
TLBfind: a Thermal Lattice Boltzmann code for

concentrated emulsions with FINite-size Droplets

Francesca Pelusia, Matteo Lullib,∗, Mauro Sbragagliac, Massimo Bernaschid

aHelmholtz Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum
Jülich, 91058 Erlangen, Germany

bDepartment of Mechanics and Aerospace Engineering, Southern University of Science
and Technology, Shenzhen, 518055 Guangdong, China

cDepartment of Physics & INFN, University of Rome “Tor Vergata”, 00133 Rome, Italy
dIstituto per le Applicazioni del Calcolo (IAC) - CNR, 00185 Rome, Italy

Abstract

In this paper, we present TLBfind, a GPU code for simulating the hydrody-
namics of droplets along with a dynamic temperature field. TLBfind hinges
on a two-dimensional multi-component lattice Boltzmann (LB) model simu-
lating a concentrated emulsion with finite-size droplets evolving in a thermal
convective state, just above the transition from conduction to convection.
The droplet concentration of the emulsion system is tunable and at the core
of the code lies the possibility to measure a large number of physical observ-
ables characterising the flow and droplets. Furthermore, TLBfind includes a
parallel implementation on GPU of the Delaunay triangulation useful for the
detection of droplets’ plastic rearrangements, and several types of boundary
conditions, supporting simulations of channels with structured rough walls.

Keywords: lattice Boltzmann; soft suspensions; finite-size droplets; thermal
convection; rough channels.

PROGRAM SUMMARY
Program Title: TLBfind

CPC Library link to program files: (to be added by Technical Editor)

Developer’s repository link: https://github.com/FrancescaPelusi/TLBfind

Code Ocean capsule: (to be added by Technical Editor)

∗Corresponding author.
E-mail address: lulli@sustech.edu.cn

Preprint submitted to Computer Physics Communications December 1, 2021

ar
X

iv
:2

10
9.

12
56

5v
2

 [
ph

ys
ic

s.
fl

u-
dy

n]
 2

9
N

ov
 2

02
1

https://github.com/FrancescaPelusi/TLBfind

Licensing provisions: MIT

Programming language: CUDA-C

Nature of problem: Hydrodynamics of concentrated emulsions with finite-size

droplets in a thermal convective state.

Solution method: Single relaxation time Lattice Boltzmann (LB) method to solve

Navier-Stokes equations for fluids, coupled with the temperature field dynamics .

The output describes the dynamics of finite-size droplets of concentrated emulsions

in presence of a temperature field. The temperature field obeys the advection-

diffusion equation.

Additional comments including restrictions and unusual features: Plastic rear-

rangements of droplets are detected via the parallel implementation of the De-

launay triangulation, and boundary conditions are tunable.

1. Introduction

Understanding the hydrodynamic behaviour of concentrated emulsions –
and in general soft particles suspensions – represents an intriguing subject of
study in the context of fluid dynamics, with a wide range of applications, from
everyday life situations to modern technologies [1, 2, 3, 4, 5, 6, 7]. Although
many questions have been answered in the last decades [8, 9, 10, 11, 12],
many other aspects still deserve further scrutiny, such as the precise under-
standing of the heat transfer properties in these materials when evolving in a
thermal convective state. This may be relevant in a variety of situations in-
cluding the convective motion of magma [13] composed of a melt with crystal
suspensions where convection may be limited to the hotter (less crystalline)
portions, the oil recovery industrial processes [14] aiming at using emulsions
as packer fluids in order to significantly reduce the heat transfer rate during
extraction, the production of slurry ice [15], i.e., ice crystals distributed in
water or an aqueous solution typically used to replace ice and salt for food
cooling. The need for numerical simulations allowing to study the convective
heat transfer in model emulsions motivated the present work.
Emulsions are structurally characterised by a collection of “soft domains”
(i.e., droplets) of a dispersed phase in another continuous phase. The emul-
sion droplets concentration influences the rheological properties of the sys-
tem: dilute emulsions behave as Newtonian fluids, with the viscosity being
constant regardless of the applied shear rate; more concentrated emulsions

2

display a non-Newtonian mechanical response and exhibit a viscosity that
depends non-linearly on the applied shear rate [16]. Furthermore, there ex-
ists a critical concentration above which emulsions can be categorised as
yield-stress fluids [10, 17, 18], wherein the system shows a stress threshold
(the so-called yield stress) below which no flow is observed and above which
the emulsion flows displaying shear-thinning. Emulsions have been charac-
terised in the literature via many experimental studies (see [19, 20, 21] for
reviews). However, experimental insights may be arduous to capture at scales
comparable with the droplet size. This issue warrants the use of numerical
simulations to investigate the response of emulsions and, more generally, soft
particle suspensions. For the latter, different numerical methods have been
exploited, such as the boundary integral method [22], the discrete element
method [23, 24], molecular dynamics simulations [25, 26, 27], and lattice
Boltzmann (LB) models [28, 29, 30] just to cite some examples. The focus of
this paper is on LB models, which have become very popular and attractive
in the last two decades, due to their simplicity, efficiency and applicability
in different contexts [31, 32]. Several open-access LB implementations are
available, e.g., Ludwig [33], LB3D [34], LBsoft [35], Palabos [36], and LB-
foam [37]. However, an LB software that simulates the dynamics of finite-size
droplets stabilised against coalescence and subjected to thermal convection is
not available to the best of our knowledge in an open-access version. We aim
at filling this gap by presenting TLBfind, a code based on a two-dimensional
LB scheme devised to simulate emulsions with finite-size droplets where the
temperature field dynamics is coupled with the emulsion momentum equa-
tion. We consider an emulsion confined between two parallel walls, heated
from below and cooled from above, i.e., in the paradigmatic set-up of the
Rayleigh-Bénard convection [38, 39, 40, 41]. Studies on the thermal response
of this kind of emulsions have been presented in a recent work [42]. TLBfind
was tested to be optimal to study the heat transfer properties in the regime
where the system sustains a convective state, just above the transition from
conduction to convection. In TLBfind it is possible to tune the droplet con-
centration, allowing to systematically transition from diluted to concentrated
emulsions. Further flexibility of TLBfind lies in a variety of different bound-
ary conditions that can be explored, and the high degree of parallelisation
obtained on GPU using the CUDA-C language entails a huge efficiency, by
saving computational costs and time.
The paper is organised as follows: in Section 2 we briefly explain the LB
scheme implemented in TLBfind. In Section 3 we give a test case of the

3

Rayleigh-Bénard convection in concentrated emulsion when the walls of the
channel are flat; a test case with rough walls will be analysed in Section 4,
then we summarise the potentialities of TLBfind in Section 5.

2. Method

We leverage an LB method [31, 32] for non-ideal multi-component systems
that allows the mesoscopic simulation of a collection of finite-size droplets
evolving in a thermal convective state. The isothermal counterpart of the
model has already been presented and validated in many publications [43, 44,
45, 28, 46, 47, 48]. TLBfind considers the advection-diffusion dynamics of a
scalar temperature together with the multi-component model. We summarise
the main essential features of the methodology, by treating separately the
isothermal multi-component fluid and the temperature dynamics.

2.1. Multi-component lattice Boltzmann

We consider a two-dimensional system consisting of two components (la-
belled by ` = 1, 2). The LB dynamics considers mesoscopic probability
density functions f`,i(x, t), representing the fluid particle (mass) density of
the component ` at the space-time location (x, t) and velocity ci, where the
position x takes on the integer values of the nodes coordinates in a squared
lattice. The f`,i(x, t)’s evolve via the discrete lattice Boltzmann equations:

f`,i(x + ci, t+ 1)− f`,i(x, t) = Ω`,i(x, t), (1)

where both the lattice spacing ∆x and time step ∆t are considered equal to
the unity. The r.h.s. of Eq. (1) encodes the physical effects of collisions, i.e.,
to redistribute particles among the populations f`,i(x, t) at each node. Colli-
sions are implemented via the Bhatnagar–Gross–Krook (BGK) operator [49],
approximating the relaxation of f`,i(x, t) towards the local equilibrium dis-

tribution f
(eq)
`,i with a relaxation time τ :

Ω`,i(x, t) = −1

τ

[
f`,i(x, t)− f (eq)

`,i (ρ`(x, t),u`(x, t))
]
. (2)

The local equilibrium f
(eq)
`,i is the Maxwellian distribution, given in the form

f
(eq)
`,i (ρ`,u`) = wiρ`

[
1 +

u`,kcik
c2
s

+
u`,ku`,p(cikcip − c2

sδkp)

2c4
s

]
, (3)

4

where the wi are the lattice weights, c2
s =

∑
iwi|ci|2/d = 1/3 is the squared

sound velocity (with d = 2 the space dimension), and repeated indices are
summed upon. The index i runs on a finite number of values depending on
the LB model used. In TLBfind, we leverage the widely used D2Q9 scheme
(see Fig. 1(a), orange arrows), with 9 lattice velocities (i.e., i = 0, . . . , 8) in a
two-dimensional domain. The associated weights wi are reported in Fig. 1(b).
After the collision, the l.h.s. of Eq. (1) performs a streaming of each fluid
particle (mass) density on the lattice following the set of lattice velocities ci.
Information on coarse-grained fields of densities of each component (ρ`) and
emulsion velocity (u) can be extracted by by taking moments in the discrete
velocity space as

ρ`(x, t) =
∑
i

f`,i(x, t), (4)

u(x, t) =
1

ρ

∑
`,i

cif`,i(x, t), (5)

where we used the total density defined as ρ =
∑

` ρ`.
The effects of interaction forces, Fint

` (x, t), and external volume forces, Fext
` (x, t)

(the latter will be discussed in Section 2.3), are encompassed in a source term
F`(x, t) = Fint

` (x, t) + Fext
` (x, t) that enters in Eq. (2) as a shift in the hydro-

dynamic velocity (5):

u`(x, t) = u(x, t) +
τF`(x, t)

ρ`
. (6)

The interaction forces Fint
` (x, t) hinge on the multi-range Shan-Chen method-

ologies [50, 51, 52, 53] and include three different contributions for the case
presented in this paper [43, 54]: Fx

` (x, t), Fa
` (x, t), and Fr

`(x, t). The term
Fx

` (x, t) represents the interactions between fluid elements of the two differ-
ent species; it is introduced with the aim of creating phase segregation and
the formation of stable diffuse interfaces, i.e., interfaces characterised by a
finite width. In formulae, it reads:

Fx
` (x, t) = −G12ψ`(x, t)

∑
`′,`′ 6=`

∑
i∈NN

wiψ`′(x + ci, t)ci, (7)

where ψ`(x, t) = ψ(ρ`(x, t)) is the pseudo-potential function of the Shan-
Chen formulation [50], and G12 is a positive coupling constant dictating the

5

(a)

wi = w(ci) pi = p(ci) |ci| ci i
4/9 247/420 0 (0,0) 0
1/9 4/63 1 (±1, 0);(0,±1) 1-4
1/36 4/135 2 (±1,±1) 5-8

0 1/180 4 (±2, 0) ; (0,±2) 9-12
0 2/945 5 (±1,±2); (±2;±1) 13-20
0 1/15120 8 (±2,±2) 21-24

(b)

Figure 1: Panel (a): a scheme of the two neighbours sets of discrete velocities used for the
evaluation of the interaction forces: a “nearest-neighbours” (NN) and a “next-to-nearest
neighbours” (NNN) zone. The NN zone corresponds to the set of velocities ci of the D2Q9
LB method used, with index i = 0...8. NNN are links with index i = 9...24. Concerning the
interactions, each fluid component self-interacts via competing interactions, i.e., attractive
forces involving the NN (Eq. (10)), and repulsive ones (Eq. (11)) acting on both zones. On
the other hand, the fluid-fluid cohesion interactions Eq. (7) are given by summing on sites
in the NN zone. Panel (b) shows the list of weights appearing in Eqs. (7), (10) and (11).

strength of these interactions 1. In the specific case, we use the simplest

1G12 also controls the width of the interface.

6

pseudo-potential, i.e.,

ψ`(x, t) =
ρ`
ρ0

(8)

where ρ0 is a reference density. The set NN refers to the set of “nearest
neighbours” nodes of x on the lattice, which coincide with the set of the
D2Q9 directions used for the streaming of the LB populations (see Fig. 1(a)).
The effect of Fx

` (x, t) is a change in the bulk pressure, which now features
ideal contributions summed to the non-ideal ones:

Pb(ρ1, ρ2) = c2
sρ1 + c2

sρ2︸ ︷︷ ︸
ideal

+ c2
sG12ρ1ρ2︸ ︷︷ ︸
non-ideal

. (9)

The two other contributions to Fint
` , i.e., Fa

` (x, t) and Fr
`(x, t), represent

short-range attractive (a) and long-range repulsive (r) competing interac-
tions, respectively [43, 46]. They are introduced to simulate the action of a
positive disjoining pressure at the interface that inhibits the coalescence of
droplets [44] (see Fig. 3). In formulae, they read [55]:

Fa
` (x, t) =− Ga``ψ`(x, t)

∑
i∈NN

wiψ`(x + ci, t)ci (10)

Fr
`(x, t) =− Gr``ψ`(x, t)

[∑
i∈NN

piψ`(x + ci, t)ci +
∑

i∈NNN

piψ`(x + ci, t)ci

]
,

(11)

with Ga`` < 0 and Gr`` > 0. In Eqs. (10)-(11), the pseudo-potential is used in
the original Shan-Chen form [50]:

ψ`(x, t) = ρ0 [1− exp(−ρ`(x, t)/ρ0)] . (12)

The set of nodes NNN in (11) refers to “next-to-nearest neighbours”, i.e., an
additional layer of 16 lattice velocities beyond the D2Q9 links (see Fig. 1(a),
light-blue arrows). The values of the weights pi are reported in Fig. 1(b).
By summing over the components `, the total force F(x, t) =

∑
` F` acting

on the momentum density (Eq. (6)) is obtained.
The reference hydrodynamic equations at large scales are the diffuse-interface
Navier-Stokes equations:

ρ
(
∂t + u(H)

k ∂k
)
u(H)

i = −∂jPij + η0∂j
(
∂iu

(H)

j + ∂ju
(H)

i

)
+ f ext

i , (13)

7

where ρu(H) = ρu + F/2 is the hydrodynamical momentum density, and
i = x, y. Notice that the hydrodynamic velocity u(H) differs from Eq. (5) be-
cause of forcing renormalisations. The bare viscosity η0 in the hydrodynamic
equations is related to the relaxation time τ of the LB equation (1) as:

η0 = ρc2
s

(
τ − 1

2

)
, (14)

hence it can be tuned by changing the τ in the LB dynamics. The vis-
cosity η0 represents the “bare” viscosity, thus the bare viscous stress tensor
η0

(
∂iu

(H)

j + ∂ju
(H)

i

)
is supplemented by the pressure tensor Pij that depends

on the density heterogeneities [28]. These two contributions of stress sum up
to give the total stress that is used in the rheological characterisations of the
emulsions (see Section 3.2.2). Finally, the term f ext

i in Eq. (13) appears on
behalf of the density of external forces (the buoyancy force density will be
discussed in Section 2.3).

2.2. Boundary conditions and rough walls

TLBfind allows for the exploration of both fully periodic and confined
systems. Rough-wall-flags – one associated with each wall – are introduced
with the aim of switching on/off the presence of roughness at the walls (these
features will be discussed in detail in Sections 3 and 4). If the rough-wall-flags
are switched off, we are in the presence of flat walls and the code implements
a modified mass-conserving bounce-back rule [32, 31], that is a bounce-back
dynamics designed to assign the desired input value to the hydrodynamical
velocity at the walls

u(H)

x (xb, t) = uwex (15)

where xb are the boundary nodes. This set-up in TLBfind is used when
performing rheological experiments (see Section 3.2.2) in a Couette chan-
nel, where each wall moves with its own velocity uwex along the stream-flow
direction x. In the presence of structured rough walls, rough-wall-flags are
switched on and TLBfind operates with simple half-way bounce-back bound-
ary conditions, with uwex = 0.

2.2.1. Wetting conditions

In the presence of walls, both flat and rough, TLBfind allows handling
the fluid-wall interactions, i.e., the wetting conditions. The implementation

8

is very simple, regarding just the definition of density values of the two com-
ponents at the wall: the code sets these densities (and the pseudo-potential
accordingly) in the ghost nodes along the y direction (y = 0, ny + 1) 2 and
in the wall nodes as equal to the values ρw, max and ρw, min, respectively. More
details on how to perform simulations with different wetting conditions are
provided in Section 3.

2.3. Thermal lattice Boltzmann

An auxiliary probability distribution function gi(x, t) is introduced with
the purpose of simulating the dynamics of a scalar temperature field T (x, t).
Similarly to the fluid populations f`,i, gi(x, t) are governed by a discrete
lattice Boltzmann equation [56, 32, 31]

gi(x + ci, t+ 1)− gi(x, t) = − 1

τg

[
gi(x, t)− g(eq)

i (T (x, t),u(H)(x, t))
]
, (16)

and the temperature field is obtained by taking the moment of order zero of
the distribution functions:

T (x, t) =
∑
i

gi(x, t). (17)

The local equilibrium g
(eq)
i for the temperature field takes the form 3

g
(eq)
i (T,u(H)) = wiT

[
1 +

u(H)

k cik
c2
s

+
u(H)

k u(H)
p (cikcip − c2

sδkp)

2c4
s

]
. (18)

The long-wavelength limit of (16) approximates the advection-diffusion equa-
tion for the temperature field

∂tT + u(H)

k ∂kT = κ∂kkT, (19)

where the thermal diffusivity κ is related to the thermal relaxation time τg
as follows:

κ = c2
s

(
τg −

1

2

)
. (20)

2The ghost nodes are introduced along both x and y directions as part of the lattice to
facilitate the collision and streaming step close to the boundaries with the aim to supply
the boundary nodes with otherwise missing populations.

3The temperature field T (x, t) has to be interpreted as the relative temperature with
respect to some reference value.

9

(a) (b)

Figure 2: Domains topology analysis of a two-dimensional concentrated emulsion. Dark-
yellow regions refer to emulsion droplets and blue regions are occupied by the continuous
phase/component. Panel (a): construction of Delaunay triangulation (black lines) and
Voronoi tassellation (orange lines) based on the centres-of-mass positions (black dots).
Panel (b): a sketch of detection of a T1 plastic rearrangement. The old (dashed red) link
between droplets a and b goes to zero and the new (blue continuous) link is created.

The buoyancy term in Eq. (13) is defined as:

f
(ext)
i = ραgTδiy, (21)

with α being the thermal expansion coefficient, g the gravity acceleration,
and ey the unit vector in the wall-to-wall direction. With the aim to obtain
the buoyancy force in (21), we include in Eq. (6) an external volume force
that reads

Fext

` (x, t) = ρ`(x, t)α g T (x, t) ey. (22)

2.4. Delaunay triangulation

TLBfind performs a run-time analysis of Delaunay triangulation [57] on
the centres of mass of the droplets. The main reason for executing the De-
launay triangulation on GPU is the performance improvement we obtain. In
a very preliminary version of TLBfind we resorted to an existing CPU library
to carry out the triangulation. However, that choice had two disadvantages:
i) we had to copy back data from the GPU to CPU and it is well know that
the bandwidth between CPU and GPU is limited so that the copy is slow; ii)
the CPU library we used and other open-source alternatives we found were
implemented without considering high-performance requirements. So we de-
cided to implement our own, high-performance parallel implementation. The

10

Delaunay triangulation can be seen as an adjacency matrix of the droplets,
storing information about the topology of the droplets arrangement. In par-
ticular, the triangulation is obtained in such a way that the circumference
circumscribed at any of the triangles does not contain any other point of the
set. A reference depiction is shown in Fig. 2. The algorithm implemented in
TLBfind was described in detail in [58], and here we report the main ingre-
dients. The first analysis step consists in identifying the bulk of the droplets
as those regions of the lattice where the density field of the first component
is larger than a certain threshold Bth. Then, these sets of lattice points
are identified by means of a GPU implementation of a clustering algorithm
adapted from those used in accelerated Ising model simulations at the criti-
cal point [59, 60]. We remark that, while in the case of the Ising model the
construction of the cluster is probabilistic in nature, in our present case we
use the algorithm in a geometric way in order to identify all the nodes related
to the bulk of a droplet. This allows us assigning unique labels to all droplets
and compute their centre of mass (black dots in Fig. 2(a)). The labels asso-
ciated with each droplet are stored and employed to define a digital Voronoi
tessellation [61] where each point of the lattice is “coloured” by the label of
the nearest centre of mass (orange lines). In the continuum construction, a
Voronoi tessellation is dual to a Delaunay triangulation, thus encoding the
same information but in a metric language. The vertices at which adjacent
digital Voronoi cells converge are used to identify the Delaunay triangulation
(black links in Fig. 2(a)). Subsequent Delaunay triangulations are compared
in order to detect T1 plastic rearrangements of the droplets, which have the
effect of stably changing the topology of the droplets arrangement [58]. These
topological events only involve 4 droplets, which can be thought of as being
at the four vertices of a quadrilateral labelled a, b, c and d, and they are as-
sociated with a ”flip” of the diagonal link of the triangulation. For example,
in Fig. 2(b), the diagonal link between a and b (dashed red line), is replaced
by the link between c and d (solid blue line). From the Voronoi tesselation
perspective, at the degenerate configuration, i.e., when the four droplets all
lie on a common circle, the Voronoi edge orthogonal to the Delaunay side
shrinks to zero. This is an equivalent way, though less robust, to implement
the T1 event detection. Avoiding dealing with such a metric structure makes
the detection of plastic events via Delaunay triangulation more robust and
easier to implement.

11

2.5. GPU Implementation
One of the crucial requirements to achieve a good performance on the

NVIDIA GPU is that global memory accesses (both read and write) should
be coalesced. This means that memory access needs to be aligned and coor-
dinated within a group of threads. The basic rule is that the thread with id
n ∈ {0, . . . , N − 1} should access element n at byte address
StartingAddress + sizeof(type) · n where sizeof(type) is equal to either 4,
8 or 16 and StartingAddress is a multiple of 16 · sizeof(type).

With this aim, the fluid populations of a lattice site are not contiguous
in the GPU global memory so that they are ordered following the structure-
of-arrays data layout. All data not modified during the simulation, such as
coefficients, are pre-computed during the initialisation phase and stored in
the GPU constant memory, which has performances analogous to those of
registers if, as in our case, all the threads running on the same multiprocessor
access the same constant memory locations.

After the initialisation phase, all the computations required for the LB
update are performed on the GPU. A single step of the simulation is imple-
mented through a sequence of CUDA kernels guaranteeing the correct se-
quential order of the sub-steps. Each CUDA kernel implements a sub-step of
the update procedure (e.g., collision, streaming) by splitting the work among
a configurable number of threads and blocks, which may be fine-tuned to
achieve optimal performance on different CUDA devices. Each thread works
sequentially on a group of lattice nodes assigned to it. For each lattice node,
the thread copies data from the global memory into registers, performs the
computation and writes the results back in the global memory. In order to
manage the parallelisation of the streaming phase without causing conflicts
among multiple threads, fluid populations are stored in the global memory
using a “double buffer” policy. At the end of the simulation, the final re-
sults are copied back to the CPU main memory in order to be saved on a
secondary storage device. Through the input file it is possible to require also
the saving of partial results of the simulation at regular intervals (e.g., for
check-pointing purposes).

Most of the global memory read-and-write operations are coalesced, with
the exception of a few reads relative to the computation of the interaction
forces and a few writes relative to the streaming phase. In the first case, the
calculation of the force for a lattice node depends on values related to other
lattice nodes, which must be loaded from global memory even if alignment
requirements for coalesced accesses are not satisfied. In the second case,

12

target locations of the streaming phase are defined by the lattice topology,
and in general, they don’t comply with the memory alignment requirements.

For the function that computes the value of the hydrodynamic variables
all memory operations are “local”, meaning that only the fluid populations
of a lattice site are required and that the resulting hydrodynamic variables
belong to the same lattice site. As a consequence, there is not a single
uncoalesced memory access.

Finally, as already mentioned, the fluid populations once uploaded on the
GPU memory do not need to be copied back to the main memory unless a
dump of the whole configuration is required. However, hydrodynamic vari-
ables or other observables derived from them might be written back to the
main memory much more frequently since they represent the main physi-
cal output of the simulation. Although the number of hydrodynamic vari-
ables per lattice site is small compared to the number of fluid populations
(there are 4 hydrodynamic variables vs. 9 fluid populations), so that the
run-time overhead of the copy from the GPU-memory to the CPU-memory
is small compared to the initialisation overhead, better performance may be
obtained by reducing the number of these copy-back operations. Although
the main goal of the present paper is to make TLBfind available and explain
how to use it, we report some basic data about its computational perfor-
mance. It is common to measure the performance of an LB code by using
the LUPS (Lattice Updates per Second) metrics. TLBfind has, at least, two
sets of populations for each fluid node and this means that both the amount
of data to be moved from/to GPU global memory and the number of op-
erations should be (at last) doubled. The number of MLUPS (Million of
LUPS) that TLBfind is able to perform is ∼ 525 on a Titan-V a GPU fea-
turing 5120 CUDA cores (Volta architecture). This figure is perfectly in line
with the performance (515 MLUPS) of sailfish [62] an LB open-source code
(https://github.com/sailfish-team/sailfish.git) on the same hardware. By
using Nsight, a user-friendly Nvidia visual profiler, we collected several addi-
tional information about the performance of TLBfind. In Table 1 we report
two of them: the warp execution efficiency that shows a very high degree
of utilisation and the throughput of the load global memory operations for
three representatives kernels. For the Titan V the peak memory bandwidth
is ∼ 650 GB/s, and TLBfind achieves > 80% of that value. It is well known
that LB codes are memory bandwidth bound meaning that the number of
floating-point operations they execute is limited with respect to the amount
of data that need to be loaded and stored from/to memory. This is true for

13

https://github.com/sailfish-team/sailfish.git

both CPU and GPU codes and TLBfind is not an exception. As mentioned
above, although TLBfind has, potentially, up to three sets of populations
per node, the ratio between the number of arithmetic operations required by
the execution of each LB time step and the amount of data moved from/to
memory is fundamentally the same of any other “simple” 2D LB code. As to
the Delaunay triangulation, we did not carry out specific performance mea-
surements. However, we noticed that the Delaunay procedure takes a time
that is, roughly, equivalent to two LB time steps. Further details about the
GPU implementation can be found in [58] and [63].

CUDA performance metrics
kernel metrics average value
AVERAGE 1 Warp Execution Efficiency 99.74%

AVERAGE 1 Global Load Throughput 548 GB/s

moveplusforcingconstructWW Warp Execution Efficiency 95.6% GB/s

moveplusforcingconstructWW Global Load Throughput 524 GB/s

forcingconstructWW Warp Execution Efficiency 99.85%GB/s

forcingconstructWW Global Load Throughput 538 GB/s

Table 1: Some CUDA performance metrics obtained by using Nsight.

3. Test case with flat walls

As a first example, we show a simulation of Rayleigh-Bénard convection of a
model emulsion, by explaining in detail which are the parameters involved.
With this aim, hereafter in the text, all words in Computer Modern Type-
writer font are referred to as input parameters, and what will be defined as
Boolean is considered turned off (false = 0) or on (true = 1). The same font
will be used also for output files names. All tunable simulation parameters
are listed in the input file tlbfind.inp.
We remark that, before starting a simulation, TLBfind requires a prepara-
tion step during which the structural properties of the system under study
(e.g., droplet concentration) are defined. It is possible to reproduce all the
results from the examples discussed below by following the instructions con-
tained in README howToPreparation and README howToRun for the
preparation and simulations steps, respectively.

14

3.1. Output files options
In this paragraph, we describe the parameters that can be set in the input file
tlbfind.inp controlling the output files properties, such as dump frequency
and format type. All ASCII files including two-dimentional fields can be
plotted by using the pm3d command of gnuplot. The VTK files can be
read with programs like Paraview [64]. Table A.2 reports typical values of
the output parameters.
Independently from the output options that are set, the program will output
a few files at the beginning of the preparation step, containing the information
about the initial state of the various fields describing the system. These files
are init rho1.dat, init rho2.dat, and init temperature.dat, including the
initial values of the density fields of the two components and the temperature
field, respectively.

First of all we describe the options related to the density and velocity
fields of the two components. The main option is nout density which is an
integer setting the time interval for the ASCII dumps firstdensity.#.dat and
seconddensity.#.dat. The program also writes the files firstdensity.dat and
seconddensity.dat containing the last dumped values and which are over-
written at each dump. If nout density is set to a value ≤ 0 no dump is
performed. The variable write vtk file (Boolean), acts as a primary switch
changing the dumpfile format from ASCII to binary VTK 2.0 files. In order
to assure the VTK dump one needs to toggle the (Boolean) variables write

vtk file rho1 and write vtk file rho2 which will make the program write on
disk firstdensity.#.vtk and seconddensity.#.vtk, respectively, with first-

density.vtk and seconddensity.vtk containing the last dumped configura-
tions. The variable nout velocity sets the time interval for the ASCII dump
number of steps for the vector velocity field, veloconf.#.dat, with the last
configuration dumped in veloconf.dat. If write vtk file is set to 1 the binary
VTK 2.0 files veloconf.#.vtk are also dumped.

The variable nout temperature is an integer setting the time interval
for the ASCII dumps temperature.#.dat, with temperature.dat containing
the last configuration. The variable write vtk file temperature (Boolean),
toggles the dumps in VTK 2.0 binary file temperature.#.vtk.
The variable write energy file (Boolean) is the main switch for writing the
values of the global kinetic energy E = 〈|u|2〉x,y/(nx · ny) that are appended
every nout energy steps to the file timeEnergy.dat. The variable nout

tensor sets the number of steps for dumping the stress tensor ASCII files
Ptot xy.#.dat, with Ptot xy.dat containing the last configuration. The

15

variable nout average is an integer for the number of steps for dumping
the average of the x-component in the x-direction of (i) the velocity field in
u av.#.dat files, and (ii) the stress tensor in Pxy av.#.dat files. The last
configurations are dumped in u av.dat and Pxy av.dat files, respectively.
More details on the structure of the above-mentioned output files can be
found in the README Output file.

Concerning the variables used for dumping the state of the system in order
to allow the simulation restart, noutconfig is an integer setting the dumping
number of steps for binary files conf1 #.in, conf2 #.in, and confG #.in,
containing populations for the first component, second component, and tem-
perature, respectively. Furthermore, the number of successive populations
files is written in a sequence, modulo noutconfigMod, for fail-safe purposes.

Some variables in tlbfind.inp are referred to the detection of plastic
events. The integer ncheckdelaunay sets the number of steps at which
the program checks for T1 plastic events (see Section 2.4). The output
files are written in the sub-directories ./delaunayTriggerDir, collecting the
dumps related to plastic events, and ./delaunayNoTriggerDir, when no
plastic event occurs. Within these folders, the Delaunay binary files de-

launayNowTime#, delaunayPastTime#, and delaunayIsoTriggerTime#

are dumped, containing information about the position of the centre-of-mass
of all droplets, and the links connecting nearest droplets. By inspecting the
functions contained in delaunayCuda.cu, one can find the details about the
structure of those binary files. Furthermore, the trigger for the detection of
plastic events also dumps a few ASCII files in the Delaunay directories that
can be used for a preliminary run-time analysis of the simulation itself. In the
files arisingLinks and arisingLinksBoundary the user can find data of the
triangulation links that are formed after a plastic event. On the other hand,
breakingLinks and breakingLinksBoundary files store data about the links
vanishing after a plastic event is detected. Finally, the time sequence of the
total number of droplets and the total number of links in the Delaunay tri-
angulation are contained in nBubblesOut and nLinksOut, respectively. A
detailed description of these files is contained in the README Output file.

3.2. Preparation

All simulation parameters in tlbfind.inp used in the preparation step are
listed in Table A.3. At this step, no driving force or coupling with the temper-
ature field has to be considered. A step-by-step description of commands to

16

run a preparation-step simulation can be found in the README howToPreparation

file.

3.2.1. Two-component fluid

The two-dimensional system is resolved with a regular grid with size nx

along the stream-flow direction x and ny along the vertical y-direction. As
discussed in Section 2.5, TLBfind is parallelised on GPU threads via the
CUDA toolkit thus, once the simulation domain is fixed, it is extremely im-
portant to declare in the input file Which GPU to use 4, the number of used
threads (nthreads) per block, and the number of thread blocks (nblocks).
Make sure that the product of nthreads with nblocks is equal to the whole
simulation domain nx·ny 5.

Each component comprises bulk regions with initial densities assigned via
the parameters rhoMax and rhoMin. The bulk densities will change during
the simulation to match the values compatible with the interactions chosen.
Thus, it is preferable to choose the values of rhoMax and rhoMin once the
phase-separation diagram is obtained from a dedicated experiment. For an
easier understanding, in Fig. B.8(a) we report the phase-separation diagram,
showing the densities of each component as a function of G12 (for fixed com-
peting interactions). The corresponding density values are given in B.8(b).
More details on the phase-separation experiment are given in Appendix B.
The bare viscosity η0 in Eq. (14) is fixed by the relaxation time tau in the
LB equation (1). Moreover, the strength of the phase segregation interaction
in Eq. (7) can be tuned with G12 and rho0, and the competing interac-
tions in Eqs. (10) and (11) are handled via G11a, G22a, G11r, and G22r 6.
The droplets are created via the balance of phase segregation and competing
interactions and can be initialised in many different ways. In the present
version of TLBfind, we initialise the soft domains in an honeycomb structure
(droplet initialisation = 1), where we establish the total number of droplets
Ndroplets by calibrating the relative number of droplets along x and y 7, the

4It depends on the machine used.
5We remark that in the CUDA framework the size of a block of threads should be

assigned a multiple of 32, which is the size of the workload “unit” called warp, with the
optimal performances that are typically obtained setting the minimum value at 128.

6In the nomenclature of these constants, the numbers are referred to the species (1 and
2) and the a and r indicate the nature of the interaction (attractive or repulsive).

7Ndroplets = number of droplets x· number of droplets y

17

Figure 3: An emulsion is prepared in an initial honeycomb structure (top panel), then
it settles in a structured configuration (bottom panel). This situation is taken as the
initial condition of a convection simulation experiment (see Section 3.3). At the prepa-
ration step, the temperature field is fixed to be linear between the walls, but it does not
influence the fluid flow (alphaG = 0). For details on how to produce these plots see the
README howToPreparation file.

droplet diameter, and the (spacing) between two consecutive droplets (see
Fig. 3, top panel). Then the system settles in a structured configuration,
which will be the starting point of the convection simulation step (see Fig. 3,
bottom panel).
In this test case, we sketch out a system confined between two walls in the y-

18

direction 8 with periodic boundary condition along x as shown in Fig. 3 9.
By considering flat walls, the Boolean rough-wall-flags, roughWallUp and
roughWallDown, must be fixed to zero 10, and the wetting properties have
to be properly calibrated by changing the densities of the two species at wall
with rhoWallMax and rhoWallMin, respectively. A flag.dat file containing
the wall (binary) density field is necessary to perform every simulation: it
is the output file of the buildObstacle program, which in turn reads input
parameters from inputflag.inp. The parameters used for the flat walls case
are listed in Table A.4, and they will be discussed in detail in the next Sec-
tion 11.
The above-listed information is sufficient to start from scratch (Boolean,
true) a simulation of a static fluid for a number of nsteps of simulation
times.

3.2.2. Rheological characterisation

Before performing a simulation of an emulsion under thermal convection,
we need to learn about the system response to an applied external driving:
a shear rheology experiment is of fundamental importance for this purpose.
The rheological characterisation is carried out in a Couette channel [17, 65],
where a shear flow is applied through walls moving along x with opposite
directions, with velocities uWallUp and uWallDown. Fig. 4 shows the flow
curve for an emulsion initialised in Fig. 3: in this experiment, the shear rate
γ̇ can be calculated as

γ̇ =
uWallUp− uWallDown

ny
, (23)

while the stress Σ is computed by averaging in space and time the total
stress, given by the sum of all components contributions 12.

8It means that periodic boundary condition along y = 0
9In TLBfind no wall is implemented with the normal parallel to the x-direction.

10Note that, if roughWallUp and roughWallDown are true and periodic boundary

condition along y = 1, simultaneously, there will be an inconsistency and the code will
not work correctly.

11We wish to remark that the wall parameters shared in inputflag.inp and tlbfind.inp

files should be equal.
12This information is dumped in Pxy av.#.dat files (for more details on the output files

structure see the README Output file and Section 2.1 as a reference).

19

0

10−4

2 10−4

3 10−4

4 10−4

5 10−4

0 2 10−4 4 10−4 6 10−4

Σ

γ̇

Figure 4: Rheological characterisation of the emulsion shown in Fig. 3: the stress Σ
is reported as a function of the shear rate γ̇. All dimensional quantities are given in
simulation units.

3.2.3. Temperature field

One of the key point of TLBfind lies in the possibility to simulate the
dynamics of the temperature field T (x, t) in Eq. (16), and couple it with the
momentum dynamics. One can decide to activate the dynamics of T (x, t)
by setting to 1 the Boolean parameter THERMAL. The thermal relaxation
time tauG (τg in Eq. (16)) impacts the thermal diffusivity κ (see Eq. (20)).
In the setup of the Rayleigh-Bénard thermal convection, the system is con-
fined between two walls at a different temperature: a hot bottom wall at
temperature Tdown and a top cold one at temperature Tup (see Fig. 5).
The temperature profile is here initialised with a linear profile, correspond-
ing to the temperature initialization=2. If needed (e.g. study of situations
at constant temperature) the temperature can be initialised with a constant
profile (temperature initialization=0).

3.3. Simulation in convection

All values of simulation parameters in tlbfind.inp that need to be changed
to start a convective simulation are listed in Table A.5. A step-by-step de-
scription of the commands needed to run a simulation in convection can be
found in the README howToRun file.

20

3.3.1. The onset of convection

At this point, we are ready to perform a simulation of an emulsion in
convection. The onset of convection is known to be dependent on the magni-
tude of the buoyancy term in Eq. (22): at fixed walls temperatures, system
size, and fluid properties, alphaG is the order parameter that triggers the
transition from a conductive to a convective state. Note that, a finite pertur-
bation is necessary to destabilise the conductive state; this initial velocity

perturbation depends on the emulsion rheology [66]: the more the system
is non-Newtonian, the greater the required perturbation is.

With the aim to restart a simulation from the last preparation configura-
tion (i.e., situation in bottom Panel of Fig. 3), TLBfind requires four files:
the three final populations files of the components 1,2 and temperature from
the preparation step (i.e., conf1.in 0, conf2.in 0, and confG.in 0, respec-
tively); the dumpcount.in file, which counts the enumeration of time steps
and dumping number of output files 13. At t = 0 it is equal to a series of
seven zeros 0 0 0 0 0 0 0; it is very useful especially in the case of a restart
of a finished or suspended simulations 14. As highlighted in Table A.5, at
this step start from scratch has to be switched off while post preparation

temp has to be switched on 15.
Fig. 5 shows the emulsion prepared in Fig. 3 when subjected to a suffi-

ciently large buoyancy force: the convective state, with the characteristic
circular convective rolls, is highlighted thanks to the overlap to the density
map of Lagrangian droplet displacement vector fields d(Xi(t), t) (black ar-
rows), computed for all droplet centre-of-mass Xi(t) (i = 1...Ndroplets). Both
centre-of-mass positions and displacement of all droplets at any time can be
computed as part of the Delaunay analysis (see Section 2.4). The thresh-
old used in order to identify the droplets region can be tuned via the bub-

bleThreshold (i.e., Bth) parameter: it defines the floating-point value used
as a threshold on the first density field to detect the high-density compact
regions constituting the droplets. Then, nmindelaunay sets the starting

13The dumpcount.in file must be manually created.
14For details on how to restart a finished or suspended simulation see the

README howToRestart file.
15It is helpful to distinguish the case of simulation after preparation from a simple

restart: in the latter case no initial velocity perturbation has to be applied, thus post

preparation temp is false.

21

Figure 5: Rayleigh-Bénard convection experiment: the convection simulation step. Black
arrows refer to droplet displacements: the typical convective rolls are visible. For details
on how to produce this plot see the README howToRun file.

time for the Delaunay analysis. This can be useful for discarding the initial
transient of a flow from the analysis. From the knowledge of centre-of-mass
positions, the computation of droplet displacement is an immediate conse-
quence. As mentioned in Section 3.1, Delaunay binary files can be analysed
in order to extract droplets information by compiling the source codes of the
following two programs:

1. deltaAnalysis, which executes the analysis for the calculation of the
displacement of the centre of mass of the droplets yielding further
information as well; the main output is contained in the ASCII file
DeltaField, see the README Analysis file for further details;

2. dropletStats, which appends in the ASCII files dropletsHostNow and
dropletsHostPast some relevant information about the droplets, such
as centre-of-mass coordinates and size (see the README Analysis file
for details).

3.3.2. Heat transfer analysis

The heat-flux properties of the system can be studied in TLBfind. A
measure of the average heat flux can be performed in terms of the Nusselt
number (Nu), a dimensionless observable defined as [67, 68, 69, 70]

Nu(t) =
〈uy(x, y, t)T (x, y, t)〉x,y − κ〈∂yT (x, y, t)〉x,y

κ∆T
ny

, (24)

22

2.6

2.7

2.8

2.9

3.0

3.1

2 105 4 105 6 105 8 105 106

N
u

simulation time

(a)

(b)

Figure 6: Panel (a): Time behaviour of the Nusselt number defined in Eq. (24) (expressed
in simulation units) for emulsion of Fig. 5 in the statistically steady state. The average
Nusselt number is indicated with the dashed line. Panel (b): a snapshot of the droplet
Nusselt number defined in Eq. (25). For further details on how producing these plots see
the README howToRun file.

where 〈(. . .)〉x,y denotes a space average, and ∆T = Tdown−Tup. Nu gives
an estimate of the balance between convective and conductive transport at
macroscopic scales. The program nusseltNumber allows computing Nu as
a function of time (see the README Analysis file for details), as Fig. 6(a)
shows for the emulsion displayed in Fig. 5. Because of the finite-size effects
at mesoscales [42], in some cases there may be the need to deal with the heat

23

flux contributions of the single droplets. For this reason, a Nusselt number
associated with each single droplet can be defined as [42]:

Nu
(drop)
i (t) =

u
(i)
y (t)T (i)(t)− κ(∂yT)(i)(t)

κ∆T
ny

, (25)

where u
(i)
y (t) = uy(Xi(t), t), T

(i)(t) = T (Xi(t), t) and (∂yT)(i)(t) = ∂yT (Xi(t), t)
are the fluid velocity, temperature, and temperature gradient evaluated for
the i-th droplet, respectively.

The program nusseltNumberDroplet computes Eq. (25) for all droplets
at any simulation time step by reading velocity and temperature fields and
combining them with the centres-of-mass positions extracted from Delaunay
analysis (see the README Analysis file for further details).

4. Test case with rough walls

In the previous section, we have discussed a test case of Rayleigh-Bénard
numerical experiment in the presence of flat walls.Further complexity may
be introduced by the presence of roughness along the walls. Here we re-
port the case of rough walls with an asymmetric trapezoidal shape, as shown
in Fig. 7(a). The height, the width, the periodicity (via lambda), and
the angle (via alpha) can be varied. Note that the rough-wall-flags rough-

WallUp and roughWallDown have to be switched on in order to design the
roughness at the walls. Table A.6 lists roughness parameters in the input-

flag.dat file used in the present test case. We build here a very general
roughness shape by accessing all input parameters involved. As a result of
this code, a symmetric trapezoidal-shape roughness was used in [48], where
simulations with a symmetric roughness (asymmetric = 0) built only on
the bottom wall (roughWallUp = 0) were performed. Moreover, in a very
similar context [29, 30], the dynamics of emulsions in a channel with a simple
rectangular-shape roughness (alpha = 0.0) was analysed in detail.
In order to perform simulation of Rayleigh-Bénard convection, the steps to
follow are the same as shown for the flat-walls case: after the system prepa-
ration step, we run the simulation with the emulsion in convection. For both
these steps, we modified the input files as well. Input parameters changed
with respect to the flat case are shown in Table A.7. A snapshot of an
emulsion in convection with these boundary conditions is shown in Fig. 7(b).

24

(a) (b)

Figure 7: Panel (a): sketch of a roughness on the bottom wall (roughWallDown = 1): the
obstacles have asymmetric trapezoidal-shape with inclination given by the angle alpha,
specific height, width, and repeated every lambda lattice nodes. Panel (b): a snapshot of
Rayleigh-Bénard cell in the proximity to the wall during a convection experiment. Black
arrows indicate the droplet displacement field.

5. Conclusions

We have presented TLBfind, a high-performance CUDA code for the sim-
ulation of thermal flows of finite-size droplet suspensions with non-trivial
boundary conditions. TLBfind implements a multi-component Lattice Boltz-
mann (LB) method where the non-ideal interactions are tuned in such a
way to promote inhibition of coalescence of adjacent droplets. With the LB
method, it is possible to simulate advection and diffusion of a temperature
field coupled to the droplets dynamics, and easily implement boundary con-
ditions with complex geometry. We demonstrated various code features by
means of two examples, corresponding to the case with flat and rough walls.
We expect to work in the future on the extension of the present code to three
dimensions. A multi-GPU implementation is also part of our future plans.

6. Acknowledgements

We thank Roberto Benzi, Andrea Scagliarini and Sauro Succi. FP thanks
Fabio Bonaccorso for technical support in accessing and operating GPUs at
the University of Rome Tor Vergata. ML acknowledges the support of the
National Science Foundation of China Grant 12050410244.

25

Output files parameters
nout density 10000 write energy file 1
write vtk file 0 nout energy 1000
write vtk file rho1 1 nout tensor 10000000
write vtk file rho2 0 nout average 1000
nout velocity 1000 noutconfig 1000
nout temperature 1000 noutconfigMod 2
write vtk file temperature 0 ncheckdelaunay 1000

Table A.2: Output files parameters in tlbfind.inp. All ASCII files of the various two-
dimensional fields can be plotted with pm3d on gnuplot. All VTK files are VTK 2.0
binary files.

Appendix A. Input parameters lists

Appendix B. Dependence of densities ρ1 and ρ2 on the coupling
parameter G12

As discussed in Section 3.2.1, initial bulk densities are assigned via the pa-
rameters rhoMax and rhoMin. A dedicated phase-separation experiment is
needed in order to set these values in such a way that they will not change
sensibly during the simulation. Here we provide an experiment example: we
performed some dedicated simulations with parameters in Table B.8, and we
measured the maximum and minimum density values from the last configu-
ration of the first component (see Fig. B.8(a)) by varying only the value of
G12 16. In this kind of experiment, as well as for the test cases presented
in the text, the preparation-step features must be followed, as explained in
Section 3.2, with droplet initialization = 3. With this initialisation, we
prepared a simple system of two layers: one half of the domain is occupied
with the majority of the first component, and the second half with the sec-
ond component. Then, we apply no force, but we wait a sufficient number of
time steps to observe a stabilised phase separation, and we look at the last
density configuration of the first component. The resulting phase-separation
diagram is shown in Fig. B.8(a), and the corresponding measured values of
bulk densities are listed in Table B.8(b). Note that, in this specific case, for

16The same is valid if the measure is done with the second component, but with an
inversion of the maximum and minimum values.

26

Input preparation parameters
nx 947 number of droplet x 31
ny 431 number of droplet y 16
rhoMax 1.4 diameter 23.92
rhoMin 0.1 spacing 6.4
tau 1.0 WD 0.6
bubbleThreshold 0.8 threhold WD 0.4
rho0 0.83 THERMAL 1
G12 0.405 temperature initialisation 2
G11a -9.0 Tup -0.5
G22a -8.0 Tdown 0.5
G11r -8.1 tauG 1.0
G22a -7.1 alphaG 0.0
rhoWallMax 0.612 periodic boundary condi-

tion along x

1

rhoWallMin 0.612 periodic boundary condi-

tion along y

0

start from scratch 1 nsteps 105

droplet initialisation 1 initial velocity perturba-

tion

0.0

delaunayDebug 0

Table A.3: Preparation parameters in tlbfind.inp. WD and threshold WD are used
to introduce randomization in the initial condition; the used values produce the initial
condition displayed in Fig. 3.

Input flat wall parameters
roughWallUp 0 width 0
roughWallDown 0 alpha 0.0
lambda 0 asymmetric 0
height 0

Table A.4: Input parameters in inputflag.inp for a flat wall.

values of G12 below ≈ 0.25, the minimum density value coincides with the
maximum one: in such conditions, there is no phase separation and the two
components mix.

27

Input simulation parameters
start from scratch 0 alphaG 1.24 10−5

nsteps 106 initial velocity pertur-

bation

10−4

post preparation temp 1

Table A.5: Input parameters varied in tlbfind.inp to start a convective simulation after
the preparation step.

Input rough wall parameters
roughWallUp 1 width 10
roughWallDown 1 alpha 0.25
lambda 150 asymmetric 1
height 12

Table A.6: Input parameters in inputflag.inp for a rough wall as in Fig. 7.

Input simulation parameters
roughWallUp 1 rhoWallMax 6.0
roughWallDown 1 rhoWallMin 0.1

Table A.7: Input parameters varied (compared to the flat wall case) in tlbfind.inp to run
the simulation with rough walls discussed in the text (see Tables A.3 and A.5).

Appendix C. Output Files

Here we schematically report the list of the output files generated by the
simulation program itself (not the analysis programs) along with a brief de-
scription and the associated flags in the input file

References

[1] G. Hetsroni, Handbook of multiphase systems, McGraw-Hill Book Co.,
New York, NY, 1982.

[2] C. Gallegos, J. Franco, Rheology of food, cosmetics and pharmaceuti-
cals, Current opinion in colloid & interface science 4 (4) (1999) 288–293.

28

Phase-segregation experiment parameters
nx 128 THERMAL 0
ny 2 start from scratch 1
rhoMax 1.4 nsteps 5 104

rhoMin 0.1 periodic boundary condi-

tion along x

1

tau 1.0 periodic boundary condi-

tion along y

1

rho0 0.83 droplet initialisation 3
G12 0.405 nout density 10000
G11a -9.0 write vtk file 0
G22a -8.0 write vtk rho1 1
G11r -8.1 noutconfig 10000
G22a -7.1 noutconfigMod 2

Table B.8: Phase-segregation experiment parameters. Regarding the output files and
preparation parameters present in Tables A.2 and A.3, and not listed here, they can be
all switched off because not necessary.

[3] B. A. Khan, N. Akhtar, H. M. S. Khan, K. Waseem, T. Mahmood,
A. Rasul, M. Iqbal, H. Khan, Basics of pharmaceutical emulsions: A
review, African Journal of Pharmacy and Pharmacology 5 (25) (2011)
2715–2725.

[4] J. Shao, J. Darkwa, G. Kokogiannakis, Review of phase change emul-
sions (pcmes) and their applications in hvac systems, Energy and build-
ings 94 (2015) 200–217.

[5] D. J. McClements, Food emulsions: principles, practices, and tech-
niques, CRC press, 2015.

[6] M. Yukuyama, D. Ghisleni, T. Pinto, N. Bou-Chacra, Nanoemulsion:
process selection and application in cosmetics–a review, International
journal of cosmetic science 38 (1) (2016) 13–24.

[7] F. Wang, W. Lin, Z. Ling, X. Fang, A comprehensive review on phase
change material emulsions: Fabrication, characteristics, and heat trans-
fer performance, Solar Energy Materials and Solar Cells 191 (2019) 218–
234.

29

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

G12

ρmax

ρmin

(a)

G12 ρmax ρmin G12 ρmax ρmin

0.05 0.7601748 0.7601377 0.50 1.445688 0.08590994
0.10 0.7603156 0.7599969 0.55 1.470143 0.06602583
0.15 0.7614925 0.7588201 0.60 1.487723 0.05179497
0.20 0.7708472 0.7494691 0.65 1.500535 0.04135837
0.25 0.8346988 0.6855015 0.70 1.509980 0.03360042
0.30 1.108622 0.3624054 0.75 1.517030 0.02778616
0.35 1.267322 0.2425093 0.80 1.522366 0.02340400
0.40 1.364685 0.1549724 0.85 1.526470 0.02008613
0.45 1.410851 0.1149639 0.90 1.529679 0.01756290

(b)

Figure B.8: Panel (a): phase-separation diagram for a system with initial densities
rhoMax=1.4 and rhoMin=0.1 and fixed competing interactions given in Table B.8. Panel
(b) shows values of densities as a function of G12 producing the upper plot.

[8] H. Princen, A. Kiss, Rheology of foams and highly concentrated
emulsions: Iv. an experimental study of the shear viscosity and yield
stress of concentrated emulsions, J. Colloid Interface Sci. 128 (1) (1989)

30

http://www.sciencedirect.com/science/article/pii/0021979789903962
http://www.sciencedirect.com/science/article/pii/0021979789903962
http://www.sciencedirect.com/science/article/pii/0021979789903962

Simulation output files
init rho1.dat

init rho2.dat

init temperature.dat

Initial conditions of the compo-
nents densities and the tempera-
ture fields

firstdensity.#.dat

seconddensity.#.dat

Components density fields at the
step. Input file option: nout

density > 0

firstdensity.dat

seconddensity.dat

Components density fields at the
last iteration

firstdensity.#.vtk Input file options: write vtk file

and write vtk file rho1 set to 1

seconddensity.#.vtk Input file options: write vtk file

and write vtk file rho2 set to 1

temperature.#.dat Temperature field at the # step:
input option nout temperature

> 0

temperature.dat same as above with last iteration
data

temperature.#.vtk Input file options: nout temper-

ature > 0 and write vtk file tem-

perature set to 1

Table C.9: On the left, list of simulation output files for densities and temperature fields.
On the right, the relevant parameters of the input file tlbfind.inp.

176 – 187. doi:https://doi.org/10.1016/0021-9797(89)90396-2.
URL http://www.sciencedirect.com/science/article/pii/

0021979789903962

[9] L. Schramm, Emulsions, American Chemical Society (ACS), 1992.

[10] H. A. Barnes, Rheology of emulsions—a review, Colloids and Surfaces

31

https://doi.org/https://doi.org/10.1016/0021-9797(89)90396-2
http://www.sciencedirect.com/science/article/pii/0021979789903962
http://www.sciencedirect.com/science/article/pii/0021979789903962

Simulation output files
veloconf.#.dat Velocity field at the # step. Input

file option nout velocity> 0

veloconf.dat Velocity field at the last iteration

veloconf.#.vtk Input file options: nout velocity

> 0 and write vtk file set to 1

u av.#.dat x-wise x-component average of
the velocity field. Input file op-
tions: nout velocity > 0, nout

average > 0 and write vtk file

set to 0

u av.dat same as above with last iteration
data

Ptot xy.#.dat Stress tensor field at the # step.
Input file option: nout tensor >
0

Ptot xy.dat same as above with last iteration
data

Pxy av.#.dat x-wise average of the stress tensor
field at the # step. Input file op-
tions: nout tensor > 0 and nout

average > 0
Pxy av.dat same as above with last iteration

data

Table C.10: On the left, list of simulation output files for the velocity and stress tensor
fields. On the right, the relevant parameters of the input file tlbfind.inp.

A: Physicochemical and Engineering Aspects 91 (1994) 89–95.

[11] P. Coussot, Rheometry of Pastes, Suspensions, and Granular Materials,

32

Simulation output files
timeEnergy.dat Input file option: write energy

file set to 1 and nout energy > 0
conf1 #.in First component populations field

dumped as a binary file. Input file
options: noutconfig > 0, nout-

configMod > 1

conf2 #.in Second component populations
field dumped as a binary file. In-
put file options: noutconfig > 0,
noutconfigMod > 1

confG #.in Temperature field populations
dumped as a binary file. Input file
oprions: noutconfig > 0, nout-

configMod > 1

Table C.11: On the left, list of simulation output files for the system energy as a function
of time and the binary dumps for the populations. On the right, the relevant parameters
of the input file tlbfind.inp.

Wiley-Interscience, 2005.

[12] J.-L. Barrat, Elasticity and plasticity of disordered systems, a statistical
physics perspective, Physica A: Statistical Mechanics and its Applica-
tions 504 (2017) 20–30. doi:10.1016/j.physa.2017.11.146.

[13] D. J. Stein, F. J. Spera, Rheology and microstructure of magmatic emul-
sions: theory and experiments, Journal of Volcanology and Geothermal
Research 49 (1-2) (1992) 157–174.

[14] Y. Zhou, D. Yin, W. Chen, B. Liu, X. Zhang, A comprehensive review
of emulsion and its field application for enhanced oil recovery, Energy
Science & Engineering 7 (4) (2019) 1046–1058.

[15] P. W. Egolf, M. Kauffeld, From physical properties of ice slurries to
industrial ice slurry applications, International journal of refrigeration
28 (1) (2005) 4–12.

33

https://doi.org/10.1016/j.physa.2017.11.146

[16] R. Pal, Shear viscosity behavior of emulsions of two immiscible liquids,
Journal of colloid and interface science 225 (2) (2000) 359–366.

[17] R. G. Larson, The Structure and Rheology of Complex Fluids, Oxford
University Press, 1999.

[18] D. Bonn, M. M. Denn, L. Berthier, T. Divoux, S. Manneville, Yield
stress materials in soft condensed matter, Rev. Mod. Phys. 89 (2017)
035005. doi:10.1103/RevModPhys.89.035005.
URL https://link.aps.org/doi/10.1103/RevModPhys.89.035005

[19] P. K. Kilpatrick, Water-in-crude oil emulsion stabilization: review and
unanswered questions, Energy & Fuels 26 (7) (2012) 4017–4026.

[20] S. N. Kale, S. L. Deore, Emulsion micro emulsion and nano emulsion: a
review, Systematic Reviews in Pharmacy 8 (1) (2017) 39.

[21] D. J. McClements, S. M. Jafari, Improving emulsion formation, stability
and performance using mixed emulsifiers: A review, Advances in colloid
and interface science 251 (2018) 55–79.

[22] A. Rahimian, S. K. Veerapaneni, G. Biros, Dynamic simulation of locally
inextensible vesicles suspended in an arbitrary two-dimensional domain,
a boundary integral method, Journal of Computational Physics 229 (18)
(2010) 6466–6484.

[23] W. Yang, Z. Zhou, A. Yu, D. Pinson, Particle scale simulation of
softening–melting behaviour of multiple layers of particles in a blast
furnace cohesive zone, Powder Technology 279 (2015) 134–145.

[24] M. Kroupa, M. Vonka, M. Soos, J. Kosek, Utilizing the discrete ele-
ment method for the modeling of viscosity in concentrated suspensions,
Langmuir 32 (33) (2016) 8451–8460.

[25] J. R. Seth, L. Mohan, C. Locatelli-Champagne, M. Cloitre, R. T. Bon-
necaze, A micromechanical model to predict the flow of soft particle
glasses, Nature materials 10 (11) (2011) 838–843.

[26] V. Mansard, A. Colin, P. Chaudhuri, L. Bocquet, A molecular dynam-
ics study of non-local effects in the flow of soft jammed particles, Soft
Matter 9 (2013) 7489–7500. doi:10.1039/C3SM50847A.
URL http://dx.doi.org/10.1039/C3SM50847A

34

https://link.aps.org/doi/10.1103/RevModPhys.89.035005
https://link.aps.org/doi/10.1103/RevModPhys.89.035005
https://doi.org/10.1103/RevModPhys.89.035005
https://link.aps.org/doi/10.1103/RevModPhys.89.035005
http://dx.doi.org/10.1039/C3SM50847A
http://dx.doi.org/10.1039/C3SM50847A
https://doi.org/10.1039/C3SM50847A
http://dx.doi.org/10.1039/C3SM50847A

[27] G. Jung, S. M. Fielding, Wall slip and bulk yielding in soft particle
suspensions, Journal of Rheology 65 (2) (2021) 199–212.

[28] B. Dollet, A. Scagliarini, M. Sbragaglia, Two-dimensional plastic
flow of foams and emulsions in a channel: experiments and lat-
tice boltzmann simulations, J. Fluid Mech. 766 (2015) 556–589.
doi:10.1017/jfm.2015.28.
URL https://www.cambridge.org/core/article/

two-dimensional-plastic-flow-of-foams-and-emulsions-in-a-channel-experiments-and-lattice-boltzmann-simulations/

A8E06679EA25FD323CEDD1695246EF8B

[29] L. Derzsi, D. Filippi, G. Mistura, M. Pierno, M. Lulli, M. Sbragaglia,
M. Bernaschi, P. Garstecki, Fluidization and wall slip of soft glassy
materials by controlled surface roughness, Phys. Rev. E 95 (5) (2017)
052602.

[30] L. Derzsi, D. Filippi, M. Lulli, G. Mistura, M. Bernaschi, P. Garstecki,
M. Sbragaglia, M. Pierno, Wall fluidization in two acts: from stiff to
soft roughness, Soft matter 14 (7) (2018) 1088–1093.

[31] T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, E. M.
Viggen, The lattice boltzmann method, Springer International Publish-
ing 10 (978-3) (2017) 4–15.

[32] S. Succi, The lattice Boltzmann Equation, Oxford University Press,
2018.

[33] J.-C. Desplat, I. Pagonabarraga, P. Bladon, Ludwig: A parallel lattice-
boltzmann code for complex fluids, Computer Physics Communications
134 (3) (2001) 273–290.

[34] S. Schmieschek, L. Shamardin, S. Frijters, T. Krüger, U. D. Schiller,
J. Harting, P. V. Coveney, Lb3d: A parallel implementation of the
lattice-boltzmann method for simulation of interacting amphiphilic flu-
ids, Computer Physics Communications 217 (2017) 149–161.

[35] F. Bonaccorso, A. Montessori, A. Tiribocchi, G. Amati, M. Bernaschi,
M. Lauricella, S. Succi, Lbsoft: A parallel open-source software for sim-
ulation of colloidal systems, Computer Physics Communications 256
(2020) 107455.

35

https://www.cambridge.org/core/article/two-dimensional-plastic-flow-of-foams-and-emulsions-in-a-channel-experiments-and-lattice-boltzmann-simulations/A8E06679EA25FD323CEDD1695246EF8B
https://www.cambridge.org/core/article/two-dimensional-plastic-flow-of-foams-and-emulsions-in-a-channel-experiments-and-lattice-boltzmann-simulations/A8E06679EA25FD323CEDD1695246EF8B
https://www.cambridge.org/core/article/two-dimensional-plastic-flow-of-foams-and-emulsions-in-a-channel-experiments-and-lattice-boltzmann-simulations/A8E06679EA25FD323CEDD1695246EF8B
https://doi.org/10.1017/jfm.2015.28
https://www.cambridge.org/core/article/two-dimensional-plastic-flow-of-foams-and-emulsions-in-a-channel-experiments-and-lattice-boltzmann-simulations/A8E06679EA25FD323CEDD1695246EF8B
https://www.cambridge.org/core/article/two-dimensional-plastic-flow-of-foams-and-emulsions-in-a-channel-experiments-and-lattice-boltzmann-simulations/A8E06679EA25FD323CEDD1695246EF8B
https://www.cambridge.org/core/article/two-dimensional-plastic-flow-of-foams-and-emulsions-in-a-channel-experiments-and-lattice-boltzmann-simulations/A8E06679EA25FD323CEDD1695246EF8B

[36] J. Latt, O. Malaspinas, D. Kontaxakis, A. Parmigiani, D. Lagrava,
F. Brogi, M. B. Belgacem, Y. Thorimbert, S. Leclaire, S. Li, et al.,
Palabos: parallel lattice boltzmann solver, Computers & Mathematics
with Applications 81 (2021) 334–350.

[37] M. Ataei, V. Shaayegan, F. Costa, S. Han, C. B. Park, M. Bussmann,
Lbfoam: An open-source software package for the simulation of foaming
using the lattice boltzmann method, Computer Physics Communica-
tions 259 (2021) 107698.

[38] D. Moore, N. Weiss, Two-dimensional rayleigh-bénard convection, Jour-
nal of Fluid Mechanics 58 (2) (1973) 289–312.

[39] H. Bénard, Les tourbillons cellulaires dans une nappe liquide, Rev. Gen.
Sci. Pures Appl. 11 (1900) 1261–1271.

[40] L. Rayleigh, Lix. on convection currents in a horizontal layer of fluid,
when the higher temperature is on the under side, The London, Ed-
inburgh, and Dublin Philosophical Magazine and Journal of Science
32 (192) (1916) 529–546.

[41] D. Lohse, K.-Q. Xia, Small-scale properties of turbulent rayleigh-bénard
convection, Annual Review of Fluid Mechanics 42 (2010) 335–364.

[42] F. Pelusi, M. Sbragaglia, R. Benzi, A. Scagliarini, M. Bernaschi, S. Succi,
Rayleigh–bénard convection of a model emulsion: anomalous heat-flux
fluctuations and finite-size droplet effects, Soft Matter 17 (2021) 3709–
3721. doi:10.1039/D0SM01777A.
URL http://dx.doi.org/10.1039/D0SM01777A

[43] R. Benzi, M. Sbragaglia, S. Succi, M. Bernaschi, S. Chibbaro, Meso-
scopic lattice boltzmann modeling of soft-glassy systems: Theory and
simulations, J. Chem. Phys. 131 (10) (2009). doi:http://dx.doi.org/

10.1063/1.3216105.
URL http://scitation.aip.org/content/aip/journal/jcp/131/10/10.

1063/1.3216105

[44] M. Sbragaglia, R. Benzi, M. Bernaschi, S. Succi, The emergence of
supramolecular forces from lattice kinetic models of non-ideal fluids: ap-
plications to the rheology of soft glassy materials, Soft Matter 8 (2012)

36

http://dx.doi.org/10.1039/D0SM01777A
http://dx.doi.org/10.1039/D0SM01777A
https://doi.org/10.1039/D0SM01777A
http://dx.doi.org/10.1039/D0SM01777A
http://scitation.aip.org/content/aip/journal/jcp/131/10/10.1063/1.3216105
http://scitation.aip.org/content/aip/journal/jcp/131/10/10.1063/1.3216105
http://scitation.aip.org/content/aip/journal/jcp/131/10/10.1063/1.3216105
https://doi.org/http://dx.doi.org/10.1063/1.3216105
https://doi.org/http://dx.doi.org/10.1063/1.3216105
http://scitation.aip.org/content/aip/journal/jcp/131/10/10.1063/1.3216105
http://scitation.aip.org/content/aip/journal/jcp/131/10/10.1063/1.3216105
http://dx.doi.org/10.1039/C2SM26167G
http://dx.doi.org/10.1039/C2SM26167G
http://dx.doi.org/10.1039/C2SM26167G

10773–10782. doi:10.1039/C2SM26167G.
URL http://dx.doi.org/10.1039/C2SM26167G

[45] R. Benzi, M. Sbragaglia, P. Perlekar, M. Bernaschi, S. Succi, F. Toschi,
Direct evidence of plastic events and dynamic heterogeneities in soft-
glasses, Soft Matter 10 (2014) 4615–4624. doi:10.1039/C4SM00348A.
URL http://dx.doi.org/10.1039/C4SM00348A

[46] L. Fei, A. Scagliarini, A. Montessori, M. Lauricella, S. Succi, K. H. Luo,
Mesoscopic model for soft flowing systems with tunable viscosity ratio,
Physical Review Fluids 3 (10) (2018) 104304.

[47] F. Pelusi, M. Sbragaglia, R. Benzi, Avalanche statistics during coarsen-
ing dynamics, Soft Matter 15 (22) (2019) 4518–4524.

[48] F. Pelusi, M. Sbragaglia, A. Scagliarini, M. Lulli, M. Bernaschi, S. Succi,
On the impact of controlled wall roughness shape on the flow of a soft
material, EPL (Europhysics Letters) 127 (3) (2019) 34005. doi:10.1209/

0295-5075/127/34005.

[49] P. L. Bhatnagar, E. P. Gross, M. Krook, A model for collision pro-
cesses in gases. i. small amplitude processes in charged and neutral one-
component systems, Physical review 94 (3) (1954) 511.

[50] X. Shan, H. Chen, Lattice boltzmann model for simulating flows with
multiple phases and components, Physical review E 47 (3) (1993) 1815.

[51] X. Shan, H. Chen, Simulation of nonideal gases and liquid-gas phase
transitions by the lattice boltzmann equation, Physical Review E 49 (4)
(1994) 2941.

[52] G. Falcucci, G. Bella, G. Chiatti, S. Chibbaro, M. Sbragaglia, S. Succi,
et al., Lattice boltzmann models with mid-range interactions, Commu-
nications in computational physics 2 (6) (2007) 1071–1084.

[53] G. Falcucci, S. Ubertini, S. Succi, Lattice boltzmann simulations of
phase-separating flows at large density ratios: the case of doubly-
attractive pseudo-potentials, Soft Matter 6 (18) (2010) 4357–4365.

[54] M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, K. Sugiyama, F. Toschi,
Generalized lattice boltzmann method with multirange pseudopotential,
Physical Review E 75 (2) (2007) 026702.

37

https://doi.org/10.1039/C2SM26167G
http://dx.doi.org/10.1039/C2SM26167G
http://dx.doi.org/10.1039/C4SM00348A
http://dx.doi.org/10.1039/C4SM00348A
https://doi.org/10.1039/C4SM00348A
http://dx.doi.org/10.1039/C4SM00348A
https://doi.org/10.1209/0295-5075/127/34005
https://doi.org/10.1209/0295-5075/127/34005

[55] R. Benzi, M. Sbragaglia, A. Scagliarini, P. Perlekar, M. Bernaschi,
S. Succi, F. Toschi, Internal dynamics and activated processes in
soft-glassy materials, Soft Matter 11 (2015) 1271–1280. doi:10.1039/

C4SM02341B.
URL http://dx.doi.org/10.1039/C4SM02341B

[56] P. Ripesi, L. Biferale, M. Sbragaglia, A. Wirth, Natural convection with
mixed insulating and conducting boundary conditions: low-and high-
rayleigh-number regimes, Journal of fluid mechanics 742 (2014) 636–663.

[57] B. Delaunay, Sur la sphère vide, Bulletin de l’Académie des Sciences de
l’URSS, Classe des sciences mathématiques et naturelles 6 (1934).
URL http://mi.mathnet.ru/eng/izv4937

[58] M. Bernaschi, M. Lulli, M. Sbragaglia, GPU based detection of
topological changes in voronoi diagrams, Comput. Phys. Commun. 213
(2017) 19 – 28. doi:http://dx.doi.org/10.1016/j.cpc.2016.11.005.
URL http://www.sciencedirect.com/science/article/pii/

S0010465516303599

[59] R. H. Swendsen, J.-S. Wang, Nonuniversal critical dynamics in Monte
Carlo simulations, Physical Review Letters 58 (2) (1987) 86–88.
doi:10.1103/PhysRevLett.58.86.
URL http://link.aps.org/doi/10.1103/PhysRevLett.58.

86%5Cnhttp://kobus.ca/teaching/cs645/spring09/ua only/

swendsen-wang-87.pdfhttps://link.aps.org/doi/10.1103/

PhysRevLett.58.86

[60] Y. Komura, Y. Okabe, GPU-based Swendsen–Wang multi-cluster
algorithm for the simulation of two-dimensional classical spin sys-
tems, Computer Physics Communications 183 (6) (2012) 1155–1161.
arXiv:1202.0635, doi:10.1016/j.cpc.2012.01.017.
URL http://dx.doi.org/10.1016/j.cpc.2012.01.017https:

//linkinghub.elsevier.com/retrieve/pii/S001046551200032X

[61] G. Voronoi, Nouvelles applications des paramètres continus à la
théorie des formes quadratiques. Deuxième mémoire. Recherches
sur les parallélloèdres primitifs., Journal für die reine und ange-
wandte Mathematik (Crelles Journal) 1908 (134) (1908) 198–287.
doi:10.1515/crll.1908.134.198.

38

http://dx.doi.org/10.1039/C4SM02341B
http://dx.doi.org/10.1039/C4SM02341B
https://doi.org/10.1039/C4SM02341B
https://doi.org/10.1039/C4SM02341B
http://dx.doi.org/10.1039/C4SM02341B
http://mi.mathnet.ru/eng/izv4937
http://mi.mathnet.ru/eng/izv4937
http://www.sciencedirect.com/science/article/pii/S0010465516303599
http://www.sciencedirect.com/science/article/pii/S0010465516303599
https://doi.org/http://dx.doi.org/10.1016/j.cpc.2016.11.005
http://www.sciencedirect.com/science/article/pii/S0010465516303599
http://www.sciencedirect.com/science/article/pii/S0010465516303599
http://link.aps.org/doi/10.1103/PhysRevLett.58.86%5Cnhttp://kobus.ca/teaching/cs645/spring09/ua_only/swendsen-wang-87.pdf https://link.aps.org/doi/10.1103/PhysRevLett.58.86
http://link.aps.org/doi/10.1103/PhysRevLett.58.86%5Cnhttp://kobus.ca/teaching/cs645/spring09/ua_only/swendsen-wang-87.pdf https://link.aps.org/doi/10.1103/PhysRevLett.58.86
https://doi.org/10.1103/PhysRevLett.58.86
http://link.aps.org/doi/10.1103/PhysRevLett.58.86%5Cnhttp://kobus.ca/teaching/cs645/spring09/ua_only/swendsen-wang-87.pdf https://link.aps.org/doi/10.1103/PhysRevLett.58.86
http://link.aps.org/doi/10.1103/PhysRevLett.58.86%5Cnhttp://kobus.ca/teaching/cs645/spring09/ua_only/swendsen-wang-87.pdf https://link.aps.org/doi/10.1103/PhysRevLett.58.86
http://link.aps.org/doi/10.1103/PhysRevLett.58.86%5Cnhttp://kobus.ca/teaching/cs645/spring09/ua_only/swendsen-wang-87.pdf https://link.aps.org/doi/10.1103/PhysRevLett.58.86
http://link.aps.org/doi/10.1103/PhysRevLett.58.86%5Cnhttp://kobus.ca/teaching/cs645/spring09/ua_only/swendsen-wang-87.pdf https://link.aps.org/doi/10.1103/PhysRevLett.58.86
http://dx.doi.org/10.1016/j.cpc.2012.01.017 https://linkinghub.elsevier.com/retrieve/pii/S001046551200032X
http://dx.doi.org/10.1016/j.cpc.2012.01.017 https://linkinghub.elsevier.com/retrieve/pii/S001046551200032X
http://dx.doi.org/10.1016/j.cpc.2012.01.017 https://linkinghub.elsevier.com/retrieve/pii/S001046551200032X
http://arxiv.org/abs/1202.0635
https://doi.org/10.1016/j.cpc.2012.01.017
http://dx.doi.org/10.1016/j.cpc.2012.01.017 https://linkinghub.elsevier.com/retrieve/pii/S001046551200032X
http://dx.doi.org/10.1016/j.cpc.2012.01.017 https://linkinghub.elsevier.com/retrieve/pii/S001046551200032X
https://www.degruyter.com/document/doi/10.1515/crll.1908.134.198/html
https://www.degruyter.com/document/doi/10.1515/crll.1908.134.198/html
https://www.degruyter.com/document/doi/10.1515/crll.1908.134.198/html
https://doi.org/10.1515/crll.1908.134.198

URL https://www.degruyter.com/document/doi/10.1515/crll.

1908.134.198/html

[62] M. Januszewski, M. Kostur, Sailfish: A flexible multi-GPU implemen-
tation of the lattice boltzmann method, Computer Physics Communi-
cations 185 (9) (2014) 2350–2368. doi:10.1016/j.cpc.2014.04.018.
URL https://doi.org/10.1016%2Fj.cpc.2014.04.018

[63] M. Bernaschi, L. Rossi, R. Benzi, M. Sbragaglia, S. Succi, Graphics
processing unit implementation of lattice boltzmann models for flowing
soft systems, Phys. Rev. E 80 (2009) 066707. doi:10.1103/PhysRevE.

80.066707.
URL http://link.aps.org/doi/10.1103/PhysRevE.80.066707

[64] J. Ahrens, S. Jourdain, P. O'Leary, J. Patchett, D. H. Rogers, M. Pe-
tersen, An image-based approach to extreme scale in situ visualiza-
tion and analysis, in: SC14: International Conference for High Per-
formance Computing, Networking, Storage and Analysis, IEEE, 2014.
doi:10.1109/sc.2014.40.
URL https://doi.org/10.1109%2Fsc.2014.40

[65] R. Pal, Effect of droplet size on the rheology of emulsions, AIChE Jour-
nal 42 (11) (1996) 3181–3190.

[66] J. Zhang, D. Vola, I. A. Frigaard, Yield stress effects on rayleigh–benard
convection, J. Fluid Mech. 566 (2006) 389–419. doi:10.1017/

S002211200600200X.

[67] B. I. Shraiman, E. D. Siggia, Heat transport in high-rayleigh-number
convection, Physical Review A 42 (6) (1990) 3650.

[68] G. Ahlers, S. Grossmann, D. Lohse, Heat transfer and large scale dynam-
ics in turbulent rayleigh-bénard convection, Reviews of modern physics
81 (2) (2009) 503.

[69] R. J. Stevens, R. Verzicco, D. Lohse, Radial boundary layer structure
and nusselt number in rayleigh-bénard convection, Journal of Fluid Me-
chanics 643 (2010) 495–507.

[70] F. Chillà, J. Schumacher, New perspectives in turbulent rayleigh-bénard
convection, The European Physical Journal E 35 (7) (2012) 1–25.

39

https://www.degruyter.com/document/doi/10.1515/crll.1908.134.198/html
https://www.degruyter.com/document/doi/10.1515/crll.1908.134.198/html
https://doi.org/10.1016%2Fj.cpc.2014.04.018
https://doi.org/10.1016%2Fj.cpc.2014.04.018
https://doi.org/10.1016/j.cpc.2014.04.018
https://doi.org/10.1016%2Fj.cpc.2014.04.018
http://link.aps.org/doi/10.1103/PhysRevE.80.066707
http://link.aps.org/doi/10.1103/PhysRevE.80.066707
http://link.aps.org/doi/10.1103/PhysRevE.80.066707
https://doi.org/10.1103/PhysRevE.80.066707
https://doi.org/10.1103/PhysRevE.80.066707
http://link.aps.org/doi/10.1103/PhysRevE.80.066707
https://doi.org/10.1109%2Fsc.2014.40
https://doi.org/10.1109%2Fsc.2014.40
https://doi.org/10.1109/sc.2014.40
https://doi.org/10.1109%2Fsc.2014.40
https://doi.org/10.1017/S002211200600200X
https://doi.org/10.1017/S002211200600200X

Simulation Delaunay output files
./delaunayTriggerDir Directory created if ncheckde-

launay> 0 containing a plethora
of files which are described below

arisingLinks File containing triangulation
links created after a plastic event

arisingLinksBoundary File containing links created after
a plastic event one the boundary
of the triangulation

breakingLinks File containing triangulation
links vanishing after a plastic
event

breakingLinksBoundary File containing links vanishing af-
ter a plastic event on the bound-
ary of the triangulation

nBubblesOut Time sequence of the number of
droplets. It can be used to moni-
tor the coalescence events

nLinksOut Time sequence of the number of
links in the Delaunay triangula-
tion

delaunayNowTime#

delaunayPastTime#

delaunayIsoTriggerTime#

Binary files needed for the analy-
sis of plastic events using the pro-
grams that can be compiled from
the source files deltaAnalysis.cu

and dropletStats.cu

./delaunayNoTriggerDir Directory containing only the bi-
nary files described above related
to the frames for which no plastic
event is detected

Table C.12: On the left, list of simulation directories and output files for data related to
the Delaunay triangulation and the detection of plastic events. On the right, the relevant
parameters of the input file.

40

	1 Introduction
	2 Method
	2.1 Multi-component lattice Boltzmann
	2.2 Boundary conditions and rough walls
	2.2.1 Wetting conditions

	2.3 Thermal lattice Boltzmann
	2.4 Delaunay triangulation
	2.5 GPU Implementation

	3 Test case with flat walls
	3.1 Output files options
	3.2 Preparation
	3.2.1 Two-component fluid
	3.2.2 Rheological characterisation
	3.2.3 Temperature field

	3.3 Simulation in convection
	3.3.1 The onset of convection
	3.3.2 Heat transfer analysis

	4 Test case with rough walls
	5 Conclusions
	6 Acknowledgements
	Appendix A Input parameters lists
	Appendix B Dependence of densities 1 and 2 on the coupling parameter G12
	Appendix C Output Files

