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Abstract

We derived explicit expressions of symmetry operators on Wannier basis,
and implemented these operators in WannSymm software. Based on this
implementation, WannSymm can i) symmetrize the real-space Hamiltonian
output from Wannier90 code, ii) generate symmetry operators of the little
group at a specific k-point, and iii) perform symmetry analysis for Wan-
nier band structure. In general, symmetrized Hamiltonians yield improved
results compared with the original ones when they are employed for nodal
structure searching, surface Green’s function calculations, and other model
calculations.
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Nature of problem(approx. 50-250 words): Generate the symmetry operators
in Wannier basis; calculate the symmetry eigenvalues and characters; symmetrize
the real-space Hamiltonian according to the crystal structure. It deals with non-
magnetic or magnetic systems with or without spin-orbit coupling. For magnetic
systems, it can deal with ferromagnetic, commensurate antiferromagnetic long
range ordered collinear or non-collinear systems with spin-orbit coupling.
Running time: All of the examples run in less than 3 minutes on a two-way Intel
Xeon 2650v4 node (24 core).

1. Introduction

Symmetry serves as one of the most fundamental concept and properties
in the modern physics. In the condensed matter physics, in particular, the
Landau’s symmetry breaking theory[1, 2] for phase transition is widely ap-
plied in the second order phase transitions such as superconductivity phase
transitions and magnetic phase transitions, where the symmetry-based or-
der parameter signals the phase transition. In the solid state theory, the
irreducible representations of a space group can be used in labelling the
electronic energy bands in a crystalline solid[3], which becomes particularly
important in the modern band topology theory. The discovery of topological
insulators[4, 5, 6], quantum anomalous Hall insulators[7], as well as topo-
logical Weyl and Dirac semimetals brings intensive study on the topological
properties of materials[8], where the band symmetry is crucial to the de-
termination of band topologies. Such topology-symmetry correspondence
became evident in the more recently discovered symmetry based indicator
theory that can be used to distinguish topological non-trivial phases from
trivial ones[9, 10, 11, 12]. This is particularly useful for superconductors, be-
cause one may apply the symmetry-indicator theory and predict topological
superconductor candidates using normal state Hamiltonian combined with
its superconducting pairing symmetry, if weak-coupling condition is met[12].
Furthermore, for most ab initio codes, symmetry is used to improve calcula-
tion accuracy, as well as to reduce the calculation burden.

Many state-of-art first-principles calculation codes utilizes plane-wave or
augmented plane-wave basis, which are more expensive than localized basis.
Therefore in many cases, a real-space Hamiltonian is obtained via Wannier
projection (e.g., Wannier90 code[13]) after the ground state is converged, and
the post-process calculations employs this real-space Wannier Hamiltonian

2



to speed up the calculations. However, due to numerical errors introduced in
the projection procedure, the crystal symmetries may be violated in the de-
rived real-space Hamiltonian. These numerical errors may lead to incorrect
results. Therefore, it is important to restore correct symmetries in the de-
rived real-space Hamiltonian. At present, there are several codes performing
similar tasks. For example, thewannhr symm code in theWannierTools

package[14] performs symmetrization of Hamiltonian without magnetic or-
ders; the symmetry-adapted Wannier function method[15] does wannieriza-
tion with symmetry constraint for spinless Hamiltonians.

In this article, we introduce the WannSymm code which can be applied
to non-magnetic (NM), ferromagnetic (FM) or anti-ferromagnetic (AFM)
crystals. It can symmetrize the real-space Wannier Hamiltonian, perform
symmetry analysis and obtain the eigenvalues and characters of relevant sym-
metries at a given k point. It implements parallel algorithm for symmetriz-
ing the real-space Hamiltonian. The method does not depend on the radial
part of Wannier orbitals, and thus it can be applied to any tight-binding
like Hamiltonian defined on a local basis-set with atomic-like angular depen-
dence. Using WannSymm, we have already performed symmetry analysis for
the unconventional superconductor K2Cr3As3 [16], calculated the simple Z2

index for topological material W2As3 [17], the mirror eigenvalues for nodal
ring semimetal InTaSe2[18] and correctly identify the nodal structures and
topological invariants for the Kondo nodal-line semimetal Ce3Pd3Bi4[19].

2. Algorithm background

2.1. Crystal symmetry operations

The WannSymm code employs spglib[20] to determine the relevant sym-
metry operations for a specific system. The spglib obtains the symmetry op-
erations from the input of crystal structures. However, these symmetry oper-
ations are purely spatial and do not involve time-reversal operation, forming
a group denoted as GS. For the systems without long-range magnetic order,
the full symmetry of the Hamiltonian is then GH = GT = GS ⊕ T GS, where
T is the time-reversal symmetry. For the systems with long-range magnetic
order [either ferromagnetic (FM) or antiferromagnetic (AFM)], the rotation
operations are required to act on both spatial space and spin space when
spin-orbit coupling (SOC) is considered. Therefore, the full symmetry of
the Hamiltonian GH is a subgroup of GT . Noticing that the operations in
GH should leave the magnetic moment unchanged as well, we determine the
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elements of GH by taking every R ∈ GT and operating it on the magnetic
sublattice. If the sublattice after the operation R remains equivalent to the
original one, R belongs to GH . In WannSymm, the magnetic sublattice is
represented by a set of magnetic moment vectors at the atomic positions τ .

2.2. Atomic-like Wannier basis and Real-space Hamiltonian

In practice, Wannier orbitals are usually obtained by projecting Blöch
waves to atomic orbital-like initial guess |g〉. It is our experience that the
angular dependence of |g〉 is more important than its radial function in order
to obtain an accurate Wannier fitting in most cases. In addition, we shall see
that the WannSymm code relies on the angular dependence of the Wannier
basis to perform the symmetrization procedure. Therefore, we shall assume
that the Wannier basis are cubic-harmonic atomic-orbital like, i.e.

|wiR〉 = |Rτnlmσ〉

where i denotes the ith orbital, R is Bravais lattice vector, τ is the atomic
position of the i-th orbital in the unit cell, and n, l and σ are its primary,
orbital and spin quantum numbers, respectively. m is the index of the cubic
harmonic. The corresponding real-space Hamiltonian can be written as

HR

ij = 〈wi0|Ĥ|wjR〉 = 〈0τ inilimiσi|Ĥ|Rτ jnjljmjσj〉

Following the definition of Fourier transformation, we have the basis of
corresponding reciprocal-space and Hamiltonian in this basis

|wik〉 =
∑

R

eik·R|wiR〉 (1)

Hk

ij =
∑

R

eik·RHR

ij (2)

We use the same convention as employed in Wannier90[13] code. If the
tight-binding convention instead of Wannier convention is employed, an ad-
ditional eik·τi or eik·(τj−τi) factor may appear in the basis or Hamiltonian
transformation, respectively.
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2.3. Symmetry operator

The matrix representation of symmetry operators are derived in the Hilbert
space formed by the atomic-like Wannier basis |Rτnlmσ〉. The rotation op-
erator D̂(R) corresponding to a proper rotation R is

D̂(R) = exp

(

−iφ
n̂ · L̂

~

)

where n̂ is the normalized rotation axis, φ is the rotated angle, and L̂ is the
angular momentum operator. For spherical harmonics, it is straightforward
to obtain the matrix form of L̂, hence the rotation matrix Dl in spherical
harmonics. Therefore we employ the transformation U from cubic harmonics
to spherical harmonics, defined by

|Y (l, m)〉 =
∑

m′

Umm′

l |lm′〉

where |Y (l, m)〉 and |lm′〉 denote the spherical harmonics and cubic harmon-
ics, respectively. The indices of lattice, position, primary quantum number
and spin are omitted in the expression. The rotation matrix in cubic har-
monics Dl is then given by Dl = UlD

lU−1
l .

We denote the rotation matrix of a specific rotation R and angular quan-
tum number l as Dl(R), and the spinor part as Ds(R). Therefore,

R̂|Rτnlmσ〉 =
∑

m′σ′

Dl(R)m′mD
s(R)σ′σ|R

′τ ′nlm′σ′〉

where R′ + τ ′ ≡ R(R+ τ ) is the new atomic position after rotation.
In addition, the spatial inversion operator simply introduces a factor of

(−1)l for the orbital part. For the time-reversal operation T = U · K, since
the cubic harmonics are real functions, it has trivial effect on the orbital
part during the symmetrization. Therefore, we only need to take care of the
spinor part using −iσyK with K being the complex conjugation. With these
definitions, the matrix representation of all symmetry operations can be fully
constructed.

2.3.1. Real space

We then elaborate a little bit further of the symmetry operator for the
real-space Hamiltonian, which is useful during the symmetrization process.
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According to above derivation, a symmetry operation S acting on the Wan-
nier basis in general can be written as:

Ŝ|Rτnlmσ〉 =
∑

m′σ′

Sl
m′σ′mσ|R

′τ ′nlm′σ′〉

Thus, 〈R′τ ′n′l′m′σ′|Ŝ|Rτnlmσ〉 = Sl
m′σ′mσδnn′δll′δS(R+τ),(R′+τ ′). Therefore,

the real-space symmetry operation matrices are very sparse.
Since the Hamiltonian Ĥ transforms as ŜĤŜ† and the elements of real-

space Hamiltonian areHR

ij = 〈0τ inilimiσi|H|Rτ jnjljmjσj〉, the rotated Hamil-
tonian is then

{

SHS†
}

ij
= 〈0τ inilimiσi|SHS†|Rτ jnjljmjσj〉

=
∑

i′j′

Sli
miσimi′σi′

δS(R′+τ i′ ),τi
δnini′

δlili′ 〈R
′τ i′ni′ li′mi′σi′ |H|R′′τ j′nj′lj′mj′σj′〉×

(Slj†)mj′σj′mjσj
δS(R′′+τ j′),R+τ jδnjnj′

δlj lj′ =
∑

i′j′

Sli
miσimi′σi′

HR′′−R′

i′j′ (Slj†)mj′σj′mjσj
×

δR′+τ i′ ,S
−1τiδR′′+τ j′ ,S

−1R+S−1τjδnini′
δlili′δnjnj′

δlj lj′

In general, a symmetry operation S maps an atom i at τi to its symmet-
rically equivalent site with an optional lattice translation RS

i , which depends
only on the symmetry operation S and the site coordinate τi. With this in
mind, we have R′′ −R′ = S−1R+RS−1

j −RS−1

i .
Using the above result, we are able to calculate the real-space Hamiltonian

after symmetry operation S. This procedure is employed in the Hamiltonian
symmetrization process, which involves:

Hsym =
1

|G ′
H |

∑

S∈G′
H

SHS†

where G ′
H = GH/GT with GT being all the integer tanslations. This is because

all the integer translational symmetries are automatically preserved in the
Wannier representation.

2.3.2. Reciprocal space

According to Eq. 1, the rotation of reciprocal Wannier orbitals are
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Ŝ|wik〉 =
∑

R

eiSk·(SR)Ŝ|Rτnlmσ〉 =
∑

R′

eik
′·R′
∑

m′σ′

Sl
m′σ′mσ|R

′′τ ′nlm′σ′〉

where k′ = Sk, R′ = SR and R′′ + τ ′ = S(R + τ) = R′ + RS
τ + τ ′. As a

result,

Ŝ|wik〉 =
∑

m′σ′

Sl
m′σ′mσ

∑

R′

eik
′·R′

|R′ +RS
τ τ

′nlm′σ′〉

=
∑

m′σ′

Sl
m′σ′mσe

−ik′·RS
τ |wi′k′〉 (3)

Thus, using Sk

ij = 〈wik|Ŝ|wjk〉, we can calculate Hk′

(k′ = Sk) from Hk

using Hk′

= SkHk(Sk)†.
In addition, Sk can be used to perform symmetry analysis of a Blöch state.

In order to do that, we first identify the little group Gk

H of Hamiltonian Hk

at a specific point k. The eigenstates of Hk therefore can block-diagonalize
Sk, with the trace of each block being the characters of different symmetry
representations. Thus the irreducible representation of each Blöch state can
be determined using a character table.

2.4. Details of the code

2.4.1. Data Structure

In the WannSymm code, each symmetry operation is represented by two
flags of spatial inversion and time-reversal in addition to a proper rotation
and the associated translation.

In order to implement the above algorithm, the real-space Hamiltonian
HR

ij = 〈wi0|H|wjR〉 are divided into blocks such that the bra/ket states in
each block have the same τ , n, and l. In other words, the Hilbert space
is divided into subspaces formed by atomic orbitals with the same primary
and orbital quantum numbers on each atom. A mapping between subspace
orbital indices to global orbital indices is maintained by the WannSymm code
to facilitate the calculation.

For the reciprocal space calculations, since the Sk has a definite dimension
the same as the Hk, we can construct Sk using Eq. 3 with the assist of the
subspace-global mapping.

The structure of the program is illustrated in Fig. 1.
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Figure 1: Simplified schematic chart of the program. Note that the calculation of charac-
ters for symmetry representations of a given k-point is optional.

2.4.2. Installation and Typical Input/Output File

The WannSymm code depends on spglib to analyze the symmetry of crys-
tal. In addition, it also requires a working implementation of LAPACK/BLAS
library. Makefile compiling system is used. In order to compile the WannSymm
code, the users need to change the make.sys file in the top folder, and provide
paths of spglib and LAPACK/BLAS library.

The WannSymm code can also utilize message passing interface (MPI)
to speed up the calculations. Currently, MPI parallelization is implemented
over the number of symmetry operations.

The compiled code can be executed with
mpirun -np $Num of process wannsymm.x $InputFile

where $InputFile is the name of the master input file. If it is not pro-
vided, a default master input file wannsymm.in must be provided. A typical
master input file looks like:

# template input file of wannsymm.x

# anything following ’#’, ’!’ or ’//’ in a line will be regard as comments

# tag names are case insensitive( SeedName and seednAme are equivalent)

#
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DFTcode = VASP

Spinors = T

SeedName =’MnF2’

# Input file for crystal structure

Use_POSCAR = ’POSCAR’

# Projections_in_Format_of_wannier90

# NOTE: Do not support local axis now

begin projections

Mn: s;d

F: p

end projections

#Use_Symmetry = ’symmetries.in’

# Magnetization specification

MAGMOM = 0 0 5 0 0 -5 12*0

#SAXIS = 0 0 1

#symm_magnetic_tolerance = 1E-4

#restart = T

# Kpoint for calculating characters

#kpt = 0 0 0

The master input file must contain DFTcode tag, SeedName tag, Spinors
tag, projections block and crystal structure information. Most of these tags
are self-explanatory, and we shall not restate their meanings here. The
DFTcode tag is related to the type of the real-space Hamiltonian from
Wannier90 code. It can be either ”VASP” for Vienna Abinitio Simula-
tion Package (VASP)[21, 22] users or ”QE” for Quantum ESPRESSO[23]
users. For the Wien2K [24] users, the type of the real-space Hamiltonian
can be specified as the VASP-type. The projections block follows the Wan-
nier90 convention, and the crystal structure information can be provided
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either in the POSCAR-format file specified in the Use POSCAR tag or in the
Structure in Format of POSCAR tag. In addition, a real-space Hamiltonian
following the Wannier90 convention should be provided in seedname hr.dat
file as well.

The execution generates several output files. The most important output
file is seedname symmed hr.dat, which contains the symmetrized Hamilto-
nian. In addition, an output file symmetries.dat contains all the symmetries
found by spglib. The output file wannsymm.out contains additional impor-
tant details of the calculation. Finally, one can track the progress of the
calculations by monitoring the .progress-of-threadXX files:

tail -f .progress-of-thread1

After the symmetrized Hamiltonian is generated, the symmetry of Blöch
states can be analyzed by setting additional two tags in the master input file:

Restart = T

Kpt = 0 0 0

Restart tag tells the code to enter analysis mode and skip the sym-
metrization procedure, whereas Kpt tag specifies the K-point (in unit of re-
ciprocal lattices) to be analyzed. Once the calculation is done, the code
generates an additional output files bnd sym characters. It reads:

kpt: 0.000000000 0.000000000 0.000000000

Related symmetries:

symm 1: Identity

symm 2: 60.0 deg rot around ( 0.2500,-0.2588, 0.9330) with inv

symm 3: 120.0 deg rot around ( 0.2500,-0.2588, 0.9330)

symm 4: 180.0 deg rot around ( 0.2500,-0.2588, 0.9330) with inv

symm 5:-120.0 deg rot around ( 0.2500,-0.2588, 0.9330)

symm 6: -60.0 deg rot around ( 0.2500,-0.2588, 0.9330) with inv

symm 7: 180.0 deg rot around (-0.8700,-0.4830, 0.0991)

symm 8: 180.0 deg rot around (-0.9659, 0.0000, 0.2588) with inv

symm 9: 180.0 deg rot around (-0.8030, 0.4830, 0.3491)

symm 10: 180.0 deg rot around (-0.4250, 0.8365, 0.3459) with inv

symm 11: 180.0 deg rot around ( 0.0670, 0.9659, 0.2500)

symm 12: 180.0 deg rot around ( 0.5410, 0.8365, 0.0871) with inv

bnd 1: 2.000+0.000i, 1.732+0.000i, 1.000+0.000i, -0.000+0.000i,
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1.000-0.000i, 1.732-0.000i, 0.000+0.000i, 0.000+0.000i,

0.000+0.000i, 0.000+0.000i, 0.000+0.000i, 0.000+0.000i,

bnd 2: 2.000+0.000i, 1.732+0.000i, 1.000+0.000i, -0.000+0.000i,

1.000-0.000i, 1.732-0.000i, 0.000+0.000i, 0.000+0.000i,

0.000+0.000i, 0.000+0.000i, 0.000+0.000i, 0.000+0.000i,

... ...

... ...

The first line is the K-point calculated, followed by the little group in-
formation (all the symmetry operations of the little group). After that, the
characters of each state are listed, which can be used with a character table
to figure out the irreducible representation of the state.

3. Examples and verification

To verify the validity of our algorithm and code, we share here several
examples in which our code is applied to symmetrize the Wannier Hamilto-
nian. These examples consists of four different materials, including param-
agnet K2Cr3As3, anti-ferromagnet MnF2, ferromagnet CrO2 and topological
nodal-line semimetal Ce3Pd3Bi4[19].

The real-space Hamiltonian employed in these examples are generated by
the VASP, QE or Wien2K and their corresponding interface codes. In all
these calculations, unless otherwise specified, the spin-orbit coupling (SOC)
effect is considered as a second variation to the full Hamiltonian. All the
initial guess of Wannier orbitals are atomic-like. During the Wannierization,
we completely turn off the minimization of Wannier spreading, because the
minimization procedure has no symmetry constraint, and may severely alter
the symmetry (or the angular dependence of the orbitals). This procedure is
conceptually the same as the maximally projected Wannier function proposed
by Anisimov et al. [25].

3.1. Paramagnet K2Cr3As3
K2Cr3As3 received much attention and intensive study in recent years, due

to its possible unconventional superconductivity and nontrivial topological
property [16, 26, 27]. Experimentally and theoretically, it was proposed to
be paramagnetic at normal ground state. Structurally, it has quasi-one-
dimensional structure with the space group P 6̄m2 (No. 187), which contains
12 symmetry operations.
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The Wannier Hamiltonian is generated using 96 states containing Cr-3d
and As-4p orbitals in the presence of SOC. Due to the crystal symmetry,
there are 12 symmetrically equivalent k-paths for band structure. Using the
real-space Wannier Hamiltonian, we calculate the band structure of all the
equivalent k-paths and illustrate them in a single plot [Fig. 3 (a)]. In the
ideal case, the band structures from these equivalent high symmetry k-paths
should be exactly the same. However, the Wannierization procedure has no
symmetry constraint and the numerical errors are therefore inevitable. The
inset of Fig. 3 (a) shows a zoomed-in part of band structure along K-Γ, illus-
trating the poor symmetry of the Hamiltonian without symmetrization. The
energy differences are the order of ∼ 3×10−4 eV, which is already larger than
commonly employed symmetry criterion for double precision calculations (in
most cases no larger than 10−6 eV). With the symmetrized real-space Hamil-
tonian, we also calculated band structures along all 12 equivalent k-paths,
which is illustrated in Fig. 3 (b). Overall, the band structure generated using
the symmetrized Hamiltonian resembles the one from original Hamiltonian,
and the DFT band structure as well. In addition, the violated symmetry
during the wannierization is restored by the symmetrization code, as shown
in the inset of Fig. 3 (b). Numerically, the energy differences between the 12
equivalent k-paths reach the order of 10−14 eV, which is close to the limit of
double precision float.

Using our code, we have also calculated the symmetry characters for the
10 states near the Fermi level (from -0.07 eV to 0.10 eV) at Γ point. With
the character table given in Ref. [3], we have also determined the irreducible
representation for these states. The results are (1-2) Γ9; (3-4) Γ8; (5-6) Γ7; (7-
8) Γ9 and (9-10) Γ8, the numbers inside the brakets are band indices labeled
in the order of increasing band energies, and the two indices within the same
brakets are degenerate states. These results are the same as those calculated
by Quantum ESPRESSO[23]. The eigenvalues of symmetry operators (i.e.
the parity at the time-reversal invariant momenta, the mirror eigenvalue and
the eigenvalue for rotation symmetry) as reported in our previous studies
[16, 17, 18] can also be obtained with this code.

We want to take a minor detour and discuss about the differences be-
tween our method and the symmetry adapted Wannier function method[15].
Unlike our method, the symmetry adapted Wannier function method em-
ploys the symmetry constraint during the wannierization and minimization
procedures. Conceptually, it may be more appealing than postprocess pro-
cedures like our method. In practice, however, for some complex systems,
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the Blöch state may involve too many higher order angular momentum con-
tributions, and the symmetry adapted Wannier function may fail to cap-
ture the low-energy excitation. Such an example is illustrated in Fig.2 (c-d),
where we compare the interpolated band structures obtained from symmetry-
adapted Wannier functions, symmetrized real-space Hamiltonian and DFT
band structures in the absence of SOC. The real-space Wannier Hamiltonian
for both cases are obtained using 48 atomic-like orbitals including Cr-3d and
As-4p in non-SOC case. We employ the Wannierization procedure with the
same outer energy window and without minimization of Wannier spread-
ing. The symmetrized real-space Hamiltonian using WannSymm correctly
reproduces the low-energy excitations as well as the band symmetry at the Γ
point around the Fermi level, in contrast to the symmetry adapted Wannier
function method.

3.2. Anti-ferromagnet MnF2 and Ferromagnet CrO2

MnF2 is a typical anti-ferromagnetic (AFM) material [29]. Its space group
is P42/mnm (No. 136), which contains 16 symmetry operations. We show
the crystal structure as well as the magnetic pattern in Fig. 4 (a-b). The orig-
inal real-space Wannier Hamiltonian H in

MnF2
is constructed using 48 Wannier

states, including the Mn-4s, Mn-3d and F-2p atomic orbitals.
In the presence of SOC, we show in Fig. 5 (a) the original DFT band

structure as well as the band structure reconstructed using Hnomag
MnF2

, which
is derived by symmetrizing H in

MnF2
without considering the long-range AFM

order. With H in
MnF2

, we can calculate the Zeeman splittings for F-2p and the
exchange splittings for Mn-d. And the Zeeman splittings for F-2px(y) and
F-2pz are 0.024 and 0.160 eV, respectively. The former two are equivalent
because the magnetic moment is assumed to be parallel to c. And the ex-
change splittings for Mn-dz2 , Mn-dx2−y2, Mn-dzx(y), Mn-dxy are 4.401, 4.486,
4.397 and 4.392 eV, respectively. Again, dzx and dzy are equivalent due to
crystal symmetry. The ligand states between [-8, -3] eV are mostly con-
tributed by F-2p orbitals, where only small Zeeman splitting (which is only
3% as large as the exchange splitting for Mn-d) is present, and are therefore
less affected by the ignorance of magnetic order. The Mn-3d states between
[-2, 4] eV, however, are apparently inconsistent with the original DFT band
structure as the exchange-splitting is (incorrectly) suppressed to 0 eV from
∼ 4.39 eV if the global time-reversal symmetry is also considered during
the symmetrization process. We then derive the correct magnetic group us-
ing the procedure described above, the resulting magnetic group contains

13
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Figure 2: (a) Crystal structure of K2Cr3As3 created with VESTA 3 package [28]. (b)
High-symmetry k-path selected. (c) DFT band structure of K2Cr3As3 (solid red line) and
the Wannier interpolated band structure derived from the symmetry-adapted Wannier
functions (dotted blue line). (d) DFT band structure of K2Cr3As3 (solid red line) and
the band structure reconstructed from the WannSymm symmetrized Hamiltonian (dotted
blue line). SOC is not considered in the calculations of (c-d).
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Figure 3: Band structures of K2Cr3As3 calculated using (a) the original Hamiltonian and
(b) the WannSymm symmetrized Hamiltonian. Each colors denotes a band structure
obtained with one of the symmetrically equivalent high symmetry k-paths. Inset of (a)
and (b) are zoomed-in chart showing the details of the combined band structure.

16 symmetry operations, including 1 four-fold rotation symmetry, 4 two-fold
rotation symmetry and an inversion symmetry. Using the correct magnetic
group, we symmetrize H in

MnF2
to obtain the real-space Hamiltonian Hmag

MnF2
.

Fig. 5 (b) shows the comparison between the original DFT band structure
and the band structure reconstructed using Hmag

MnF2
. The good comparison

manifests the validity of our method.
We illustrate the ferromagnetic (FM) case using CrO2. CrO2 is a typical

FM material[30], it shares the same space group P42/mnm (No. 136) with
MnF2 and the crystal structure is illustrated in Fig. 4 (b). For simplicity,
we constrain the magnetic moment along z-direction in the presence of SOC.
Please be advised that the moment direction also affects the determination
of magnetic group. In this case, we obtain the original Wannier real-space
Hamiltonian (H in

CrO2
) using 44 states including Cr-3d and O-2p orbitals. Sim-

ilar to the MnF2 case, we also compare the original DFT band structure and
band structure reconstructed with symmetrized Hamiltonian with/without
considering magnetic order (Fig. 6). In Fig. 6(a), the symmetrization was
done without considering FM order, and thus the large exchange splitting (∼
2 eV for Cr-d) is missing. In contrast, the exchange-splitting is preserved,
and the correct band structure is reproduced in Fig. 6(b) once the FM order
is taken into consideration.
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Figure 4: (a) Crystal structure of MnF2 and CrO2. (b) Lattice of Mn in MnF2, the arrows
show the orientation of magnetic moments on each Mn2+. The structures are created with
VESTA 3 package [28]. (c) Illustration of high symmetry k-path of band structure plotting
for MnF2 or CrO2.
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Figure 5: DFT band structure of MnF2 (solid red line) and the band structure recon-
structed from the symmetrized Hamiltonian (dotted blue line). (a) AFM order is not
considered in the symmetrization procedure. (b) AFM order is considered in the sym-
metrization procedure.
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Figure 6: DFT band structure of CrO2 (solid red line) and band structure reconstructed
from the symmetrized Hamiltonian (dotted blue line). (a) FM order is not considered in the
symmetrization procedure. (b) FM order is considered in the symmetrization procedure.

3.3. Topological nodal-line semimetal Ce3Pd3Bi4

Ce3Pd3Bi4 was recently identified as a topological Kondo nodal-line semimetal[19].
It has a body-centered cubic structure with space group I 4̄3d (No. 220). Its
primitive unit cell, as shown in Fig. 7 (a), contains 24 symmetries, including
6 gliding mirror symmetries.

The real-space Wannier Hamiltonian (H in
Ce343) is obtained using 108 states

including Pd-4d and Bi-3p orbitals. We then employ the WannierTools
code[14] to find the nodal structures between the band 4 and band 5 (band
indices follow the Supplemental Material of [19]). The resulting nodal lines
and nodal points are shown in Fig. 7 (b). Since the symmetry of H in

Ce343 is
poor, it is almost impossible to correctly identify the nodal structures. How-
ever, after the symmetrization procedure, the result improves drastically.
The resulting nodal structure using the symmetrized real-space Hamiltonian
(Hsym

Ce343) is shown in Fig. 7 (c), illustrating the correct nodal rings around the
Fermi level. Such a significant change brought by the symmetrization proce-
dure suggests that the topological properties are sensitive to the Hamiltonian
symmetry, and thus a Hamiltonian with correct symmetry is crucial to the
topological classification.

4. Conclusion

WannSymm is a user friendly, fast, MPI-parallelized open source C-based
code for symmetry analysis based on real-space Hamiltonian constructed us-
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(a) (b) (c)

Figure 7: (a) Primitive unit cell of Ce3Pd3Bi4 plot with VESTA 3 package [28]. (b-
c) The first Brillouin zone showing the nodal points (blue points) and nodal lines (blue
lines) of Ce3Pd3Bi4 calculated with (b) the original Hamiltonian and (c) the WannSymm
symmetrized Hamiltonian.

ing atomic-like orbitals. We implement not only for the nonmagnetic cases,
but also for the magnetic cases without and with SOC. We demonstrate the
validity of our method by using typical materials, e.g. K2Cr3As3, MnF2,
CrO2, and Ce3Pd3Bi4. After symmetrization, the crystal symmetries ruined
during the Wannierise procedure are restored, and thus the improved nu-
merical results can be obtained. Eigenvalues and characters of an arbitrary
symmetry operator (symmorphic or nonsymmorphic) can also be obtained
using this code. Since our code directly handles real-space Hamiltonian out-
put from Wannier90 code, it can easily be used in combination with any code
that has an interface to Wannier90, including VASP, Quantum ESPRESSO
and Wien2K. We emphasize here that our current method can be applied
to linear combinations of atomic orbitals (e.g., sp2-like, sp3-like orbitals, etc)
with small modifications, but cannot be applied to general Wannier orbitals
with arbitrary angular dependence (e.g. summation of Blöch waves). Finally,
the method does not depend on the details of Wannier orbital generation
except for atomic-like orbital assumption, and therefore can be applied to
any real-space Hamiltonian as long as it is defined on a basis set which has
atomic-like angular dependence.
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M. Gibertini, D. Gresch, C. Johnson, T. Koretsune, J. Ibañez-Azpiroz,
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