non-

zero elements in the Hamiltonian matrix in the use of

hash search algorithm. To map the running time of the

program, we performed 53 calculations corresponding

to the pair numbers varies from 1 to 53 in the model

space consisting of 16 orbitals from magic 20 to 126.

Fig. 2 represents the relationship between the CPU time

per iteration and the total number of non-zero matrix

elements from these calculations with the hash search

used, in which the data shows a good linear relation-

ship.

For a sorted array, the binary search [1] can always

be used to locate elements and this search algorithm

has also been encoded into the PairDiagSph program

for verification and comparison. Fig. 3 shows a com-

parison of the CPU time per iteration between using

the hash search and the binary search in the 53 calcu-

8

lations described above, from which we can see that

the hash search has higher efficiency and better linear-

ity. The CPU time is not the actual clock time, 1 itera-

tion with dimension 2.6×108 costs about 900 seconds of

CPU time, but it actually only takes about 2 minutes in

clock when eight CPU cores work in parallel. So, in the

full calculation of this case (Lanc Limit is set to 20

and the memory cost is about 33GB), the total running

time until having the ground state converged is about 1

hour and a half with 41 times of iterations in 2 restarts.

6. Summary

We presented an efficient diagonalization program for

solving the general spherical pairing Hamiltonian based

on the SU(2) quasi-spin algebra. Basis vectors with

quasi-spin symmetry considered are generated by using

the so-called adjacency excitation algorithm we devel-

oped. The Hamiltonian matrix constructed is diagonal-

ized with the Lanczos + QR algorithm. All non-zero

matrix elements for the matrix-vector multiplication are

evaluated dynamically by the scattering operator and

hash search actiong on the basis. With the OpenMp par-

allel Fortran module, PairDiagSph, developed by apply-

ing above algorithms, one can efficiently calculate the

ground-state eigenvalue and eigenvector of the spherical

pairing Hamiltonian for the system with fixed seniority.

The total pair capacity of the program is 63 which meets

the general needs for nuclear physics, and the calcula-

tion for spaces with dimension up to 108 can be done

within hours on standard desktop computers.

7. Acknowledgement

The work was supported by the China Schol-

arship Council (201700260183) and the Liaoning

Provincial Universities Overseas Training Program

(2019GJWYB024).

Appendix A. A Simple Example of Using the Pair-

DiagSph Module

A Fortran program for the spherical paring Hamilto-

nian using the PairDiagSph module (the model space in

the calculation consists of 4 orbitals 1 f7/2, 2p3/2, 1 f5/2,

and 2p1/2, giving the degeneracyΩ = {4, 2, 3, 1}).

! Step 0: Declare a variable of the type Diag Par

use PairDiagSph

implicit none

type(Diag Par):: P1

! Step 1: Initialize the input part

integer(kind=1):: i, j

P1%Shell = 4

P1%Pairs = 5

P1%Omega(1:P1%Shell) = (/4, 2, 3, 1/)

do i=1, P1%Shell

P1%Senio(i) = 0

P1%SPE(i) = i*1

do j=1, P1%Shell

P1%P F(i, j) = -0.2

end do

end do

! Step 2: Call the subroutine

call Diag Solver(P1)

! Step 3: Use the output part

write(*, *) P1%Energy Ground

write(*, *) P1%Monopole Min

do i=1, P1%Shell

write(*, *) P1%N Occup(i)

end do

Appendix B. Brief Description of Variables and

Subroutines

Variables:

• Lanc Limit: The size of the Lanczos iteration sub-

space.

• Lanc Error: In restart mode, the convergence

threshold in | βi/αi| ≤ Lanc Error.

• N Total, N Shell, and N Pairs: The total number

of orbitals, shells, and pairs in the calculation.

• B Dimension and L Dimension: The Dimension

of the basis space and the Lanczos iteration sub-

space in the calculation.

• Convergence: Flags for convergence for the restart

mode.

• Run Mode and Print Mode: Flags for run and

print.

• Energy Senio: The energy from unpaired particles

corresponding to the second term in Eq. (8).

• Energy Ground: The output ground-state eigen-

value.

• Monopole Min: The minimum of the diagonal el-

ements.

• Posit Min: The position of the vector with the

minimum diagonal element.

Arrays:

• SPE: The 1D array for single-particle energies.

• P F: The 2D array for pairing strength.

9

• N Omega: The 1D array for the degeneracy.

• P Index: The 1D array for the indexes.

• B Array: The 1D array for the basis vectors.

• C Array: The 2D array for coefficients Nd
p for the

hash search.

• Q Matrix: The 2D array for the Lanczos/Ritz vec-

tors.

• L Matrix: The 2D array for the Lanczos Matrix

and eigenvalues.

• N Occup: The 1D array for occupation numbers.

• I Vector and Q Vector: The temporary 1D arrays

for Lanczos iteration.

• O Array, V Array, O Prray, and V Prray: The

temporary 1D arrays for vector search.

• R Array: The temporary 1D array for vector

search.

• T Matrix and P Matrix: The temporary 2D arrays

for QR decompositon.

• Omega I and Omega F: The 1D arrays for the po-

sitions of the first and the last digits in shells.

• E Array: The 1D array for the frist 10 eigenvalues.

Type, subroutines, and functions:

• Diag Par: Derived data type.

• Diag Solver(Diag Par, [Mode]): The public sub-

routine that starts the calculation.

• Initialize(): The subroutine that allocates memory

for dynamic arrays and initializes basis vectors.

• Monopole E(State): The function returns the di-

agonal element value of input (State) according to

Eq. (8).

• Next State(State): The subroutine operates the in-

put (State) according to the Adjacency excitation

algorithm. 1.

• Bina State(D, L) and Hash State(D, L): The sub-

routines that calculate non-zero matrix elements

and positions related to the input State using binary

and hash search.

• Vector Initialize() and Vector Restart(): The sub-

routines that initialize the starting vector to

[1, 0, · · · , 0]T and Q Matrix(1, :).

• Lanczos Iteration(): The subroutine for Lanczos

iteration from starting vector I Vector.

• QR Decompose(): The subroutine for QR decom-

pose to the L Matrix.

• Destory(): The subroutine that releases all dy-

namic memories.

• Lanczos QR(): The subroutine that combines the

Lanczos Iteration() and QR Decompose().

• Results Output(): The subroutine that calculates

all the outputs.

References

[1] X.Y. Liu and C. Qi, Compt. Phys. Commun. (2020) 107349,

https://doi.org/10.1016/j.cpc.2020.107349.

[2] C. Lanczos, J. Res. Natl. Bur. STD. 45 (1950) 255-282.

[3] G. Racah, Phys. Rev. 63 (1943) 367.

[4] A. K. Kerman, R. D. Lawson and M. H. Macfarlane, Phys. Rev.

124 (1961) 162.

[5] A. Volya, B. A. Brown, and V. Zelevinsky, Phys. Lett. B 509

(2001) 37.

[6] Z. Xu and C. Qi, Phys. Lett. B 724 (2013) 4.

[7] S.A. Changizi, C. Qi, and R. Wyss, Nucl. Phys. A 940 (2015)

210.

[8] B. Chapman et al., Using OpenMP (MIT Press, Cambridge,

2008).

[9] I. Talmi, Simple Models of Complex Nuclei (Harwood Aca-

demic Publishers, Chur, Switzerland, 1993).

[10] A. K. Kerman, Ann. of Phys. 12 (1961) 300.

[11] P. Ring and P. Schuck, The Nuclear Many-Body Problem

(Springer Verlag, 1980).

[12] K. Wu et al., SIAM J. Matrix Anal. Appl. 22 (2000) 602-616.

[13] Y. Saad, Numerical Methods for Large Eigenvalue Problems,

Revised Edition (SIAM, Philadelphia, 2011).

[14] R. W. Richardson, Phys. Lett. 3 (1963) 277.

[15] R. W. Richardson and N. Sherman, Nucl. Phys. 52 (1964) 221.

[16] X. Guan, X. Ai, and C. Qi, Phys. Rev. C (under review).

[17] M. Gaudin, J. Physique 37 1087 (1976).

[18] F. Pang, J.P. Draayer, and W.E. Ormand, Phys. Lett. B 422

(1998) 1.

[19] J. Dukelsky, C. Esebbag, and S. Pittel, Phys. Rev. Lett. 88 (2002)

062501.

[20] X. Guan et al., Phys. Rev. C 86 (2012) 024313.

[21] C. Qi and T. Chen, Phys. Rev. C 92 (2015) 051304(R).

10

	1 Introduction
	2 The General Pairing Hamiltonian and Quasi-spin Algebras
	3 Principles of the Method
	3.1 Basis Generation
	3.2 Vector Search
	3.3 Matrix Construction and Diagonalization

	4 Description of the Code
	4.1 Step 0. Declare a Variable of the Type Diag_Par
	4.2 Step 1. Initialize the Input Part
	4.3 Step 2. Call the Subroutine
	4.4 Step 3. Analyze the Output Part
	4.5 Parallelization and Compilation

	5 Discussion
	5.1 Dimension of the System
	5.2 Comparison with Other Programs
	5.3 Running Time

	6 Summary
	7 Acknowledgement
	Appendix A A Simple Example of Using the PairDiagSph Module
	Appendix B Brief Description of Variables and Subroutines

