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Abstract

TNQMetro is a numerical package written in Python for calculations of fun-
damental quantum bounds on measurement precision. Thanks to the usage
of the tensor-network formalism it can beat the curse of dimensionality and
provides an efficient framework to calculate bounds for finite size system
as well as determine the asymptotic scaling of precision in systems where
quantum enhancement amounts to a constant factor improvement over the
Standard Quantum Limit. It is written in a user-friendly way so that the
basic functions do not require any knowledge of tensor networks.
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Nature of problem.:
Exponential growth of the Hilbert space dimension with the number of particles
involved is a serious roadblock for numerical studies of the potential of quantum
enhanced metrology. It leads to an exponential growth of the computational com-
plexity of even most elementary quantum mechanical calculations, not to mention
more advanced computational tasks, such as the ones required for studying the
metrological potential of quantum states, e.g. computation of the quantum Fisher
information (QFT).

*Corresponding author.
E-mail address: demko@fuw.edu.pl

Preprint submitted to Computer Physics Communications July 19, 2021


https://github.com/kchabuda/TNQMetro

Solution method:

Thanks to the use of the tensor-network formalism, where quantum states are
represented as matrix product states and operators as matrix product operators,
it is possible to obtain an efficient description where space complexity scales lin-
early with the number of elementary particles constituting the physical system.
Furthermore, it is possible to efficiently optimize QFI over quantum states and
operators in those representations, applying the ideas presented in [1]. This allows
to study sophisticated quantum metrological models that are beyond the grasp of
the standard numerical methods utilizing the full Hilbert space representation of
quantum states and operations.
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1. Introduction

Tensor networks are well known in quantum many-body physics as effi-
cient representation for problems with local structure of correlations [I]. In
such problems they allow to bypass the curse of dimensionality (which arise
from the exponential growth of the Hilbert space with the number of parti-
cles) and perform highly efficient calculations which e.g. for one-dimensional
systems scales linearly with number of particles in the system [2]. Their
properties have recently been employed in quantum metrology [3] to provide
a complete framework for efficient calculations of the fundamental bounds on
the precision of estimation of an unknown parameter of quantum dynamics in
presence of locally correlated noise. The framework allows to determine these
bounds not only for the finite many-body systems, but also in the asymptotic
limit when the number of particles goes to infinity. The drawback is that
the framework is not easy to implement, especially for the scientists with-
out previous experience with the tensor networks. To mitigate this problem
and allow a widespread use of the tensor-network based methods in quantum
metrology community we have developed the TNQMetro (Tensor Networks
for Quantum Metrology) package. It is a ready-to-use implementation of
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the framework described in the paper [3] in the form of a Python numerical
package. Despite certain level of complexity of the package, the most basic
and at the same time the most practically useful functions do not require
from the end user any knowledge about tensor networks.

The structure of the paper is simple. After introduction in Sec. [T} we move
to Sec. [2] where we give basic information about one-dimensional tensor net-
works which are the main object of TNQMetro and introduce the notion of
the quantum Fisher information (QFI), optimization of which is the leitmotif
of TNQMetro. Sec[3]is the main section where we introduce the basic func-
tions of TNQMetro and explain how to encode a given quantum dynamics in
the formalism of TNQMetro. In Sec. [4] we present the usage of TNQMetro
to find bounds on precision in a phase estimation problem under different
kinds of noise and provide insight into the performance of the algorithm. We
finish with a short summary in Sec. [5

2. Background

The unique feature of the TNQMetro package is that it solves the problem
of calculation and optimization of the QFI using the tensor-network represen-
tation involving matrix product states (MPS) and matrix product operators
(MPO). They are one-dimensional tensor networks, i.e. chains, and can be
used efficiently to represent vectors and operators in the Hilbert space pro-
vided their entanglement structure is simple enough [4]. The description is
in particularly efficient for states with short range entanglement structures.
In the MPS representation, with open boundary conditions (OBC), a pure
quantum state of N distinguishable d-dimensional particles takes the form:
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so that the complex coefficient for each basis vector is obtained as a product
of N matrices A[n}’" of the dimension D,_; X D,, where at the start and
at the end of the chain there is a covector and a vector, Dy = Dy = 1, so
that the final result is indeed a scalar. A[n| is a tensor of rank 3 which for a
given index j, € {0,...,d — 1}, called a physical index, is a matrix (tensor
of rank 2). The remaining two indices of A[n] are called virtual indices
and are labeled o, € {0,...,D,_1 — 1} and o, € {0,...,D,, —1}. The
largest D, is called the bond dimension and we label it simply as D. It is an



important parameter in the optimization procedure as it determine maximal
entanglement-rank between the two parts of the studied system. Because,
in case of OBC, D, for different n are not the same, the above MPS
is represented in TNQMetro as a list of length N of numpy.ndarrays. If
coefficients of the state are encoded in Python as a list psi then to call

a specific element (A[n]j)a one should type psi[n] [a,b,j].
b
The definition of an MPS in the periodic boundary conditions (PBC)

description reads:

d—1

Wy =3 Tr(A[l]le[2]j2 N .A[N]jN> iz - - in) 2)

J1,J25JN=0

where the presence of the trace makes the first and the last index formally
connected with each other. In typical scenarios, when working with PBC
all D, will be equal. Therefore, when representing MPS with PBC in
TNQMetro, we use a bit more efficient description—one bigger numpy.ndarray.
So if coefficients of the state are encoded in Python as a numpy.ndarray

psi, then to call specific element (A[n]]> one should type psila,b,j,n].
b

In most quantum metrology problems we are interested in behavior of a
system in the limit of large number of particles when the boundary effects
are negligible. Therefore it is not expected that there will be any signifi-
cant difference in the physical results obtained when imposing OBC or PBC.
However, the choice of a particular form of the boundary conditions plays an
important role in tensor-network formalism. Contraction of states with OBC
have much lower computational complexity (both in terms of time and space)
and, moreover, for OBC it is possible to use a convenient canonical form [5].
TNQMetro supports both OBC and PBC, but if there is no physical reason
to choose PBC in the problem considered it is recommended to use OBC for
finite size systems (calculation for thermodynamic limit are by design inde-
pendent of boundary conditions). In fact the basic TNQMetro functions are
doing optimization using states and operators in OBC by default.

Using tensor networks it is possible to represent not only quantum states
but also operators using the matrix product operators (MPO). A general
description is very similar to MPS, and MPO differ from MPS only by an
additional physical index. In particular, when written in the MPO OBC



representation an operator O takes the form:
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In Python we would refer to one of its specific entries (A[n]i) as 0[n] [a,b, j, k]
b

(assuming that all coefficients are saved in a list named 0).

Now, we are going to present a simple example, showing how to transform
a product state [¢) into an MPS with OBC as well as PBC, following the
TNQMetro convention for order of indices as presented above. When dealing
with product states one only needs to reorder the indices in the standard state
description in order to obtain an MPS representation with bond dimension
D = 1. Consider N = 1000 two-level particles, where the state of a single
particle is represented as a point on the equator of Bloch sphere (which is in
a lot of cases a good ansatz for optimization for two-level problems):

1 i0 ON
) = ﬁ(m +e’ 1)) (4)

In this case, the MPS representation corresponds simply to A[n]’ = 1/v/2,
A[n]' = e/\/2 (for each n) and the code in Python for this example is in
the Listing [T}

import numpy as np

N = 1000

theta = np.pi / 2

psi0 = np.array([1, np.exp(1j * theta)]) / np.sqrt(2)

psi_MPS_OBC = psiO[np.newaxis, np.newaxis, :]
psi_MPS_OBC = [psi_MPS_0BC] * N

psi_MPS_PBC = psiO[np.newaxis, np.newaxis, :, np.newaxis]
psi_MPS_PBC = np.tile(psi_MPS_PBC, (1,1,1,N))

Listing 1: Matrix product state (MPS) representation of a state (4] for N =
1000 and 6 = 7/2 with open (OBC) and periodic (PBC) boundary conditions.

A standard paradigm in quantum metrology [0] is to think of some density
matrix pg, which describes initial state of the system, evolving through a
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quantum channel A, (completely positive trace preserving map [7]) which is
parameterized by an unknown parameter ¢ (in this paper we are focusing
on the problems with single unknown parameter). This way the information
about the parameter is encoded in the density matrix at the output of the
channel p, = A,[po]. Now a measurement takes place and using the function
called estimator ¢(x), the value of the unknown parameter is estimated based
on the results of the measurement x.

One of the main goals of quantum metrology and the TNQMetro pack-
age is to find a fundamental bound on the precision of estimation of an
unknown parameter. In order to obtain a fundamental bound on the esti-
mation variance A% one would need to perform an optimization over all
possible initial states, measurements and estimators. Fortunately, when fol-
lowing the frequentist approach to estimation, one may resort to the powerful
quantum Cramér-Rao bound which gives us lower bound on the estimation

variance [, [9]:
1
NG > —, ()
Flpy]

where F[p,] is the QFL. Usually QFI is defined as F'[p,] = Tr(p,L?) where the
Hermitian operator L is called the Symmetric Logarithmic Derivative (SLD)
and it is defined implicitly by the equation p, = 1(p,L + Lp,) in which
pp = Op,/0¢. Here we are using an equivalent definition of the QFI 10 [11]:

Flp,] = mLaXF[pq,,L], Flpy, L] = 2Tr(p,L) — Tr(p@Lz). (6)

which has the form of a quadratic optimization problem and as such this is
easier to cast in the tensor-network formalism. Now, to obtain the funda-
mental bound we have to optimize the QFI over initial state |¢g) (it can be
easily proven that optimal initial state is pure), so the final task takes the
form of double optimization problem:

F = max F[A[[o)]] = maxmax F[A[|y0)], L], (7)

where F[A,[|t)], L], defined in Eq. (6]), is our figure of merit (FoM). It should
be emphasized that the scope of applicability of the package described in this
paper is not restricted to the frequentist approach but may also be used to
obtain fundamental bounds within the Bayesian approach if the optimized
quantity can be put in the form set by Eq. @, (see e.g. the quantum Allan
variance optimization problem [12]).



In realistic metrological scenarios, which take into account the effects of
noise, the asymptotic scaling of the QFI will be linear in N, and the quantum
enhancement will amount to a constant factor improvement |13, [14] over the
Standard Quantum Limit (SQL). As such, QFT will asymptotically be an
extensive quantity. In TNQMetro this fact is used to introduce a procedure
of renormalization and directly obtain asymptotic quantum enhancement
coefficient for such systems.

We should note that TNQMetro has applications beyond the field quan-
tum metrology, thanks to the fact that QFI is linked with fidelity of quantum
states F [15]:

F(pps pote) =1 — %F[pcp]SQ + O<53)7 (8)

and, therefore, can be used in many-body physics studies where state fidelity
is the quantity of interest, e.g. in studies of phase transitions.

3. TNQMetro usage

TNQMetro is a package written in Python 3. It requires two external
packages: NumPy and ncor[l} It can installed from the Python Package Index
by typing the command pip install tngmetro to the Python interpreter.

The main goal of the TNQMetro package is to find fundamental quantum
bounds on precision by maximizing the expression ([7]) The optimization pro-
cess is done iteratively and consists of several layers. The first layer involves
the optimization of FoM over the operator L or vector |t¢y) (to differentiate
between them we call optimization over |¢y) a dual problem and if we want
to emphasize that we are focusing on the dual problem then we label figure
of merit as FoMD). Each of those are expressed as an MPO/MPS and the
optimization takes place on the level of each tensor in the chain separately,
as described in details in the paper [3]. The second level is alternating the
optimization of L and |¢)y) to realize the double optimization problem. The
third level is to check the convergence of the FoM while the bond dimen-
sion of L (Dy) and [¢g) (Dy,) are increased—we start from Dy = Dy, =1
and incrementally increase them until FoM does not change more then some
threshold (by default 1%) neither in Dy, nor in Dy,. For the details of opti-
mization we refer to the paper [3]. TNQMetro has a module structure so it

Incon is a Python 3 implementation of NCON function (written originally in MATLAB)

and is used for tensor-network contraction [16].
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Table 1: Comparison of applications for the four main TNQMetro functions for finite

(fin) approach, alongside their main inputs. We introduce so?/ * as a label for local

superoperator acting before/after unitary parameter encoding (generated locally by h).
Each of those functions have a infinite variant (which gives asymptotic scaling of FoM)—
they have similar names but with inf segment instead of fin.

allows advanced users to have access to each of those stages of optimization
separately but basic functions outputs just the final result of all of those
optimization layers combined.

Our tensor-network methods have two approaches: finite (fin) and infi-
nite (inf). In the finite approach number of sites in the chain of tensors is
finite. Often we associate one site with one particle but the physical interpre-
tation can differ from problem to problem. The infinite approach operates in
the thermodynamic limit when the size of a system N goes to infinity and we
also assume that the whole system is translationally invariant (TT). However
the main assumption is that for larger N the FoM scales linearly with the
size of a system and algorithm returns the asymptotic coefficient (which af-
ter multiplication by the size of a system gives the actual extensive FoM). In
other words infinite approach assumes that because of noise the precision of a
measurement follow the linear scaling with the number of elementary probes
(SQL scaling). It is recommended to check first whether in the model studied,
the FoM scales indeed linearly with the size of a system (£ = const *« N) on
finite network before using the infinite approach—otherwise one may expect
a diverging result in the infinite approach.

For each approach there are four main functions in TNQMetro package—
see Tab.[I] For the brevity of the presentation we focus on the finite approach
but each of those functions has an infinite variant with inf segment in the
name instead of fin. The most general function which returns the fully
optimized FoM is fin_gen(). To specify a physical problem, a user has to
provide information about the quantum channel A, and its derivative (over
estimated parameter ) /'\80 or a second channel A, which operates for the



value of estimated parameter which is shifted by small parameter ¢ (it is then
used to compute a finite difference approximation to the actual derivative).
The important remark is that the quantum channels have to be input in the
form of superoperatorsﬂ In some cases it is important to be able to compute
a bound on precision for the specific state used in experiment. In such a
scenario one can use the function fin_state_gen(). In this case we do not
need information about the quantum channel itself but only about the density
matrix at the end of the quantum channel p,, as well as its derivative p, or
a second density matrix p,. to create a discrete derivative approximation.
Note that in both of the above described functions the superoperators or the
density matrices have to be provided using the MPO representation.

In case of many important physical problems encountered in the field
of quantum metrology (e.g. optical interferometry, Ramsey interferometry,
magnetometry) an adequate description involves TI quantum channels with
unitary parameter encoding. For such problems, there are two dedicated
functions fin() and fin_state() which give respectively the fully opti-
mized FoM or its value for a specific input state. In these scenarios, a quan-
tum channel is specified via layers of TI quantum operations—see Fig.
for an example. Because of the TI property, each layer is specified by one
operation which is repeated within this layer—in the example from Fig.
these are: U,, X (acts on two neighbouring particles) and Y. U, is a special
kind of operation—it is responsible for the unitary encoding of information
about the estimated parameter ¢ onto the state. In the current version of
TNQMetro, there can be only one layer of such operations and we assume
that U, = exp(—ih¢), so the user has to specify only the local generator h
("Hamiltonian”). For the other layers user needs to specify one defining op-
erator in a form of a local superoperatorf’] The final requirement for the user
is to specify the order of those layers in the form of list of operations which
act before the unitary encoding, then specify the generator h and finally
specify the list of operations that act after the unitary encoding—for the ex-
ample from Fig. |1| this would be: [1, h, [X,Y].In case of the fin_state()
function one needs to additionally specify the initial state py as an MPO.

2Superoperator ®, associated with a quantum channel A is a operator which acts on
a vectorized density matrix, so if p = A[pg] then |p) = P4 |po).

3If one of these operations is described by a set of local Kraus operators then the func-
tion Kraus_to_superoperator () can be used to convert this set of local Kraus operators
into a local superoperator.
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Figure 1: A paradigmatic scheme of a quantum metrological problem with a quantum
channel written in a tensor-network compatible formalism. Initial state py evolves through
the quantum channel A, which is parameterized by an unknown parameter ¢ and after
the evolution the measurement IT occurs. The whole channel is translationally invariant so
it acts in the same way on each particle (each horizontal line represents a single particle).
In our description, the quantum channel is constructed from multiple operation layers. In
this example, the first layer represents the unitary encoding of the unknown parameter,
U,, then we have two-particle operations X and at the end one-particle operations Y
representing noise.

Po
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It is worth to mention that these two functions use auxiliary functiong’] to
prepare superoperators and density matrices in the MPO representation for
the whole system from those small building block and then call the more
general functions fin_gen() and fin_state_gen(), already discuss before.
As such, they may be regarded as a kind of interface functions that help
the user provide the input for the FoM optimization procedures in a more
convenient way.

To summarize the description, the fin() and inf () are the key functions
of the TNQMetro package from the point of view of the end user. They
are suitable to deal with the most relevant physical problems and do not
require any knowledge about tensor networks. They allow to calculate the
fundamental bounds for the precision of estimation for finite systems and
the asymptotic scaling for systems following SQL. They have the same main
inputs and require from the user to specify only local superoperators and the
local generator of parameter encoding.

We would like to also mention the function fullHilb(). It has the same
purpose and inputs as £in() but optimize the QFI using standard diagonal-
ization in the full Hilbert space instead of utilizing tensor-network formal-
ism. It can be used to benchmark the results obtained via tensor-network
procedures but only for very small systems—not only because of the need of
diagonalization of large density matrix representing the quantum state but
also because the description of the quantum channel via the corresponding
superoperator requires square of the amount of memory that a density matrix
takes.

4. Example: phase estimation

In this section we are going to present a practical application of TNQMetro
to the problem of quantum phase estimation. It is a paradigmatic problem
capturing the essence of all interferometric-like experiments [I7]. One can
think of e.g. N photons in the Mach—Zehnder interferometer, N two-level
atoms in the Ramsey interferometry experiment or multiple spin—% particles
sensing magnetic field. Each particle is a two level system, with states |0) and
|1) on which a relative phase difference ¢ is being imprinted. Hence, if a par-
ticle starts in the state |1)y) = \%(!0> +|1)), and there is no noise, then at the

4fin_create_channel(), fin_create_channel_derivative() and
channel _acting_on_operator().
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end of experiment the state of the particle becomes |1),,) = \% (10) + e~ 1))
(up to an irrelevant global phase factor). This is equivalent to saying that a
unitary operator U, = exp(—ih¢), where the Hermitian generator (”Hamil-
tonian”) is h = |1)(1|, acts on each particle. Given N particles, our goal will
be to find the fundamental bound on the precision of estimation of ¢, by
optimizing the QFT over all possible initial states.

4.1. Phase estimation without noise
The simplest case is when there is no noise. Then, the corresponding
quantum channel A, can be described as:

N
pe = Aglpo] = e Heppee, H = " hl, 9)

where A" is the generator acting on the nth particle—in this case the quan-
tum channel on Fig. [1) would consist only of U, operations. QFI for this
scenario can be calculated analytically, and the optimal initial state for the
whole system is the NOON/GHZ state [I8, [19] for which F' = N%. But even
for such simple case direct numerical optimization of the QFI using standard
methods (diagonalization in full Hilbert space) is possible only for up to 20
qubits on a standard PC. Using TNQMetro we are capable of optimize QFI
for > 1000 qubits. To optimize the QFI for a particular N (e.g. N = 1000)
we use the fin() function as presented in the Listing 2] This function out-
puts: the optimal value of QFI (F), matrix of values of QFI as a function
of bond dimensions (F_m), the optimal SLD in MPO representation (L_MPO)
and the optimal state in the MPS representation (psi_MPS). For N = 1000
the £in() returns F = 994540 which is in perfect agreement with the analyt-
ical result F' = N? taking into account that by default the relative precision
of this optimization is set to be around 1%.

4.2. Phase estimation with uncorrelated noise

The next case, on which we are going to focus, is phase estimation in
presence of uncorrelated dephasing noise. The effect of dephasing noise is
the loss of coherence between parts of superposition. On the level of density
matrices it causes the diminishing of the off-diagonal elements. For such a
meteorological problem the quantum channel A, can be described as:

o = Nolpo] = e HPA[poleitl?,  H = Zh[” (10)
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import numpy as np

import tngmetro

= 1000 # number of sites in tensor—network

= 2 # dimension of local Hilbert space
np.arange(d)

np.diag(h) # local generator ("Hamiltonian')

, F_m, L_MPO, psi_MPS = tngmetro.fin(N, [], h, [])

N
d
h
h
F

Listing 2: Optimization of QFI using TNQMetro for N = 1000 qubits with
OBC for the problem of phase estimation without noise.

where A denotes the part of the channel responsible for the effects of deco-
herence. In the case of dephasing noise it has the form:

Alpol =3 Gloolk) e~ 251" |5k (11)

Jk

where |j) = |71, Jo, - - ., jn) (ji € {0,1}), is a basis states (A" [j) = j. |i)), a1
is a parameter describing the strength of the uncorrelated noise, whereas || - ||
is the standard vector norm for the vectors representing a given basis states
ie. j= (ji,jo,--..jn)" for [j).

In this case the quantum channel in Fig. [I] would consist of unitary
U, operations and a single-particle operations Y representing uncorrelated
dephasing—see the paper [3] for the derivation of the Y superoperator from
the Eq. . For this problem there is no known analytical solution, but
there exist methods to obtain bounds on the QFI (tight in the asymptotic
regime) [13, [14] which give F//N = e~ /(1 — e~") for the optimal state. For
the problems with dephasing noise, the QFI follows the SQL scaling (it is
linear in ) so apart from the computation for finite particle numbers we can
also use the inf () function to directly calculate the asymptotic coefficient of
the QFI—see Listing |3| for the code to calculate QFI for N = 1000 as well as
the asymptotic scaling for the phase estimation in the presence of uncorre-
lated noise of strength parameter ¢; = 1. Comparing the calculated asymp-
totic coefficient F_i= 0.574 with the exact value FF =e /(1 —e™!) ~ 0.582
we see that it is about 1.4% bellow which remains within the expected tol-
erance regime taking into account the 1% relative precision imposed during
the optimization process. Result from the finite approach is about 5% bellow

13



import numpy as np

import scipy.linalg

import tngmetro

N = 1000 # number of sites in tensor-network

d = 2 # dimension of local Hilbert space

h = np.arange(d)

h = np.diag(h) # local generator ("Hamiltonian')

cl = 1. # uncorrelated noise strength parameter

aux = np.kron(h, np.eye(d)) - np.kron(np.eye(d), h)

# Y - local superoperator for uncorrelated noise

Y = scipy.linalg.expm(-cl * aux @ aux / 2)

F_f, F_.m_f, L_MPO_f, psi_MPS_f = tngmetro.fin(N, [], h, [Y])
F_i, F_m_i, L_MPO_i, psi_MPS_i = tngmetro.inf([], h, [Y])

Listing 3: Optimization of QFT using TNQMetro for N = 1000 qubits with
OBC and in the asymptotic regime for the problem of phase estimation with
uncorrelated noise.

the exact asymptotic value indicating that in order to reach the asymptotic
limit, N has to be even larger than 1000.

4.8. Phase estimation with correlated noise

Now, we take into account the possibility of correlation in the noise. We
are going to focus on the case when there are correlations between noise
acting on the particles that ate the nearest neighbours. In order to take the
correlations into account we have to use a more general description of the
dephasing channel:

Aloo] =" (ilpolk) e 20797002 58] (12)
j.k

where C' is a noise correlation matrix:

C1 Co 0O ... 0
Cy C1 Co

C=10 & a 7 (13)
0 C1
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where ¢; and ¢y are the parameters describing respectively the strength of
uncorrelated and correlated parts of the noise. See that in the top-right and
bottom-left corner of the matrix there are zeros—this is corresponds to the
OBC case, while for PBC we would put there c¢;. Of course, we could add
even longer range correlations in the noise by adding c3 on the next super- and
subdiagonal but this makes bond dimension considerably bigger and increases
the complexity of optimization. This case is depicted in Fig. |1l where Y is
the single-particle operations describing uncorrelated part of the noise and
X is the two-particle operation describing the effect of correlated part of the
noise—the full derivation of the Y and X superoperators is presented in [3].
Tensor based approach is right now the only method which can properly take
into account the effects of correlations in noise and optimize the QFI for large
systems. In [3] the full analysis of the effects of correlations on the QFI in the
phase estimation is given in the context of magnetic field sensing—Fig. 2a
from [3] depicts how finite regime results approach the asymptotic value with
increasing N, when calculated using a prototype version of the TNQMetro
(written in MATLAB) and how the other state-of-the-art methods fail to
provide satisfactory results in this case. The exact code allowing to calculate
QFT for N = 1000 and the asymptotic coefficient for this case with noise
parameters ¢; = 1 and ¢z = 0.1 is provided in the Listing [4]

4.4. Performance

Bond dimension and the length of the chain (for finite approach) are the
main factors impacting the time and memory complexity of the algorithm.
Thanks to the use of tensor-network based methods the complexity scales
roughly linearly with length of the chain N (in contrast to exponential scal-
ing of standard full Hilbert space methods). In Fig.|2[we show how much time
the optimization takes as a function of the chain length N, for the phase es-
timation example with dephasing noise (¢; = 1, ¢co = 0.1 and ¢3 = 0.01). We
present results when noise is: uncorrelated, correlates two nearest particles
or correlates three nearest particles. To ensure that the observed differences
results from the optimization process and are not affected by potentially in-
creasing bond dimensions, we set that all calculations (for finite approach) to
end up with Dy = 2 and Dy, = 3 (which in this case resulted in relative im-
precision of QFT to be under 4%). When we fit straight lines to the data (in
log-log scale) the slopes are: 1.05 (uncorrelated noise), 1.04 (noise which cor-
relates two nearest particles) and 1.19 (noise which correlates three nearest
particles). The first two cases are very close to perfectly linear scaling (slope
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import numpy as np

import scipy.linalg

import tngmetro

N = 1000 # number of sites in tensor-network

d = 2 # dimension of local Hilbert space

h = np.arange(d)

h = np.diag(h) # local generator ("Hamiltonian')
cl = 1. # uncorrelated noise strength parameter

c2 = 0.1 # correlated noise strength parameter
aux = np.kron(h, np.eye(d)) - np.kron(np.eye(d), h)
# Y - local superoperator for uncorrelated notise

Y = scipy.linalg.expm(-cl * aux @ aux / 2)

# X - local superoperator for correlated noise

X = np.kron(aux, aux)

X = scipy.linalg.expm(-c2 * X)

F_f, F_.m_f, L_MPO_f, psi_MPS_f = tngmetro.fin(N, [], h, [X,Y])
F tngmetro.inf ([], h, [X,Y])

_i, Fm_i, L_MPO_i, psi_MPS_i

Listing 4: Optimization of QFI using TNQMetro for N = 1000 qubits with
OBC and in the asymptotic regime for the problem of phase estimation with
correlated noise.

equal to 1). The last one shows some departure which we attribute to the
fact that in this case matrices are large enough that garbage collection has
to occur frequently and has substantial impact on the time of optimization.
The second most important factor impacting performance of the algo-
rithm is the bond dimension D. Each MPS/MPO has its own bond dimension—
the bigger the more correlated state/operator it can describe. Bond dimen-
sions have significant impact on memory complexity of the algorithm. The
most significant contribution to the memory complexity comes from the two
tensors which we have to create at the beginning of each round of optimiza-
tions of the chain of tensors (involving operator L or vector |1)y)). Those two
Wmmmcmmmwdhm@[ﬁ&DiD%+[&L%xN¥—Uebmmﬁi(brOBCﬁ

°The factor (N — 1) could be omitted but this would significantly increase time com-
plexity of the algorithm.
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Figure 2: Time of QFI optimization ¢ for phase estimation with dephasing noise as a
function of the chain length N. Results for three cases: uncorrelated noise (blue), noise
which correlates two nearest particles (orange) and noise which correlates three nearest
particles (green). Dots represent results for the finite chain length approach. Straight
horizontal lines show how much time the infinite approach takes to optimize QFI with
comparable precision.
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can be a bit less because size of tensors can vary between sites). D, and
Dj are bond dimensions for the MPO representing respectively quantum
channel and its derivative (both as superoperators). For the case of T1 chan-
nels with unitary parameter encoding (last row in Tab. : D; = 2Dy and
Dy =[], D where D' is the number of non-zero singular values that will
appear when considering the s-particle local operation—the upper bound on
D®) is @®=1 but e.g. for dephasing noise D® = (2d —1)*~". Time com-
plexity is determined mainly by tensor contractions but because of complex
network of contractions of different tensors the detailed analysis of the im-
pact of bond dimensions on the time complexity is beyond the scope of this

paper.
5. Summary

TNQMetro is easy to use and versatile numerical package which can be
used in a variety of metrological problems to calculate fundamental bound on
the precision of estimation. Thank to the usage of tensor networks it allows
to study complex quantum channels and large many-body quantum systems.
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