
RETQSS: A NOVEL METHODOLOGY FOR EFFICIENT
MODELING AND SIMULATION OF PARTICLE SYSTEMS IN

RETICULATED GEOMETRIES

A PREPRINT

Lucio Santi∗
Departamento de Computación

FCEyN - UBA and ICC-CONICET
Ciudad Universitaria, Pabellón 1

C1428EGA, Buenos Aires, Argentina
lsanti@dc.uba.ar

Joaquı́n Fernández
CIFASIS-CONICET

Argentina
fernandez@cifasis-conicet.gov.ar

Ernesto Kofman
Departamento de Control

FCEIA - UNR and CIFASIS-CONICET
Argentina

kofman@cifasis-conicet.gov.ar

Rodrigo Castro
Departamento de Computación

FCEyN - UBA and ICC-CONICET
Ciudad Universitaria, Pabellón 1

C1428EGA, Buenos Aires, Argentina
rcastro@dc.uba.ar

March 25, 2022

ABSTRACT

This work presents retQSS, a novel methodology for efficient modeling and simulation of parti-
cle systems in reticulated meshed geometries. On the simulation side, retQSS profits from the
discrete-event nature of Quantized State System (QSS) methods, which enable efficient particle
tracking algorithms that are agnostic of the application domain. On the modeling side, retQSS re-
lies on the standardized Modelica modeling language, yielding compact and elegant specifications
of hybrid (continuous/discrete) dynamic systems. Combined together, these features offer a sound,
general-purpose framework for modeling and simulation of particle systems. We show how the
state-events that arise when particles interact with a reticulated mesh are seamlessly translated into
easily tractable time-events. The latter can substantially improve simulation performance in scenar-
ios where discontinuities dominate the computational demand. We showcase the flexibility of our
approach by addressing four case studies arising from different application domains. Performance
studies revealed that retQSS can perform similarly to, and even outperform, well-known domain-
specific particle simulation toolkits while offering a clear and sound accuracy control interface.

Keywords Particle simulation · Quantized State System ·Modelica · QSS Solver · Discrete Event Simulation

1 Introduction

Particle simulations have become an essential component in many modern disciplines such as computational fluid
dynamics, high-energy physics, 3D rendering and agent-based modeling, to name a few. During the past decades,
research and development efforts driven by varied needs (e.g., increasing demand for computing efficiency or better
∗Corresponding author

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.
org/licenses/by-nc-nd/4.0/

ar
X

iv
:2

00
6.

05
49

5v
3

 [
ph

ys
ic

s.
co

m
p-

ph
]

 1
6

Se
p

20
21

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

A PREPRINT - MARCH 25, 2022

accuracy and stability of the methods) led to the emergence of diverse numerical methods and domain-specific software
tools for particle simulation. Each application domain has thus adopted custom modeling methodologies which, in
most cases, rely on general purpose programming languages not designed to address modeling problems.

In a broad sense, particle simulation can be classified according to how particles are transported. In the Lagrangian
approach [1], the trajectories of a finite set of particles are individually tracked by solving ordinary differential equa-
tions (ODEs) governing their equations of motion. This approach is particularly attractive for capturing detailed
spatio-temporal information of single particle trajectories. Also, it enables straightforward representations of dynamic
characteristics such as external forces acting on a particle. On the other hand, the Eulerian framework [2] considers a
control volume within which properties of interest of the underlying flow of particles are expressed as fields. Instead
of identifying individual particles, it focuses on the activity at fixed points in space as time progresses.

This work presents retQSS, a new software toolkit for efficient modeling and simulation of particle systems in three-
dimensional spaces. In retQSS, dynamic models track particles individually in the context of a reticulated geometry
with which particles may interact as they are transported. Thus, retQSS follows a hybrid particle simulation approach
in which particles are tracked in a Lagrangian setup while employing a background Eulerian setup for different pur-
poses (e.g. interpolation of field properties).

Instead of focusing on a single application domain, retQSS pursues a more ambitious goal aimed at establishing a
generic, yet rigorous, methodological framework for modeling and simulation of particle systems. An essential first
step towards this goal is the adoption of QSS Solver [3] as the underlying simulation engine. Models in QSS Solver are
expressed in µ-Modelica, a high-level language for modeling dynamic systems, which is a subset of the more general
Modelica language [4]. This mechanism is thus inherited in retQSS, enabling succinct and elegant descriptions of
particle models. Despite adopting QSS Solver as its primary simulation engine, other simulators may also profit from
the particle simulation capabilities offered by retQSS. Being simulator-agnostic by design, all of its functionality is
exposed in a standalone C API wrapped into a Modelica package. This allows for straightforward connections with
other Modelica-based simulators such as Dymola [5] or OpenModelica [6].

A typical feature of particle simulations shared across different application domains is the need to track particles as
they travel in a geometry, carefully identifying the crossing of boundaries between adjacent volumes. An important
goal of retQSS is to provide efficient methods and algorithms to tackle this problem. To this end, retQSS leverages the
optimized implementations of the Quantized State System (QSS) family of hybrid numerical methods [7, 8] offered
by QSS Solver. These methods combine continuous with discrete-event dynamics to approximate continuous systems,
exhibiting properties such as very efficient handling of discontinuities and dense output supported by polynomial ap-
proximations of state trajectories. Both properties are at the heart of the particle tracking algorithms implemented in
retQSS. Combined with the aforementioned high-level modeling capabilities, these efficient boundary crossing detec-
tion algorithms can treat computationally demanding state events [9] (the intersection between particle trajectories and
volume boundaries) as easily tractable time events (the time instants at which such intersections occur).

Despite being a general-purpose particle simulation methodology, retQSS enables efficient modeling approaches to
a wide range of application domains. As we shall see later in detail, retQSS can perform similarly to other well-
known domain-specific particle simulation toolkits and, under certain circumstances, it can even achieve considerable
performance gains. In particular, retQSS is very efficient at simulating problems with intense boundary crossing
activity. Other scenarios that may fully exploit retQSS capabilities are those involving spatial dynamics that influence
particle behavior.

Thus, we shall prove the flexibility of our approach by addressing four selected case studies of very different nature:
bird flocking (an agent system with emergent behavior), a high-energy physics setup, a system of molecules interact-
ing via an exponential potential (implementing the Molecular Dynamics method [10]) and plasma flow (implementing
custom variants of the Particle-In-Cell algorithm, widely used in plasma simulation [11]). We also carry out a compre-
hensive performance comparison against other related tools in order to assess the suitability of retQSS as a plausible
alternative for particle simulation in the corresponding application domains.

The rest of the paper is organized as follows. We start in Section 2 with an overview of the most relevant background
concepts used throughout the manuscript (a summary of QSS theory, the QSS Solver simulation toolkit and the Mod-
elica language). We continue in Section 3 with a description of the most essential concepts behind retQSS, illustrated
with a simple motivational example. A discussion about the high-level design and implementation details of our tool
is then given in Section 4. The motivational example introduced before is revisited again in Section 5, this time with a
complete description of a retQSS model. In Section 6 we show how retQSS can be used to model particle systems of
diverse nature, developing also thorough performance comparisons against related tools. Then, Section 7 puts retQSS
into context discussing related work in the field. Finally, Section 8 provides a summary, conclusions and comments
on our work in progress.

2

A PREPRINT - MARCH 25, 2022

2 Background

In this Section we present the essential concepts used along the article. We first discuss about QSS theory and continue
with a brief summary of the standalone QSS Solver. Finally, we describe the high-level modeling language Modelica.

2.1 Quantized State System (QSS) methods

QSS methods replace the time discretization of classic numerical integration algorithms by the quantization of the
state variables. Given a time invariant ODE in its State Equation System (SES) representation,

ẋ = f(x(t), t) (1)

where x(t) ∈ Rn is the state vector, the first order Quantized State System (QSS1) method [8] solves an approximate
ODE called Quantized State System:

ẋ = f(q(t), t) (2)

Here, q(t) is the quantized state vector. Each component qi(t) follows a piecewise constant trajectory that only changes
when its difference with the corresponding state xi(t) reaches the quantum ∆Qi. Denoting t1, t2, . . . , tk, . . . the times
at which the piecewise constant trajectory qi(t) changes, the quantized state trajectory is related to the corresponding
state trajectory xi(t) as follows:

qi(t) =
{

qi(tk) if |xi(t)−qi(tk)|< ∆Qi
xi(t) otherwise

for tk < t ≤ tk+1, where tk+1 is the first time after tk at which |xi(t)− qi(tk)| = ∆Qi. In addition, we consider that
initially q(t0) = x(t0). This defines an hysteretic quantization function generating trajectories like those depicted in
Figure 1.

Time

Figure 1: QSS1 hysteretic quantization function

The quantum plays an equivalent role to that of the tolerance in variable step size algorithms. Here, the step size is
usually controlled in order to fulfill a relative error tolerance and this can be also achieved in QSS by using a quantum
that changes with the signal amplitude:

∆Qi = max(∆QRel · |xi|,∆QMin)

where ∆QRel is the relative quantum (relative tolerance) and ∆QMin is the minimum quantum (absolute tolerance).

Since the quantized state trajectories qi(t) are piecewise constant, then, provided that the system is autonomous (or
that f(·, t) is piecewise constant with t) the state derivatives ẋi(t) also follow piecewise constant trajectories and,
consequently, the states xi(t) follow piecewise linear trajectories. Thus, the numerical solution of Eq. (2) becomes
straightforward and can be translated into a simple simulation algorithm. The corresponding pseudo-code is shown
below in the listing for Algorithm 1 (we assume for simplicity that the system is autonomous).

On each iteration of the main integration loop (line 13), the first action is to determine the quantized state qi that
changes first. Then the simulation time is advanced until the timestamp of that event (line 14). The algorithm then
advances the state value xi (using the fact that ẋi is constant in this period) and computes the new quantized state

3

A PREPRINT - MARCH 25, 2022

Algorithm 1: QSS1
Input: ti (initial time), t f (final time), x0 (initial state), ∆Q (quantum vector)

1 begin Initialization
2 t← ti . Initialize simulation time
3 x← x0 . Initialize continuous state vector
4 q← x . Initialize quantized state vector
5 foreach j ∈ [1,n] do
6 ẋ j← f j(q, t) . Compute j-th initial state derivative

7 tη

j ← t +∆Q j/|ẋ j| . Time of next change in the j-th quantized state

8 tx
j ← t . Time of last change in the j-th continuous state

9 tq
j ← t . Time of last change in the j-th quantized state

10 end
11 end
12 begin Simulation loop
13 while t < t f do
14 t←min(tη

j) . Advance simulation time

15 i← argmin(tη

j) . The i-th quantized state changes first

16 e← t− tx
i . Elapsed time since last xi update

17 xi← xi + ẋi · e . Update i-th state value
18 qi← xi . Update i-th quantized state

19 tq
i ← t . Time of last change in the i-th quantized state

20 tη

i ← t +∆Qi/|ẋi| . Time of next change in the i-th quantized state
21 foreach j ∈ [1,n] such that ẋ j depends on qi do
22 e← t− tx

j . Elapsed time since last x j update

23 x j← x j + ẋ j · e . Update j-th state value
24 if j 6= i then tx

j ← t . Last x j update

25 ẋ j← f j(q, t) . Recompute j-th state derivative

26 tη

j ←min(τ > t)subject to
∣∣q j− x j(τ)

∣∣= ∆Q j . Recompute time of next change in the j-th
quantized state

27 end
28 tx

i ← t . Last xi update
29 end
30 end

qi = xi (line 18). This change in qi will affect some state derivatives ẋ j = f j(q, t) – in particular, those in which qi
explicitly appears in the expression of f j. Thus, the algorithm recomputes the corresponding states x j and the next
time of change for the associated quantized states q j (line 26).

The time of the next change tη

j is computed as the first time after t at which the difference between the piecewise
constant trajectory q j(t) and the piecewise linear trajectory x j(t) = x j + ẋ j · (t − tx

j) becomes equal to the quantum
∆Q j. This is,

|x j + ẋ j · (tη

j − tx
j)−q j|= ∆Q j

One of the drawbacks of the QSS1 method is that it performs a first-order approximation. Higher-order QSS meth-
ods (e.g. QSS2 and QSS3) follow the same basic principle as QSS1: in QSSn, x(t) follow piecewise n-th degree
polynomial trajectories and q(t) follow piecewise (n−1)-th degree polynomial trajectories [8].

In order to put all these concepts together, Figure 2 presents a QSS2 simulation of the position in the x̂ axis of a charged
particle in a constant magnetic field (the model in use is the ODE system in Equation (10), which will be revisited
in Section 6.2.1). Figure 2a shows the solution state variable x(t) and its corresponding quantized state variable q(t),
which follow piecewise quadratic and linear trajectories, respectively. Each dot in the curve marks endings and the
commencements of adjacent polynomial sections. Sections such as 1 affect the coefficients of the state variable x(t). They
happen due to a reaction to an update originated from another state variable that affects the state derivative ẋ(t). On the other hand,
sections such as 2 happen when the quantum ∆Q (the maximum deviation allowed between q(t) and x(t)) is reached. In these
situations, the coefficients of q(t) are recomputed by quantizing the state variable x(t).

4

A PREPRINT - MARCH 25, 2022

0 0.25 0.5 0.75 1

Time

(a)

(b)

(c)

(d)

(f)

(e)

1
2

Figure 2: Illustrative example of a QSS2-based simulation and its main underlying QSS concepts

The difference between q(t) and x(t) is the error e(t) incurred by the method and is shown in Figure 2b. It gets determined by
the user-supplied accuracy-related parameters ∆QRel and ∆QMin, also shown in Figure 2c. If we consider for example the section
starting at time tk, we can see that both q(t) and x(t) evolve until the difference between them reaches ∆Q. At that time, q(t) is
updated by quantizing x(t), giving rise to a new polynomial section for q(t) in the plot. This change is propagated to the ODE
system by evaluating those state variables whose right-hand side depends on this variable. The coefficients of the polynomial
approximations of q(t) and x(t) are presented in Figures 2d, 2e and 2f.

2.1.1 Properties of QSS methods

In QSS, computational steps are produced when a quantized variable qi changes after reaching a difference with xi that exceeds the
quantum ∆Qi. This change is propagated to those state derivatives that depend on xi. In consequence, each step involves changes
in one quantized variable and in a subset of the state derivatives. QSS inherently exploits this fact performing computations only
when and where these changes occur. This is particularly relevant in the context of large, sparse systems that experience activity in
a few states while the rest of the system remains inactive [12].

Another important feature of the QSS methods is that they are very efficient at simulating systems with frequent discontinuities
[12, 13, 14]. These are modeled by zero-crossing functions expressed in terms of the QSS polynomials. Hence, detecting a
discontinuity calls only for finding the roots of a polynomial, which is computationally inexpensive for at most third-order QSS
methods. Once a discontinuity is detected, the algorithm handles it as an ordinary step, as each step is in fact a discontinuity in a
quantized variable. Thus, the occurrence of a discontinuity implies only some local calculations to recompute the state derivatives
that are directly affected by that event. The simulation does not need to be restarted as it is typically required in classic integration
algorithms.

QSS1 to QSS3 provide global error bound properties. These establish that, when simulating stable linear time invariant (LTI)
systems, the numerical solution differs from the analytical solution in a quantity that is linearly bounded with the quantum ∆Q [9].
Thus, in order to increase the accuracy by a given factor f , the quantum should be reduced by the same factor. In QSSn, the number
of extra calculations required to achieve this outcome is proportional to the n-th root of f . For example, if f = 106, in QSS1 we

5

A PREPRINT - MARCH 25, 2022

would need to multiply by 106 the number of calculations. In QSS2, we would need to multiply them by
√

106 = 1000, and in
QSS3, by 3

√
106 = 100 [15].

2.2 The Standalone QSS Solver toolkit

Most implementations of QSS methods are provided by general-purpose discrete event simulation engines such as PowerDEVS
[16]. This generality usually brings about unnecessary CPU overheads (due to the underlying message-passing and/or event
scheduling mechanisms) when the systems to be simulated are primarily continuous. The standalone QSS Solver, on the other
hand, is an open-source software that offers optimized implementations of the whole family of QSS methods, improving in more
than one order of magnitude the computation times of previous discrete event implementations [17]. QSS Solver simulates models
that can contain discontinuities. These models are represented as follows:

ẋ(t) = f(x,d, t) (3)

where d is a vector of discrete variables that can only change when a condition

ZCi(x,d, t) = 0 (4)

is met (for some i ∈ {1, . . . ,z}). The components ZCi form a vector of zero–crossing functions ZC(x,d, t). When such a zero–
crossing condition is verified, the state and discrete variables can change according to the corresponding event handler:

(x(t),d(t)) = Hi(x(t−),d(t−), t) (5)

These models are simulated using QSS methods that approximate Equation (3) by

ẋ(t) = f(q,d, t) (6)

where each component qi(t) is a piecewise polynomial approximation of the corresponding component of the state xi(t), as ex-
plained in Section 2.1.

The simulation is performed by three modules interacting at runtime:

1. The Integrator, that integrates Equation (6) assuming that the piecewise polynomial quantized state trajectory q(t) is
known. It is in charge of advancing the simulation time executing the simulation steps. Each of these may correspond
to a change in a quantized variable qi or to the execution of an event handler Hi triggered by a zero–crossing condition
ZCi(t) = 0.

2. The Quantizer, that computes q(t) from x(t) according to the QSS method in use and their tolerance settings (there is
a different Quantizer for each QSS method). That way, it provides the polynomial coefficients of each quantized state
qi(t) and computes the next time at which a new polynomial section starts (i.e., when the condition |qi(t)− xi(t)|= ∆Qi
is met).

3. The Model, which computes the scalar state derivatives ẋi = fi(q,d, t), the zero–crossing functions ZCi(x,d, t), and
the corresponding event handlers Hi(q,d, t). Besides, it provides the structural information required by the algorithms
(represented as a set of four binary incidence matrices).

The structural information of the Model is automatically extracted at compile time by a Model Generator module. This module
takes a standard model described in µ-Modelica [3], a subset of the more general Modelica modeling language (introduced next in
Section 2.3), and produces an instance of the Model module as required by the QSS solver. This instantiation includes the structural
information and the possibility of separately evaluating scalar state derivatives. Figure 3 shows the basic interaction scheme between
the three modules mentioned above. A simple graphical user interface integrates the solver engine with the modeling front-end and
plotting and debug ancillary tools.

2.3 The Modelica modeling language

In an effort to unify the different modeling languages used by the different modeling and simulation tools, a consortium of software
companies and research groups proposed an open, unified object-oriented modeling language called Modelica [4, 18].

Modelica allows the representation of continuous time, discrete time, discrete event and hybrid systems. Elementary Modelica
models are described by sets of differential and algebraic equations that can be combined with algorithms specifying discrete
evolutions. These elementary models can be connected to other models to assemble complex model structures, facilitating the
construction of multi–domain models.

Modelica models can be built and simulated using different software tools. OpenModelica [6] is the most complete open source
package, while Dymola [5] and Wolfram System Modeler are the most used commercial tools. QSS Solver has also the capability of
simulating Modelica models provided that they are previously flattened and the resulting systems of differential algebraic equations
are sorted and converted into sets of ODEs [3].

6

A PREPRINT - MARCH 25, 2022

Integrator

Model
Generator

-Modelica
model definition

Simulator

produces

Quantizer

QSS1, QSS2, LIQSS1,....

Model

+
Structure

Structure
takes

Figure 3: Basic interaction scheme of QSS Solver modules

3 Key concepts and motivation

The guiding principle of retQSS is to offer a novel methodology for modeling and simulation of particle systems in meshed
geometries. In a broad sense, a particle is a physical entity moving in a three-dimensional space, possibly interacting with its
environment throughout its trajectory. These interactions may have diverse effects, altering not only the behavior of the particle but
also certain properties of the geometry. Thus, retQSS models are characterized by integrating continuous dynamics given by particle
trajectories with discrete dynamics arising from the interactions between particles and geometry. From a modeling perspective, this
integration happens transparently as a consequence of the use of a high-level modeling language such as µ-Modelica, allowing for
a decoupling of the modeling logic and its concrete implementation. Another visible effect of this decoupling is a straightforward
geometry management. retQSS provides access to different geometrical objects (volumes, faces and vertices) while hiding the
underlying implementation details. This way, the same modeling logic can usually operate with different geometries, avoiding
the need to update portions of the model code after changing its input. The most relevant geometry format adopted by retQSS is
text-based VTK, which is widely used by several other related tools such as ParaView [19], an open source application for scientific
visualization, and OpenFOAM, a toolkit for computational fluid dynamics [20].

One of the most attractive features of retQSS, derived from its primary design goal, is its great versatility to tackle a wide pallette of
problems. As we shall see later, retQSS can effectively model agent systems with emergent behavior (e.g., bird flocking), subatomic
particles in high-energy physics setups, plasma flow and systems of molecules with intermolecular interactions given by custom
force fields.

3.1 A simple example: bouncing balls with obstacles

We shall now discuss how the structure of a retQSS model materializes the concepts outlined above. To this end, suppose we are
interested in modeling a collection of balls bouncing within a chamber containing some obstacles. We will assume that the balls
do not interact directly with each other. Figure 4 shows ten balls in a chamber represented by a lattice of cubes where obstacles are
modeled as a subset of the cubes.

The following considerations would need to be addressed when modeling such a problem:

1. How ball trajectories should be defined (e.g. as a system of ODEs to be integrated by a numerical solver),

2. How to represent the chamber as a 3D geometry, including a proper characterization of the obstacles, and

3. How to implement the interactions between balls and the geometry (i.e., deciding when and how a ball should bounce).

By adopting a simulation engine such as QSS Solver, retQSS inherits some elegant and efficient mechanisms to tackle these issues.
On the one hand, retQSS profits from its optimized, state-of-the-art implementations of QSS methods (as we shall see later, this
enables efficient simulations in several application domains). Also, models are written in µ-Modelica, a high-level modeling
language where continuous systems are described in a mathematical form (e.g., those arising from the dynamics of the balls).
Through µ-Modelica it is also possible to provide a compact and declarative algorithmic description of the interactions between
balls and geometry in the form of discrete events. The particle tracking features of retQSS allow for capturing the time instants at
which the balls hit any obstacle, being therefore straightforward to define such discrete events.

In retQSS models, different geometries can be transparently incorporated by supplying a geometry file to the initialization algorithm.
Thus, experimenting with different geometries is usually as simple as changing the input geometry file. In the case of the example
at hand this implies that the exact same model can be used to test how balls bounce within chambers and against obstacles of very
different shapes (provided suitable geometry descriptions are available in any of the supported file formats).

Obstacles may be modeled as a subset of the cells (or volumes) conforming the geometry. For this purpose, the modeler chooses
which of the volumes are marked as obstacles. Volumes are exposed by retQSS with an associated unique identifier so that models

7

A PREPRINT - MARCH 25, 2022

20 mm

Figure 4: Balls bouncing in a cube mesh with obstacles

can operate explicitly with them. One of the most important modeling tasks is the definition and assignment of dynamic, piecewise
constant properties to volumes and particles. Thus, one possible modeling choice is to define an obstacle boolean property, and set
it true only for selected volumes. Along the same lines, the concept of dynamic properties can be applied to each ball, or more
generally speaking, to each particle in the system. This would allow for modeling different types of interactions between different
particles and different volumes, providing a very flexible setting to express varied types of dynamics.

We shall revisit this motivating bouncing balls example and analyze it in more detail in Section 5, after having delved into the
technical underpinnings of retQSS.

4 Design and implementation

From a software engineering perspective, retQSS is an object system that follows some principles and best practices of object
oriented software design, in particular encapsulation, loose coupling and high cohesion [21]. To this end, each object is responsible
for a well-defined set of cohesive tasks. As shown in Figure 5, the entry point to retQSS is the Model API, which exposes the full
set of available queries in the form of C functions. Queries are grouped in eight categories, which will be detailed next in Section
4.5.

Upon receiving a query request, the model API forwards it to an internal Interface in charge of orchestrating and managing in-
teractions between the different objects of the retQSS ecosystem. One of such objects is the Geometry, which mediates access to
other related objects (volumes, faces and vertices) and implements general-purpose geometry queries and algorithms. The task of
tracking particles as they travel across the geometry is assigned to the Particle Tracker. It stores tracking information (e.g., current
and last volumes traversed, entry and exit faces and next scheduled exit time) that is publicly exposed through the model API as
well as consumed by other objects. A central aspect of particle tracking is the detection of the time instants at which a particle
crosses a volume boundary. The Face Crossing Algorithm implements an efficient strategy to achieve this, leveraging the QSS
polynomial approximations of particle trajectories and the faces of the polyhedrons that tessellate the geometry.

An important feature of retQSS is the concept of neighborhoods. Particle neighborhoods are based upon volume neighborhoods,
which can be computed by several different algorithms that can be chosen even during simulation time. The Volume Neighborhood
object encapsulates these strategies and exposes a common, transparent interface to operate with volume neighborhoods.

8

A PREPRINT - MARCH 25, 2022

Model API

Particle
Tracker

retQSS

interacts with
Integrator

Model

Simulator
API

Interface

Geometry

Face Crossing
Algorithm

Volume
Neighborhood

?

Quantizer

QSS Solver

other simulators

Figure 5: High-level software architecture of retQSS

Despite having adopted QSS Solver as the primary simulation engine, retQSS is designed to be simulator-agnostic. On the one
hand, retQSS is compiled as a standalone library that is later linked into the model executables produced by QSS Solver. Also,
simulator-dependent behavior was abstracted away in an interface to perform backward queries to the simulation engine (e.g.,
providing access to values of state variables or coefficients of the QSS polynomials). This functionality was encapsulated in an
ad-hoc class hierarchy. The Simulator API object is an instance of a concrete member in this class hierarchy. As a consequence, we
expect to lower the software design burden required to make retQSS work with simulation engines other than QSS Solver. retQSS
is an open-source software project and its source code is available at [22] (it includes a copy of the QSS Solver toolkit).

In what follows we shall provide a comprehensive description of retQSS, starting with the supported geometry formats and the
chosen computational geometry library. We then introduce the important concept of first-class objects: those that have public
visibility and with which the model can operate with by supplying unique IDs. Then, we discuss the supported types of volume
neighborhoods and we define the related notion of particle neighborhood, which is at the heart of some of the selected case studies
we will cover in Section 6. After this, we explain in detail the boundary crossing detection algorithm. Finally, we describe the
model API and summarize its most relevant queries.

4.1 Geometry definition and management

retQSS relies upon the Computational Geometry Algorithms Library (CGAL) [23] to implement most of its underlying geometrical
algorithms and internal data structures. CGAL is an open source C++ software library that offers a broad collection of computational
geometry resources. In particular, retQSS focuses mostly on its 3D fast intersection and distance computation features such as the
AABB tree data structure and its related algorithms. Each volume in the input meshes is internally represented by a 3D surface
mesh that specializes the CGAL::Surface mesh class, along with an AABB tree that uses its polygonal faces as primitives. These
data structures are assembled during the bootstrapping phase of retQSS, when the geometry input file is parsed. The AABB tree
serves multiple purposes, e.g. determining whether a point lies outside or inside the volume or computing intersections of rays or
segments with one of the volume’s faces. The boundary crossing detection algorithm, covered in Section 4.4, employs the latter
when finding intersections with volumes featuring a large number of faces.

Supported file formats Geometry can be specified in two file formats: the Visualization Toolkit (VTK) [24] format (in particu-
lar, the ASCII-based mode for unstructured grids) and the Object File Format (OFF) [25]. The latter is the default format supported
by CGAL and can be easily used to represent arbitrary convex polyhedrons with any number of faces, whereas the former is more
convenient for compact representations of meshed domains. In fact, we typically use VTK files since they are also supported by
many other related tools, as discussed in Section 3.

4.2 First-class objects

Models can explicitly operate and interact with first-class objects, a special kind of retQSS entities that have public visibility and
an associated unique identifier. A common feature of first-class objects is that they can store properties: an association between a
character key and a numerical (or vectorial) value that can be set, queried or updated at any point during the simulation. Figure 6
shows the available first-class objects in retQSS: volumes, vertices, faces and particles.

9

A PREPRINT - MARCH 25, 2022

tetrahedron

hexahedron voxel

volumes vertices

faces

particles

Figure 6: First-class objects

Volume objects in this Figure are polyhedral volumes, i.e., they are defined by an underlying convex polyhedron. For VTK-based
geometries, retQSS supports so far hexahedral, tetrahedral and voxel cells, as the Figure shows (arbitrary convex polyhedrons can
be supplied via OFF files). There is however another type of volume, the open volume, which is used to represent the exterior of the
geometry. retQSS automatically instantiates one such volume and gives it the ID 0. This is an essential feature so that particles can
leave and enter the geometry, which is specially relevant e.g. for rigid geometry boundaries that should make the particles bounce
back to the interior.

As we shall see, object properties have interesting and diverse applications. For example, in plasma models (Section 6.4), vertex
properties store aggregated particle charge and electric potential of every node in the domain grid, whereas bird flocking models
(Section 6.1) can leverage this feature to model the presence of wind in different parts of the geometry.

4.3 Volume and particle neighborhoods

Each volume has a neighborhood : a (possibly empty) set of volumes that can be calculated following different strategies:

• A face-sharing approach, the default, in which a volume u is considered neighbor of volume v iff they both share a
common face,

• A vertex-sharing algorithm in which a volume u is considered neighbor of volume v iff they both share at least one
common vertex,

• A radial algorithm in which a volume u is considered neighbor of volume v iff the distance from v’s centroid to u is no
greater that a fixed value r supplied as argument,

• A generalization of the previous strategy, the periodic radial neighborhood, which assumes periodic geometry boundaries
(both strategies are illustrated in Figure 7), and

• A file-based approach, in which a text file specifies, for each volume in the geometry, the IDs of its neighbors.

During the simulation, models may switch freely between these algorithms. For efficiency purposes, neighborhoods are computed
on-demand (i.e., neighborhood of volume v is computed only when a retQSS query requires access to v’s neighbors) and cached
for future reuse. This cache is flushed every time the underlying algorithm is changed. retQSS also offers the possibility of
precomputing all volume neighborhoods up-front.

Volume neighborhoods are particularly important as they lay the foundations for particle neighborhoods, an essential concept behind
several retQSS models (two such examples shall be explored in Section 6). In a similar fashion, the neighborhood of particle p is a
(possibly empty) set of particles: those inside any of the neighboring volumes where p is located.

In Figure 7 we can see how these concepts interplay with each other. We have a cube mesh geometry where a source volume (in
blue) has its neighbors (in green) computed with the radial algorithm (Figure 7a) and the periodic radial algorithm (7b). Since the
source is a boundary volume in 7b, we see that neighbor 1 appears on the opposite side of the geometry. In the case of e.g. neighbor
10, we need two jumps from the source to locate it in 7a (up and right). Translating these jumps to 7b, we face twice the boundary
periodicity, thus making opposite moves both times.

Figure 7b also shows a particle p inside the source volume. It has four neighbors (green particles), two of which are highlighted:
q1 and q2, inside volumes 10 and 18, respectively. Two vectors join p with these particles. These are the Euclidean vectors whose
norms are the Euclidean distances between p and qi. We also distinguish another vector sourced at p that escapes the geometry:
this is the shortest vector to q1, which differs from the Euclidean vector as q1’s volume is reached through periodic boundaries.

retQSS offers special queries devoted to particle neighborhood traversal that facilitate access to such Euclidean and shortest vectors.
This will be further explained in Section 4.5.

4.4 Boundary crossing detection algorithm

A particle traveling in a meshed geometry may visit several different volumes. When moving inside any such volume, it can
eventually cross one of the volume’s faces to enter into an adjacent volume. In order to properly track particles along the simulation,
it is thus important to identify the time instants of these boundary crossings. The boundary crossing detection algorithm is a

10

A PREPRINT - MARCH 25, 2022

central aspect of retQSS that solves this problem efficiently by leveraging the QSS dense polynomial approximations of the particle
trajectories. The sequence diagram in Figure 8 captures the most relevant interactions of retQSS’ boundary crossing algorithm.

Suppose we are interested in finding the next boundary crossing of a traveling particle p. To accomplish this, the face crossing
algorithm first queries the Particle Tracker to retrieve p’s current volume, v. Particle p knows its trajectory, modeled as a C++
object that stores the polynomial coefficients (supplied by QSS Solver’s engine) that approximate the actual trajectory. If volume v
has a small number of faces (i.e., less than a configurable threshold F , usually set to 50), the algorithm will successively test each of
them for possible intersections, invoking for this purpose the Intersection Locator object. Given a face f , the Intersection Locator
solves a polynomial equation involving the plane that contains f and the approximation of p’s trajectory. When such equation is
satisfied, it is tested whether the candidate point P yielded by its solution belongs to f . In this case, point P is an actual intersection
point through exit face f . In any other situation (i.e., the equation cannot be solved or no candidate point belongs to f), the face
crossing algorithm dismisses this face. After discovering an exit face, the associated exit time t f is used to update the minimum
exit time tmin found so far. Finally, after all faces are tested, the crossed face data associated with tmin is returned.

When the number of faces in v exceeds F (not shown in Figure 8), instead of testing each face, the algorithm first finds a target face
f ′ crossed by a ray sourced at p with direction given by p’s velocity vector. This is efficiently accomplished using v’s underlying
AABB tree (as explained in Section 4.1). Then, a small neighborhood of face f ′ is explored, testing each neighboring face f as
explained above. A face f is considered neighbor of f ′ iff there is a sequence of 1≤ k ≤ d faces f ′ = f1, . . . , fk = f such that fi+1
is adjacent to fi (i.e., they both share one edge), 1≤ i < k. Here, d is the face neighborhood depth, fixed at compilation time. This
algorithm is particularly important for enabling particles to exit and eventually re-enter the geometry, as the number of boundary
faces is usually large. Figure 9 illustrates this scenario.

Boundary crossing detection is a key concept in HEP particle simulations. In Section 6.2 we will test our algorithms in the context
of a simple HEP setup, comparing their performance against Geant4, the de-facto simulation toolkit for such experiments.

4.5 Model API

The Model API is a public interface that serves as the entry point to retQSS. This interface exposes several queries implemented
by C functions that are organized in eight different categories, as shown in Figure 10.

Bootstrapping queries initialize the required internal data structures and should be called first. Models can initialize geometry and
particles in a decoupled fashion. This is particularly convenient to define initial particle conditions using the geometry, as will be
illustrated by the bouncing balls model in Section 5. For example, particles can be randomly placed in the geometry computing first
a random volume ID and then finding a random point inside this volume. The former action is an example of a geometry query.

(a) Radial volume neighborhood (b) Periodic radial volume neighbor-
hood supporting a particle neighbor-
hood

Figure 7: Illustrative example of volume and particle neighborhoods

11

A PREPRINT - MARCH 25, 2022

Face Crossing
Algorithm Particle Tracker Particle

Intersection
Locator

find_crossed_face(p) current_volume(p)

vol

trajectory(p)

trajectory

[for face
in vol.faces()]

intersection_of(trajectory,	face)
solve plane

equation

intersection_data

query_all_faces()

update current minimum

crossed face data

loop

Figure 8: Boundary crossing detection algorithm

target face

neighborhood
explored

actual
intersection

Figure 9: Sketch of boundary crossing detection in volumes with many faces

Other geometry queries can be used for debugging or visualization purposes (e.g. exporting volumes to VTK files or dumping
geometry statistics).

Each retQSS first-class object has its own category, typically providing property access mechanisms and other object related be-
havior (e.g. retrieving the spatial coordinates of a vertex or computing the outward normal vector of a face).

One important particle query is nextCrossingTime, which calculates the time of the first upcoming volume boundary crossing of a
given particle and updates tracking information when such volume crossings are detected. This particle query is usually employed to
react to boundary crossings and trigger a discrete event to handle this action. The zero-crossing function controlling the occurrences
of such events compares the simulation time against the next crossing time computed by this query. This way, retQSS handles the
state events originated by the intersection between particle trajectories and volume boundaries as time events formulated in terms
of the time instants at which these intersections occur. The combination of the expressive power of µ-Modelica with the efficient
boundary crossing detection algorithm covered in Section 4.4 not only allows for such conversions to happen transparently but also
for improved performance, as the localization of state events tends to be computationally demanding [9].

The neighborhood category groups queries related to both volume and particle neighborhoods. retQSS offers queries for some
standard particle neighborhood operations such as computing the average position or velocity of the neighbors. New operations
can be defined using neighborhood iteration queries. These traverse the neighborhood and apply any custom function to every
particle found, thus extending the high-level modeling language (to this end, advanced users must implement a C/C++ function that
captures the desired interactions between neighboring particles and supply its name as a query parameter). For every particle in the
neighborhood, retQSS assembles a neighbor bundle that encapsulates the source particle, its neighbor and their related data (e.g.,

12

A PREPRINT - MARCH 25, 2022

Model

retQSS Model API

retQSS_geometry_setUp
retQSS_particle_setUp
retQSS_fullSetUp
 . . .

bootstrapping

retQSS_geometry_countVolumes
retQSS_geometry_randomVolumeID
retQSS_geometry_dumpVolume
 . . .

geometry

retQSS_particle_nextCrossingTime
retQSS_particle_currentVolumeID
retQSS_particle_previousVolumeID
 . . .

particle

retQSS_volume_countFaces
retQSS_volume_randomPoint
retQSS_volume_vertexCoordinates
 . . .

volume

retQSS_face_normal
retQSS_face_centroid
retQSS_face_isNormalTo
 . . .

face

retQSS_vertex_coordinates
retQSS_vertex_getProperty
retQSS_vertex_getPropertyVector
 . . .

vertex

retQSS_volumeNeighborhood_countVolumes
retQSS_particleNeighborhood_averagePosition
retQSS_particleNeighborhood_forEachParticle
 . . .

neighborhood

retQSS_randomVector
retQSS_randomVectorWithNorm
retQSS_modulus
 . . .

misc

Figure 10: Model API queries and categories

shortest vector joining them) and invokes the new function. The output value is accumulated and returned to the model once the
neighborhood is fully traversed.

The Model API is exported in a Modelica package where each retQSS query is declared as an external function. Models import
this package before interacting with the retQSS engine.

5 Bouncing balls example revisited

Having covered the essential technical concepts and inner workings of retQSS, we are now ready to discuss how to bring everything
together to create a retQSS model. To this end, we will revisit the bouncing balls example introduced in Section 3 and explain in
detail one possible implementation, shown in Figure 11.

One of the first actions every model should undertake is to import the retQSS package that contains the Modelica interface to the
model API (line 2). After this point, the model is ready to execute retQSS queries. This happens first in line 14, where the model
issues a bootstrapping query to initialize the underlying geometry and related data structures (supplied as a VTK file). The for loop
in lines 16-26 sets the initial conditions (i.e., position and velocity) for each of the N balls in the model (as indicated by line 4, there
are 10 such balls). Balls are initially positioned in random locations inside volume 1 (lines 17-20). Their initial directions are also
chosen at random, setting for this purpose random velocity vectors with a fixed norm –a default speed that is constant throughout
the simulation (lines 22-25). Once these initial conditions are defined, the model calls another bootstrapping query in line 28 so
that retQSS can create particle objects and locate them in the geometry using this information. Before starting the simulation,
some volumes are declared as obstacles. To accomplish this, we define the obstacle volume property in NUM OBSTACLES random
volumes (lines 30-34). Note that volume 0 is also marked obstacle (line 30) so that balls bounce back when they hit a boundary
face.

The uniform linear equations of motion for the balls are described by the ODE system in lines 37-44. Balls will only modify
their directions when bouncing against an obstacle. The system is fully integrated by the standard QSS Solver’s simulation engine.
Interactions with retQSS occur according what is defined in the discrete portion of the model in the algorithm section (starting
in line 46). A discrete event is defined for each ball (lines 48-60) to handle volume crossings. QSS Solver keeps track of the
corresponding zero-crossing functions (line 48) to decide when the events should be triggered. At the heart of this zero-crossing
function is the boundary crossing detection algorithm presented in Section 4.4. When such a boundary crossing is detected, the
event handler is executed (lines 52-59). In case the new volume is an obstacle (i.e., property obstacle is defined), the ball
bounces back with a direction given by the reflection of its current velocity vector across the normal vector of the crossed face.
The reflectiveBounceWithSpeed particle query (line 55) computes this new direction. Finally, ball direction is updated by
restarting the velocity state variables with these values (lines 56-58).

For a better understanding of the execution path of a retQSS query, Figure 12 shows how QSS Solver (in particular, the Integrator
and Model modules) and retQSS interact with each other to compute the reflected direction of a particle (i.e., a ball) upon crossing
a volume boundary. This action occurs inside an event handler that is executed at some point of the main integration routine of
QSS Solver. As discussed in Section 2.2, events are defined and implemented in the Model module. Thus, the Integrator forwards
the execution of the event handler to the Model. There, the reflectiveBounce particle query is relayed to the Model API, which
then forwards its execution to the internal Interface. The Particle Tracker is queried twice to retrieve the velocity vector ~v of the
particle and the face that was just crossed. The former request involves querying back the simulation engine to obtain the values

13

A PREPRINT - MARCH 25, 2022

Model API
imported

Geometry
initialization

Initial ball positions
and velocities

Obstacle
definition

Time event triggered
at boundary crossings

Dynamics of
ball motion

Computation of new
reflected direction

Check if new volume
is an obstacle

Particle
initialization

Figure 11: Bouncing balls model

14

A PREPRINT - MARCH 25, 2022

of the velocity state variables. Afterwards, the face calculates its normal vector~n (in particular, it is an outward-facing unit normal
vector), and finally the reflected vector~r is computed with the reflection formula~r =~v−2~v ·~n.

Model API Particle TrackerInterfaceIntegrator

Polyhedron
Face

MOD_handlerPos(i)

Simulator
 API

retQSS_particle_reflectiveBounce(i)

particle_reflective_bounce(p)
current_velocity(p)

normal()

exit_face(p)

face

compute reflected
vector

current_velocity(p)

Model

retrieve value of velocity state variables

retQSS_execute(query)

QSS Solver retQSS

Figure 12: Execution path of the reflectiveBounce particle query

6 Selected case studies and applications

The purpose of this Section is to develop a comprehensive study of the modeling and simulation capabilities of retQSS. To this end,
we shall address four problems coming from very different application domains. We start by discussing how the features of retQSS
can be leveraged to express versatile models of bird flocking, characterizing birds as an agent system with emergent behavior.
We then move to the high-energy physics (HEP) domain, where we will model a charged subatomic particle describing helical
trajectories in a mesh of cuboids. In order to assess the performance of our approach, we shall compare it against an equivalent
model implemented in Geant4, the reference simulation toolkit used in HEP experiments. Finally, we show how particle-based
numerical methods can be efficiently expressed in retQSS. To this end, we tackle two scenarios: a system of molecules interacting
via an exponentially decaying potential and the flow of plasma in a two-dimensional grid. These two classic examples showcase
the capabilities of the Molecular Dynamics (MD) and Particle-In-Cell (PIC) methods, respectively. In these cases, we will also
carry out a performance study comparing the approaches of retQSS against those of Aboria (a general-purpose software library for
particle-based methods) and Octave (a general purpose toolkit for numerical computing).

A complete description of the hardware and software platform used throughout the experimentation is provided in A. The underlying
experimental data and retQSS models can be found in [26]. Animated visualizations of some of these case studies are provided as
supplementary material.

6.1 Bird flocking

The boids model [27] is perhaps the most popular flocking model. With applications in many fields such as computer graphics,
unmanned vehicle guidance and virtual reality, this model is a classical example of an agent system with complex behavior that
emerges from the interactions between individual agents. In other words, the flock behavior is a consequence of the motion and the
interactions of the so-called boids –bird-oid objects.

The model is based upon three local rules that capture the steering behavior of a given boid with respect to the positions and
velocities of its neighboring flockmates:

15

A PREPRINT - MARCH 25, 2022

(Separation) S(i) =− ∑
j∈Flock(i)

(x j−xi) (7)

(Cohesion) C(i) =

(
1
fi

∑
j∈Flock(i)

x j

)
−xi (8)

(Alignment) A(i) =
1
fi

∑
j∈Flock(i)

v j (9)

Here, xi and vi represent the position and velocity of boid i, respectively, Flock(i) is the set of its neighboring flockmates and fi is
the size of such set.

The separation rule (Equation (7)) makes a boid steer away from its local flockmates, thus avoiding collisions. The cohesion rule
(Equation (8)) is the steering force through which a boid moves towards the center of its visible flock, thus allowing the formation
of clusters. Finally, the alignment rule (Equation (9)) makes a boid match its heading with the average heading of its neighbors,
thus allowing for an emerging pattern of motion.

When the heading di of boid i is updated, its new value is given by a weighted sum of the headings produced by each of these rules,

di := wS ·S(i)+wC ·C(i)+wA ·A(i)

In typical boids implementations, weights wS,wC,wA are model parameters. Also, it is generally assumed that boids follow uniform
linear motions, periodically updating their headings as described above. The set of neighboring flockmates of boid i, Flock(i), is
usually conformed by every other boid j such that the Euclidean distance between them is no greater than a parameter r:

Flock(i) =
{

j 6= i : |x j−xi| ≤ r
}

In what follows we will explore two different strategies to model this system in retQSS. Our proposed modeling strategies share a
common structure, differing in how the headings are updated. This structure can be summarized as follows:

• Exploiting the capabilities of the Model API, boids are transparently placed in random initial positions throughout the
geometry.

• Local flocks are represented by particle neighborhoods. In turn, these are supported by radial volume neighborhoods with
radius r.

• Boid trajectories are modeled with a straightforward ODE system like the one explored in Section 5.

• The boundary faces in the geometry are treated as rigid walls. Boids bounce and remain inside the geometry after hitting
one of these faces.

• Heading updates are expressed as a discrete time event that is triggered after a regular interval with a configurable
duration. The handler of this event successively updates every boid in the system according to the underlying update
strategies discussed below.

We stress that the mechanics to implement these strategies are geometry-agnostic. This is illustrated by Figure 13, which shows
two boids simulations in the context of very different geometries (tessellated torus and sphere). Note that, in case the extents and
dimensions of such geometries are not comparable, the user might also need to update the radius parameter after updating the input
geometry.

6.1.1 First approach: using external functions

Our first approach uses a custom external C++ function to evaluate the rules and compute the new heading vectors. Figure 14 shows
an excerpt of this model with the definition of the time event that triggers the computation of the new headings.

The external function updateBoid (line 3) is exposed to µ-Modelica in a user-defined package that has to be imported in the
main model file. The public C interface exposed by the model API of retQSS is an essential component behind this approach, as
rules are computed by traversing particle neighborhoods using C++ code. Given a boid i, the function starts by initializing three
3D vectors (exposed by retQSS via the CGAL library) to represent the headings of the behavioral rules of the model. The source
volume of boid i, along with each of its corresponding neighboring volumes, are processed one at a time by a helper function.
This function iterates the particles inside the given volume and updates the three heading vectors for every visited particle within
the target distance r (parameter RADIUS). The new heading is finally computed by evaluating the weighted sum using the given
coefficients (parameters SEP COEFF, ALIGN COEFF and COH COEFF).

The main advantage of this strategy stems from the ability to seize the expressive power and efficiency of a programming language
such as C++ to implement small portions of the modeling logic. In some circumstances, achieving the same outcome through a high-
level modeling language can be challenging. Yet, this comes at a cost. On the one hand, the modeler may need some programming
skills to fully leverage the benefits of this approach. Also, it may not be desirable to break down the model description across
different languages.

16

A PREPRINT - MARCH 25, 2022

(a) Torus

(b) Sphere

Figure 13: Bird flocking in two alternative geometries (sample trajectories highlighted)

1 when time > nextUpdate then

2 for i in 1:N loop

3 (ux, uy, uz) := updateBoid(i,

4 RADIUS,

5 SEP_COEFF, ALIGN_COEFF, COH_COEFF);

6

7 (ux, uy, uz) := vectorWithNorm(ux, uy, uz, SPEED);

8

9 reinit(vx[i], ux);

10 reinit(vy[i], uy);

11 reinit(vz[i], uz);

12 end for;

13

14 nextUpdate := time + UPDATE_TIME;

15 end when;

Figure 14: Boids headings updated using an external C++ function

6.1.2 Second approach: using particle neighborhoods

The particle neighborhood API provides some default convenience queries well suited for this example. The center of mass of
the local flockmates of a boid (a central concept in the cohesion rule) is precisely the result of the averagePosition particle
neighborhood query. Similarly, the alignment rule involves the computation of the average heading of neighboring boids, which
can be inferred from the resulting vector of the averageVelocity query. Finally, the repulsiveDirection query yields the
average of the directions opposite to each of the neighbors, which coincides with the heading specified by the separation rule. We
can thus capitalize these queries to succinctly express the heading update logic in µ-Modelica. This is shown in Figure 15.

Another hybrid implementation that mixes both approaches is also possible. As discussed in Section 4.5, the particle neighborhood
API includes a query that automatically traverses a particle neighborhood and applies a custom C/C++ function to every particle
found. Should the modeler choose to follow this path, he or she would need to implement an external function to capture the
heading update logic for the three rules. This function would receive a neighbor bundle object connecting the source boid p with a
neighbor q. In other words, this strategy would spare the modeler to code the neighborhood traversal logic explored before.

6.1.3 Possible extensions

The boids model can be easily extended in several ways leveraging the features showcased by retQSS. For example, we may
define new rules to control the steering behavior of the boids based on external forces such as wind. Using vectorial volume
properties, it becomes straightforward to define arbitrary directions and intensities of the wind. It is also possible to provide more
complex characterizations. Much like the continuous dynamics of particle trajectories, we might capture wind behavior in a set of
mathematical equations and later use them to periodically update the volume properties.

Another interesting extension is the introduction of obstacles in order to investigate obstacle avoidance mechanisms. By following
a modeling approach similar to the bouncing balls example (Section 3.1), an obstacle can be represented by a volume featuring an
obstacle property. Then, we can consider a simple avoidance strategy consisting in inverting the heading of a boid when it faces an
imminent obstacle. One suitable detection technique is testing whether the volume corresponding to the next scheduled boundary
crossing is an obstacle. Indeed, the particle query nextVolumeID returns the ID of such volume.

17

A PREPRINT - MARCH 25, 2022

1 when time > nextUpdate then

2 for i in 1:N loop

3 neighs := particleNeighborhood_countParticles(i);

4

5 if neighs > 0 then

6 (neighs, px, py, pz) :=

7 particleNeighborhood_averagePosition(i);

8 coh_x := px - x[i];

9 coh_y := py - y[i];

10 coh_z := pz - z[i];

11

12 (neighs, align_x, align_y, align_z) :=

13 particleNeighborhood_averageVelocity(i);

14

15 (neighs, sep_x, sep_y, sep_z) :=

16 particleNeighborhood_repulsiveDirection(i);

17

18 ux := vx[i] +

19 sep_x*SEP_COEFF +

20 align_x*ALIGN_COEFF +

21 coh_x*COH_COEFF;

22

23 uy := vy[i] +

24 sep_y*SEP_COEFF +

25 align_y*ALIGN_COEFF +

26 coh_y*COH_COEFF;

27

28 uz := vz[i] +

29 sep_z*SEP_COEFF +

30 align_z*ALIGN_COEFF +

31 coh_z*COH_COEFF;

32

33 (ux, uy, uz) := vectorWithNorm(ux, uy, uz, SPEED);

34

35 reinit(vx[i], ux);

36 reinit(vy[i], uy);

37 reinit(vz[i], uz);

38 end if;

39 end for;

40

41 nextUpdate := time + UPDATE_TIME;

42 end when;

Figure 15: Boids headings updated using particle neighborhood queries

6.2 High-energy physics

Particle simulation in the HEP domain typically involve tracking subatomic particles affected by physics processes as they interact
with matter traveling across complex detector geometries. Such geometries are modeled as a composition of three-dimensional
volumes of potentially different shapes and materials. The accuracy and performance of the underlying particle tracking algorithms
are of great interest since they can have a considerable impact in the requirements for computing resources and their associated cost.
In particular, these algorithms need to deal with frequent discontinuities caused by the recurrent crossing of geometrical boundaries
by a traveling particle, from one volume to the next.

The purpose of this Section is twofold. Although we are mainly interested in demonstrating the flexibility of retQSS by tackling a
typical HEP problem, we also intend to show the efficiency of our particle tracking methods. We will focus on a simple model and
establish a performance comparison against Geant4, the most widely adopted simulation toolkit in modern HEP experiments [28].

The model consists of a charged particle under the action of a static magnetic field in a mesh of cuboids. In spite of its apparent
simplicity, this model exhibits interesting features. First, it has a closed-form analytic solution which enables an accurate error
analysis. In addition, the number of boundary crossings can be easily controlled, as it is directly linked to the edge size of the
cuboids. Different variants of this model were used in the past to characterize the performance of QSS-based numerical integration
strategies specially developed for Geant4 [29, 30].

6.2.1 Model description

The model represents a single positron under a uniform, static magnetic field along the ẑ plane. The equations that govern the
motion of a charged particle in a magnetic field (Lorentz equations) are presented in Equation (10). There, q and m stand for the
charge and mass of the particle, respectively; c is the speed of light; γ is the Lorentz factor and ~B = (Bx,By,Bz) is the magnetic
field.

ẋ = vx v̇x =

qc2

mγ
· (vy Bz− vz By)

ẏ = vy v̇y =
qc2

mγ
· (vz Bx− vx Bz)

ż = vz v̇z =
qc2

mγ
· (vx By− vy Bx)

(10)

18

A PREPRINT - MARCH 25, 2022

In our case we set Bx = By = 0, i.e., ~B = (0,0,B) = Bẑ. The particle has an initial velocity~v = (w ·vx̂,0,
√

1−w2 ·vẑ) and a constant
speed v = 0.999c. B and the coefficient w are two model parameters that control the intensity of the magnetic field and the initial
speed in x̂, respectively.

This instance of the ODE system in Equation (10) admits an analytic solution. The particle follows a helical trajectory with a linear
increase in ẑ with respect to time. By choosing B = 0.0937 Tesla and w = 0.98, the diameter of the trajectory (in x̂ and ŷ) turns out
to be about 800 mm. In this situation, we have that after four full revolutions, the particle reaches a maximum height (in ẑ) of about
3x the diameter. Thus, we can place the particle inside a geometry with these dimensions, as illustrated by Figure 16. The number
of boundary crossings can be controlled by changing the x̂ dimension of the cuboids.

800 mm

2
4

0
0

 m
m

80 mm

Figure 16: A positron describing a helical trajectory in a mesh of cuboids

6.2.2 Implementation

Our retQSS model provides a high-level Modelica description of the Lorentz equations of motion and uses a discrete time event to
detect volume crossings (the related particle query nextCrossingTime allows for a straightforward implementation of this). Each
intersection point is stored for postprocessing purposes.

The Geant4 model is based on a standalone C++ application. It provides classes to describe different aspects of the model (e.g.
the definition of the magnetic field or the construction of the detector geometry). Numerical integration in Geant4 is performed by
its default stepper, a custom implementation of the fifth/fourth-order accurate Dormand-Prince adaptive method (DOPRI745). In
retQSS, we chose QSS2 as the integration method for this case study.

6.2.3 Validation

We validated our model by comparing against Geant4 the absolute error E, defined as the maximum Euclidean distance between
the simulated and the theoretical position of the particle at each timestamp. Using a default relative accuracy ε = 5.5× 10−5 in
Geant4, E represents a 6× 10−5% of the total track length of the particle. Setting ∆QRel = 5.5× 10−5 in retQSS yields an error
about 30x higher (with a sufficiently small absolute tolerance, e.g. ∆QMin = 10−7). Thus, in order to increase the accuracy by
a factor of 30, we should reduce the quantum by this same factor, as dictated by one of the QSS properties outlined in Section
2.1.1. Indeed, with ∆QRel = 1.83×10−6 we obtain a value of E equivalent to that of Geant4. We carried out the experimentation
selecting ∆QRel = 1.6×10−6 and ∆QMin = 1.6×10−7. With these values, E is approximately 13% lower in retQSS.

6.2.4 Experiment methodology

We experimented with geometries featuring different volume crossing intensities. To this end, we chose 16 equidistant values in
the range [0.5,2] mm for the x̂ dimension of the cuboids, lx. Thus, the number of subdivisions of x̂ ranges from 1600 (for lx = 0.5

19

A PREPRINT - MARCH 25, 2022

mm) to 400 (for lx = 2 mm). For each scenario we extracted two metrics: the end-to-end speedup of retQSS against Geant4, and
the boundary crossing overhead of each simulator. The former is defined as the ratio between the end-to-end simulation times
achieved by Geant4 and retQSS, respectively, excluding initialization processes. The latter is the average CPU time devoted to the
computation of boundary crossings. For Geant4, this value is taken as the average CPU time taken by the most time-consuming
routine in the boundary crossing detection pipeline. This routine iteratively calculates an intersection point from an initial estimation
given by a linear segment that crosses a volume boundary [29]. In the case of retQSS, we start with a baseline scenario l0 that uses
a “hollow” geometry (i.e., with no subdivisions) to estimate the CPU time required to compute the particle trajectory (we verified,
as expected, that the number of internal transitions of the QSS main integration loop remains constant across every scenario lx).
Thus, the boundary crossing overhead for scenario lx is calculated as the difference between the end-to-end simulation times of lx
and l0 divided by the total number of boundary crossings found in lx.

Each scenario was independently simulated 40 times (20 to compute average end-to-end simulation times and 20 to compute
average boundary crossing overheads, as measuring the latter may distort the former). Sample standard deviations remained below
17%.

6.2.5 Results and discussion

Figure 17a shows that retQSS consistently improves its efficiency as the cuboid size lx decreases (which leads to more frequent
boundary crossings). Around a value of 1.2 mm (approximately 667 subdivisions of the geometry in the x̂ dimension and about
5300 boundary crossings), retQSS achieves a performance nearly equivalent to that of Geant4. From that point onwards, retQSS
systematically outperforms Geant4, reaching a maximum speedup of about 2x when lx = 0.5 mm.

(a)

(b) 8x 6x

Figure 17: Performance comparison between retQSS and Geant4

This can be explained by two facts. First, by observing Figure 17b, we see that retQSS is between 6x and 8x faster than Geant4
to compute boundary crossings. Thus, it is reasonable to observe better performance as the intensity of volume crossings becomes
more stringent. However, we should also note that Geant4 demands at least as many computational steps as volumes crossed by the
particle during the simulation. When a volume crossing is detected, Geant4 interrupts the stepping routines and ends the step at the
volume boundary. Tracking is later resumed in a new step that starts in the neighboring volume. Among other things, advancing
a step involves an evaluation of the numerical integration routines, which comes with non-negligible performance penalties. In
consequence, we should expect larger simulation times as the number of steps increases.

On the other hand, retQSS computes the particle trajectory with a fixed cost that does not depend on the number of volume crossings.
As we already mentioned, the number of internal transitions of the QSS main integration loop that are due to state changes remains
constant across every scenario. Although this cost is very high with respect to a single computational step of Geant4 (about 70x
higher, possibly due to the lower order of the underlying numerical solver), the systematic increase in the number of steps mitigates

20

A PREPRINT - MARCH 25, 2022

this initial difference. This remark is not surprising, as it stems from the discrete-event nature of QSS and their consequent ability
to deal efficiently with discontinuities in the system (in this case, in the form of boundary crossings).

6.2.6 Modeling overview

Modeling simple HEP examples such as the one studied in this Section can demand a non-negligible amount of work in traditional
environments (due to the usually steep learning curves of toolkits such as Geant4). High-level modeling approaches like the one
followed by retQSS can certainly aid in overcoming this problem. Yet, advanced HEP setups featuring complex geometries (such
as a realistic particle detector) may prove difficult to model in retQSS.

6.3 Molecular interactions

Computer simulations in disciplines such as biochemistry and biophysics are often aimed at studying the movement of atoms and
molecules. Molecular Dynamics (MD) is a particle-based numerical method very popular in such disciplines. In a typical MD
setup, a system of particles is simulated with discrete time methods, using Newton’s laws of motion to update the position and
velocity of the particles at each time step. Forces acting on each particle are first computed via a force field that describes the
interactions with the other particles in the system. To keep computation under reasonable levels, the method usually implements
a cut-off scheme to compute interactions between nearby particles (i.e. those within a certain radius r). Efficient mechanisms to
compute such force fields are of central importance in software implementations of MD.

In this Section we discuss possible implementations of MD in the context of retQSS. To accomplish this, we focus on a case study
that represents a system of molecules interacting via an exponentially decaying potential. This example is inspired by a similar
2D model proposed as a step-by-step case study to implement MD in Aboria, a general-purpose software library for particle-based
methods [31]. In order to assess the effectiveness and efficiency of our approach, we also carry out a performance comparison
against this tool.

6.3.1 Model description

This case study consists of a system of N = 100 abstract molecules (with unit mass) within a unit cube with periodic boundary
conditions. Initially, every molecule is at rest and randomly located inside the geometry. Intermolecular forces are modeled with an
exponential potential with a cut-off value rcut = 0.2. The force on molecule i due to molecule j, at positions xi and x j, respectively,
is given by

fi j =

{
−c · exp(−|dxi j|)

dxi j
|dxi j | if |dxi j|< rcut

0 otherwise
(11)

where dxi j = x j−xi is the shortest vector between xi and x j and c = 10−5 is a constant. By Newton’s second law the acceleration
of the i-th molecule is given by ai = ∑ j fi j . Force fields are evaluated at each of the T = 2000 time steps. Figure 18 shows a
snapshot of a simulation of this model.

0.2
units of length

Figure 18: Snapshot of a simulation of molecules interacting via an exponential potential (with highlighted trajectories)

21

A PREPRINT - MARCH 25, 2022

6.3.2 Implementation

In retQSS, the geometry is meshed with cubes of size rcut. This structure enables the computation of the force field by means of
particle neighborhoods supported by periodic radial volume neighborhoods. The chosen radius is r = rcut− ε , where ε > 0 is such
that the neighbors of a volume are only those volumes around it (i.e., those sharing at least a vertex modulo periodicity). A time
event triggers the evaluation of the force field for each particle. This is achieved by a particle neighborhood query that takes as
input an external C++ function implementing Equation (11).

The Aboria model is fully implemented in C++. It employs an ad-hoc semi-implicit Euler integrator embedded in the code. In
retQSS, we chose QSS2 as the underlying integration method.

6.3.3 Validation

In order to verify that retQSS and Aboria produce equivalent solutions, we define a highly accurate baseline scenario in retQSS using
a very small absolute error tolerance (a fixed quantum of ∆Q = 10−11). We then measure the similarity between both approaches
by computing the error errmax taken as the maximum among the Root-Mean Square Deviations (RMSD) of the particle positions at
each time step. For random simulations, we found that errmax typically remains within 0.3% of the extent of the geometry.

We also inspected visually the trajectories of the molecules in sample simulations and confirmed that they are indistinguishable to
the naked eye, as supported by Figure 19.

x
y

0 250 500 750 1000 1250 1500 1750 2000
Time step

z

retQSS Aboria

Figure 19: Sample trajectory of a molecule in retQSS and Aboria simulations (vertical jumps are due to the crossing
of periodic boundaries)

6.3.4 Experiment methodology

For a sample simulation in Aboria, we carried out a parameter sweeping for the accuracy in retQSS and characterized the perfor-
mance of each scenario.

Performance is characterized by means of a custom performance index η that combines the simulation time tsim and the error as
given by the similarity index errmax introduced above (Equation (12)). This metric enables a more synthetic look at the error and
simulation times. Clearly, performance may be increased either by improving the accuracy of the method or by achieving lower
simulation times.

η =
1

tsim× errmax
(12)

We fixed an absolute minimum tolerance ∆QMin = 10−9 and tested seven values for the relative error tolerance ∆QRel between
2.5×10−4 and 7.5×10−3. Each scenario was independently simulated 20 times. Sample standard deviations (for simulation times)
remained below 12%.

6.3.5 Results and discussion

Figure 20 compares the performance index η achieved by Aboria and retQSS. The dashed red line represents the performance index
of Aboria (about 0.23, given by a mean simulation time of 1.33 seconds and an error of 3.3× 10−3, i.e., a 0.33% of the extent of

22

A PREPRINT - MARCH 25, 2022

the geometry) whereas the full blue line joins the performance indices achieved by the seven retQSS simulations configured with
increasing accuracy constraints.

x 10-3

Aboria

retQSS

equivalent
performance

8x improvement

Pe
rf

o
rm

a
n
ce

 i
n
d
e
x

QRel 0.
75 0.
5

0.
25

1

2.
55

7.
5

2.00

Figure 20: Performance comparison between retQSS and Aboria

When ∆QRel = 7.5× 10−3, retQSS achieves a nearly equivalent performance than Aboria, completing the simulation in 1.38
seconds (about 4% slower) but with an 8% improvement in the error. From that point onwards, retQSS systematically improves
its performance as the requested accuracy increases, reaching an improvement of 8x when ∆QRel = 2.5× 10−4. This is due to
consistent improvements in the error bounds, a reasonable consequence of more stringent accuracy demands. The decrease in the
error follows an expected pattern until ∆QRel = 7.5× 10−4 (i.e., it decreases by factors roughly equivalent to decrease factors
in ∆QRel). From that point onwards, the error decreases more slowly and it seems to stabilize around a value about an order of
magnitude less than the error achieved by Aboria.

In a similar fashion, simulation times in retQSS also grow as the accuracy constraints become more tight. For example, when
∆QRel = 2.5×10−4, retQSS completes the simulation in 1.45 seconds (about 9% slower than Aboria). The ∼10x improvement in
the error bounds clearly overcomes this modest difference, resulting in the reported 8x improvement in the performance index.

This gentle growth in the simulation time can be explained as follows. First, we confirmed that the number of internal transitions of
the QSS2 integration loop follows an expected growth pattern, increasing roughly proportionally to the square root of the increase
in the accuracy (as described in Section 2.1.1). Since the quantum becomes systematically smaller, these extra transitions are
basically due to changes in the state variables. In this case study, these transitions are considerably cheaper than event-driven
transitions, which involve particle neighborhood traversals (to compute force fields) and geometrical calculations (to penetrate
periodic boundaries). The number of such events is less affected by changes in the requested accuracy (e.g., force field evaluations
are only triggered by time events). Thus, the 5% increase in the simulation time (from ∆QRel = 7.5×10−3 to ∆QRel = 2.5×10−4)
corresponds to a ∼5x increase in the number of state changes.

6.3.6 Modeling overview

We can highlight several advantages of modeling this case study with retQSS. As opposed to Aboria, the underlying integration
method is decoupled from the modeling logic. The modeler may choose among different options (e.g. QSS2 or QSS3) without
worrying about updating the model code. Also, these methods are already tested and deployed in an optimized simulation engine.
Another feature of retQSS is a predictable global accuracy control that is easily configurable (also shown by the performance
comparison studied above). In the case of Aboria, the programmer must manually embed accuracy control mechanisms in the
model code. Finally, in retQSS we can easily experiment with geometries of arbitrary shapes, whereas Aboria is limited by design
to hypercube geometries.

Meanwhile, a downside of the retQSS approach is the need to provide a precise meshed description of the geometry so that particle
neighborhoods can properly capture the cut-off value of the force field. In some circumstances, experimenting with different cut-
off values may thus demand to recompute the mesh. Also, retQSS is currently limited to 3D geometries, whereas Aboria supports
arbitrary n-dimensional hypercubes.

6.4 Plasma flow

Modeling and simulation of plasma phenomena has become a valuable tool in disciplines such as plasma physics or space physics
[32]. In the latter, for example, plasma simulations allow for a better understanding of solar wind interactions with different celestial
objects like comets or planets. High-density plasma is typically represented by magnetohydrodynamics (MHD) models, regarded
as an extension of fluid dynamics to electrically conducting fluids. On the other hand, low-density plasma tends to behave more
like a collection of discrete particles rather than a continuous fluid. Particle-based numerical methods are thus well suited for these
problems.

23

A PREPRINT - MARCH 25, 2022

One of the most popular particle-based methods for plasma simulation is Particle-In-Cell (PIC). PIC operates with a background
mesh through which particles indirectly interact with each other. In electrostatic setups (e.g. assuming that currents generated by
the plasma are low and that the self-induced magnetic field can be ignored), the algorithm follows four basic steps [33]:

1. The charge of each particle is distributed to the surrounding nodes of the mesh.

2. Electric potential is calculated by discretizing Poisson’s equation and solving the resulting system of linear equations.

3. Electric forces acting on each particle are computed from the electric field values in the surrounding nodes of the mesh.

4. Particles are moved using Newton’s laws (new particles might be generated after this step).

In what follows we will explore two approaches to implement custom electrostatic PIC algorithms in retQSS. We tackle a case
study that models the flow of uniform plasma in a 2D domain and compare our proposed models against a reference model solved
with a PIC implementation in Octave. This programming language was already used in past works to characterize and study
PIC algorithms [34]. Bearing in mind the important differences between interpreted and compiled languages, the fundamental
purpose of this case study is somewhat different from that of previous experiments. We do not intend to measure and compare the
performance of our approach against Octave. Rather, we expect to illustrate the modeling capabilities of our tool offering two PIC
variants of very different nature –one of them featuring a novel event-based charge scattering approach that exploits the efficient
discrete event capabilities of retQSS.

6.4.1 Model description

We model the flow of uniform plasma in a 2D domain with absorbing boundaries (i.e., particles die when they leave the domain).
The background support mesh is given by a grid of Nx = 16×Ny = 10 nodes, conforming a mesh of square cells where the side
length l is given by the Debye length (a characteristic distance over which ions and electrons can be separated in a plasma). At each
time step (after T = 200 time steps the system reaches a steady state), n = (Ny−1) ·np macroparticles (computational particles that
represent a group of real particles such as electrons or ions) are generated and randomly distributed along the cells of the first column
(np is a model parameter that controls the average number of macroparticles per cell). The initial velocity of each macroparticle
is sampled from the Maxwell-Boltzmann distribution, with a drift factor (7 km/s) added in x̂. Figure 21 shows a snapshot of a
simulation with a total of N = 27000 macroparticles (the default value, representing approximately 1010 real particles).

~0.74 cm

Figure 21: Snapshot of a plasma flow simulation (with highlighted trajectories)

The ODE system shown in Equation (13) dictates the motion of each macroparticle.

{
ẋ = vx v̇x = qe/m ·Ex

ẏ = vy v̇y = qe/m ·Ey
(13)

Newton’s second law determines the acceleration in terms of the elementary charge qe = 1.602× 10−19 coulombs, an ion mass
given by m = 32 AMUs and the electric field ~E = (Ex,Ey), which is computed from ~E = −∇φ . Here, φ is the electric potential,
given by Poisson’s equation (Equation (14)). This equation is discretized following a finite difference approach (using central
differences).

∇
2
φ =− ρ

ε0
(14)

24

A PREPRINT - MARCH 25, 2022

Here, ε0 = 8.854× 10−12 farads per meter is the permittivity of free space and ρ is the charge density, defined in terms of the
densities of ions and electrons. Electron density is given by the Boltzmann relation, whereas ion density is derived from the
background mesh after scattering macroparticle charge to its nodes. The charge is distributed to the background mesh using a
first-order scattering operation (area weighting). Essentially, a node v surrounding a macroparticle p receives a fraction of the total
charge carried by p that is proportional to the distance between v and p.

6.4.2 Implementation

We followed two approaches to model this case study in retQSS. First, we explored a standard strategy where charge distribution is
performed on a regular basis, controlled by a time event that iterates over every active macroparticle. Then, we tested an alternative
decoupled strategy where charge is distributed on demand at two discrete state events: when a macroparticle enters into a new
cell, and when a macroparticle is approximately halfway through a cell. Both models share a common general structure and set of
features:

• Ion charge density and electric potential are stored as vertex properties.
• The linear system obtained by discretizing Poisson’s equation is solved in an external C++ function that provides an

ad-hoc implementation of the Gauss-Seidel method. This function is periodically invoked by a time event.
• The charge scattered by macroparticles is recorded so that it can be removed from previous nodes before scattering it into

new ones.

The Octave model relies upon an ad-hoc implementation of a leapfrog integrator embedded in the code. In retQSS, we chose QSS2
as the back-end integration method.

6.4.3 Validation

We performed 50 independent runs of the reference Octave model in its default configuration (a total of 27000 macroparticles,
injecting 135 per time step) and recorded the final charge density across every node in the grid. Using the corresponding initial
particle conditions, we computed the ion charge density with our models obtaining the average relative error for each node (we set
∆QRel = 10−6 and ∆QMin = 10−9).

For the Standard model, the average of the relative errors (across every node) turned out to be approximately 4% (8% for the 90th
percentile). On the other hand, we found an average relative error of 13% for the Decoupled model (55% for the 90th percentile).
This is an expected difference derived from the less frequent charge distributions.

Figure 22 shows the final electric potential across the grid computed by the Standard model, compared against the one produced by
Octave. Although the structure of both surfaces is visually similar, the most remarkable differences occur in the last column, where
most of the particles exit the geometry.

x
y

Octave

 retQSS
Standard

Figure 22: Electric potential for sample simulations in Octave and the Standard model

6.4.4 Experiment methodology

We evaluated our models by testing their performance under different loads of particles. To this end, we swept a range of consecutive
values for the np parameter ranging from 1 (yielding a total of N = 1800 macroparticles) to 15 (N = 27000). Each scenario was
independently simulated 20 times. Sample standard deviations remained below 5%.

6.4.5 Results and discussion

Figure 23 shows that both retQSS models significantly outperform Octave, featuring speedups of up to 115x (when N = 1800).
Yet, this difference systematically decreases as the total number of macroparticles increases. The Standard model, for example,

25

A PREPRINT - MARCH 25, 2022

reduces its speedup against Octave to 18x when N = 27000 (the default configuration of the case study). This can be explained

18x

115x

Macroparticles N

Figure 23: Performance comparison between Octave and retQSS

by analyzing the internal event scheduling mechanism used by QSS Solver (see Algorithm 1) and the extra load induced by the
incremental addition of macroparticles to the system. Each new macroparticle adds six continuous state variables and three to four
discrete events, all with their associated next times of change in the future. These times are managed by the scheduler so that the
simulation can advance by processing one state change or discrete event at a time (asynchronous integration steps ordered by their
temporal imminence). Thus, the number of such steps (i.e. transitions of the main integration loop) grows linearly with the number
of macroparticles N.

At each step, the time at which the next transition should happen must be computed. Since we employ the default binary scheduler,
the CPU time required by this task is proportional to the logarithm of the total number of states and events. We also have that, on
each step, the number of state derivatives to be recomputed is constant (the underlying mathematical model is sparse). From this
analysis we can derive a Θ(N logN) asymptotic bound for the running time of the simulation.

We provide an empirical validation of this assertion in Figure 24, where we fit functions of the form aN logN +b to the simulation
times yielded by both retQSS strategies. We also verified that this analysis can be extrapolated to higher values of N (we tested up
to N = 2×106 macroparticles).

0

5

aN logN+ b (fitted)

Macroparticles N

retQSS: Standard retQSS: Decoupled

45

40

35

30

25

20

15

10

Figure 24: Simulation times for retQSS strategies compared to fitted functions of the form aN logN +b

On the other hand, the Octave model simply iterates over the N macroparticles on each time step, yielding an asymptotically
linear running time. In consequence, even though both retQSS models significantly outperform Octave in this setup, this analysis,
supported by the empirical evidence, suggests that they scale worse with the number of macroparticles in the system.

Comparing our proposed models, we observe that Standard is consistently about 80% slower than Decoupled. This is a reasonable
outcome, as charge is more frequently distributed to the grid nodes. Yet, if we take into account not only the simulation times but

26

A PREPRINT - MARCH 25, 2022

also the average relative errors in the ion charge density, by Equation (12) we find that Standard outperforms Decoupled (achieving
a combined performance improvement of 75%). The 3x difference in the error is sufficient to compensate for the running time
penalties derived from its charge scattering mechanism.

6.4.6 Modeling overview

The discrete-event nature of retQSS enables interesting and novel approaches to PIC algorithms, as illustrated by the Decoupled
model. Sacrificing accuracy in favor of efficiency, this model adjusts the frequency of the charge scattering operation to the
dynamics of each macroparticle, a seemingly complex task for traditional approaches such as the Octave model. Still, more
advanced models (e.g. featuring splines or other higher-order scattering operations) can be difficult to describe via high-level
modeling languages. This might be overcome by developing a custom package offering assorted utility functions targeted to PIC
models. These functions can then leverage the versatility of the Model API in their implementations.

7 Related work and discussion

This Section aims at contextualizing retQSS to understand how it is positioned within a reference framework of particle simulation
methods and tools. To this end, we shall review relevant contributions to this broad topic in a selection of specific disciplines:
computational fluid dynamics (CFD), high-energy physics (HEP) and 3D rendering.

7.1 Computational fluid dynamics

CFD models often involve the simultaneous flow of fluids and particles. These coupled models employ discrete particle simulation
methods to obtain the phase motion of the particles in the system, usually applying Newton’s laws of motion to each particle. One
such method is the Discrete Element Method (DEM) [35]. DEM is an example of mesh-free, particle-based numerical methods.
Particle methods employ a finite set of discrete particles to represent the state of a system [36]. Particles are then tracked in a
Lagrangian frame according to their internal interactions and external forces, and thus evolve the system across time. Some particle
methods are best suited for systems with discrete particles (e.g., rocks, grains or atoms) whereas others are used to discretize
continuous domains such as fluids. DEM and Molecular Dynamics (MD) [10] are two classic examples of the former. Smoothed
Particle Hydrodynamics (SPH) [2] is the most widely used method among the latter. A central aspect common to all of them is that
they approximate forces acting on a particle using information of neighboring particles lying inside a support domain [2]. As we
covered in Section 6.3, the related concept of particle neighborhood enables implementations of MD with retQSS.

Other class of particle methods operate using a background Eulerian mesh. Although considered a mesh-free particle method,
Particle-In-Cell (PIC) is one such example [37]. Originally limited to fluids, PIC later evolved into other methods that expanded its
capabilities (e.g. the Material Point Method, MPM [38]). In these methods, particle properties (e.g. electric charge) are interpolated
in the surrounding mesh nodes on each simulation step. Later, fields are interpolated back to particles after computing their value
over the nodes. As we studied in Section 6.4, the use of meshed geometries in retQSS is a key feature that paves the way for
custom implementations of these sorts of particle methods. We covered a case study involving the flow of plasma in a simple
two-dimensional geometry and developed two different PIC-based approaches to model this problem in retQSS.

A related class of hybrid methods used in CFD are those that combine Lagrangian and Eulerian grids so as to leverage the advantages
of both approaches. Two notorious examples are the Coupled Eulerian-Lagrangian (CEL) method [2] and the Arbitrary Lagrangian-
Eulerian (ALE) method [39]. CEL usually applies Eulerian and Lagrangian methods in separate regions of the problem domain
(e.g., solids and fluids may be discretized in Lagrangian and Eulerian frames, respectively). Both regions continuously interact with
each other through a coupling module in which computational information is exchanged. An important difference with retQSS (and
in general with the aforementioned particle-based methods) is that these are grid-based approaches that do not make explicit use of
computational particles.

One of the most popular software toolkits for CFD is OpenFOAM [20]. It is an open-source, C++-based toolbox for general-purpose
CFD simulations. OpenFOAM supports discrete particle simulations via custom implementations of DEM. MercuryDPM [40] is
another example of discrete particle simulation toolkits. One of its salient features, not available in retQSS, is the support of curved
walls that might arise in realistic geometries. On the other hand, Nauticle [41] offers a custom high-level language (the Symbolic
Form Language, SFL) that facilitates the formulation of user-defined numerical models. Although similar in spirit to retQSS, this
mechanism is not based on a widely accepted, standardized modeling language such as Modelica. Yet another example is Aboria
[31], an efficient software library aimed at providing a common framework for the implementation of particle-based methods (see
Section 6.3 for detailed comparisons between retQSS and Aboria).

7.2 High-energy physics

The HEP community relies heavily on particle tracking simulations. These serve multiple purposes, e.g. they drive the design and
optimization of particle detectors for best physics performance [42]. MARS15 [43] is a HEP particle simulator consisting of a
set of Monte Carlo algorithms for the simulation of hadronic and electromagnetic cascades in 3D geometries. FLUKA [44] is a
general-purpose simulation package for particle transport and interactions with matter. Yet, modern HEP experiments mostly rely
upon Geant4 [28] for carrying out particle simulations. Geant4 is a software toolkit for the simulation of the passage of particles
through matter. Its main goal is to track the trajectories of subatomic particles affected by physics processes within complex detector

27

A PREPRINT - MARCH 25, 2022

geometries typically composed by 3D volumes of different shapes and materials. In Section 6.2 we compared retQSS and Geant4
in the context of a simple HEP setup (a charged particle moving in a mesh of cuboids under the action of a uniform magnetic field).
We developed variants of this setup that were successfully used in the past as a benchmarking asset for QSS-based simulation
strategies ported to Geant4 [29, 30].

Geant4 employs a custom, XML-based geometry file format (GDML, Geometry Description Markup Language), through which
it supports geometries with complex features such as nested volumes. As a consequence, the underlying geometry management
and tracking algorithms are considerably more complicated than those featured by retQSS. Thus, advanced HEP setups featuring
complex geometries (such as realistic particle detectors) may prove difficult to model in retQSS. One way of overcoming this
limitation is to adopt a co-simulation strategy to connect Geant4 with QSS Solver, as we introduced in [29]. This approach opens
the door to leveraging the benefits of retQSS in other application domains.

7.3 3D rendering

In the field of 3D rendering and game physics, the Particle Systems method [45] is generally used to model fuzzy objects such as
fire or water, difficult to reproduce with standard rendering techniques. This method tracks a particle cloud in a 3D space, advancing
particle positions (and possibly other features) by means of a physical simulation which might consider external forces like gravity
or friction. In a very similar fashion to retQSS simulations, the method usually detects collisions between the particles and other
objects in the scene, enabling different kinds of interactions with 3D obstacles. Although particle systems solutions are sometimes
developed ad-hoc, companies like Nvidia [46] provide Particle Systems APIs that can be used in game engines.

7.4 Event-driven particle dynamics and particle tracking

Another particle simulation technique very closely linked to retQSS and with application in a wide range of fields is Event-Driven
Particle Dynamics (EDPD) [47]. EDPD maps the dynamics of a particle system to a sequence of events given by instantaneous
pairwise interactions between the particles, thus progressing irregularly in time. EDPD is in consequence a discrete-event system,
much like the QSS numerical methods. Nevertheless, EDPD is typically used in hard-sphere models with colliding particles. These
event-driven particle-particle collisions are not yet supported by retQSS.

The algorithmic approach followed by EDPD is related to several particle tracking algorithms that have been applied in different
fields such as CFD, granular flow simulations and ray tracing [48, 49]. In this context, particle tracking refers to the repeated lo-
calization of particles within a mesh by following their trajectories. Indeed, this is one of the central tasks of retQSS. Although the
boundary crossing detection algorithm implemented by retQSS (covered in Section 4.4) has a strong resemblance to the aforemen-
tioned tracking strategies, these are generally based upon linear approximations of particle trajectories. On the other hand, retQSS
relies on higher order polynomial approximations of the trajectories supplied by QSS Solver, ultimately enabling more accurate
estimations of the intersection points.

8 Conclusions and future work

This work introduced retQSS, a novel methodology for modeling and simulation of particle systems in meshed three-dimensional
geometries. Aimed at providing a generic, rigorous and efficient methodological framework for particle simulation, retQSS adopts
and extends the QSS Solver toolkit as its core simulation engine. This way, retQSS profits not only from its elegant mechanisms
to describe models (via µ-Modelica, a high-level modeling language that is a subset of the Modelica language) but also from its
optimized, state-of-the-art implementations of QSS numerical methods. Due to their discrete-event nature, these methods enable
efficient approaches to particle tracking algorithms, a key component in particle simulations across different application domains.

We demonstrated the modeling capabilities of retQSS by addressing four selected case studies. First, we explored two different
approaches to model bird flocking as suggested by the very popular boids model. The concept of particle neighborhoods in retQSS
enabled straightforward implementations of the flocking rules that dictate the steering behavior of birds according to their local
flockmates. We also discussed how the model can be easily extended to take into account external forces (e.g. wind) or the
presence of obstacles, leveraging other features of retQSS such as volume properties.

Then, we continued with a high-energy physics (HEP) setup based on a model used in our previous contributions as a benchmarking
asset for QSS-based simulation strategies for HEP experiments. A performance comparison against Geant4, the reference simula-
tion toolkit in the field, revealed substantial speedups (between 6x and 8x) in detecting and handling volume boundary crossings, a
central aspect in HEP simulations. This proved the efficiency and appropriateness of our discrete-event based particle tracking algo-
rithms. Yet, extending this analysis to advanced HEP setups (such as realistic models of particle detectors) may prove challenging,
as these models typically involve more complex geometries (e.g. featuring nested volumes).

Finally, we showed how particle-based numerical methods can be effectively expressed in retQSS. We developed a custom imple-
mentation of Molecular Dynamics in the context of a system of molecules interacting through an exponentially decaying potential,
and compared our approach against Aboria, a software library devoted to particle-based methods. We exploited the straightforward
accuracy control mechanisms in retQSS to improve the error bounds in about one order of magnitude with limited performance
penalties (simulation times resulted 9% higher than those achieved by Aboria). In addition, we showed two different strategies to
implement Particle-In-Cell algorithms to model the flow of plasma in a 2D domain. One of them explored a novel discrete-event

28

A PREPRINT - MARCH 25, 2022

based approach to the problem of scattering particle charge to the computational grid. Although our approaches greatly outper-
formed a reference implementation in Octave (reaching speedups of up to 115x), they scaled worse with the number of particles in
the system.

We believe that the results of this work position retQSS as a powerful new alternative to other related particle simulation toolkits.
From a modeling perspective, by seizing the expressive power of a high-level modeling language, retQSS features succinct and
elegant model descriptions, something that may prove particularly useful for disciplines typically accustomed to using programming
languages for modeling purposes.

We are currently working on enabling parallel computation mechanisms in retQSS, leveraging the shared-memory approach fol-
lowed by QSS Solver. We are also interested in coupling retQSS with other simulation engines such as OpenModelica. This would
allow for tackling a wider range of problems by using the full capabilities of Modelica to describe particle models.

To conclude, interesting future steps include extending retQSS with convenient primitives to facilitate domain-specific modeling.
One such domain is the modeling of continuous contacts, which is especially relevant for instance in particle-wall interactions in
DEM models. Another area of interest is the relationship between particle-based and agent-based models for studying systems
involving social interactions such as epidemiological processes. In this branch of modeling, agents are represented by particles
following kinetic laws while describing situations of encounter and contagion [50, 51]. We started exploring this line of work in
[52] by extending retQSS to build an agent-based model that combines the kinematic 2D motion of agents, indirect interaction
between them and with their surrounding space, and centralised control to apply contact tracing over the entire population.

Acknowledgments

This work was supported by the National Agency for Science and Technology (ANPCYT, grant PICT-2015-3509) and the Univer-
sity of Buenos Aires (UBACYT PhD Fellowship Program).

A Hardware and software platform

All simulations (single-threaded) were run on the computer cluster TUPAC [53], where each CPU node has 4 x AMD Opteron 6276
(hexadeca-core) processors. The operating system in use is Red Hat Enterprise Linux ComputeNode release 6.7
(2.6.32-573.el6.x86 64 kernel).

Regarding the third-party software employed throughout the experimentation,

• The Geant4 version in use was 10.05, released December, 2018.

• As for Aboria, we used version 0.5, the latest official release as of the writing of this article.

• Finally, we used Octave version 4.2.1, released February, 2017.

With the exception of Octave, every piece of software (including retQSS and QSS Solver) was compiled from the source code with
gcc 5.4.0 and enabling the O2 optimization flag. The QSS Solver version adopted for the development of retQSS is a fork from
version 3.0.

References

[1] Z Zhang and Q Chen. Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed
spaces. Atmospheric environment, 41(25):5236–5248, 2007.

[2] L Gui-rong and L Moubin. Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific Publishing
Company, 2003.

[3] Federico Bergero, Xenofon Floros, Joaquı́n Fernández, Ernesto Kofman, and Francois E Cellier. Simulating Modelica Mod-
els With A Stand–Alone Quantized State Systems Solver. In Proceedings of The 9th International Modelica Conference.
September 3rd-5th, Munich, Germany, 237-246, 2012.

[4] Peter Fritzson and Vadim Engelson. Modelica - A unified object-oriented language for system modeling and simulation.
In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 1998.

[5] Dag Brück, Hilding Elmqvist, Sven Erik Mattsson, and Hans Olsson. Dymola for multi-engineering modeling and simulation.
In Proceedings of 2nd International Modelica Conference, 2002.

[6] Peter Fritzson, Peter Aronsson, Håkan Lundvall, Kaj Nyström, Adrian Pop, Levon Saldamli, and David Broman. The Open-
Modelica modeling, simulation, and software development environment. Simulation News Europe, 44:8–16, 2005.

[7] François E Cellier and Ernesto Kofman. Continuous System Simulation. Springer Science. & Business Media, 2006.

[8] Ernesto Kofman and Sergio Junco. Quantized-state systems: a DEVS Approach for continuous system simulation. Transac-
tions of The Society for Modeling and Simulation International, 18(3):123–132, 2001.

29

A PREPRINT - MARCH 25, 2022

[9] François E Cellier and Ernesto Kofman. Continuous System Simulation. Springer Science & Business Media, New York, NY,
USA, 1 edition, 2006.

[10] Dennis C Rapaport. The art of molecular dynamics simulation. Cambridge university press, 2 edition, 2004.

[11] D Tskhakaya, K Matyash, R Schneider, and F Taccogna. The Particle-In-Cell Method. Contributions to Plasma Physics,
47(8-9):563–594, 2007.

[12] Guillermo L. Grinblat, Hernán Ahumada, and Ernesto Kofman. Quantized state simulation of spiking neural networks.
SIMULATION, 2012.

[13] Gustavo Migoni, Ernesto Kofman, Federico Bergero, and Joaquı́n Fernández. Quantization-based simulation of switched
mode power supplies. SIMULATION, 2015.

[14] Federico Martı́n Bergero, Francesco Casella, Ernesto Kofman, and Joaquı́n Fernández. On the efficiency of quantization-based
integration methods for building simulation. Building Simulation, 11(2):405–418, 2018.

[15] E Kofman. A Third Order Discrete Event Simulation Method for Continuous System Simulation. Latin American Applied
Research, 36(2):101–108, 2006.

[16] F Bergero and E Kofman. PowerDEVS: A Tool for Hybrid System Modeling and Real-Time Simulation. SIMULATION,
87(1-2):113–132, 2010.

[17] Joaquı́n Fernández and Ernesto Kofman. A stand-alone quantized state system solver for continuous system simulation.
Simulation, 90(7):782–799, 2014.

[18] Peter Fritzson. Principles of object-oriented modeling and simulation with Modelica 2.1. John Wiley & Sons, 2010.

[19] Utkarsh Ayachit. The paraview guide: a parallel visualization application. Kitware, Inc., 2015.

[20] Hrvoje Jasak, Aleksandar Jemcov, Zeljko Tukovic, and others. OpenFOAM: A C++ library for complex physics simulations.
In International workshop on coupled methods in numerical dynamics, volume 1000, pages 1–20, 2007.

[21] Ying Zou and Kostas Kontogiannis. Migration to object oriented platforms: A state transformation approach. In International
Conference on Software Maintenance, 2002. Proceedings., pages 530–539, 2002.

[22] retQSS source code. https://git-modsimu.exp.dc.uba.ar/lucio/retqss. 2020 (accessed 24 July 2021).

[23] Andreas Fabri and Sylvain Pion. CGAL: The computational geometry algorithms library. In Proceedings of the 17th ACM
SIGSPATIAL international conference on advances in geographic information systems, pages 538–539, 2009.

[24] W Schroeder, K Martin, B Lorensen, and Inc Kitware. The Visualization Toolkit: An Object-oriented Approach to 3D
Graphics. Kitware, 4 edition, 2006.

[25] Randi J Rost. OFF - a 3D object file format. Digital Equipment Corporation Technical Report, 1989.

[26] [dataset] L. Santi. Simulation of particle systems with retqss: selected case studies and applications. http://dx.doi.org/
10.17632/8nppcpz5s9.1, 2020. Mendeley Data, v1.

[27] Craig W Reynolds. Flocks, Herds and Schools: A Distributed Behavioral Model. In Proceedings of the 14th Annual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH ’87, pages 25–34, New York, NY, USA, 1987.
Association for Computing Machinery.

[28] J Allison, K Amako, J Apostolakis, P Arce, M Asai, T Aso, E Bagli, A Bagulya, S Banerjee, G Barrand, and S Guatelli. Recent
Developments In Geant4. Nuclear Instruments and Methods In Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 835:186–225, 2016.

[29] Lucio Santi and Rodrigo Castro. A Co-simulation technique for efficient particle tracking using hybrid numerical methods
with application in high energy physics. In Proceedings - Winter Simulation Conference, volume 2018-Decem, pages 1322–
1333, 2019.

[30] Lucio Santi, Lucas Rossi, and Rodrigo Castro. Efficient discrete-event based particle tracking simulation for high energy
physics. Computer Physics Communications, 258:107619, 2021.

[31] Martin Robinson and Maria Bruna. Particle-based and meshless methods with Aboria. SoftwareX, 6:172–178, 2017.

[32] S Ledvina, Yingjuan Ma, and E Kallio. Modeling and Simulating Flowing Plasmas and Related Phenomena. Space Science
Reviews, 139:143–189, 5 2008.

[33] Stefano Markidis and Giovanni Lapenta. The energy conserving particle-in-cell method. Journal of Computational Physics,
230(18):7037–7052, 2011.

[34] Wojciech Konior. Particle-In-Cell Electrostatic Numerical Algorithm. Transactions on Aerospace Research, 2017:24–45, 5
2017.

[35] C O’Sullivan. Particulate Discrete Element Modelling: A Geomechanics Perspective. CRC Press, 2011.

[36] S Li and W K Liu. Meshfree Particle Methods. Springer Berlin Heidelberg, 2007.

[37] C. K. Birdsall and A. B. Langdon. Plasma physics via computer simulation. McGraw-Hill, Inc., New York, NY, USA, 2004.

[38] Sergio R Idelsohn, Eugenio Oñate, and Pablo Becker. Particle methods in computational fluid dynamics. Encyclopedia of
Computational Mechanics Second Edition, pages 1–41, 2018.

30

https://git-modsimu.exp.dc.uba.ar/lucio/retqss
http://dx.doi.org/10.17632/8nppcpz5s9.1
http://dx.doi.org/10.17632/8nppcpz5s9.1

A PREPRINT - MARCH 25, 2022

[39] Len Margolin. Introduction to “An Arbitrary Lagrangian–Eulerian Computing Method for All Flow Speeds”. Journal of
Computational Physics, 135:198–202, 5 1997.

[40] Thomas Weinhart, Luca Orefice, Mitchel Post, Marnix P van Schrojenstein Lantman, Irana F C Denissen, Deepak R
Tunuguntla, J M F Tsang, Hongyang Cheng, Mohamad Yousef Shaheen, Hao Shi, and others. Fast, flexible particle sim-
ulations—An introduction to MercuryDPM. Computer physics communications, 249:107129, 2020.

[41] Balázs Havasi-Tóth. Nauticle: A general-purpose particle-based simulation tool. Computer Physics Communications,
246:106855, 2020.

[42] D Elvira. Impact of Detector Simulation In Particle Physics Collider Experiments. Physics Reports, 695:1–54, 2017.

[43] N V. Mokhov and S I. Striganov. MARS15 overview. AIP Conference Proceedings, 896, 2007.

[44] T T Böhlen and others. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications.
Nuclear Data Sheets, 120:211–214, 2014.

[45] William T Reeves. Particle systems—a technique for modeling a class of fuzzy objects. ACM Transactions On Graphics
(TOG), 2(2):91–108, 1983.

[46] Nvidia Corporation. http://www.nvidia.com. Accessed 2020-06-09.

[47] Marcus N Bannerman, Severin Strobl, Arno Formella, and Thorsten Pöschel. Stable algorithm for event detection in event-
driven particle dynamics. Computational Particle Mechanics, 1(2):191–198, 2014.

[48] Severin Strobl, Marcus N Bannerman, and Thorsten Pöschel. Robust event-driven particle tracking in complex geometries.
Computer Physics Communications, page 107229, 2020.

[49] Graham B Macpherson, Niklas Nordin, and Henry G Weller. Particle tracking in unstructured, arbitrary polyhedral meshes
for use in CFD and molecular dynamics. Communications in Numerical Methods in Engineering, 25(3):263–273, 2009.

[50] Askat Kuzdeuov, Aknur Karabay, Daulet Baimukashev, Bauyrzhan Ibragimov, and Huseyin Atakan Varol. A particle-based
covid-19 simulator with contact tracing and testing. IEEE Open Journal of Engineering in Medicine and Biology, 2:111–117,
2021.

[51] Mario Pulvirenti and Sergio Simonella. A kinetic model for epidemic spread. Mathematics and Mechanics of Complex
Systems, 8(3):249–260, 2020.

[52] Esteban Lanzarotti, Francisco Roslan, Leandro Groisman, Lucio Santi, and Rodrigo Castro. A Multi-Aspect Agent-Based
Model Of Covid19: Disease Dynamics, Contact Tracing Interventions And Shared Space-Driven Contagions. In 2021 Winter
Simulation Conference (WSC), volume 2021-December. IEEE, dec 2021. In Press.

[53] TUPAC Computer Cluster. http://www.tupac.gob.ar. Accessed 2020-06-09.

31

	1 Introduction
	2 Background
	2.1 Quantized State System (QSS) methods
	2.1.1 Properties of QSS methods

	2.2 The Standalone QSS Solver toolkit
	2.3 The Modelica modeling language

	3 Key concepts and motivation
	3.1 A simple example: bouncing balls with obstacles

	4 Design and implementation
	4.1 Geometry definition and management
	4.2 First-class objects
	4.3 Volume and particle neighborhoods
	4.4 Boundary crossing detection algorithm
	4.5 Model API

	5 Bouncing balls example revisited
	6 Selected case studies and applications
	6.1 Bird flocking
	6.1.1 First approach: using external functions
	6.1.2 Second approach: using particle neighborhoods
	6.1.3 Possible extensions

	6.2 High-energy physics
	6.2.1 Model description
	6.2.2 Implementation
	6.2.3 Validation
	6.2.4 Experiment methodology
	6.2.5 Results and discussion
	6.2.6 Modeling overview

	6.3 Molecular interactions
	6.3.1 Model description
	6.3.2 Implementation
	6.3.3 Validation
	6.3.4 Experiment methodology
	6.3.5 Results and discussion
	6.3.6 Modeling overview

	6.4 Plasma flow
	6.4.1 Model description
	6.4.2 Implementation
	6.4.3 Validation
	6.4.4 Experiment methodology
	6.4.5 Results and discussion
	6.4.6 Modeling overview

	7 Related work and discussion
	7.1 Computational fluid dynamics
	7.2 High-energy physics
	7.3 3D rendering
	7.4 Event-driven particle dynamics and particle tracking

	8 Conclusions and future work
	A Hardware and software platform

