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Abstract

We present novel roulette schemes for rare-event sampling that are both structure-preserving and unbiased. The
boundaries where Monte Carlo markers are split and deleted are placed automatically and adapted during runtime.
Extending existing codes with the new schemes is possible without severe changes because the equation of motion
for the markers is not altered. These schemes can also be applied in the presence of nonlinear and nonlocal coupling
between markers. As an illustrative application, we have implemented this method in the ASCOT-RFOF code, used
to simulate fast-ion generation by radio-frequency waves in fusion plasmas. In this application, with this method
the Monte-Carlo noise level for typical fast-ion energies can be reduced at least of one order of magnitude without
increasing the computational effort.
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1. Introduction

Monte Carlo techniques can be efficient for solving a
variety of problems [1, 2, 3, 4, 5, 6]. One example is
plasma physics and the heating of plasmas with ion cy-
clotron resonance heating (ICRH) [7]. The particle dis-
tribution function f in a plasma is governed by a Boltz-
mann equation in Fokker-Planck approximation

∂ f
∂t

= −~a∇~z f + ∇~z ·

∇~z ·
↔

b ·
↔

b
2

f

 . (1)

~z is the phase space coordinate,
↔

D =

(
↔

b ·
↔

b
)
/2 is the

diffusion tensor, and ~a the advection velocity. The sin-
gle arrow denotes a vector, the double arrow a tensor.
↔

D and ~a together are refered to as Fokker-Planck Co-
efficients (FPC). f can be computed by simulating the
corresponding Langevin equation [8, p. 294ff]

d~z = ~a dt +
↔

b · ~ξ(t)
√

dt (2)
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for test particles, which we call markers. ~ξ are Gaussian
random numbers with zero mean and variance 1. The
markers are distributed according to f , which can be
reconstructed for example by using a histogram:

f histogram bin(t) =

∫
bin f (~z, t) d~z∫

bin d~z
≈

∑
i 1bin

(
~zi(t)

)
Wi(t)∫

bin d~z
,

(3)

where we approximated the integral over the distribu-
tion function with the sum over the markers inside a bin
of the histogram. 1bin(~z) is 1 if ~z lies in the bin of the
histogram, and 0 otherwise. Wi is the weight of the i-
th marker, which is constant unless reweighting is em-
ployed1. The markers are randomly initialized such that
equation (3) is valid for the initial condition for f .

For ICRH the FPC have two contributions: collisions,
for which a Maxwellian background plasma with which

1Some schemes introduce f (~z) = g(~z) · w(~z) [9], and evolve the
markers according to the Langevin equation for g. Each marker then
has a weight which evolves in time and effectively gives w(~z). We
instead directly solve for f . The weights are only adapted in discrete
steps when we employ reweighting, which will be introduced later.
The weights do not follow an equation of motion.
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the particles collide can be assumed [10], and radio fre-
quency (RF) interactions. The RF FPC depend on the
amplitude of the wave field Awave. The wave amplitude
is set by the injected power:

Prf = Awave

∫
D

g
(

f (z),
↔

D(z), v(z)
)

dz, (4)

where Awave · g is the density of the absorbed power,
and D the domain of the Fokker-Planck equation. When
modeling an experiment one has to adjust the FPC such
that the absorbed power is close to the power injected
in the experiment. Equations (1) and (2) are then nonlo-
cal, complicating the numerical solution of equation (1).
The Langevin equation (2) can still be solved for fusion
plasmas by orbit following codes such as ASCOT [10].
The code library RFOF [11] is used here to include the
RF interaction.

A direct numerical solution of equation (2) quickly
becomes computationally expensive when the solution
of the diffusion-advection equation varies by several or-
ders of magnitude in the domain of the solution. As f
is proportional to the probability distribution of marker
positions, only few markers are in areas where f is
small. Those areas are therefore only poorly resolved.
Plasmas heated by ICRH exhibit a population of highly
energetic ions, which are few compared to thermal ions
but of prime interest [12, 13, 14, 15].

From importance sampling we know how to reduce
the error of the simulation results in such regions of in-
terest: We have to place many markers there. Equation
(3) tells us that this corresponds to lower marker weights
in those regions compared to regions of less interest. As
the simulation progresses, the markers will mix due to
the stochastic term in equation (2), i.e. small markers
will leave the region of interest and large markers will
enter it. We need to adjust the weights of markers enter-
ing and leaving the region to keep the weight of mark-
ers in the region of interest smaller than the average
weight, which is called reweighting. There exist differ-
ent reweighting techniques in the literature which how-
ever suffer from drawbacks. The classic splitting and
Russian Roulette techniques [16, p. 99f] lead to grow-
ing fluctuations of the marker number and total weight
because the Russian Roulette does not conserve the con-
served quantities of the underlying Fokker-Planck equa-
tion. For long times all markers will eventually be
deleted (cf. the Bienaymé-Galton-Watson process [17,
5.4], which we introduce in Section 2.3). There are
other methods, based on merging markers [18], which
however bias the result. The mean result is then no
longer the exact result of the underlying Fokker-Planck
equation, although the extent of this effect can be miti-

gated by selecting well the markers that are merged (Oc-
tree binning) [18].

There exist other methods for resolving regions of
phase space with low densities, often collectively ref-
fered to as rare event sampling. Here we however
choose splitting and Russian Roulette techniques be-
cause

• They can cope with the nonlinear and nonlocal
property introduced by the fixed RF power (equa-
tion (4)).

• One can avoid additional bias compared to the di-
rect solution of the Langevin equation (2) with the
new splitting and roulette techniques presented in
this paper. We show this analytically for a special
case in in Appendix A, and verify it numerically
[19].

• The new reweighting schemes are structure pre-
serving because no errors in the moments of the
distribution function are introduced that grow as
the simulation progresses.

• It is possible to extend existing codes that directly
simulate the Langevin equation (2) without big
changes because the equation of motion for the
markers is not altered.

This paper is structured as follows: In Sections
2.2 and 2.3 we introduce the traditional splitting and
roulette methods as tools for variance reduction. In
Sections 2.3.1 - 2.5 we present our new reweighting
schemes, whose parameters can be chosen as described
in Section 2.6. The schemes are applied in Section 3. In
Section 3.3 we show how the new schemes can reduce
by orders of magnitude the number of markers needed
to obtain a certain noise amplitude for simulations with
the orbit-following code ASCOT [10].

2. Reweighting Techniques

Diffusion-advection equations are often solved by
markers evolving according to the associated Langevin
equation (2). This can be inefficient when the distri-
bution function f varies by orders of magnitude in its
domain. When we calculate f from the marker posi-
tions by using a histogram, we can use bin statistics2 to
estimate the accuracy of the result.

2For bin statistics we assume that the markers are independent, and
that the probability for a marker to be inside a histogram bin is small
compared to the probability of being outside of the bin. The number
of markers in the bin is then Poisson distributed, therefore the mean
equals the variance.
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When we assume that the number of markers in a bin
is Poisson distributed, we obtain for the relative statisti-
cal error of the reconstructed f

Erel =
σ( f )〈

f
〉 =

1
√
〈n〉

, (5)

where f is the reconstructed f from equation (3), σ the
standard deviation and 〈n〉 is the mean number of mark-
ers in the corresponding bin of the histogram. When f is
small in a region of phase space compared to elsewhere
in phase space, 〈n〉 will also be small by definition. Erel
is then large.

We can reduce Erel by using more markers in the low
density region. When we use more markers we have to
reduce their weight accordingly to obtain the correct f .
For a problem such as ICRF heating using differently
weighted markers in different regions of phase space is
not trivial because the simulated time scales are much
larger than the collisional time scales. The markers will
mix and the advantage of differently weighted markers
will vanish. It is therefore necessary to reweight the
markers, i.e. adjust their weights during runtime, as they
move in the domain. This can be done using splitting
techniques [16, p. 100] for markers that enter a region
of lower weight, and employing Russian Roulette tech-
niques for markers leaving low weight regions [16, p.
99]. For this we need to define discrete regions in phase
space.

2.1. Adaptive Weight Regions
To decide how to reweight the markers we define

nested (hyper)volumes in phase space, called weight re-
gions or simply regions, each with a different weight for
the markers therein. We define the weight regions with
the help of a scalar function w(z). The weight region i
with weight Wi is defined as

{
z ∈ D : Wi ≥ w(z) > Wi+1

}
,

where D is the whole phase space. The weight region
for each marker j and time step is found by comput-
ing w(z j). Note that we can use a single index to iden-
tify weight regions in a multidimensional phase space
by virtue of the mapping from phase space to R pro-
vided by w(z). The weights of the regions Wi are not
determined automatically and are free parameters.

The ratio between the weights of two adjacent regions
i and i + 1

Ri,i+1 =
Wi

Wi+1
(6)

is, for now, required to be an integer. After discussing
the novel schemes in Sections 2.3.1 and 2.3.2 we will
have the tools to relax this constraint.

By setting up weight regions we obtain the following
important properties:

1) Markers at the same phase space position have
the same weight. This is optimal, assuming un-
correlated markers, in the sense that the variance
of equation (3) is minimized. With reweighting
schemes it can be beneficial to allow some mixing,
as discussed in Section 2.4.

2) The largest weight that markers can obtain is given
by the weight of the first weight region. There is,
by design, no population of markers with higher
weights than desired.

3) We can freely choose which regions of phase space
to resolve with which weights. As we discuss
in the next paragraphs we can even automatically
adapt the regions during runtime.

4) Determining the weight region a marker belongs to
is efficient. One only has to evaluate w and deter-
mine the largest i with Wi ≥ w.

As described above the weight of a marker is a func-
tion of its phase space position, and it would therefore
not be necessary to store the weight. However, in Sec-
tion 2.4 we allow markers of different weight to mix to
some extent, making it necessary to store the weight.

We should not define the weight regions arbitrarily.
Bin statistics and importance sampling suggest that we
should concentrate all markers in the region of phase
space we are interested in. This consideration is, how-
ever, unaware of the fact that we still have to resolve the
rest of phase space with sufficient resolution to obtain
the boundary conditions for our regions of interest. We
will later refer to the influx of markers from a poorly
resolved region to a well resolved region as noisy flux.

One approach to sufficiently resolve the whole phase
space is to keep the marker density in phase space ap-
proximately constant. In this case w ∝ f , and we can
determine w by calculating the binned density whenever
we reweight. w is not constant in time. This rather
radical approach might reduce the accuracy of regions
with large f considerably compared to simulations with
equally weighted markers. As presented in detail ear-
lier [19] we can interpolate between w(z, t) = const and
w ∝ f (z, t). The idea is that the accuracy depends on
the phase space density of markers, and by interpolating
linearly between the marker densities we can interpo-
late freely between the weighting functions. In Section
3.2 and Figure 2 we will show that such an interpolated
weighting function can be used to resolve both low and
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high density regions well. We can write the interpolated
weight function as

w(z, t) =

M
(

1 − a
N

+
a

VD f (z, t)

)−1

, (7)

where

N B
∫

D
f (z) dz

VD B

∫
D

dz

are constants, and M and a are parameters that can be
freely chosen. M is the (mean) number of markers used
in the simulation, and a ∈ [0, 1] determines how the
weight regions are placed. a = 0 yields markers of equal
weight, and a = 1 a spatially constant marker density
in phase space. As long as N and VD are conserved,
the mean number of markers does not change during
the simulation, provided the discretized weights Wi are
close to one another and can be considered continuous.
If VD is infinite we can for example define a minimum
weight beyond which markers are no longer split. Then
the mean number of markers can change during the sim-
ulation even when N is conserved.

Calculating w according to equation (7) in general
requires communication between threads because we
need to evaluate the local f . Usually the distribution
function evolves on longer time scales than the time be-
tween reweightings. Then w does not need to be calcu-
lated every time, allowing for reweighting without com-
munication between threads for each operation. An-
other implementation detail is the choice of Wi, which
is explained in section 2.6.

2.2. Splitting
When we split one marker into R markers we have to

1) reduce the weight of the marker by a factor 1/R

2) create R − 1 identical copies of the marker.

Immediately after splitting there is no improvement
of the accuracy. The R markers at the same position are
mathematically identical to the original marker, but re-
qire R-times as many computations to advance. The ac-
curacy however improves as the simulation progresses:
The stochastic motion due to the diffusive term in equa-
tions (1) and (2) is different for each marker. After long
times the accumulated stochastic motion is sufficiently
large that the marker position is mostly independent of
the initial position. We call the time scale required for

this to happen the decorrelation time. After the markers
are decorrelated we can treat them as independent, and
equation (5) holds again.

Observe that the notion of independent markers de-
pends on what we evaluate with the markers. When con-
sidering the binned density, as used for histograms, the
markers can be considered independent when the R in-
tially identical markers are not all in the same bin. This
happens when the markers have independently traveled
one bin-length, which is therefore the length scale on
which the markers become independent. To summarize,
markers decorrelate on shorter lengths when the mea-
sure we evaluate, e.g. the binned density, is more local-
ized. The decorrelation is apparent in figure 1, where
the variance of the result drops to the prediction assum-
ing uncorrelated markers approximately at a distance of
0.2 away from the boundary where markers are split.

2.3. Russian Roulette

When markers travel from the low-weight region i +

1 to the high-weight region i, we have to reduce their
number and therefore increase their weight. Contrary
to approaches in current literature [20, 18] we do not
merge markers as this will result in a biased estimate of
the distribution function [20]. Instead, we delete some
of the markers. With the traditional so-called Russian
Roulette [16, p. 99] we delete markers that travel from
region i + 1 to region i with a probability of 1− 1/Ri,i+1,
and multiply the weight of the survivors by Ri,i+1. If a
marker jumps from region i to i + j or i − j it is split
j times or undergoes the roulette j times, depending on
the sign. Note that even when a method is unbiased it
can lead to fluctuations that reduce the accuracy of the
simulation.

When implementing reweighting as so far described,
i.e. we

• define weight regions,

• split markers when they travel to a region of lower
weight,

• delete markers with the Russian Roulette when the
travel to a region of higher weight,

the number of markers will fluctuate and eventually
(lim t→∞) all markers will be deleted: A marker of
weight W travels to a lower-weight region and is split
into R markers. Subsequetely these markers eventually
return to the original region, meaning every marker is
deleted with a probability of 1 − 1/R. The number of
markers n is then a stochastic variable, with a variance
σ2

0 ≈ n. As the simulation progresses there will be many
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subsequent splittings and roulettes. Neglecting correla-
tions this is the Bienaymé-Galton-Watson process [17,
5.4]. This insight yields two important conclusions:

• The probability that all markers are deleted for
lim t→∞ is 1.

• The variance of the marker number is σ2 = mσ2
0

after reweighting each marker m times.

Let us consider mass conservation as an example: If we
reweight each marker once for every marker in our sim-
ulation, we can expect that the error of the total mass is
comparable to the total mass itself. For longer simula-
tions we therefore have to take precautions against this
effect. We now present two new reweighting schemes
that are structure-conserving in the sense that the mass
error does not grow as the simulation progresses.

2.3.1. Correlated Roulette
From now on we will describe the new techniques

to avoid the shortcomings of the traditional Russian
Roulette. Our first approach is to use correlated in-
stead of uncorrelated random numbers for the Russian
Roulette. We require R = k/l to be a rational number
with k and l integers and k ≥ l. To let, on average, only 1
out of R markers survive the crossing to the high weight
region we delete exactly k− l out of every k markers that
travel to the high weight region.

One way to implement this is to take a Boolean ar-
ray with k entries. The array contains l entries of 1 and
k − l entries of 0, where 0 represents deleting a marker
and 1 letting it survive. The order is randomly assigned.
For the first marker that crosses the boundary we use
the first entry to decide whether to delete it or not, for
the second marker the second entry and so forth. Af-
ter the last entry of the array has been used we fill the
array with entries in a new and random order and start
with the first entry for the next marker. Compared to
an uncorrelated random number generator that gives 1
with probability (k− l)/k and 0 otherwise we built a ran-
dom number generator with the same probabilities for
the results, but with correlations between the generated
random numbers such that we always delete (k−l) mark-
ers out of k. We use such a correlated random number
generator for each boundary between weight regions.

After k markers have traveled to the high weight re-
gion, the total weight is identical to the total weight
before the markers traveled to the high weight region.
The total weight can therefore only deviate slightly from
the true value, and this deviation does not grow larger
with longer simulated time. Also, this deviation of total

weight is O(N−1)3, with N the number of markers used
in the simulation, and quickly becomes negligible when
N � k.

2.3.2. Deterministic Roulette
Our second approach aims not only at avoiding grow-

ing fluctuations of the zeroth moment of the distribution
function but of all moments. While we will not prove
this property rigorously, we will give an argument in the
following paragraphs. In section 3.1, where we consider
the binned distribution function, this advantage will be-
come visible.

As an additional property of each marker we store
the region in which the marker was created and use
this information instead of random numbers for decid-
ing which markers to delete. Markers are deleted when
they travel to a region of higher weight than what they
were created with. Markers that originated in the high-
est weight region will never be deleted. But as all
other markers their weights change as the markers move
between regions and generate new markers by split-
ting. All markers that are created by splitting eventually
travel to a weight region where they are deleted. The
marker population is therefore composed of two parts:

A) Markers created in the highest weight regions.
Their distribution is uninfluenced by reweight-
ing, and therfore reweighting cannot introduce any
fluctuations for them.

B) Markers created by the A-markers when they travel
to a lower weight region. After an A-marker cre-
ated a B-marker it needs to return to the larger-
weight region before it can create another sucher
B-marker. Because both A and B markers follow
the same equation of motion, the probability for the
A-marker to return to the high weight region un-
til some time τ is the same as for the B-marker to
be deleted before the time τ. We therefore expect
that there is no accumulation or depletion of B-
markers as the simulation progresses because the

3Suppose n0 ∝ N markers travel from the low-weight to the high-
weight region. They initially have weight Wi+1, after passing the
roulette they have weight Wi. The number of markers that survive
the roulette is n1. The correlated roulette would ideally preserve the
total weight

wtot,ideal = n0 Wi+1 = n1,ideal Wi.

An upper bound for the error of the roulette, i.e. the mismatch between
n1,ideal and n1,real, is k. Because Wi ∝ 1/N we obtain∣∣∣wtot,ideal − wtot,real

∣∣∣ =
∣∣∣n1,ideal − n1,real

∣∣∣ Wi ≤ k Wi ∝ 1/N. �
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whole population of B-markers is continuously re-
newed by the A-markers whose population is un-
influenced by reweighting.

We still introduce fluctuations by reweighting because
markers that were created in the low weight regions and
the original marker from the high weight region will
in general not return simultaneously. But these fluc-
tuations do not accumulate or grow as the simulation
progresses.

When we initialize the markers in the beginning of
the simulation we have to set their creation region.
A simple approach would be to create markers with
weights for the highest weight region and reweight
them. A method that however introduces fewer fluc-
tuations and can generate a list of markers with prop-
erly set creation weights from any list of (non-uniformly
weighted) markers is presented in [19]. This initializa-
tion method can also be used to add markers during run-
time.

2.4. Hysteresis Region

Reweighting introduces fluctuations, even with the
correlated and the deterministic roulette.

A Monte Carlo marker typically moves on a zigzag
trajectory as known from Brownian motion. When a
marker travels from one weight region to another we can
therefore expect it to cross the boundary many times. If
the time resolution becomes infinite we expect an infi-
nite number of crossings because the underlying Wiener
process is self-similar [21].

Every time we reweight a marker we introduce fluc-
tuations. It is therefore advisable to not reweight too
often, e.g. after every time step. While it is not obvious
what the optimal time between reweightings is, letting
the markers mix until they have typically moved across
a weight region before reweighting has proven to yield
satisfying results [19].

Selecting the corresponding time between reweight-
ings can be problematic when the diffusion coefficient
varies in phase space or when it is not explicitly known.
In this case we can reweight after short times and define
a hysteresis region where the markers are allowed to
mix. Without hysteresis, we split a marker at position
z with weight Wi when w(z) ≤ Wi+1, and subject it
to the roulette when w(z) > Wi. With a hysteresis of
width h we increase the region the marker can move in
before being reweighted by exponentiating with h/2:{
z ∈ D : Wi

(
ri−1,i

)hi−1,i/2
≥ w(z) > Wi+1

(
ri,i+1

)−hi,i+1/2
}
.

The hysteresis width h does not have to be identical for
all boundaries, therefore we introduced the indices.

2.5. Rational Instead of Integer Weight Ratios r

Our roulette methods can already cope with more
general weight ratios. r has to be a rational number for
the correlated roulette, while for the traditional Russian
roulette and the deterministic roulette real r would be
possible as well. Splitting is more problematic. After
splitting, the newly created markers should have equal
weight because markers with less weight require just
as much computational time as markers with higher
weight, but contribute less to the result. This leads to
an increased variance as compared to markers that are
created with equal weights.

We can still use non-integer weight ratios when we do
not always split into the same number of markers. If we
used uncorrelated random numbers to decide into how
many markers to split, the total weight in the simula-
tion would fluctuate strongly for long simulation times,
just as with the Russian roulette. While the determin-
istic roulette would still avoid those fluctuations, we
can eliminate them independently of the used roulette
scheme by using correlated random numbers. With the
deterministic roulette we can also avoid fluctuations of
the higher moments by using an independent correlated
random number generator for each high-weight marker
separately. The details are presented elsewhere [19].

2.6. Choice of Parameters

First one has to decide on w: The highest resolution
for low densities is achieved by setting a = 1 in equa-
tion (7). But by setting an intermediate value for a we
can resolve both high and low densities well as we will
explore in section 3.2. To finish the definition of our
weight regions we have to set the weight ratios between
the regions. The exact value of this quantity is not criti-
cal. Smaller values give weight regions that more accu-
rately follow the density while increasing the overhead
due to reweighting.

Next we have to decide on the time that should elapse
between two reweightings of all markers. We want to
let the markers mix across a region before reweighting
again instead of reweighting immediately, both to avoid
detrimental effects due to consecutive reweightings and
to reduce the computational overhead. Again, the exact
value is not critical. An estimate of the mixing time for
diffusive processes across a length l can be found with

tmix =
l2

D
, (8)

with D being the diffusion coeffient. The width of a
region l and D can change over the simulation domain
and during runtime, and we have to estimate the typical
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value. If the mixing times differ strongly we can base
l on the smaller values of tmix, and use an additional
hysteresis for the larger ones. A reasonable value for h
from section 2.4 that allows mixing across a region is
0.8.

Empirically the timestep for reweighting should be
≈ tmix/10, but as we will see in section 3.3 even devia-
tions from this rule by almost an order of magnitude still
give good results. If reweighting with this estimated fre-
quency is still too large of an overhead one can reduce
the weight ratio between regions to increase tmix.

Finally it can be advantageous or necessary to specify
a weight below which markers are no longer split into
smaller ones.

3. Characterization and Performance of Novel
Schemes

We characterize the schemes by considering simple
diffusion-advection equations in sections 3.1 and 3.2.
We let the simulations reach steady state and use bins
to calculate the phase space density for many, i.e. 106,
points in time. From this set of measurements for the
same phase space densities one can then calculate the
variance of the density measurement.

After splitting, the markers decorrelate on the length
scale of the bin size. To analyze the decorrelation pro-
cess it is therefore necessary to use overlapping bins.

To be able to compare simulations with different
numbers of markers we have to eliminate the depen-
dency of the error on the number of markers N. For
simulations utilizing the deterministic roulette, or ones
without reweighting, we can make use of the error scal-
ing as O

(
N−1/2

)
common for Monte Carlo simulations

because the markers are independent. This scaling also
holds for the correlated roulette, as we have shown nu-
merically in a previous work [19]. Note that the same
scaling appears in equation (5) in a slightly different set-
ting.

We therefore multiply the determined variance of
some quantity with 〈N〉, the mean number of markers
used in the simulation. To obtain a quantity for the rel-
ative error we additionally divide by the squared mean
of the quantity, µ:

σ2
norm = σ2 〈N〉

µ2 . (9)

In the following we consider three different cases.
More cases can be found in Schuster’s thesis [19].
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Figure 1: The normalized variance of a binned density measurement
in a two-dimensional domain. At x < 0.5 we use markers with twice
the weight as at x > 0.5. We use markers of equal weight when we
do not reweight. In the case presented here the correlated roulette
performs worse than the deterministic roulette, especially when no
hysteresis is used. This is not the case when the markers mix well in
the y-direction (not shown here).

3.1. Wiener Process
We start our analysis with the Wiener process, a sim-

ple diffusive process, which is described by

∂t f =
(
∂2

x + ∂2
y

)
f . (10)

The computational domain is two-dimensional with x ∈
[0, 1] and y ∈ [−5, 5], with a common diffusion coef-
ficient for both dimensions and mirror boundary con-
ditions. The analytical solution for the steady state is
f (x, y, t) = const. In more than one dimension the cor-
related roulette can show detrimental effects, which is
why we consider the 2D case. We choose the y domain
larger than the x domain to amplify these detrimental
effects. The bins for the density measurement have a
size of 0.2 × 0.2 and are positioned at y = 0. For show-
ing the effect of multiple consecutive crossings we want
to choose a small time step for the Euler-Maruyama
scheme [22] used to advance the markers. As a compro-
mise with the required computational time we choose
≈ 2.2 × 10−4. The initial distribution of markers is al-
ready constant in phase space. We start the simulations
with 1000 markers.

In Figure 1 we see the numerically determined σ2
norm

for this setting. With markers of equal weight (gray, dot-
ted line) σ2

norm = 2494. We can estimate σ2
norm analyti-

4Consider a single marker. The probability distribution for
its position is uniform. The result of the histogram is given by
1bin(~zmarker)/

∫
bin d~z. The definitions of mean, variance and σ2

norm can
now be applied, and we obtain the normalized variance for the his-
togram for markers without (re)weighting.
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Scheme Hysteresis
Relative mass error
using 1000 markers

no reweighting - 0.0 %
correlated 0.0 1.3 %
correlated 0.1 0.9 %
deterministic 0.0 2.2 %
deterministic 0.1 1.8 %

Table 1: The roulette schemes do not exactly conserve mass. In this
table we show the relative mass error for the simulations in figure 1.
The correlated roulette maintains the mass more accurate than the de-
terministic roulette. A hysteresis reduces fluctuations not only for the
binned density but also for the mass. While the question on whether
these fluctuations are problematic depends on the specific use case, we
would generally negate this: Simulations tend to use orders by mag-
nitude more markers than the 1000 we use for this example, and the
error generally shrinks as O

(
N−1/2

)
when using more markers. When

we use the correlated roulette the error even scales as O
(
N−1

)
instead

(section 2.3.1). Note that these fluctuations do not grow with time.

cally using bin statistics (gray, solid line). For reweight-
ing we separate the domain into two weight regions:
for x < 0.5 the markers have twice the weight as for
x > 0.5. When we use the correlated roulette without
hysteresis (blue, solid line) the results are less accurate
than without reweighting everywhere, and lie clearly
above the prediction from bin statistics. At x ≈ 0.5 we
see an increase in variance due to fluctuations arising
from reweighting. When we use a hysteresis region of
0.1 (blue, dashed line) the markers are split and deleted
less often, and the accuracy is improved. σ2

norm still lies
above the prediction from bin statistics.

With the deterministic roulette the markers in the high
weight region are not influenced by reweighting, as dis-
cussed in Section 2.3.2. This manifests in Figure 1 as
a good agreement between the result with the determin-
istic roulette and the prediction from bin statistics for
x < 0.4. At x > 0.4 there are already markers from the
low weight region inside the bin because the bin width
is 0.2. When going towards larger x, σ2

norm decreases,
but it lags behind the prediction from bin statistics be-
cause the markers need time to decorrelate. When intro-
ducing a hysteresis of length 0.1 (red, dashed line) we
reduce fluctuations and smooth the transition between
the weight regions.

Finally we also investigate the effect of reweighting
on the particle mass in the system. As shown in table 1
here the correlated roulette leads to smaller deviations.
A hysteresis reduces the deviations, as for the binned
density. We would expect that these fluctuations in the
total mass are not problematic for most applications.

0.0 0.2 0.4 0.6 0.8 1.0
x

100 100

101 101

102 102

103 103

104 104

105 105

¾
2 n
or
m

no reweighting
a=1:00, b! ¡1
a=0:78, b=0:1
a=0:48, b=0:2
a=0:20, b=0:3
a=0:06, b=0:4

Figure 2: The normalized variance of density measurements at dif-
ferent positions x, shown for different w as defined by equation (7).
The boundaries between the weight regions for b = 0.4 are shown as
vertical red lines.

3.2. Diffusion-Advection Equation
In Section 3.1 we looked at a single boundary be-

tween two weight regions in detail. There, f was con-
stant. Reweighting is however designed to improve the
accuracy in low-density regions. To obtain an equilib-
rium density that varies as a function of x we add ad-
vection to equation (10). For simplicity we restrict our-
selves to a 1D process:

∂t f = −v∂x f + D∂2
x f . (11)

Together with mirror boundary conditions we obtain the
steady state solution

f (x) = f0 exp{(−sx)} (12)

with

s = −
v
D
≈ 13.3. (13)

We simulate this equation in the domain [0, 1], us-
ing mirror boundary conditions. The time step is
2.5 × 10−5.

As described in Section 2.1, we place the boundaries
between weight regions such that the marker density lies
between constant marker density and the marker density
for uniform markers. At a = 0 the markers have equal
weight, and at a = 1 the weight of the markers is propor-
tional to f . We use the deterministic roulette because it
is more reliable in multiple dimensions as show in figure
1, but the result is very similar for the correlated roulette
in this case.

The normalized variances σ2
norm of the simulations

are shown in Figure 2. The boundaries between the
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a
Relative mass error
using 1000 markers

0 (no reweighting) 0.0 %
1 3.07 %
0.78 1.73 %
0.48 0.74 %
0.20 0.33 %
0.06 0.17 %

Table 2: The relative mass error for the simulations in figure 2. Re-
gardless of the weighting of the particles the mass is always con-
centrated at small x. Smaller a values, and therefore less aggressive
reweighting at these higher densities, lead to smaller deviations. As
argumented in table 1 we would expect that such fluctuations are un-
problematic for most applications. Note that these fluctuations do not
grow with time.

weight regions for a = 0.06 are shown as vertical red
lines. The density f follows equation (11) and is ex-
ponentially declining on a length scale of v/D ≈ 13.3.
Without reweighting, the variance is roughly inversely
proportional to the density, leading to inaccurate results
at x = 0.9. By reweighting we can reduce the variance
at large x by more than three orders of magnitude. Si-
multaneously the variance at x = 0.1 is increased by up
to a factor of 8. With the parameter a we can choose
which regions we want to resolve with which accuracy.
As an example, suppose we want to increase the accu-
racy in the low density region without compromising in
the high density region, compared to the case without
reweighting. By choosing a = 0.06 we could reduce
the variance at x = 0.9 by over two orders of magni-
tude while increasing the variance at x = 0.1 by merely
3.4 %.

There is a descriptive way of understanding how such
large gains in accuracy in the low density tail can be
achieved by sacrificing comparably little accuracy in the
high density bulk. At high densities there are orders of
magnitude more markers than at low densities. Moving
a small fraction, e.g. a few percent, of the markers at
high densities to low densities has only a small impact
on the high density region. But it greatly increases the
number of markers, and therefore the accuracy, in the
low density region.

We show the fluctuations of the total mass that arise
from reweighting in table 2. If we decrease a we
reweight the high density areas less agressively, leading
to fewer fluctuations. As high density areas contribute
strongly to the total mass we therefore decrease fluctu-
ations thereof by decreasing a. As before we suspect
most applications of the schemes are not hindered by
the mass fluctuations.

Quantity Value
central electron temperature 7.2 keV
central ion temperature 2.1 keV
central electron density 4.3 × 1019 m−3

central deuteron density 1.7 × 1019 m−3

central proton density 0.36 × 1019 m−3

central nitrogen density 0.07 × 1019 m−3

toroidal magnetic field −2.4 T
plasma current 700 kA
neutral beam heating 2.6 MW
ion cyclotron heating 3.6 MW
electron cyclotron heating 1.3 MW
simulated time 0.1 s
a in equation (7) 1
time between reweighting 150 µs
weight ratio between regions 1:3
hysteresis width h 0.8
number of regions 10

Table 3: Key experimental quantities of ASDEX Upgrade discharge
#33147 at t = 1 s and parameters for the ASCOT simulation thereof.
More details of the simulation setup can be found in Sipilä et.al. [23].

3.3. ASCOT-RFOF

As last test case we return to the physical problem
of ICRH. The orbit-following code ASCOT [10] calcu-
lates the distribution function of particles in tokamaks
or stellarators. Together with the code library RFOF
[11] ASCOT can be used to model ICRH. We imple-
mented reweighting with both the deterministic and the
correlated roulette in ASCOT. The weight regions are
adjusted automatically, as described in Section 2.1. We
use weights proportional to the distribution function, be-
cause the distribution function changes drastically dur-
ing heating with RF waves. Reweighting is not yet par-
allelized even though the schemes are suited for paral-
lelization.

ASCOT-RFOF is initialized with a wave amplitude
which determines the absorbed heating power. If we
keep this wave amplitude constant the absorbed power
is initially only ≈ 0.05 MW, but increases to an aver-
age ≈ 2.3 MW during 0.1 s as the distribution function
evolves. Usually one adjusts the wave amplitude during
the simulation such that the absorbed power matches the
desired value throughout the simulation. This feedback
constitutes a nonlinearity in the equation of motion of
the Monte Carlo markers. A certain number of markers
is required such that the absorbed power can be deter-
mined accurately. Because reweighting is not yet par-
allelized we can only use a limited number of markers,
and we cannot readjust the RF wave amplitude. Instead
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Figure 3: Hydrogen distribution functions calculated with ASCOT-
RFOF. The setup of the simulations, which model the ASDEX Up-
grade discharge #33147, is based on Sipilä et.al. [23]. With reweight-
ing we can resolve lower densities and reduce the Monte Carlo noise.
The average absorbed heating power for the correlated, determinis-
tic and equally weighted cases are 2.24 MW, 2.28 MW and 2.29 MW.
The simulations were performed on the DRACO cluster at IPP Garch-
ing.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
10 0

10 1

10 2

10 3

10 4

Figure 4: The number of markers in each bin, with a width of 50 keV
each. As specified in table 3 we use 10 weight regions with a weight
ratio of 1/3 each. By choosing a = 1 in equation (7) we spec-
ify constant marker density until the density drops by a factor of
(1/3)10−1 ≈ 5 × 10−5. From figure 3 we can determine that the distri-
bution drops below this factor at E ≈ 1.6 MeV. We show here that the
marker density indeed is approximately constant until E ≈ 1.6 MeV
when we reweight the markers with the presented methods (red and
blue lines). At higher energies, corresponding to lower densities, we
do not reweight any further leading to a drop of marker density. If we
use markers of equal weight on the other hand (grey line) most mark-
ers are concentrated at low energies below 100 keV. As we discuss in
figure 5 the higher marker density reduces the Monte Carlo noise by
orders of magnitude at high energies.

the wave amplitude is kept constant throughout the sim-
ulation, resulting in a different heating power compared
to the experiment. The difference in heating power to
the experiment does not hinder comparing the numer-
ical methods. We also do not replenish wall losses to
simplify the implementation. The simulation results can
therefore not be compared to the experiment, but we
can nevertheless compare simulations with and without
reweighting.

The hydrogen distribution function f is calculated
with ASCOT-RFOF, based on the setup from Sipilä [23]
for ASDEX Upgrade discharge #33147. Parameters for
the modelled discharge and the simulations themself are
given in table 3. We follow the procedure from sec-
tion 2.6 for choosing the tabulated values. We place
our regions such that we put maximal emphasis on the
low-density tail of the distribution function by setting
a = 1 in equation (7). When choosing the timestep for
reweighting we are facing vastly varying diffusivities as
a function of the energy coordinate. For thermal ener-
gies we would ideally choose a reweighting timestep of
≈ 20 µs, for higher energies the mixing time would sug-
gest a much larger value. To avoid overhead we select
a comparably large reweighting timestep of ≈ 150 µs,
and use a hysteresis to allow the markers to mix also at
higher energies.

We compare simulations without reweighting and
with our new weighting schemes in Figure 3. All three
distribution functions agree well. With reweighting
we can resolve energies that are orders of magnitude
lower than the ones resolvable with uniform weights
(’no reweighting’ in figure 3). Additionally the distri-
bution functions obtained with reweighting show less
noise. These advantages stem from the tailored marker
density, which is shown in figure 4.

To quantify the Monte Carlo noise we can not use the
same approach of the simpler test cases in Sections 3.1
and 3.2 because the simulation is too expensive to be
run for long enough times. Bin statistics is also not ap-
plicable because the markers are correlated, and there-
fore no Poisson distribution for the number of mark-
ers in the bins can be assumed. Instead, we separate
each bin from the histogram shown in Figure 3 into 50
smaller bins. We assume that f changes only little over
50 keV and interpret the values from the 50 smaller bins
as samples of the same physical f . We can thus calcu-
late the variance σ2, and therefore σ2

norm, for each his-
togram bin. This yields only an estimate for the variance
due to noise: We are unable to detect offsets that span
over 50 keV, and any physical change of the distribution
function over 50 keV is interpreted as noise.

In Figure 5 we show σ2
norm as a function of f . At high
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Figure 5: On the left we show σnorm as described in 3.3 as a function
of the distribution function. The distribution function is normalized
to the density of thermal ions. When going towards lower densities
the normalized variance increases more slowly with reweighting than
without it. Both reweighting schemes perform similarly. Bin statistics
can predict the accuracy of the simulation without reweighting, the
prediction is shown as black line. We divide all points by the predic-
tion by bin statistics for the case without reweighting, and show the
result on the right to be able to judge the improvement from reweight-
ing directly. At f / f0 = 10−6, corresponding to ions of ≈ 2 MeV, the
variance due to noise is reduced by a factor of ≈ 350. The data without
reweighting is from Sipilä [23].

densities the distribution function varies quickly, vio-
lating our assumption of constant density in each bin.
It is therefore not possible to reconstruct the variance
for f / f0 > 10−2, where f0 = f (E=0). With reweight-
ing the results are more accurate than without reweight-
ing already at f / f0 > 10−2. When going towards lower
densities the normalized variance increases more slowly
with reweighting than without it. Both new reweight-
ing schemes perform identically. We can predict the
normalized variance of the result without reweighting
using bin statistics (prediction is shown as black line).
We then divide all data points by the prediction to com-
pare the performance more directly, this is shown on
the right. At f / f0 = 10−6, corresponding to ions of
≈ 2 MeV, the variance due to Monte Carlo noise is re-
duced by a factor of ≈ 350. Observe that due to noisy
flux there are correlations between bins, meaning noise
is not the only source of the variance of the result.

When interested in ions with an energy of 2 MeV we
can reduce the computational time by a factor of 350,
provided enough markers are used to renormalize the
RF wave field.

4. Conclusion

When using splitting and roulette schemes one has
to define regions in the simulation domain and bound-
aries between them. Every region is associated with the
weight of the markers therein. We presented a method to
automatically define these regions, and even adapt them
during the simulation to account for changing require-
ments due to the evolving distribution function. We
developed two new roulette schemes because the tradi-
tional Russian Roulette [16, p. 99] leads to fluctuations
that accumulate during the simulation. The new roulette
methods possess two important properties:

• Approximate conservation of mass for the corre-
lated roulette, and of all moments of f for the de-
terministic roulette.

• Nonexistence of a bias: The mean result of sim-
ulations is the same as without reweighting. This
is proven for a special case in Appendix A and
shown numerically elsewhere [19].

The schemes are accompanied by various methods to
improve accuracy (Section 2.4) and that simplify use
and implementation of the schemes, for example an al-
gorithm for efficient and easy initialization of markers,
and a manual for choosing parameters [19, 4.4].

We verified the new schemes with simple models that
allow for an analytical solution, and showed that they
are capable of reducing the variance due to Monte Carlo
noise by orders of magnitude. This is also the case with
realistic applications, as in the case of fast-ion tails gen-
erate with ICRF heating in fusion plasmas.

Simulations of ICRF heating are challenging because
coefficients of the governing Fokker-Planck equation
depend on time and nonlocally on the solution. Fur-
thermore source terms can be present from neutral beam
injected particles or fusion reactions, which require that
markers are added during runtime. The algorithms pre-
sented in this paper however can cope with these re-
quirements. Their implementation in existing codes is
relatively straight forward, since the schemes do not
alter the equations of motion of the markers. Finally,
the reweighting schemes can be parallelized and require
minimal communication between threads.
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Appendix A. Unaltered Mean Result of Simulation

In this section we show for a special case that the deterministic roulette does not alter the mean result of the
simulation. The case that we consider is restricted as follows:

• There is only one boundary.

• There is no hysteresis.

• The weight in the high weight region is twice the weight in the low weight region.

Appendix A.1. Problem Description and Definitions
Markers are at discrete positions in a 1D domain, and advance on discrete time steps. The change from continuous to

discrete space and time is no restriction as the numerical schemes are used on computers, which require discretization
anyways. The positions with index i < 0 are the high weight region, the positions with i ≥ 0 are the low weight region
with half the weight. We will call the marker that originated in the high weight region ’blue’, and the markers that are
created by the blue marker ’green’.

We only consider a single blue marker. This is however no restriction as the blue marker, and the green markers it
creates, is completely independent and therefore uncorrelated from any other blue or green markers.

The green and blue markers travel from a position p to other positions q with probabilities G(p, q) and B(p, q),
respectively. As there is no restriction to B and G, the marker position can be interpreted as a label for grid points in
a multidimensional domain. This proof therefore automatically also holds for multidimensional problems. When a
green marker jumps to the high weight region it is deleted. When the blue marker jumps from the high weight region
to the low weight region it creates a green marker at the target position. When a green marker has been deleted, we
denote its state as D < N0.

The set of states the markers can be in is given by

X =

{(
b, ~g

)
|b ∈ Z, g ∈

(
N0 ∪ {D}

)n , n ∈ N0

}
, (A.1)

i.e. there are n green markers, and every marker has a position. The number of elements in ~g is n. The probability
space for these states is given by 5

C00(X) = span
(∣∣∣b, ~g〉 , x ∈ X

)
. (A.2)

A (properly normalized) state |Ψ〉 ∈ C00 is called the stochastic vector, and can be interpreted as probability distribu-
tion on X: If |Ψ〉 ∈ X we are certain what the state of the system is. If |Ψ〉 < X the system could be in different states
with some probabilities. The probabilities are the coefficients for the basis vectors of C00. The transition probability
between states is given by

m
(
x→ y

)
= P

(
state = y at time t + 1|state = x at time t

)
, (A.3)

which is the x, y element of the corresponding stochastic matrix M. A state at time t + 1 can be obtained from the state
at time t:

|Ψ〉t+1 = M |Ψ〉t (A.4)

Our main quantity of interest will be the number of green markers at the position p:

Fp

(∣∣∣b, ~g〉) = #
{
i|
(
~g
)

i
= p

}
=

l(~g)∑
k=1

δgk ,p. (A.5)

5Since we are only interested in finite times, only a finite number of green markers can be generated. Therefore a probability distribution on X
can be seen as an element of the space of finite sequences, indexed by X.
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l
(
~g
)

is the number of entries in ~g, which is the number of green markers that have been created. Similarly, the number
of blue markers at the position p is given by

Hp

(∣∣∣b, ~g〉) = δb,p. (A.6)

We expand the definition sets of Fp and Hp by linearity to the space C00 (x). This expansion by linearity is equivalent
to calculating the mean density of markers as position p:

Fp
(
|Ψ〉

)
= Fp

∑
i

pi

∣∣∣b, ~g〉 =
∑

i

piFp

(∣∣∣bi, ~gi

〉)
=

〈
Fp

〉
{pi}

, (A.7)

the same holds for H.

Appendix A.1.1. Goal
The reconstructed probability density of the stochastic process is calculated by binning the marker positions, and

multiplying the number of markers in each bin with the weight of the markers. The mean density is then〈
ρ
〉

= wg

〈
Fp

〉
+ wb

〈
Hp

〉
, (A.8)

where wg and wb are the weights of the green and blue markers. In the high weight region Fp is 0, and wb = 1. The
same is true if there is no reweighting. We then have〈

ρ
〉

=
〈
Hp

〉
. (A.9)

In the low weight region we have wg = wb = 1/2,〈
ρ
〉

=
1
2

(〈
Fp

〉
+

〈
Hp

〉)
. (A.10)

The proof is finished when we find that
〈
ρ
〉

is the same with and without reweighting. In other words,

1
2

(〈
Fp

〉
+

〈
Hp

〉)
=

〈
ρ
〉

=
〈
Hp

〉
, (A.11)

hence 〈
Fp

〉
t
= Fp

(
|Ψ〉

)
t = Hp

(
|Ψ〉

)
t =

〈
Hp

〉
t

(A.12)

in the low weight region (p ≥ 0) for all times t.

Appendix A.1.2. Outline
In Appendix A.2 we first show that

〈
Fp

〉
at time t + 1 can be calculated with

〈
Fp

〉
and

〈
Hp

〉
at time t, without

requiring |Ψ〉 itself. After this we only have to use induction to finish the proof of preposition (A.12). This is done in
Appendix A.3.

Appendix A.2. Evolution of the Densities
We start with F at t + 1:

Fp
(
M |Ψ〉

)
=

∑
i

piFp

(
M

∣∣∣bi, ~gi

〉)
(A.13)

=
∑

i

piFp


∑

(b′,~g′)∈X

m
((

bi, ~gi

)
→

(
b′, ~g′

)) ∣∣∣b′, ~g′〉
 (A.14)

=
∑

i

pi

∑
(b′,~g′)∈X

m
((

bi, ~gi

)
→

(
b′, ~g′

))
Fp

(∣∣∣b′, ~g′〉) (A.15)

=
∑

i

pi

∞∑
b′=−∞

∞∑
n=0

∑
(~g′)1,...,(~g′)n∈N0∪D

m
((

bi, ~gi

)
→

(
b′, ~g′

))
Fp

(∣∣∣b′, ~g′〉) . (A.16)
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6We will now decompose m
(
x→ y

)
further. For this we distinguish three cases:

All markers in state y exist already in state x: All markers must move to the correct position, and no new marker
is created.

In state y exists one additional green marker: All markers must move to the correct position, and the blue marker
has to create the additional green marker. This additional green marker has to be at the correct position.

Any other initial state x: The probability to advance to state y is 0.

We can express this through the probabilities of the blue or green markers to move from position p1 to p2: B
(
p1 → p2

)
and G

(
p1 → p2

)
.

m
((

bi, ~gi

)
→

(
b′, ~g′

))
= B

(
bi, b′

)
G

(
(~gi)1, (~g′)1

)
. . .G

(
(~gi)l(~gi), (~g

′)l(~gi)
) δl(~gi)+1,l(~g′)δ~g′l(~g′),b′ if bi < 0 and b′ ≥ 0

δl(~gi),l(~g′) else

(A.17)

= B
(
bi, b′

)
G

(
(~gi)1, ~g′1

)
. . .G

(
(~gi)l(~gi), ~g

′

l(~gi)

)
•

δl(~gi),l(~g′)︸    ︷︷    ︸
I

+


δl(~gi)+1,l(~g′)δ(~g′)n,b′︸                ︷︷                ︸

II

− δl(~gi),l(~g′)︸    ︷︷    ︸
III

if bi < 0 and b′ ≥ 0

0 else


(A.18)

Now we can insert equation (A.18) and the sum representation of equation (A.5) into equation (A.16). Then equation
(A.16) will decompose into three terms TI, TII and TIII corresponding to the terms I, II and III in equation (A.18)

Fp
(
M |Ψ〉

)
= TI + TII − TIII. (A.19)

We will treat the three terms TI, TII and TIII separately. We start with TI:

TI =
∑

i

pi

∞∑
b′=−∞

∞∑
n=0

∑
(g′)1,...,(g′)n∈N0∪D

B
(
bi, b′

)
G

(
(gi)1, g′1

)
. . .G

(
(gi)l(~gi), g

′

l(~gi)

)
δl(~gi),l(~g′)

l(~g′)∑
k=1

δg′k ,p. (A.20)

We can immediately evaluate the sums over b′ and n. The probability of the blue marker moving anywhere is 1. Note
that for the term I l

(
~gi

)
= l

(
~g′

)
since there is no new marker generated. Because l

(
~g′

)
= n, δl(~gi),l(~g′) will be 1 only

for l
(
~g′

)
= n, what is used to resolve the sum over n.

TI =
∑

i

pi

∑
(~g′)1,...,(~g′)l(~gi)∈N0∪D

G
(
(~gi)1, (~g′)1

)
. . .G

(
(gi)l(~gi), (~g

′)l(~gi)
) l(~g′)∑

k=1

δ(~g′)k ,p (A.21)

=
∑

i

pi

l(~gi)∑
k=1

∑
(~g′)1,...,(~g′)l(~gi)∈N0∪D

G
(
(~gi)1, (~g′)1

)
. . .G

(
(~gi)l(~gi), (~g

′)l(~gi)
)
δ(~g′)k ,p (A.22)

=
∑

i

pi

l(~gi)∑
k=1

∑
(~g′)1

G
(
(~gi)1, (~g′)1

)
· · ·

∑
(~g′)k−1

G
(
(~gi)k−1, (~g′)k−1

)
G

(
(~gi)k, p

) ∑
(~g′)k+1

G
(
(~gi)k+1, ~g′k+1

)
· · ·

∑
(~g′)l(~gi)

G
(
(~gi)l(~g′), (~g

′)l(~gi)
)
.

(A.23)

6Note that the sums are actually finite since M maps from finite sequences to finite sequences (only up to one marker can be created in each
time step).
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The sums over the positions of the markers that are not the k-th marker all yield 1: The probability for the marker to
either survive or be moved to the ’parking position’ D is 1.

TI =
∑

i

pi

l(~gi)∑
k=1

G
(
(gi)k, p

)
. (A.24)

We insert unity, f
(
(~gi)k

)
=

∑∞
q=0 δ(~gi)k ,q f

(
q
)
. It is not necessary to include q = D because a marker that was deleted

and is therefore at D can never leave D again. We recognize the definition of F:

TI =
∑

i

pi

l(~gi)∑
k=1

∞∑
q=0

δ(gi)k ,qG
(
q, p

)
=

∑
i

pi

∞∑
q=0

G
(
q, p

) l(~gi)∑
k=1

δ(gi)k ,q =
∑

i

pi

∞∑
q=0

G
(
q, p

)
Fq

(∣∣∣bi, ~gi

〉)
=

∞∑
q=0

G
(
q, p

)
Fq

(
|Ψ〉

)
,

(A.25)

where we used the linearity of F in the last step. We can immediately interpret this result: if there was no blue marker,
the term I would be the only term. Then the mean green marker density only depends on the mean marker densities
of the green markers in the previous time step because the green markers evolve independently.

We will now perform the same calculations with terms II and III. To satisfy the case distinction we restrict the sum
over b′, and use the Iverson bracket, with P being a logical expression:

[P] =

1 if P is true
0 else

(A.26)

TII =
∑

i

pi

∞∑
b′=0

[
bi < 0

] ∞∑
n=0

∑
(~g′)1,...,(g′)n∈N0∪D

B
(
bi, b′

)
G

(
(~gi)1, (~g′)1

)
. . .G

(
(~gi)l(~gi), (~g

′)l(~gi)
)
δl(~g′),l(~gi)+1δ(~g′)l(~g′),b

′

l(~g′)∑
k=1

δ(~g′)k ,p.

(A.27)

Other than for TI we have l
(
~g′

)
= l

(
~gi

)
+ 1 due to the marker we create, and we cannot resolve the b′ sum.

TII =
∑

i

pi

∞∑
b′=0

[
bi < 0

] ∑
(~g′)1,...,(~g′)l(~gi)+1

B
(
bi, b′

)
G

(
(~gi)1, (~g′)1

)
. . .G

(
(~gi)l(~gi), (~g

′)l(~gi)
)
δ(~g)′

l(~gi)+1
,b′

l(~g′)∑
k=1

δ(~g′)k ,p (A.28)

=
∑

i

pi

∞∑
b′=0

[
bi < 0

] ∑
(~g′)1,...,(~g′)l(~gi)

B
(
bi, b′

)
G

(
(~gi)1, (~g′)1

)
. . .G

(
(~gi)l(~gi), (~g

′)l(~gi)
) ∑

(~g′)l(~gi)+1

δ(~g)′
l(~gi)+1

,b′

δ(~g′)l(~gi)+1,p +

l(~g′)−1∑
k=1

δ(~g′)k ,p


(A.29)

=
∑

i

pi

∞∑
b′=0

[
bi < 0

] ∑
(~g′)1,...,(~g′)l(~gi)

B
(
bi, b′

)
G

(
(~gi)1, (~g′)1

)
. . .G

(
(~gi)l(~gi), (~g

′)l(~gi)
) δb′,p +

l(~gi)∑
k=1

δ(~g′)k ,p

 (A.30)

For TIII we get

TIII =
∑

i

pi

∞∑
b′=0

[
bi < 0

] ∞∑
n=0

∑
(~g′)1,...,(~g′)l(~g′)∈N0∪D

B
(
bi, b′

)
G

(
(~gi)1, (~g′)1

)
. . .G

(
(~gi)l(~gi), (~g

′)l(~gi)
)
δl(~g′),l(~gi)

l(~g′)∑
k=1

δ(~g′)k ,p

(A.31)

=
∑

i

pi

∞∑
b′=0

[
bi < 0

] ∑
(~g′)1,...,(~g′)l(~gi)

B
(
bi, b′

)
G

(
(~gi)1, (~g′)1

)
. . .G

(
(~gi)l(~gi), (~g

′)l(~gi)
) l(~gi)∑

k=1

δ(~g′)k ,p. (A.32)
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We now subtract terms TII and TIII. The rightmost sum is identical for both terms an cancels, only the additional
δb′,p from term TII survives.

TII − TIII =
∑

i

pi

∞∑
b′=0

[
bi < 0

] ∑
(g′)1,...,(g′)l(~gi)

B
(
bi, b′

)
G

(
(gi)1, g′1

)
. . .G

(
(gi)l(~gi), g

′

l(~gi)

)
δb′,p (A.33)

=
∑

i

pi

∞∑
b′=0

[
bi < 0

]
B

(
bi, b′

)
δb′,p (A.34)

=
∑

i

pi
[
bi < 0

]
B

(
bi, p

) [
p ≥ 0

]
. (A.35)

Analogously to what we did for term TI, we insert unity to recover H:

(A.35) =
∑

i

pi

∞∑
q=−∞

δbi,qneg
(
q
)
B

(
q, p

) [
p ≥ 0

]
(A.36)

=
∑

i

pi

−1∑
q=−∞

Hq

(∣∣∣bi, ~gi

〉)
B

(
q, p

) [
p ≥ 0

]
(A.37)

=
[
p ≥ 0

] −1∑
q=−∞

B
(
q, p

)
Hq

(
|Ψ〉

)
. (A.38)

In the last step we used the linearity of H. We can also interpret this result: The blue marker that enters the low weight
region acts as a source for the green markers.

Inserting (A.25) and (A.35) into equation (A.19) we finally obtain

Fp
(
M |Ψ〉

)
= TI + TII − TIII =

∞∑
q=0

G
(
q, p

)
Fq

(
|Ψ〉

)
+

[
p ≥ 0

] −1∑
q=−∞

B
(
q, p

)
Hq

(
|Ψ〉

)
. (A.39)

For H we can calculate the evolution in the same manner as for F. As the blue marker evolves independent of all
other markers the result is however trivial:

Hp
(
M |Ψ〉

)
=

∞∑
q=−∞

B
(
q, p

)
Hq

(
|Ψ〉

)
. (A.40)

Appendix A.3. Proof by Induction

We will now prove statement (A.12)〈
Fp

〉
t
= Fp

(
|Ψ〉

)
t = Hp

(
|Ψ〉

)
t =

〈
Hp

〉
t
, for p ≥ 0 (A.41)

by induction. Our induction begins at

Fp
(
|Ψ〉0

)
= Hp

(
|Ψ〉0

)
, (A.42)

which means that the markers have to be initialized properly for the 0-th time step.
We will use that the blue and green markers advance identically because they follow the same equation of motion:

G
(
q, p

)
= B

(
q, p

)
, for p ≥ 0. (A.43)
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Our induction step is then

Fp
(
|Ψ〉t+1

)
= Fp

(
M |Ψ〉t

)
(A.44)

=

∞∑
q=0

G
(
q, p

)
Fq

(
|Ψ〉t

)
+

−1∑
q=−∞

B
(
q, p

)
Hq

(
|Ψ〉t

)
(A.45)

=

∞∑
q=0

B
(
q, p

)
Fq

(
|Ψ〉t

)
+

−1∑
q=−∞

B
(
q, p

)
Hq

(
|Ψ〉t

)
(A.46)

=

∞∑
q=0

B
(
q, p

)
Hq

(
|Ψ〉t

)
+

−1∑
q=−∞

B
(
q, p

)
Hq

(
|Ψ〉t

)
(A.47)

=

∞∑
q=−∞

B
(
q, p

)
Hq

(
|Ψ〉t

)
(A.48)

= Hp
(
|Ψ〉t+1

)
. (A.49)

This concludes our proof: The mean result of the simulation is the same as with no reweighting when the determin-
istic roulette is used. There is no bias.
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