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Abstract

We present a new package for Mathematica system, called Libra. Its purpose
is to provide convenient tools for the transformation of the first-order differ-
ential systems ∂ij = Mij for one or several variables. In particular, Libra
is designed for the reduction to ε-form of the differential systems which ap-
pear in multiloop calculations. The package also contains some tools for the
construction of general solution: both via perturbative expansion of path-
ordered exponent and via generalized power series expansion near regular
singular points. Libra also has tools to determine the minimal list of coeffi-
cients in the asymptotics of the original master integrals, sufficient for fixing
the boundary conditions.
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Solution method:
Algorithms described in Refs. [1, 2], and [3, Section E.8].
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1. Introduction

Modern multiloop calculations essentially rely on the differential equa-
tions method. Within this approach, the integration-by-part (IBP) reduc-
tion is used to reduce all requred integrals to a finite set of master integrals
and to construct the first-order differential systems for the latter. The pos-
sibility to find analytic solutions of these systems essentially relies on their
reduction to some kind of canonical form. This may include, for example, the
elimination of spurious singularities, reduction to local/global Fuchsian form,
variable change and switching to/from one higher-order differential equation.
Given high complexity of the differential systems which emerge in multiloop
calculations, one can not avoid using computers for the reduction.

The present paper introduces a new package for Mathematica system,
called Libra. Its purpose is to provide convenient tools for the transforma-
tion of the first-order differential systems. The package also contains some
tools for the construction of general solution: both via perturbative expan-
sion of path-ordered exponent and via generalized power series expansion
near regular singular points. Libra also can help the user to determine the
minimal list of coefficients in the asymptotics of the original master integrals
near a singular point. Calculating the coefficients from this list is sufficient
for fixing the boundary conditions.

One of the most important tasks that Libra can be relied on is the reduc-
ing of the differential equations to ε-form [4, 1]. In the next Section we review
the corresponding reduction algorithm as presented in Refs. [1, 2, 3]. Note
that this algorithm has been implemented in two publicly available codes,
epsilon, Ref. [5], and Fuchsia, Ref. [6]. However, we believe that Libra
will still be appreciated by the community due to its rich functionality and
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also high computational power. In this context, we note that Libra has been
already used in several bleeding-edge multiloop computations, see, e.g., Refs.
[7, 8]. We describe the Libra package in Section 3, where one can find two
examples of Libra usage.

The last, but not the least, although inspired by the multiloop applica-
tions, Libra package is quite universal and can be used in other research
fields, which require manipulations with the first-order differential systems
of the form ∂

∂xi
j = Mi(x)j. In particular, these systems appear in algebraic

geometry when considering Gauss-Manin connection.

2. Reduction to ε-form

In the present section we shortly review the algorithm presented in Refs.
[1, 2, 3]. We skip the description of IBP reduction method, Refs. [9, 10],
which is essential to obtain the differential equations for master integrals,
[11, 12]. We start from the differential system of the form

∂

∂xi
j = Mi (x, ε) j (i = 1, . . . , N). (1)

Here j = (j1, . . . , jn)ᵀ is a column of unknown functions, x = (x1, . . . xN) are
the variables, and ε is a parameter. For typical multiloop calculation setup,
these are the “Laporta” master integrals, the kinematic invariants, and the
dimensional regularization parameter, respectively. The matrices Mi in the
right-hand side rationally depend on x and ε. The observation made in Ref.
[4] is that by a proper choice of new functions J the differential system can
often be cast in the form where the dependence on ε is factorized in the
right-hand side,1

∂

∂xi
J = εSi (x)J (i = 1, . . . , N). (2)

In what follows we will refer to this form as ε-form. Note that the integrability
conditions applied to the system (2) imply thatM =

∑
i dxiSi(x) is an exact

1-form (total differential) [4].

1Note that the observation of Ref. [4] comes as surprise since the systems, reducible
to ε-form, constitute a “zero measure” set among all systems with rational coefficients
depending on parameter ε.
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The advantage of the differential system in ε-form is that its general
solution

U = Pexp

[
ε

∫
dx · S

]
(3)

can be readily expanded in ε-series in terms of iterated integrals. In par-
ticular, for rational matrices Si these integrals are nothing but the multiple
polylogarithms [13].

Therefore, a natural question arises: given the differential system (1) is
it possible and how to find the transformation of functions j = TJ , such
that the new functions J satisfy the differential system (2)? Let us remark
that, when answering to this question, it is important to restrict the class of
transformations we want to consider. Otherwise, we can always pass to trivial
system dJ = 0 by means of the formal transformation T = Pexp[

∫
dx ·M ] =

Pexp[
∫ ∑

i dxiMi]. Our base case will be the class of transformations rational
in both x and ε. At some point we will also consider the extension of this
class to the transformations rational in some notations y algebraically related
to the original variables via xi = fi(y) with fi being the rational functions2.

An algorithm of the reduction of a univariate differential system to ε-form
has been suggested in Ref. [1]. Later on, a strict criterion of irreducibility
has been obtained in Ref. [2]. Also, in the same paper it was explained how
to use the algorithm for multivariate setup. We will present now a basis-
independent variant of this algorithm, partly described in Ref. [3, Section
E.8].

2.1. Conventions and notations
Note that the transformation of functions j = T j̃ is understood below

as the transformation of matrices in the right-hand side of the differential
system (1):

Mi → M̃i = T−1
[
Mi T −

∂

∂xi
T

]
. (4)

As explained in Ref. [2], the problem of reduction to ε-form of the systems
in several variables is effectively reduced to that of the system in one variable.
One should simply proceed on one-by-one basis, reducing first the system in

2Since fi here are rational functions, the transformations which are rational in x, are
necessarily rational in y. The inverse is, in general, not true, so this is indeed an extension
of the class of transformations.
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Operator term Matrix term
linear operator L ↔ n× n matrix L

vector u ↔ column u = (u1, . . . , un)ᵀ

covector vᵀ ↔ row vᵀ = (v1, . . . , vn)
kerL ↔ {u, Lu = 0}

cokerL ↔ {vᵀ, vᵀL = 0}
ImL ↔ {u, ∃ũ : Lũ = u}

coImL ↔ {vᵀ, ∃ṽᵀ : ṽᵀL = vᵀ}

Table 1: Translation dictionary between the operator and matrix languages.

the first variable, then in the second variable, etc. The only restrictions are
that the transformations considered for each successive variable should not
depend on the previous variables. These restrictions seem to be easily fulfilled
in every specific example (see, in particular, example 5 in Tutorial1.nb
notebook attached to the distribution). Therefore, from now on we consider
the differential equation in one variable.

∂xj = Mj. (5)

Let us remind some facts from linear algebra and give a few useful defi-
nitions. First, since we are aimed at a basis-independent treatment, we find
it convenient to use a mixed terminology, coming partly from the operator
language and partly from the matrix language. In particular, we have the
dictionary presented in Table 1.

Moreover, we find it convenient to identify the k-dimensional linear sub-
space (or simply k-subspace) U with the n × k matrix whose columns form
some basis of this subspace. Although this matrix is not uniquely defined,
nevertheless, every expression below that contains this matrix will be inde-
pendent on the specific choice of the basis, so we denote this matrix also
as U . For example, the statement U ⊂ kerL is equivalent to LU = 0. In
what follows, the invariant subspaces of operators will appear. Within our
mixed language the wording “U is invariant subspace of L” is equivalent to
“∃ matrix C such that LU = UC”.

Also, we will refer to the element vᵀ and subspace Vᵀ in the dual space
as right vector and right subspace, as opposed to the left vector u and left
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subspace U for the original space3. Note that the matrix, corresponding to
k-dimensional right subspace Vᵀ has dimension k × n (rather than n × k)
which should be easy to memorize thanks to •ᵀ notation.

Finally, let us fix our notations for describing the properties of the dif-
ferential system (5) in the vicinity of some point x0. Let M(x) have the
following series expansion at x = x0 6=∞:

M(x) =
∞∑

k=−r−1

Mk · (x− x0)k , (6)

where M−r−1 6= 0. Then we say that max(r, 0) is a Poincare rank at x = x0
and M−1 is a matrix residue at x = x0. If r > 0 (r < 0), we say that x0 is a
singular point (regular point). Similarly, for the expansion near x =∞,

M(x) =
∞∑

k=−r+1

Mk · x−k , (7)

we say that max(r, 0) is a Poincare rank at x = ∞ and −M1 is a matrix
residue at x = ∞ (note the minus sign). If r > 0 (r < 0), we say that ∞ is
a singular point (regular point).

2.2. Projector and balance transformation
As is well-known, the projector operator P = P 2 is totally defined by its

image and kernel, or, equivalently, by its image and co-image, Vᵀ = coImP
and U = ImP . Given the left subspace Vᵀ and the right subspace U of equal
dimension k, one can construct a projector

P = P (U ,Vᵀ) = U(VᵀU)−1Vᵀ . (8)

This is true unless the k×k matrix VᵀU is not invertible. Note that the matrix
in the right-hand side of Eq. (8) is defined uniquely despite the freedom of
choice of U and Vᵀ. The properties P 2 = P, ImP = U , coImP = Vᵀ can be
readily verified.

Given a projector P , we define P -balance transformation between two
finite points x1 and x2 as

B(P, x1, x2|x) = P +
x− x2
x− x1

P, (9)

3I.e., left vectors can be mutiplied by a matrix from the left, and vice versa.
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where P = 1− P . Similarly, we define

B(P, x1,∞|x) = P +
1

x− x1
P, B(P,∞, x2|x) = P + (x− x2)P. (10)

When P = P (U ,Vᵀ) we also write B(U ,Vᵀ|x1, x2|x) = B(P (U ,Vᵀ), x1, x2|x).
The balance transformation may change the Poincare rank of M and the

eigenvalues of the matrix residue in two points, x = x1 and x = x2, at most.
We will call the balance transformation B(U ,Vᵀ|x1, x2|x) an x1-adjusted

(x2-adjusted) if it does not increase the Poincare rank of the system at x = x1
(at x = x1). It is easy to prove that B(U ,Vᵀ|x1, x2|x) is x1-adjusted iff x1
is a singular point and U is a left invariant subspace of the leading series
expansion coefficient of M(x) near x = x1. Similarly, B(U ,Vᵀ|x1, x2|x) is
x2-adjusted iff x2 is a singular point and Vᵀ is a right invariant subspace of
the leading series expansion coefficient near x = x2.

In what follows we will always use the balances that are adjusted in both
points, unless otherwise stated.

2.3. Reducing Poincare rank and shifting eigenvalues of matrix residues
Let us consider now the point of positive Poincare rank, e.g., let it be

x = 0. So, we have (r > 0)

M(x) =
∞∑

k=−r−1

Mk · xk =
A0

xr+1
+
A1

xr
+ . . . . (11)

We want to find the adjusted balance transformation to strictly reduce the
matrix rank of A0 = M−r−1. Let us search for the balance having zero as the
first singular point, B(U ,Vᵀ|0, x2|x). As it is described in Ref. [3, Section
E.8], it suffices to find U with the following properties:

I. A0U = 0, II. A1U ⊆ ImA0 + U , III. U ∩ ImA0 > {0}. (12)

A necessary and sufficient criterion of the existence of such a U is [3, Section
E.8]

dim kerA > dim kerA0 ,

where

A =

(
A0 A1 − λ
0 A0

)
. (13)
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This condition simply states that the number of null eigenvectors of the
matrix A should be greater than that of A0. Let us note that if u is a
null eigenvector of A0 then

(
u
0

)
is that of A, and vice versa. Therefore,

the criterion (2.3) states that there must be at least one null eigenvector of
A of the form

(
w(λ)
u(λ)

)
with u(λ) 6= 0. The null eigenvectors can be found

routinely and their components are, in general, the rational functions of λ.
As one can always get rid of common denominator, we can assume that these
components are polynomials in λ and

u(λ) = u0 + u1λ+ . . .ukλ
k (14)

Now, we can easily check that U = span(u0, . . . ,uk) satisfies conditions (12).
If we are looking for the balance B(U ,Vᵀ|x1, 0|x), having zero as the

second singular point, we have some requirements for Vᵀ. To construct Vᵀ

with the required properties, we find the right null eigenvector (vᵀ(λ),wᵀ(λ))
of A, such that

vᵀ(λ) = vᵀ0 + vᵀ1λ+ . . .vᵀkλ
k 6= 0 . (15)

Then we put Vᵀ = span(vᵀ0, . . . ,v
ᵀ
k).

Now, let the system have zero Poincare rank (Fuchsian singularity) at
x = 0:

M(x) =
∞∑

k=−1

Mk · xk =
A0

x
+ A1 + . . . . (16)

Let us consider the balance B(U ,Vᵀ|0, x2|x), where U is the left invariant
subspace of A0. In a suitable basis the matrices P = P (U ,Vᵀ), A0, and A1

have the following block forms

P =

(
1 0
0 0

)
, A0 =

(
B1 B2

0 B3

)
, A1 =

(
B4 B5

B6 B7

)
(17)

Then the expansion of the transformed matrix starts from Ã0

x
where

Ã0 = PA0 + (A0 + 1)P + PA1P =

(
B1 + 1 0
B6 B3

)
(18)

Thus, the eigenvalues, corresponding to U are shifted by +1.
If we instead apply the balance B(U ,Vᵀ|x1, 0|x) with Vᵀ being the right-

invariant subspace of A0, the corresponding eigenvalues are shifted by −1.
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Let us summarize the content of this subsection. We have shown that the
balance transformation B(U ,Vᵀ|x1, x2|x) can be used to reduce the Poincare
rank and to shift the eigenvalues at Fuchsian singular points. Moreover, the
discussed properties of the transformation at x = x1 depend only on U , while
those at x = x2 depend on Vᵀ, so these two subspaces can be constructed
almost independently. The only requirement that simultaneously involves U
and Vᵀ is that VᵀU should be a square invertible matrix.

2.4. Factoring out ε
Suppose now that we have been able to find the global Fuchsian form

with all eigenvalues of matrix residues proportional to ε. It means that the
matrix in the right-hand side now has the form

M(x, ε) =
∑
k

Mk(ε)

x− xk
(19)

and all eigenvalues of allMk(ε) are proportional to ε. Then, thanks to Propo-
sition 1 from Ref. [2], if ε-form exists, it can be obtained by some transfor-
mation T (ε) independent of x. In order to find this transformation, we solve
the linear system of equations [1]

Mk(ε)

ε
T (ε, µ) = T (ε, µ)

Mk(µ)

µ
(20)

with respect to the matrix elements of T (ε, µ). Note that from Eq. (20) it
follows that

M(x, ε)

ε
T (ε, µ) = T (ε, µ)

M(x, µ)

µ
(21)

If this system has the invertible solution for some µ, the transformation
T (ε) = T (ε, µ) reduces our system to ε-form, which becomes obvious once we
multiply (21) by ε T−1 from the left. We note here, that in real-life examples
xk might be complicated algebraic numbers not even expressible in terms of
radicals. Then, instead of solving the system (20), we might use sufficient
number of rational sampling points x = a1, . . . am and solve the linear system

M(ak, ε)

ε
T (ε, µ) = T (ε, µ)

M(ak, µ)

µ
, (k = 1, . . . ,m), (22)

which has the advantage of having rational coefficients. Besides, this method
can be easily generalized to multivariate case.
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2.5. Using the block-triangular form
The real-life examples of the differential systems which one might meet

in the contemporary multiloop calculations may include several hundreds of
equations. It is neither possible nor necessary to reduce such systems as a
whole. Rather, one should use the block-triangular structure of the systems
as already described in Ref. [1]. Here we will only note that reducing the
powers of irreducible denominators in the off-diagonal elements can be done
without factorizing them into linear factors. Suppose, e.g., that we have in
our system some denominator

d(x) = d0 + d1x+ . . .+ dnx
n

being the irreducible polynomial of n-th degree. Using the same notations
as in Eq. (7.1) of Ref. [1] we have the differential systems

d(x)∂xJ1 = εA(x)J1 +
B(x, ε)

d(x)r
J2 + . . . ,

d(x)∂xJ2 = εC(x)J2 + . . . , (23)

Here r is the Poincare rank of the system at any zero of d(x) and the dots
denote the terms which are either less singular at zeros of d(x) or correspond
to the contributions of lower sectors. By assumption r > 0. Note that we
may restrict ourselves to the case when the matrices A(x), B(x, ε) and C(x)
have entries which are polynomials of, at most, (n − 1)-th degree. Indeed,
suppose that some entry of A, B, or C has the form p(x)

q(x)
, where p(x) and

q(x) are coprime polynomials and q(x) is coprime with d(x). Then we use
a well-known technique to reduce the rational function p(x)

q(x)
with respect to

d(x). Thus, we have
p(x)

q(x)
= r(x) + d(x)

s(x)

q(x)
, (24)

where r(x) and s(x) are some polynomials, and r(x) has degree n−1 at most.
Note that we basically have to treat x as algebraic extension of Q, defined
by the equation d(x) = 0. In particular, we use the extended Euclidean
algorithm to invert q(x). The corresponding procedures are implemented in
many computer algebra systems, e.g., in Fermat [14], but, unfortunately, not
in Mathematica. We have implemented the required algorithms in Libra,
so that r(x) can be obtained by the command QuolyMod[p(x)/q(x),x →
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d(x)]. In what follows we will adopt the notation

p(x)

q(x)
= r(x) (mod d). (25)

Then we can replace p(x)
q(x)

with r(x) and move the term d(x) s(x)
q(x)

to the
part hidden with dots in Eq. (23). So, we assume that

A(x) =
n−1∑
k=0

Akx
k, B(x, ε) =

n−1∑
k=0

Bk(ε)x
k, C(x) =

n−1∑
k=0

Ckx
k.

Then we make the substitution

J1 = J̃1 + d(x)−rDJ2, (26)

where D = D(x, ε) =
∑n−1

k=0 Dk(ε)x
k is some matrix. Collecting the most

singular terms, containing d−r, we obtain

d(x)∂xJ̃1 = εAJ̃1 + [rd′D + ε(AD −DC) +B] d(x)−rJ2 + . . . (27)

Then we have the equation

d′D +
ε

r
(AD −DC) = −B

r
(mod d) (28)

Since d is irreducible, d′ is coprime with d, so we can divide the equation by
d′,

D +
ε

r

AD −DC
d′

= − B

rd′
(mod d), (29)

and think of AD−DC
d′

and B
rd′

as some polynomial matrices of degree n − 1.
Then this equation necessarily has a solution as the linear operator acting on
D in the right-hand side is close to unity for sufficiently small ε and, thus, is
invertible for generic ε.

3. Libra package

3.1. Package installation
The Libra package can be retrieved from its web site rnlee.bitbucket.io/Libra/

or directly from the bitbucket repository bitbucket.org/rnlee/libra/. The in-
stallation amounts to unpacking the archive into any desired directory and to
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creating a shortcut file init.m inMathematica $UserBaseDirectory. To au-
tomatize the creation of the shortcut, theMathematica script makeShortcut.m
should be run. More detailed instructions can be found in the INSTALL text
file.

After the installation, the package is loaded with the command

In[1]:=

<<Libra`

******************** Libra v1.2 ********************

Libra (⚖) is a package for the manipulation with differential systems.

Written by Roman N. Lee, Budker Institute of Nuclear Physics.

Read from: /home/roma/Programming/Libra/Libra.m (CRC32: 3397418289)

Let us now present two examples of Libra’s usage.

3.2. Example 1: Reducing system of 5 equations
Let us consider the differential system of 5 equations with the following

matrix standing in the right-hand side:

In[2]:=
m = {{(1-2*x+x^2-5*e+10*x*e-7*x^2*e+6*e^2-8*x*e^2+6*x^2*e^2)/((-1+x)*x*(1+x)*e),(-2*(-1+x))/(x^2*(1+x)),

-2*(1-x)*(1-3*e)/(x^2*(1+x)*e),2*(1-x)/(x^2*(1+x)),2*(1-x)*(1+2*e)/(x^2*(1+x)*e)},{(1-3*e)*(1-4*e)*x/(1-x^2),
(1+x^2-2*x*e)/((1-x^2)*x),(2*(1-5*e))/(1-x^2),-6*e/(1-x^2),0},{((1-3*e)*(1-4*e)*((1-x)^2-2*e-2*x^2*e))/(2*(1-x^2)*e),
(-1+2*x-x^2+4*e-4*x*e+4*x^2*e)/((1-x^2)*x),(1-2*x+x^2-6*e+10*x*e-6*x^2*e+12*e^2-8*x*e^2+12*x^2*e^2)/((1-x^2)*x*e),
(-(1-x)^2+4*e*(1-x+x^2))/((1-x^2)*x),-(1-x)*(1+2*e)*(1-3*e)/(x*(1+x)*e)},{(x*(1-3*e)*(1-4*e))/(1-x^2),-6*e/(1-x^2),
(2*(1-5*e))/(1-x^2),(1+x^2-2*x*e)/((1-x^2)*x),0},{(-1+4*e)*(1+x+x^2-e*(5-x+5*x^2)+2e^2*(3-x+3*x^2))/((1-x^2)*(1+2*e)),
2*e*(1+x+x^2-4*e+6*x*e-4*x^2*e)/((1-x^2)*x*(1+2*e)),-2*(1+x+x^2-e*(7+x+7*x^2)+2*e^2*(6-5*x+6*x^2))/((1-x^2)*x*(1+2*e)),
2*e*(1+x+x^2-4*e+6*x*e-4*x^2*e)/((1-x^2)*x*(1+2*e)),2*(1+x^2-2*e+6*x*e-2*x^2*e)/((1-x^2)*x)}}/.e->\[Epsilon];

We initialize the new differential system with the command

In[3]:=

NewDSystem[ds1,x→→→m];

The effect of this command is that all following subsequent transformations
will be attached to ds1 symbol. In particular, we can use
DumpSave["ds1.m",ds1] to save our work to a file ds1.m to recover later with
Get["ds1.m"]. The original matrix m can be printed with ds1[x]. Now we are
going to run the visual tool in order to find the appropriate transformation

In[4]:=

t=VisTransformation[ds1,x,εεε];

12



Figure 1: Visual tool for finding a (sequence of) balancing transformation(s).

After invoking this command the following window appears:
This interface allows one to construct a balance transformation from the

two subspaces, U and Vᵀ, which are defined using the left and the right
halves of the window, respectively. When the two subspaces are suitable for
constructing the projector, i.e., have equal nonzero dimension and the matrix
VᵀU is invertible, the two lower buttons labeled by “Apply balance transformation”
(below referred to as “Apply” button) and “Paste overall transformation” (“Paste”
button) turn green and enabled. When the matrix VᵀU is not invertible, those
two buttons turn red. The effect of pressing the button “Paste” is that the
found transformation is returned (in our case, it is assigned to the variable
t). The button “Apply” transforms the temporary matrix (which was first
initialized by ds1[x]) with constructed balance and recalculates the interface
respectively. Later, when the button “Paste” is pressed, the tool returns the
product of all applied transformations. Each row in this window, apart from
the two lower rows occupied by wide buttons, corresponds to a singular point
of the system, as indicated in the middle part of the interface. For example,
“x=−1, pr=0” corresponds to a singular point x = −1 with Poincare rank 0.
Each button in the row, except those labeled “Fuchsify”, corresponds to the
eigenvalue (which is shown on the button) of the leading series coefficient (for
zero Poincare rank it is the matrix residue). When such a button is toggled
down, the corresponding eigenvector is added to the basis of U (left half) or
Vᵀ (right half). The current dimensions of U and Vᵀ are indicated in the
status line. For the points with positive Poincare rank there is an additional
button (in fact, there may be several buttons) “Fuchsify”. This button cor-
responds to the subspace spanned by vector u(λ), Eq. (14), or vᵀ(λ), Eq.
(15), depending on whether the left or right half of the table is concerned.
Pressing these buttons may increase the dimension of U or Vᵀ by more than
1.

Let us now return to our example.

1. We first want to reduce the Poincare at x = 0 and at x =∞. We can
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do it in one step, by toggling the left “Fuchsify” button in the second line
and the right “Fuchsify” button in the fourth line. To avoid unnecessary
repetitions of the window screenshots, let us agree about the numbering
of the buttons: in the left half of the table the buttons will be numbered
in left-to-right top-to-bottom order, while in the right half they will be
numbered in right-to-left top-to-bottom order. With this numbering
we toggle button #11 to the left and button #22 to the right (see Fig.
1). Then we press “Apply”. We will denote this sequence of actions as
{11} ←→ {22}. Then a new window appears:

2. We see that, indeed, the Poincare rank at x = 0, ∞ has been reduced to
zero, while the eigenvalues at x = ±1 remained intact. Now we can try
to increase the four negative eigenvalues of the matrix residue at x = −1
and simultaneously increase the four positive ones at x = 0. Thus, we
toggle down buttons ##2, 3, 4, 5 to the left, and buttons ##6, 7, 8, 9
to the right. Then we press “Apply” again. In short notations, we apply

{2, 3, 4, 5} ←→ {6, 7, 8, 9}

balance. The result is

We see that, indeed, we have managed to accomplish our goal: the
eigenvalues of the matrix residues at x = −1 and x = 0 are now all
proportional to ε.

3. Similarly, we apply

{11, 12, 13, 14} ←→ {16, 17, 18, 19}

and obtain
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4. At this stage, we have one negative and one positive eigenvalue at x = 1.
We can not balance them in one step. Therefore, we first “move” one
of them to another point. E.g., we apply

{14} ←→ {20}

and obtain

5. Finally, applying
{20} ←→ {15}

we have

6. At this stage we have reached global fuchsian form with all eigenvalues
of all matrix residues proportional to ε. We press “Paste” to assign the
found transformation to the variable t.

Note that we did not change the differential system yet: ds1[x]===m will
return True. In order to apply the transformation to ds1 we execute

In[5]:=

Transform[ds1,t];

Now ds1[x]===m returns False. Note that Transform[ds1,t]; not only modi-
fies the differential system, but it also “registers” the applied transformation
in a special list History[ds1] associated with ds1. This list spares the necessity

15



to manually keep track of the applied transformations. Also, thanks to this
list, we can easily undo one or several last transformations with Undo[ds1]
or Undo[ds1,n].

Now we can find the constant transformation which factors out ε with
the command FactorOut[ds1[x],x,εεε,µµµ]. This command gives the most general
matrix which satisfies linear system (20). Apart from the parameter µ, the
output also depends on some unfixed constants of the form C[k]. Later on
we have to put all those constants to some numbers generic enough so that
T remains invertible (assuming that it was invertible for unfixed constants).
So, to save some space, we call the FactorOut function with µ = 1 and replace
the remaining constants with some specific values, checking afterwards that
the resulting matrix has non-zero determinant:

In[6]:=

t=FactorOut[ds1[x],x,εεε,1]/. {C[1]→→→1,_C→→→0}; Factor[Det[t]]=!=0

Out[6]=

True

In addition, putting µ to some number can accelerate the FactorOut proce-
dure. Finally, we apply the found transformation

In[7]:=

Transform[ds1,t]

Out[7]=

{{−
2 (−1−38 x+15 x2) ε

(x−1) x (1+x)
,
2 (1−7 x+3 x2) ε

3 (x−1) x (1+x)
,
4 (5−45 x+18 x2) ε

3 (x−1) x (1+x)
,
2 (1−7 x+3 x2) ε

3 (x−1) x (1+x)
,−

4 (−1−15 x+6 x2) ε

(x−1) x (1+x)
},

{−
6 (−8+5 x) ε

x (1+x)
,
2 (−2+x) ε

x (1+x)
,
8 (−5+3 x) ε

x (1+x)
,
2 (2 ε−x ε+x2 ε)

(x−1) x (1+x)
,−

12 (−3+2 x) ε

x (1+x)
},{

9 ε

x
,−
ε

x
,−

2 (−5+3 x2) ε

(x−1) x (1+x)
,−
ε

x
,
6 ε

x
},

{−
6 (−8+5 x) ε

x (1+x)
,
2 (2 ε−x ε+x2 ε)

(x−1) x (1+x)
,
8 (−5+3 x) ε

x (1+x)
,
2 (−2+x) ε

x (1+x)
,−

12 (−3+2 x) ε

x (1+x)
},

{
13 (−2−7 x+3 x2) ε

(x−1) x (1+x)
,−

(−4−18 x+9 x2) ε

3 (x−1) x (1+x)
,−

2 (−20−107 x+45 x2) ε

3 (x−1) x (1+x)
,−

(−4−18 x+9 x2) ε

3 (x−1) x (1+x)
,
2 (−11−36 x+15 x2) ε

(x−1) x (1+x)
}}

Note that the differential system now is in ε-form. Let us try find a con-
stant transformation (independent of x and ε) which somewhat simplifies
the numerical coefficients of the system. We might try to transform one
of the matrix residues to diagonal form. E.g., let us execute the following
command

In[8]:=

t=Transpose[JDSpace[
SeriesCoefficient[ds1[x],{x,0,−1}]

εεε
]]
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The inner SeriesCoefficient[...] calculates the matrix residue at x = 0. We
divide it by ε to avoid ε-dependence. The function JDSpace[m] (“JD” stands
for “Jordan Decomposition”) finds the list of generalized eigenvectors of the
matrix m. The transposition gives the transformation to the corresponding
basis. Finally,

In[9]:=

Transform[ds1,t]

gives a somewhat simpler form

Out[9]=

{{−
2 (ε+2 x ε+3 x2 ε)

(x−1) x (1+x)
,0,

14 (−2 ε+x ε)

9 (x−1) (1+x)
,−

−14 ε

(x−1) (1+x)
,0},{

−18 (ε+3 x ε)

7 (x−1) (1+x)
,

4 x ε

(x−1) (1+x)
,
−ε−2 x ε+2 x2 ε

(x−1) x (1+x)
,

−9 ε

(x−1) (1+x)
,0},

{0,−
4 (ε+3 x ε)

(x−1) (1+x)
,−

6 ε

(x−1) (1+x)
,−

18 ε

(x−1) (1+x)
,0},{−

32 ε

7 (x−1) (1+x)
,

4 (5 ε+7 x ε)

9 (x−1) (1+x)
,

26 ε

9 (x−1) (1+x)
,

6 ε

(x−1) (1+x)
,0},

{−
48 ε

7 (x−1) (1+x)
,−

4 ε

3 (1+x)
,

10 ε

3 (x−1) (1+x)
,

6 ε

(x−1) (1+x)
,−

4 ε

(x−1) (1+x)
}}

If it is not that obvious that ε factors out, we can check it with

In[10]:=

EFormQ[ds1,εεε]

Out[10]=

True

Let us finally gather all our work in association list with

In[11]:=

transformation=OverallTransformation[ds1];

Now we can retrieve all necessary information from various fields of transformation.
The code below should demonstrate the most important fields:

In[12]:=

Mi=transformation[In][x];(∗initial matrix∗)
Mf=transformation[Out][x];(∗transformed matrix∗)
T=transformation[Transform];(∗overall transformation matrix∗)
(∗Check that everything is Ok∗)
Mi == m && Mf == ds1[x] && Factor[Transform[m, T, x]] == Factor[Mf]

Out[12]=

True

We can now save our work with transformation>>"transformation.m".
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Figure 2: Diagrams contributing to the cross section of Bremsstrahlung.

3.3. Example 2: energy loss in electron-nucleus bremsstrahlung.
Let us now preset a full-fledged example of using Libra in physical ap-

plications. It will allow us to demonstrate the use of a few functions which
did not appear in the previous example.

We will calculate the electron energy loss in the process of Bremsstrahlung
on the nucleus. I.e., we will rederive Racah result [15] for the photon-energy
weighted cross section

φrad =

∫
ω

ε
dσeZ→eZγ , (30)

where ω is the photon energy and ε is the energy of the initial electron. From
now on we will put electron mass to unity.

Using Cutkosky rules, we express the energy-weighted cross section via
cut diagrams shown in Fig. 2 with the integrand multiplied by ω. We define
the following family of integrals:

jn1,...,n7 = e2εγE
∫
ddp2d

dk1
πd

∏3
k=1 δ

(nk−1)(−Dk)

Dn4
4 D

n5
5 D

n6
6 D

n7
7

(31)

where

D1 = n · (k1 − p1 + p2) , D2 = p22 − 1, D3 = k21, D4 = (k1 − p1 + p2)
2 ,

D5 = (k1 + p2)
2 − 1, D6 = (p1 − k1)2 − 1, D7 = k1 · n , (32)

p1, p2, and k1 are the momenta of initial electron, final electron, and final
photon, respectively, and n = (1,0) is the time direction. The last index, n7,
can not be positive. We find the following 5 master integrals

j = (j1110000, j2110000, j1110010, j1110020, j1111000)
ᵀ, (33)

which obey the differential system

∂εj = Mj (34)
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with

M =



0 1 0 0 0
(1−2ε)(4ε−3)

ε2−1
3(1−2ε)ε
ε2−1 0 0 0

(1−2ε)(4ε−3)
4εε(ε2−1)

3−8ε
4ε(ε2−1)

(2ε−1)ε
ε2−1

2
ε

0

(1−2ε)(3−4ε)
8εε(ε2−1)2

(2ε−1)(4εε2−4ε+3)
8ε(ε2−1)2

2ε(1−2ε)ε
ε2−1 −4εε2−ε2+1

ε(ε2−1) 0

0 − 1
ε2−1 0 0 (2ε−1)ε

ε2−1

 (35)

From now on we can use Libra.

In[1]:=

Block[{Print},<<Libra`];
M =

{{0,1,0,0,0},{(1-2*e)*(4*e-3)/pp,3*(1-2*e)*w/pp,0,0,0},
{(1-2*e)*(4*e-3)/4/e/w/pp,(3-8*e)/4/e/pp,(2*e-1)*w/pp,2/w,0},
{(1-2*e)*(3-4*e)/8/e/w/pp^2,(2*e-1)*(3/pp+4*e)/8/e/pp,2*e*(1-2*e)*w/pp,
(1-4*e*w^2/pp)/w,0}, {0,-1/pp,0,0,(2*e-1)*w/pp}}//.{pp->w^2-1,
e->\[Epsilon],w->\[CurlyEpsilon]};

In[2]:=

NewDSystem[bsde,εεε→→→M];

The matrix M is block-triangular, and we can use the following command to
discover the indices of the diagonal blocks:

In[3]:=

EntangledBlocksIndices[bsde]

Out[3]=

{{1, 2}, {3, 4}, {5}}

First, we have to reduce the diagonal blocks. We start from the block
{1,2}. The basic strategy is to copy the block under consideration into
temporary variable. Then we can transform this block with a sequence of
transformations and apply to the whole matrix the overall transformation.

In[4]:=

ii={1, 2};
NewDSystem[b, εεε→→→bsde[[ii,ii]]];
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Now we run the visual tool

In[5]:=

t = VisTransformation[b, εεε, εεε];

and immediately see the problem:

The eigenvalues of the matrix residues at ε = ±1 are half-integer at ε = 0.
Therefore, we have to make variable change. Following the receipt of Ref.
[2], we find the appropriate variable change:

ε =
1 + z2

1− z2
. (36)

This variable changes from 0 to 1 when ε increases from 1 to ∞.
There are two different ways to introduce a new variable in Libra. The

first one is based on a global variable change. This method has obvious
limitations in the case when it is not possible to make the global rationalizing
variable change. Another method is based on the command AddNotations.
This method is more involved, and we refer to tutorials which come with
Libra distribution. For our present example it is sufficient to make the
global variable change. So we execute the command

In[6]:=

ChangeVar[bsde,εεε→→→(1+z^2)/(1−z^2),z];

Reducing block {1, 2}.
Next, we return to the reduction of the of the {1,2} block. We reinitialize

the temporary matrix

In[7]:=

NewDSystem[b, εεε→→→bsde[[ii,ii]]];

and run the visual tool. Note that the second argument of VisTransformation
should now be z rather than ε. To save space, instead of drawing intermediate
pictures of the visual tool, we will indicate the option Highlighted→→→... to guide
the reader by highlighting the buttons to be pressed.
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In[8]:=

t = VisTransformation[b, z, εεε, Highlighted →→→
{{3}↔↔↔{5},{7}↔↔↔{9},{1}↔↔↔{4},{5}↔↔↔{8},{1}↔↔↔{4},{5}↔↔↔{8}}];

Transform[b,t];

Finally, we factor out ε dependence and diagonalize the matrix residue at
z = 0 similarly to the first example:

In[9]:=

t = FactorOut[b, z, εεε], 1/2] /. _C →→→ 1;
Transform[b,t];
t = Transpose@JDSpace[SeriesCoefficient[b[z], z, 0, −1]/ εεε];
Transform[b,t];
b[z]

Out[9]=

{{0,−
24 ε

(−1+z) (1+z)
},{

4 ε
3 (−1+z) (1+z)

,
6 (ε+z2 ε)

(−1+z) z (1+z)
}}

Now we consolidate the sequence of transformations made into one transfor-
mation and apply it to the big system bsde:

In[10]:=

t = HistoryConsolidate[b];(∗shortcut for OverallTransformation[b][Transform]∗)
Transform[bsde,t,ii];

Note that third argument of Transform now indicates the indices of the block
ii={1, 2}. We can check that the block is in ε-form

In[11]:=

EFormQ[bsde[[ii, ii]],εεε]

Out[11]=

True

Reducing block {3, 4}.
Another 2× 2 block {3, 4} is reduced in a similar way:

In[12]:=

ii = {3, 4};
NewDSystem[b, z→→→bsde[[ii,ii]]];
t = VisTransformation[b, z, εεε, Animate →→→(∗Animate will press buttons 4 U∗)
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{{2}↔↔↔{5},{8}↔↔↔{5},{3}↔↔↔{1},{7}↔↔↔{5}}];
Transform[b, t];
t = FactorOut[b, z, εεε, −1/2] /._C →→→ 1;
Transform[b, t];
t = Transpose@JDSpace[SeriesCoefficient[b[z], {z, 0, −1}]/ εεε];
Transform[b, t];
t = HistoryConsolidate[b];
Transform[bsde,t,ii];
EFormQ[bsde,εεε]

Out[12]=

True

Reducing block {5}.
Finally, the last 1 × 1 block can be reduced either using the same tech-

nique, or by explicit integration:

In[13]:=

t = {{Exp[Integrate[Factor[bsde[z][[5, 5]]] /. εεε →→→ 0, z]]}};
Transform[bsde, t, 5];
EFormQ[bsde[[5[[, 5]], εεε]

Out[13]=

True

Reducing off-diagonal blocks.
At this stage we have reduced all diagonal blocks. Now we have to take

care of the off-diagonal blocks. First, we get rid of the multiple poles with
Fuchsify command:

In[14]:=

t = Fuchsify[bsde,z];
Transform[bsde, t];
FuchsianQ[bsde,z]

Out[14]=

True
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Factoring out ε from the whole matrix.
Finally, we factor out ε from the whole matrix:

In[15]:=

t = FactorOut[bsde, z, εεε, 1] /. _C →→→ 1
Transform[bsde, t];
EFormQ[bsde, εεε]

Out[15]=

True

Gathering data.
We have obtained the ε-form and it is a perfect time to save our work

with

In[16]:=

transformation = OverallTransformation[bsde];
Put[transformation, "transformation"];
Quit

and to take a cup of coffee.

3.3.1. Fixing boundary conditions.
Ok, after a short break, we return to our calculations. We load Libra

and our previous work with

In[1]:=

Block[{Print},<<Libra`];
transformation = Get["transformation"];
Mf = transformation[Out][z];(∗final matrix in epsilon−form∗)
T = transformation[Transform];(∗transformation matrix∗)

A nice feature of Libra is that it can help one in fixing the boundary
conditions. Namely, it can determine the minimal set of coefficients in the
asymptotics of the Laporta master integrals which are to be calculated. For
this purpose one should use the GetLcs command. This command returns
two objects: a matrix L and the list of coefficients c (thus the name of the
command). Let us run this command for our example.

We want to fix boundary conditions from the threshold asymptotics, thus,
at z → 0. Note that z = 0 is a singular point of our system. Therefore, for
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the demonstration purpose, let us first pretend that we want to put boundary
conditions at some regular point z = z0. For this case we simply have to fix
the values of the Laporta master integrals at z = z0. The values of the
canonical masters at z = z0 are determined by the obvious formula

J(z0) = T−1(z0)j(z0) (37)

Let us now see how the same conclusions follow from the execution of GetLcs
command. Let us put z0 = 1/2 for example. Then we execute

In[2]:=

With[{z0 = 1/2},
{L,cs} = GetLcs[Mf,T,{z, z0}]

];

The meaning of arguments of GetLcs should be self-explaining. We only
remark that the argument {z, z0} can be replaced with {z, z − z0} without
changing the result of the program4. We will explain below why the second
syntax is more expressive.

Let us now examine the list of coefficients:

In[3]:=

cs

Out[3]=

{{1, 0, 0}, {2, 0, 0}, {3, 0, 0}, {4, 0, 0}, {5, 0, 0}}

This is the list of triples, the triple {i, α, k} denotes the coefficient in front of
(z − z0)α lnk(z − z0) in z → z0 asymptotics of i-th Laporta integral. There-
fore, the list above suggests us to calculate the value of each Laporta inte-
gral at z = z0, exactly as we have anticipated. Next, the matrix L is the
“adapter” between the coefficients of Laporta master integrals and the col-
umn of boundary constants for canonical master integrals. According to Eq.
(37), we expect that L = T−1(z0). Let us check that this is indeed the case:

In[4]:=

Factor[L] == Factor[Inverse[T /. z →→→ 1/2]]

4One should not worry about the apparent ambiguity. To disambiguate the two syn-
taxes, Libra simply checks if the second element of the pair depends on the first element.
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Out[4]=

True

So, if we always wanted to put boundary condition at regular points, there
would be no need for the dedicated procedure GetLcs. However, the problem
is that we usually want to fix boundary conditions from the asymptotics at
some singular point of the differential system. In particular, in our example
we want to fix boundary conditions from threshold asymptotics z → 0. This
is where GetLcs becomes really helpful. So, let us execute

In[5]:=

depth = 3;preferred=1|3|5;
{L,cs} = GetLcs[Mf, T, {z, z, depth}, preferred];

Note, that {L,cs} = GetLcs[Mf,T,{z,z}]; would also work, but would provide
a slightly different set of constants. Of course, there is no wonder that we
can fix boundary conditions from different sets of asymptotic coefficients, but
some constants might be more approachable for calculation. Libra gives a
user several ways to provide a hint of what constants (s)he prefers to cal-
culate. Some of them are demonstrated in the command above. First, the
optional parameter preferred tells that we prefer to calculate the asymptotics
of the Laporta integrals ##1,3,5 from the list in Eq. (33). Next, the param-
eter depth defines the extra depth of the search that Libra does.

Let us now examine the list of constants that we have to calculate:

In[6]:=

cs

Out[6]=

{{1, 0, 0}, {1, 5 − 6 ε, 0}, {3, 2 − 4 ε,0}, {3, −1 + 2 ε, 0}, {5, −1 + 2 ε, 0}}

Note that now we have fractional powers5.

5This is the reason why the syntax {z, z - z0} is preferred over {z, z0} in the third
argument of GetLcs procedure. It gives us a way to explicitly indicate which variable is
to be used in the expansion. For example, {z, 1-z} means that we want to expand in
powers of (1−z) rather than those of (z−1). The difference is, of course, only the complex
phase, but using the advanced syntax, one can avoid unnecessary errors in the definition
of this phase.
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In order to find the required constants, one can use the expansion by
regions method. In fact, there are simple considerations (falling beyond the
scope of the present paper) which tell us that only constant {1, 5−6ε, 0} can
be nonzero and should be explicitly calculated. This constant corresponds
to the coefficient in the leading threshold asymptotics of the phase-space
integral. Simple calculation results in

j1110000
z→0∼ e2εγE

24−6εΓ(1− ε)
π3/2Γ

(
7
2
− 3ε

)z5−6ε (38)

Therefore, we define a list of calculated constants

In[7]:=

csvals=Replace[cs,{{1,5−6 εεε,0}→→→ 24−6 εεε Gamma[1−εεε]
πππ3/2 Gamma[72−3 εεε]

Exp[2εεε EulerGamma],

_→→→0},{1}]

Out[7]=

{0,Exp[2ε EulerGamma]
24−6 ε Gamma[1−ε]
π3/2 Gamma[72−3 ε]

,0,0,0}

3.3.2. Constructing solution for canonical master integrals.
At this point we have determined all necessary ingredients for construct-

ing the solution for the canonical master integrals in terms of iterated inte-
grals. First, we construct the general solution

In[8]:=

o = 4;(∗maximal order of epsilon expansion∗)
U = PexpExpansion[{Mf,o}, z, Split→→→False] + O[εεε]^(o+1);
Dimensions[U]

Out[8]=

{5, 5}

The code above should be self-explaining, except the Split option which de-
termines whether to split successive terms of expansion or to sum them up.
Note that we don’t need to explicitly indicate the lower limit of integration
(the point where we put our boundary conditions) in the path-ordered expo-
nent, we just indicate the variable (z). The result is given in terms of abstract
iterated integrals II whose lower limit is implied to be the point where we
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put our boundary conditions. For our case, it is simply the point z = 0, so
we can safely replace II with G to obtain the Goncharov’s polylogarithms as
they are defined, e.g., in GinaC, [16]. So we do

In[9]:=

U = U/.{II[{},_] →→→ 1, II →→→ G};

Finally, we obtain the expansion for the canonical master integrals as a
matrix product

In[10]:=

Csvals =L.csvals;
Jsvals = U.Csvals;

Note that we prefer here first to multiply the exact matrices L and csvals and
then to multiply the result by the expansion U. This is the rule of thumb
which prevents one from losing orders in ε-expansion.

Our results for Jsvals are already good for using in physical application,
but there is a little defect in them that we are going to fix now. Namely, if we
examine carefully the obtained expansion of the canonical integrals, we will
see that it lacks the property of uniform transcendentality. The explanation is
simple: the transformation matrix T to ε-form is defined with some freedom.
At least, we can multiply it by some factor f(ε) independent of z. For our
present case, when there is only one non-zero boundary constant defined in
Eq. (38), we can derive f in a straight-forward way.6 First, we note that U
is uniform transcendental by construction. Therefore, we examine carefully
any nonzero entry of C =Csvals. E.g., we have

C2 = − 9 · 2−6εe2εγEΓ(−ε)
4π3/2(4ε− 3)(4ε− 1)Γ

(
1
2
− 3ε

) (39)

Now we transform this expression bearing in mind that, for k ∈ Z and r ∈ Q,
the expressions

r, rkε, and Γ̃(1 + kε)
def
= ekεγEΓ(1 + kε)

6In more complicated cases there is a simple empirical approach allowing to find f
provided that we know sufficiently many terms of ε-expansion of boundary constants.
This approach goes beyond the scope of the present paper.
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have uniform ε-expansions. We have

C2 =
9

4π2ε(4ε− 3)(4ε− 1)
× 2−12εΓ̃(1− 3ε)Γ̃(1− ε)

Γ̃(1− 6ε)
. (40)

The second factor has uniform ε-expansion, so we can take f = 9
4π2ε(4ε−3)(4ε−1) .

Now we have to redefine T → T f , L→ L/f .
Let us apply this fix to our data (with due precautions!):

In[11]:=

f=9/4/Pi^2/εεε/(3 − 4∗εεε)/(1 − 4∗εεε);
T1 = T∗f; L1 = L/f;
transformation1 = transformation;
transformation1[Transform] = T1;

To avoid mistakes at this stage, we have created new temporary variables T1,
L1, and transformation1. Now, before redefining the previous variables, we
should better check the consistency. First, we check that new transformation
matrix leads to the same final matrix:

In[12]:=

Mi=ChangeVar[transformation1[In][εεε], εεε →→→ (1+z^2)/(1−z^2),z];
Factor[Transform[Mi,transformation1[Transform],z]−Mf]

Out[12]=

{{0,0,0,0,0},{0,0,0,0,0},{0,0,0,0,0},{0,0,0,0,0},{0,0,0,0,0}}

Next, we should check if the matrix L is defined correctly. For this purpose
we can use the function GetL, which admits as the fourth parameter the list
of coefficients and constructs the corresponding adapter matrix:

In[13]:=

Factor[GetL[Mf, T1, {z, z}, cs] − L1]

Out[13]=

{{0,0,0,0,0},{0,0,0,0,0},{0,0,0,0,0},{0,0,0,0,0},{0,0,0,0,0}}

Since the data seems to be consistent, we reassign the old variables and
remember to update the file:
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In[14]:=

T=T1;L=L1;transformation=transformation1;
Put[transformation, "transformation"];
Csvals = L.csvals;
Jsvals =ExpandAll@FunctionExpand[U.Csvals];

Let us examine the obtained results by an eye by printing only two leading
terms of the ε expansion7. We note the proliferation of ln 2, so to save space
we present here the expansion of (212 εεεJsvals) which appears to be free of ln 2:

In[15]:=

Simplify[LeadingSeries[#,{εεε,0,1}]]&/@(212 εεεJsvals)

Out[15]=
{(12 G[{−1},z]−12 G[{1},z]) ε+72 (G[{−1,−1},z]−G[{−1,0},z]+G[{−1,1},z]−G[{1,−1},z]+G[{1,0},z]−G[{1,1},z]) ε2+O[ε]3,

1+6 (G[{−1},z]−G[{0},z]+G[{1},z]) ε+O[ε]2,
4

3
(G[{−1,−1},z]−G[{−1,1},z]−G[{1,−1},z]+G[{1,1},z]) ε2+

8

3
(3 G[{−1,−1,−1},z]−3 G[{−1,−1,0},z]+3 G[{−1,−1,1},z]−G[{−1,0,−1},z]+G[{−1,0,1},z]−G[{−1,1,−1},z]+

3 G[{−1,1,0},z]−5 G[{−1,1,1},z]+G[{0,−1,−1},z]−G[{0,−1,1},z]−G[{0,1,−1},z]+G[{0,1,1},z]−5 G[{1,−1,−1},z]+
3 G[{1,−1,0},z]−G[{1,−1,1},z]+G[{1,0,−1},z]−G[{1,0,1},z]+3 G[{1,1,−1},z]−3 G[{1,1,0},z]+3 G[{1,1,1},z]) ε3+O[ε]4,
8

27
(G[{−1},z]−G[{1},z]) ε+

4

9
(5 G[{−1,−1},z]−4 G[{−1,0},z]+3 G[{−1,1},z]−G[{0,−1},z]+G[{0,1},z]−3 G[{1,−1},z]+

4 G[{1,0},z]−5 G[{1,1},z]) ε2+O[ε]3,−2 (G[{−1,−1},z]−G[{−1,1},z]−G[{1,−1},z]+G[{1,1},z]) ε2−4 (2 G[{−1,−1,−1},z]−
3 G[{−1,−1,0},z]+4 G[{−1,−1,1},z]−2 G[{−1,1,−1},z]+3 G[{−1,1,0},z]−4 G[{−1,1,1},z]+G[{0,−1,−1},z]−G[{0,−1,1},z]−
G[{0,1,−1},z]+G[{0,1,1},z]−4 G[{1,−1,−1},z]+3 G[{1,−1,0},z]−2 G[{1,−1,1},z]+4 G[{1,1,−1},z]−3 G[{1,1,0},z]+

2 G[{1,1,1},z]) ε3+O[ε]4}

Indeed, we see the uniform transcendental weight.
Therefore, we have calculated all integrals needed for the calculation of

the energy loss. Performing some Dirac matrix algebra an expressing the
functions G via classical polylogarithms, we obtain

φrad = α(Zα)2
{

8(z4+z2+1)
3(z3+z)

ln 1+z
1−z −

4
3
− (2z2+3z+2)(z2−1)

2

3(z4+z2)
ln2 1+z

1−z

+
2(z2−1)

2

z3+z

[
Li2
(
1−z
2

)
− Li2

(
1+z
2

)
− Li2(−z) + Li2(z)− ln 1−z

2
ln 1+z

1−z

]}
,

(41)

which, after a little fiddling with dilogarithms, reduces to Racah result [15].

7LeadingSeries probably deserves to be an inherent Mathematica function, but for
now it is a function defined in Libra.
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4. Conclusion

In the present paper we have described a newMathematica package Libra
dedicated to the reduction of the differential systems, in particular,those,
which appear in multiloop calculations. Although, we have presented some
of Libra’s features, many have been left behind the scene. Let us list some
of those

1. Reducing multivariate systems (see Example 5 in the Tutorial1.nb
notebook attached to the distribution).

2. Many linear algebra tools (ESpace, EValues, JDSpace,OMatrixExp,
ODet, ODot, JDTowers,. . . ). Some of them do the same as original
Mathematica functions, but are faster in many cases.

3. The versions of the above functions for the matrices in the quotient
ring Q[x]/p(x), where p(x) is some irreducible polynomial (ESpaceMod,
EValuesMod,. . . ). Also, the corresponding versions of Series* func-
tions, like SeriesCoefficientMod.

4. Treatment of irreducible denominators using *Mod functions.
5. An automatic verison of VisTransformation, the function Rookie

(this tool is not too advanced yet).
6. Specialized command to construct U and Vᵀ spaces for complicated

cases (GetSubspaces).
7. Converting to and from the higher-order differential equation (ToOneDE,

ToCompanionDS).
8. Construction of generalized power series (Frobenius method, functions

SeriesSolutionData, ConstructSeriesSolution)
9. Introducing new variables with notations (AddNotation, Notations,

RuleToNotation, NotationToRule)
10. Using Fermat program [14] via Fermatica interface package (R.Lee) for

operations with matrices populated with rational functions (UseFermat
option in many procedures).

11. Implementation of the decomposition algorithm used in irreducibility
criterion of Ref. [2] (BikhoffGrothendieck function).

12. Transformations history manipulation functions (HistoryCheck,
HistoryChop, HistoryRecall).

Some of these features have experimental status, but have been used in
real-life problems, including the most complicated ones. The user is encour-
aged to check the tutorial which come with the distribution.
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