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Understanding the intricate properties of one-dimensional quantum systems coupled to multiple
reservoirs poses a challenge to both analytical approaches and simulation techniques. Fortunately,
density matrix renormalization group-based tools, which have been widely used in the study of
closed systems, have also been recently extended to the treatment of open systems. We present an
implementation of such method based on state-of-the-art matrix product state (MPS) and tensor
network methods, that produces accurate results for a variety of combinations of parameters. Unlike
most approaches, which use the time-evolution to reach the steady-state, we focus on an algorithm
that is time-independent and focuses on recasting the problem in exactly the same language as
the standard Density Matrix Renormalization Group (DMRG) algorithm, initially put forward in
[1]. Hence, it can be readily exported to any of the available DMRG platforms. We show that
this implementation is suited for studying thermal transport in one-dimensional systems. As a case
study, we focus on the XXZ quantum spin chain and benchmark our results by comparing the spin
current and magnetization profiles with analytical results. We then explore beyond what can be
computed analytically. Our code is freely available on github at [2].

I. INTRODUCTION

Transport properties at the nanoscale may be significantly different from bulk materials, because of low-
dimensionality, interactions and interference. For instance in quantum spin chains one can observe anomalous diffusion
[3–5], negative differential conductance and rectification [6–8].

The study of many-body quantum systems, however, is in general very demanding. For instance, considering a pure
state describing a chain of N spin-1/2 particles, one needs to take into account a Hilbert space of size 2N . However,
when aiming to study the transport properties of a system coupled to two different baths at its edges, as shown in
Fig.1, one needs also to find a way to model the effects of the bath, thus requiring to explore a space larger than
2N . One approach to study open quantum, i.e. quantum systems in contact with an environment, is that of the
Gorini-Kossakowski-Sudarshan-Linbdlad (GKSL) master equation, which is a linear equation describing the evolution
of the density matrix of the system [9, 10]. For this reason, to study transport in this framework, one needs to be able
to explore a space of dimension 22N . An exact study of systems of this type becomes quickly too difficulty, e.g. for
systems with L ≈ 12 (see [11] for an exact diagonalization study with L = 14, which was only possible by considering
symmetries of a particular class of boundary driven problems).

Fortunately, for the particular case of one-dimensional (1D) systems, a particular class of numerical methods has
been developed starting from the seminal work [12], which outlined the density matrix renormalization group (DMRG)
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FIG. 1: Diagrammatic representation of a one-dimensional quantum spin chain coupled to two thermal baths BL
and BR, one at each end. Here, each grey circle represent a spin.
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method that was later realized within the general framework of tensor networks [13]. Tensor networks are a particular
form of variational ansatz to explore, at a polynomial cost, an otherwise exponentially large Hilbert space. The key
advantage of this variational approach is that a large class of physically relevant ground states, e.g. Hamiltonians of
1D systems with finite range interactions, can be exactly described using tensor networks [13]. The key is that the
bipartite entanglement entropy of the system should not grow linearly with the system size (a.k.a. volume law).

Tensor network methods are known to be useful also in the description of open quantum systems. In this case there
is no analytical proof that the method will accurately describe the open quantum system. However, as we will see
later in this manuscript, the method can be very accurate for many physically relevant scenarios. Various approaches
have been put forward to study many-body open quantum systems with tensor networks. A review which focuses on
ensemble trajectories of stochastic wavefunctions [14], instead of evolving the density matrix, can be found in [15].
And a comparison of the trajectory method versus evolving directly the density matrix can be found here [16, 17]. A
short review of numerical methods to study many-body open quantum systems can be found in [18]. A particularly
interesting approach was put forward in [1], in which the evaluation of the steady-state of a system was mapped into
that of computing the ground state of an effective Hamiltonian with long range interactions. In this work we evaluate
the performance of this approach when applied to boundary driven systems as the one shown in Fig.1.

To make the paper self-contained, we first provide in Sec.II a detailed description of the model studied, with all
the relevant equations and the different transport properties that can emerge. We follow this with a short description
of a tensor network algorithm to compute the ground state for closed systems in Sec. III. Then, in Sec.IV we discuss
in detail how one can map an open quantum system problem to a form conducive for tensor networks calculations.
Next we describe how one can map the problem of finding the steady state of a many-body open quantum system
to that of computing the ground state of an effective Hamiltonian in Sec.V, where we also provide all details of
an implementation using the ITensor library [19]. A series of numerical analyses benchmarking our code, comparing
numerical and analytical results, and exploring the physics beyond what can be addressed analytically, is then discussed
in Sec. VI. Conclusions are given in Sec. VII.

II. A BOUNDARY DRIVEN SPIN CHAIN

One of the most widely studied examples of a open quantum spin chain is the XXZ model coupled to two local
GKSL baths. The Hamiltonian for a 1D chain of N sites is given by

H =

N−1∑
i=1

Ji

(
σxi σ

x
i+1 + σyi σ

y
i+1 + ∆iσ

z
i σ

z
i+1

)
+

N∑
i=1

hiσ
z
i , (1)

where σαi are the Pauli matrices and Ji,∆i, hi are parameters indicating respectively the tunneling between nearest
sites, the anisotropy and a local magnetic field. In addition to the Hamiltonian dynamics, the system is also coupled
to two baths at sites 1 and N , as described by a GKSL master equation [20]. The evolution of the system’s density
matrix ρ will then be given by

dρ

dt
= L(ρ) := −i[H, ρ] +D1(ρ) +DN (ρ), (2)

where

Di(ρ) = γifiD[σ−i ](ρ) + γi(1− fi)D[σ+
i ](ρ), i = 1, N, (3)

with D[L](ρ) = LρL† − 1
2{L

†L, ρ}. Here γi > 0 represent the coupling strength to bath i and fi ∈ [0, 1] represent
the imbalance between the baths. After a sufficient time has elapsed, the evolution of Eq. (2) will eventually reach a
non-equilibrium steady-state (NESS) defined by

L(ρness) = 0. (4)

In the vast majority of cases, this steady-state is also unique. Note also that, albeit a steady-state, the system will
not be in equilibrium since there will be, in general, a steady current flow from one bath to the other.

The model described by Eqs. (1)-(3) presents remarkably rich physics. The most relevant observables to analyze
are the local currents from site i to i+ 1

Ji = 2Ji(σ
i
xσ

i+1
y − σiyσi+1

x ), (5)
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FIG. 2: Tensor network representation [Eq. (7)] of a high-rank tensor as a contraction of lower rank tensors.

and the local magnetization σiz. In the NESS, current conservation implies that 〈Ji〉 will be independent of i (the
current from i−1→ i is the same as that from i→ i+1). The physics is then characterized by the different transport
properties of 〈Ji〉. For large sizes, one usually has the scaling

〈Ji〉 ∼
1

Lα
, (6)

where α > 0 is an exponent characterizing the type of transport: ballistic for α = 0, diffusive for α = 1, superdiffusive
for α ∈ [0, 1], subdiffusive for α > 1, and insulating when α→∞.

III. REVIEW OF TENSOR NETWORK METHODS IN CLOSED QUANTUM SYSTEMS

The basic idea behind tensor networks is to decompose a high-rank tensor into a controlled product of lower rank
tensors. Consider a generic rank-N tensor ψσ1...σN

. A tensor network decomposition has the form

ψσ1...σN
=

∑
x1,...,xN−1

Aσ1
x1
Aσ2
x1,x2

...AσN
xN−1

, (7)

which is shown diagrammatically in Fig. 2. This kind of expansion is relevant because quantum states of multipartite
systems are naturally represented as a high-rank tensor. For instance, the state of a spin chain with N sites has the
form

|Ψ〉 =
∑

σ1,...,σN

ψσ1,...,σN
|σ1, . . . , σN 〉 , (8)

where σi = ±1 are the eigenvalues of σzi . Of course, while a decomposition of the form (7) is always possible, it is not
necessarily advantageous. The advantages ultimately come from approximations that can be obtained by restricting
the dimension of the internal indices xi, called the bond dimension.

The tensor network decomposition (7) is used as the starting point for a variety of algorithms. The most notable is
the Density Matrix Renormalization Group (DMRG) [12, 21], a variational method to estimate the ground-state |ψgs〉
of one-dimensional Hamiltonians, although the DMRG algorithm was not originally formulated in terms of tensor
networks [12]. The idea is to solve the eigenvalue/eigenvector problem

H|ψ〉 = E|ψ〉, (9)

assuming that |ψ〉 is not an arbitrary quantum state, but rather a tensor network of the form (7) with a fixed
maximum bond-dimension. Let us denote |ψgs〉 the lowest energy tensor network obtained from Eq. (9). This is to be
contrasted with the true ground-state |Ψgs〉, which would be obtained if the full Hilbert space was used. According to
the variational principle of quantum mechanics, the true ground-state energy Egs = 〈Ψgs|H|Ψgs〉 is always bounded
by

Egs := 〈ψgs|H|ψgs〉 > Egs. (10)

Hence, the energy associated to |ψgs〉 provides an upper bound on the true ground-state energy.
The search algorithm for the ground state is iterative. It proceeds by optimizing each tensor Aσi

xi−1,xi
in Eq. (7) at

a time, after which it moves to the next site (details can be found in Ref. [13]). Moving one site at a time through the
chain, and then backwards, is usually referred to as a sweep. For a fixed maximum bond dimension, multiple sweeps
can be employed to ensure convergence. After the algorithm has converged, the bond-dimension can be increased and
the process can be restarted until the desired accuracy is met.
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IV. HILBERT SPACE STRUCTURES FOR OPEN SYSTEM DYNAMICS

A. Vectorization

We now turn to the case of open quantum systems. For the purpose of concreteness, we shall focus on the problem
described by Eqs. (1)-(3). The generalization to other types of Hamiltonians/dissipators is straightforward. The
master equation (2) is still a linear equation in ρ. The difference is that the Liouvillian L(ρ) is now a superoperator,
as it may act on ρ by means of matrix multiplications on both sides. This linearity can be made manifest by introducing
a vectorization operation, also called Choi-Jamiolkowski’s isomorphism [22, 23], and described by

vec
(
|i〉〈j|

)
= |j〉 ⊗ |i〉. (11)

It thus converts an operator in Hilbert space, into a ket in a space whose size is the squared of the initial one.
Matrix-wise, this corresponds to stacking the columns of a matrix,

vec

(
a b
c d

)
=

acb
d

 . (12)

Using vectorization, a general density matrix ρ =
∑
ij ρij |i〉〈j| is converted into a ket

vec(ρ) =
∑
ij

ρij |j〉 ⊗ |i〉. (13)

The fact that the size of the Hilbert space is squared reflects the fact that superoperators can act on both sides of a
density matrix. Indeed, for any 3 matrices A, ρ and B, one may verify that

vec(AρB) = (BT ⊗A)vec(ρ). (14)

With this the master equation (2) can be converted into a linear matrix-vector equation

d

dt
vec(ρ) = L̂vec(ρ), (15)

where L̂ is now a matrix with entries

L̂ = −i(I ⊗H −HT ⊗ I) + D̂1 + D̂N , (16)

with D̂i given by

D̂i = γifiD̂[σ−i ] + γi(1− fi)D̂[σ+
i ], i = 1, N, (17)

and with

D̂[L] = L∗ ⊗ L− 1

2

[
I ⊗ (L†L) + (L†L)T ⊗ I

]
. (18)

In all of the above expressions, I refers to the identity matrix with the appropriate dimension.
The above vectorization procedure is the starting point for most numerical algorithms dealing with quantum master

equations of the form (2). The relaxation dynamics of (15) will simply be given by

vec(ρt) = eL̂t vec(ρ0), (19)

Alternatively, one may look directly at the steady-state, Eq. (4), which now acquires the form

L̂vec(ρness) = 0. (20)

This equation makes explicit the fact that the NESS vec(ρness) is simply the eigenvector of L̂ with eigenvalue 0.

Stability implies that all eigenvalues of L̂ should have non-positive real parts. Moreover, when the steady-state is
unique, there will be only a single eigenstate with eigenvalue 0. One should bear in mind, notwithstanding, that the
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FIG. 3: Upon contracting over the horizontal, indices, one recovers ρ.

normalization of the NESS is not the standard normalization for eigenvectors. Instead, density operators should be
normalized as tr(ρ) = 1. This, in turn, can be viewed as the Hilbert-Schmidt inner product tr(A†B) between two
operators (in this case ρ and the identity matrix). Indeed, vectorization turns out to precisely convert Hilbert-Schmidt
inner products into standard dot-products for the resulting vectors:

tr(A†B) = vec(A)∗ · vec(B). (21)

Whence, the normalization condition becomes

tr(ρ) = vec(I) · vec(ρ) = 1. (22)

B. Vectorization for multipartite Hilbert spaces

The above recipe is not yet well suited for tensor network methods. The reason is that the vectorization pro-
cedure (11) generally changes the tensor ordering of the Hilbert space, which can have a significant impact on the
numerics. To see this, we consider the spin chain problem in Eqs. (1)-(3). The density matrix for this system is
described by the Matrix Product Operator (MPO)

ρ =
∑

σ1,...,σN

σ′1,...,σ
′
N

ρσ1,...,σN ,σ′1,...,σ
′
N
|σ1 . . . σN 〉〈σ1 . . . σ′N |, (23)

where |σ1 . . . σN 〉 = |σ1〉 ⊗ . . . ⊗ |σN 〉 (see Fig. 3). In what follows, the tensor product symbol will be omitted for
clarity. That is, we will equivalently write this as |σ1 . . . σN 〉 = |σ1〉 . . . |σN 〉. Naive vectorization, in terms of stacking
columns [Eq. (12)] leads to

vec
(
|σ1 . . . σN 〉〈σ1 . . . σ′N |

)
= |σ′1〉|σ′2〉 . . . |σ′N 〉|σ1〉|σ2〉 . . . |σN 〉. (24)

Whence, we see that it rearranges the Hilbert space so as to put all right-side indices σ′i first, followed by all left-side
indices. We shall refer to Eq. (24) as the RNLN ordering. The problem with this kind of structure, as we shall see
below, is that it pushes indices pertaining to the same site, σi and σ′i, far away from each other.

Eq. (24) shows, in fact, that there is an arbitrariness in how to order the Hilbert space after a vectorization. The
order in which the indices are placed is immaterial, provided that the operators acting on vec(ρ) are appropriately
labelled to act on the correct site. For instance, a much more natural vectorization would be

vec
(
|σ1 . . . σN 〉〈σ1 . . . σ′N |

)
= |σ′1〉|σ1〉 . . . |σ′N 〉|σN 〉, (25)

which we shall refer to as the (RL)N ordering. This ordering preserves the “real space” order of the original Hilbert
space, bundling together left and right indices σ′i and σi for each site. Other types of orderings may also be useful,
depending on the problem in question. Ultimately, this will depend on the kinds of operators multiplying vec(ρ). As
we shall see next, unitary and dissipative elements behave quite differently in this sense.

Let us begin by considering the unitary contribution. A typical Hamiltonian term for nearest-neighbor interactions
has the form H1 = AiAi+1, where Ai is an operator acting on site i. This Hamiltonian will act on the master equation
as [H1, ρ]. Thus, H1ρ will act on indices σi and σi+1, whereas ρH1 will act on σ′iσ

′
i+1. The way this translates into the

RNLN and (RL)N orderings is illustrated in Figs. 4(a) and 5(a) respectively. As can be seen, in the RNLN ordering
the Hamiltonian retains its nearest neighbor character, with two disconnected contributions acting on different parts
of the Hilbert space. The (RL)N ordering, on the other hand, leads to a second nearest neighbor interaction.

We now move on to the dissipative contributions. The special part is the first term in Eq. (18). A dissipator such
as D[σ−1 ] for instance, has a contribution of the form σ−1 ρσ

+
1 . This will act on indices σ1 and σ′1. The corresponding
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tensor structure for the two orderings will then be as shown in Figs. 4(b) and 5(b). As we now see, the RNLN

ordering leads to a highly non-local Hilbert space structure, whereas in (RL)N the structure is nearest-neighbor.
This analysis clearly shows why the (RL)N ordering (Fig. 5) will in general fare better in a numerical calculation:

even though the Hamiltonian is now a second nearest-neighbor interaction, the dissipator is only nearest-neighbor.
This will be more advantageous than RNLN which has long-range interacting terms.

σ′

1
σ′

2
σ′

N

σ1 σ2 σN

HR

HL

(a) Hamiltonian interactions

σ′

1
σ′

2
σ′

N

σ1 σ2 σN

D1

DN

(b) Dissipators interactions

FIG. 4: Diagramatical depiction of the Hamiltonian and dissipative terms under the RNLN formalism.
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(a) Hamiltonian interactions

σ′

1

DN

σ′

2
σ′

N

σ2 σNσ1

D1

(b) Dissipators interactions

FIG. 5: Diagramatical depiction of the Hamiltonian and dissipative terms under the (RL)N formalism.

V. IMPLEMENTATION OF THE ODMRG ALGORITHM

A. The L†L method

Having established the Hilbert space structure, we are now in a position to implement the oDMRG algorithm
introduced in [1]. The starting point is the steady-state equation (20), which shows that the NESS is the eigenstate

of L̂ with eigenvalue 0. The problem with this equation is that L̂ is a non-Hermitian operator. To circumvent this,
we consider instead the eigenvalue/eigenvector of M̂ = L̂†L̂ [1]; that is, instead of (20) we solve

M̂vec(ρness) = L̂†L̂ vec(ρness) = 0. (26)

The operator M̂ has the same steady-state as L̂, but is Hermitian. Moreover, M̂ is by construction positive semi-
definite, with exactly one zero eigenvalue (when the steady-state is unique) and all other eigenvalues strictly larger
than zero.

For these reasons, Eq. (27) has now the exact same structure as the closed system eigenvalue problem Eq. (9):

we need essentially to look for the ground-state of the effective Hamiltonian given by M̂, and the search for this
groundstate is therefore entirely amenable to the closed DMRG algorithm. Eq. (27) also offers the additional advantage
that the ground-state energy is known exactly, Egs = 0. Hence, monitoring how the energy changes during the DMRG
sweeps can be used as a way to probe the convergence of the algorithm (for an implementation of a DMRG-like code

for the non-Hermitian superoperator L̂ see [24]).
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For concreteness, we shall henceforth focus on the model in Eqs. (1)-(3) and choose the initial parameters such that
Ji = 1, ∆i = ∆ and hi = h. The input parameters are then only the chain size N , together with γ, f1, fN , h and ∆.

One setback of the algorithm (27) is that even if the (RL)N ordering is used for L̂, the tensor structure of M̂ = L̂†L̂
will now be highly non-local. This should be expected because a steady state of local Hamiltonian and dissipative
terms, in general does not need to follow an area-law, unlike the ground state of local Hamiltonians. However the non-
locality of the terms may lead to an “entanglement-barrier” problem for the convergence of the algorithm. The reason
is that, during convergence, the algorithm will pass through multiple, highly entangled, eigenstates of the operator
M̂. As a side comment, note that these excited states are typically different from the eigenstates of L̂ because non-
Hermitian operators have different left and right eigenvectors (the NESS is an eigenstate that both operators share).

Another issue is that M̂ has usually a smaller gap, between the steady state and the first excited state, as compared
to L̂, making the problem numerically harder to converge. These problems were investigated recently in Ref. [25],

where the authors proposed additional approximations for making M̂ more local. In [25], however, the authors did

not deal with boundary-driven transport problems. In our implementation we will consider the full M̂ operator, and
as we show, for the boundary-driven problems we studied, good convergence rates were obtained without the need
for these additional methods.

B. Positivity of the variational density matrix

Another side effect of using a closed-system algorithm for open quantum systems concerns the positivity of the
numerically obtained density matrix vec(ρ). As discussed in Sec. IV A, the vectorized density matrix is not normalized
as a standard vector, but rather as in Eq. (22). This is at odds with the closed DMRG algorithm, which uses standard
normalization. This, of course, can be readily fixed by appropriately renormalizing the output state. A more serious
issue, however, concerns the positivity of the resulting density matrix: physical density matrices must be positive semi-
definite. A physical tensor network variational state for vec(ρ) must therefore be one for which the corresponding
“unvec’d” state is positive semi-definite. The set of tensor network states through which the system passes during the
algorithm, however, is not restricted to this, but may very well contain also non-positive states. The set is also not
convex, so that even if we were to start with a physical state, there is no guarantee that the algorithm remains in one.
As a consequence, it is possible that the algorithm (27) converges to states which have low energies but are otherwise
unphysical. This can be witnessed, for instance, by imaginary contributions to the expected values of observables.

We have found that this problem can be dramatically minimized by adopting the following procedure. First, we use
as the starting guess for the tensor network state, a maximally mixed state, vec(I), an object which below we refer
to as Ivec. Second, we start the process with very small bond dimensions, usually 2. Such a small bond dimension
allows for extremely fast computations, so that we allow for a large number of sweeps to ensure convergence. For such
a small bond-dimension, the system is found to naturally converge to a physical state. We call this first phase the
warm-up. Finally, and most importantly, we then proceed to increase the bond dimension in very small steps, usually
in steps of 1 or 2 (allowing, of course, multiple sweeps for each bond dimension to ensure convergence). The reason
why this works is because if the bond-dimension is too large, the algorithm will generally converge towards unphysical
states. But by incrementing the bond dimension in small steps, one minimizes these disturbances, pushing the system
towards the manifold of positive semi-definite states. We have no formal proof that this approach necessarily has to
work. But in all scenarios we have tested, it was found to dramatically improve the results.

C. Numerical comparison between the (RL)N and RNLN orderings

We implement the above steps using the iTensor library [19]. Initially, for the sake of comparison, we have imple-
mented both the (RL)N and RNLN orderings, and we provide in Fig. 6 a convergence test for both. This is done by
monitoring the lowest eigenvalue ofM = L†L which, as already discussed, is called “energy”, in reference to Eq. (10).
Recall that in our case the energy of the true steady-state is known to be identically zero. Thus, its magnitude serves
as a quantifier of the convergence of the algorithm. Indeed, as the plot indicates, the (RL)N ordering is consistently
more reliable, having a smoother convergence curve after each sweep, and requiring less sweeps to achieve better
numerical results. In light of this, the discussion below will be centered on the (RL)N ordering.

D. Initialization

We now discuss the details of the implementation, focusing on the code available at [2]. Further details on the
functions presented in this section can be found in A. The tensor class is called by
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RNLN ordering
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FIG. 6: Energy as a function of the number of sweeps, for the (RL)N and RNLN orderings, with a fixed maximum
bond dimension of 100. Values used: N = 20, γ = 1,∆ = 0.5, f1 = 0.8, fN = 0.2, h = 0.

auto s i t e s = LRN(N) ;
MPS rho = MPS( s i t e s ) ;

The resulting object sites, which is the output of the function LRN, contains all definitions of the Hilbert space
structure, together with how the Pauli operators act on different indices for left- and right-multiplication.

All observables can then be constructed from the sites object. Here we focus on the currents (5) and the local
magnetization σiz. iTensor allows for a simple symbolic input for building operators, which we have adapted to include
left and right multiplication. The resulting code is then implemented as

f o r ( i n t i =1; i<N; i++){
auto aobs = AutoMPO( s i t e s ) ;
aobs += 4 . 0 , ”SxL” , i , ”SyL” , i +1;
aobs += −4.0 , ”SyL” , i , ”SxL” , i +1;
obsCurrVec . push back (MPO( aobs ) ) ;

}
f o r ( i n t i =1; i<=N; i++){

auto aobs = AutoMPO( s i t e s ) ;
aobs += 2 .0 , ”SzL” , i ;
obsMagVec . push back (MPO( aobs ) ) ;

}

An object such as ‘‘SxL’’, for instance, stands for the Pauli matrix acting on the left. Similarly,
‘‘SxL’’,i,‘‘SyL’’,i+1 stand for the operator σixσ

i+1
y acting on the left. The factors of 4 and 2 are simply be-

cause iTensor naturally loads spin operators Six = σix/2, etc. The above routine constructs a list of MPOs, each
representing the current in a given bond or the magnetization in a given site.

Next we construct the tensor network for the density matrix vec(ρ), which is the object that will be optimized in
the algorithm. We also initialize it to the maximally mixed state vec(I) (normalization is not required and is done
only when we compute the expectation values of observables). The code reads

MPS rho ;
MakeIVEC( rho , N) ;

The function MakeIVEC constructs an MPO of the form vec(I). Lastly, we construct the matrix M̂ = L̂†L̂:

MPO LdL = LdLXXZConstruct ( s i t e s , Delta , f1 , fL , gamma, h) ;

This functions uses the same type of constructs used in iTensor to build Hamiltonians, but again taking care of proper
left and right multiplications. It also uses a symbolic structure to construct the object in a way that is independent of
the bond dimension being used. As a consequence, the resulting object LdL has no significant memory cost, irrespective
of the size N . We also mention that while the above function focuses on a homogenous chain (i.e. homogeneous ∆
and h), it is trivial to extend it to the inhomogeneous case.
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E. Warm-up

As discussed above, we perform a warm-up routine to improve the convergence to a physical tensor network. It
performs multiple DMRG-sweeps with the lowest bond-dimension, to sharpen the initial parts of the simulation. The
function receives the state rho, the MPO object LdL, the error threshold to stop the function, and an additional tag
(which can be either ”true” of ”false”) to manage the output of the function to the console.

WarmUp( rho , LdL , 0 .001 , {”Quiet ” , t rue }) ;

This function is a minor adaptation of iTensors built-in DMRG routine. The improvements brought about by the
warm-up are significant, as shown in Fig. 7. The black horizontal line represents the sweep where the warm-up ends
and the actual simulation begins (to be discussed in what follows). As can be seen, the reduction in energy during
the warm-up is significant, even though the simulation time [Fig. 7(b)] is negligibly small.
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FIG. 7: Plots of both ground state energy and time taken by sweep as a function of the number of sweeps. The
black horizontal line represents the sweep where the warm-up ends and the actual simulation begins. Values used:

N = 10, γ = 1, f1 = 1, fL = 0, h = 0,∆ = 1.

F. DMRG sweeps and final calculations

After the initial warm-up routine, the DMRG procedure is then applied for increasing values of the bond-dimension
parameter. The individual DMRG runs are called as

energyFin = dmrg( rho , LdL , sweeps }) ;

which is just a call to the built-in DMRG function from iTensor. This can then be placed inside a loop, which
compares the energy with the previous value; if the two fall within 10% of one another, the bond-dimension value is
increased by a fixed amount. Both of these parameters, the threshold upon which one increases the bond dimension,
and the amount of the bond dimension increase, can be easily altered by the user at the initial lines of the main
routine. The algorithm can be run indefinitely, or the user may choose a stopping point, for instance, the maximum
bond dimension, amount of sweeps. etc.

During each sweep, we calculate the spin current Eq.(5) throughout the chain, as well as the magnetization for each
site. Both of these are done in a similar manner, contracting the previously loaded MPO of the relevant site with
the tensor network object ρ. We take advantage of iTensor’s optimized tensor network procedures. The value is then
printed out. For example, the magnetization is computed with a loop going up to the size of the chain, for each site
calculating

〈Ivec|Mj |ρ〉
〈Ivec|ρ〉

, (27)

where Mj is the magnetization MPO described in Sec. V D. This is done through the following excerpt:
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FIG. 8: Energy convergence for different chain lengths, after each sweep, for different system sizes N . Values used:
γ = 1,∆ = 0.5, f1 = 1, fN = 0, h = 0.

f o r ( i n t j =1; j<=N; j++){
auto ev = overlapC ( Ivec , obsMagVec [ j −1] , rho ) / overlapC ( Ivec , rho ) ;

}

A similar procedure is done for the spin current.

f o r ( i n t j =1; j<N; j++){
auto cur rent = overlapC ( Ivec , obsCurrVec [ j −1] , rho ) / overlapC ( Ivec , rho ) ;

}

In both cases we use the previously calculated vector of MPOs from Sec.V D. Of course, to optimize the code, one
may also only compute the observables at the end of the process. Here we compute them at each step in order to
monitor their convergence.

Finally, at the end of each sweep, we check if the energy has stabilized, and, if so, we increase the bond dimension
value in order to advance the accuracy of the routine.

i f ( ( energyIn i−energyFin ) / ene rgy In i < sweepBDChangeThresholdValue ) {
bd += BDinc ;
sweeps .maxm( ) = bd ;

}

Additional conditions can be easily implemented taking into account the simulation parameters, to finely tune the
convergence of a specific set of parameters within a specific system.

VI. RESULTS

A. Benchmarking convergence

Initially, we look at the convergence of the algorithm for different chain sizes. Illustrative results are shown in Fig. 8
for sizes up to N = 50. As can be seen, for small sizes the convergence is extremely fast. Increasing the size of the
chain makes it so that more sweeps are necessary, but since the bond dimension of each sweep is increased in a slow,
controlled manner, the convergence is possible even for larger sizes. For the particular case of ∆ = 1, f1 = 1 and
fN = 0, the problem actually has an analytical solution in the form of a matrix product ansatz [3, 26]. By looking
at the average current after each sweep, we can therefore benchmark the algorithm to assure the convergence of the
current. This is illustrated in Fig. 9. As can be seen, the convergence is generally slower for intermediate values of γ.
Taking the analytical values available as references, we can see that the algorithm is working as intended. Additionally,
all these simulations were made in the span of a couple days, with an average desktop: no broad computational power
was required.
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FIG. 9: Spin current convergence versus sweep number for different coupling values γ. Values used:
N = 25,∆ = 1, f1 = 1, fN = 0, h = 0. Dashed lines correspond to the analytical solutions in [3].
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FIG. 10: (a) J vs. γ for two values of L. The solid line corresponds to the analytical solution from [3] and the dots
correspond to the oDMRG simulations. (b) J vs. N for γ = 0.5. One can clearly see the change from ballistic to

subdiffusive transport. Other parameters were ∆ = 1, f1 = 1, fN = 0, h = 0.

B. Benchmarking the steady-state in comparison with analytical solutions

After assuring that the code is working, we can further our analysis by studying the current for different coupling
values γ, for two chain sizes. The steady-state current as a function of γ is shown in Fig. 10(a), where it is compared
with the analytical solution (solid lines). As can be seen, the agreement is extremely good. Similarly, in Fig. 10(b),
where one can clearly see the change in transport type as L increases, from ballistic to subdiffusive [3]. Finally, in
Fig. 11 we compare the magnetization profiles 〈σiz〉 with the exact solutions, which again show perfect agreement.

C. Regimes with no analytical solution

Finally, we illustrate how our implementation can be used to explore situations which have no analytical solution
and therefore rely solely on numerical methods. The current as a function of γ for different driving parameters fi
(see Eqs.(3,17)) and N = 10 is illustrated in Fig. 12(a). As can be seen, changing fi brings significant changes to the
steady-state and indeed it vanishes when f1 − fN = 0. A similar analysis of the magnetization profile is presented in
Fig. 12(b).
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FIG. 11: Magnetization profile M = 〈σiz〉 as a function of the sites for γ = 0.5, for (a) N = 10 and (b) N = 50. The
red curves are the exact solutions from [3]. Other parameters were ∆ = 1, f1 = 1, fN = 0, h = 0.
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FIG. 12: (a) J vs. γ for N = 10 and different values of f1, fN . (b) Magnetization profile for N = 80. Other
parameters were γ = 0.5,∆ = 1, h = 0.

VII. CONCLUSIONS

To summarize, in this paper we have detailed an implementation of a DMRG routine suited for dealing with open
quantum chains. The implementation is based on the algorithm first presented in [1], and was implemented on the
iTensor library [19]. The code is also freely available at [2]. The goal of the implementation is to convert the open
problem into the language of traditional DMRG, for which many sophisticated routines have already been developed.
A major advantage of this method is that it provides, without any overhead, a simple and effective quantifier of
convergence, because the steady state corresponds to the zero energy eigenstate of an effective Hamiltonian. We have
presented several benchmarks, analyzing both the convergence of the algorithm as well as comparing it with analytical
predictions that are available for a limited choice of parameters. These analyses clearly show that our implementation
is suitable for studying transport properties in one-dimensional quantum chains, and it can thus be used to study
quantum transport phenomena such as interaction induced current rectification and negative differential conductance.
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Appendix A: Available functions (and how to use them)

LRN-sites.h

This class is constructed with the (LR)N formalism in mind, and it therefore rearranges the indices of a N-sized
tensor network accordingly. It defines the right (R) and left (L) versions of Sx, Sy, Sz, S+, S−, as well as combinations
of those, which are used in the construction of more complex operators, such as (S−)R(S−)L and (S+S−)L, and so
on. It is fitting to be used by any new implementations, and its functionality is akin to the iTensor implemented
SpinHalf class.

MakeIVEC

The MakeIVEC function sets the entries of a tensor network to match those of vec(I). It is called as

MakeIVEC(MPS &rho , i n t N)

The ordering is done in accordance with the indices of the input and the (LR)N formalism. This functions is used as
the initial guess state that is input into the simulation. This allows one to start with a valid physical state and also
ensures that simulations can be re-done by starting from the same state. It is a void function, overwriting the values
in rho.

LdLXXZConstruct

This function handles the creation of the Liouvillian MPO. It can receive either constant values of the parameters
γ, h and ∆, or variable ones, which can be input into a vector. The same applies to the temperatures f1...fN . It
returns an MPO object, and is called using the following line.

LdLXXZConstruct ( S i t eS e t &s i t e s , double Delta , vector<int> d i s s ipa to r sVec ,
vector<double> diss ipatorsTempValues , <double> gammaVec ,
vector<double> hVec )

WarmUp

The warm-up routine functions as a simple set of DMRG sweeps with fixed bond-dimension. It has been explained
in detail in Sec. V E. It is a void type function, which means it simply overwrites the tensor network object. It is
called with the following line.

WarmUp(MPS &rho L , MPO &M2, double convergenceThreshold = 0 .001 ,
Args& args = {”Quiet ” , f a l s e } , Args& argsDMRG = {”Quiet ” , t rue })
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