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Abstract

We describe the new version 4.0 of the code hfbtho that solves the nuclear Hartree-Fock-Bogoliubov problem by using the
deformed harmonic oscillator basis in cylindrical coordinates. In the new version, we have implemented the restoration of
rotational, particle number, and reflection symmetry for even-even nuclei. The restoration of rotational symmetry does not
require using bases closed under rotation. Furthermore, we added the SeaLL1 functional and improved the calculation of
the Coulomb potential. Finally, we refactored the code to facilitate maintenance and future developments.
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PROGRAM SUMMARY
Program title: hfbtho v4.0
CPC Library link to program files: *
Licensing provisions: GPLv3
Programming language: Fortran 2003
Journal reference of previous version: R. N. Pérez, N. Schunck,
R.-D. Lasseri, C. Zhang and J. Sarich, Comput. Phys. Commun.
220 (2017) 363
Does the new version supersede the previous version: Yes
Reasons for the new version: This version adds new capabilities to
restore broken symmetries and determine corresponding quantum
numbers of even-even nuclei
Summary of revisions:

1. Angular momentum projection for even-even nuclei in a
deformed basis;

2. Particle number projection for even-even nuclei in the quasi-
particle basis;

3. Implementation of the SeaLL1 functional;
4. Expansion of the Coulomb potential onto Gaussians;
5. MPI-parallelization of a single hfbtho execution;
6. Code refactoring.

∗Corresponding author.
E-mail address: schunck1@llnl.gov

Nature of problem: hfbtho is a physics computer code that is used
to model the structure of the nucleus. It is an implementation
of the energy density functional (EDF) approach to atomic nu-
clei, where the energy of the nucleus is obtained by integration
over space of some phenomenological energy density, which is
itself a functional of the neutron and proton intrinsic densities. In
the present version of hfbtho, the energy density is derived ei-
ther from the zero-range Skyrme or the finite-range Gogny effec-
tive two-body interaction between nucleons. Nuclear superfluid-
ity is treated at the Hartree-Fock-Bogoliubov (HFB) approxima-
tion. Constraints on the nuclear shape allow probing the poten-
tial energy surface of the nucleus as needed, e.g., for the descrip-
tion of shape isomers or fission. A local scale transformation of
the single-particle basis in which the HFB solutions are expanded
provides a tool to properly compute the structure of weakly-bound
nuclei. Restoration of the rotational, particle number, and reflec-
tion symmetry for even-even nuclei enables recovering the quan-
tum numbers that are lost at the HFB approximation.
Solution method: The program uses the axial harmonic oscilla-
tor (HO) or the transformed harmonic oscillator (THO) single-
particle basis to expand quasiparticle wave functions. It iteratively
diagonalizes the HFB Hamiltonian based on generalized Skyrme-
like energy densities and zero-range pairing interactions or the
finite-range Gogny force until a self-consistent solution is found.
Lagrange parameters are used to impose constraints on HFB solu-
tions, and their value is updated at each iteration from an approxi-
mation of the quasiparticle random phase approximation (QRPA)
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matrix. Symmetry restoration is implemented through standard
projection techniques. Previous versions of the program were pre-
sented in [1-3].
Additional comments including restrictions and unusual features:
Axial and time-reversal symmetries are assumed in HFB calcula-
tions; y-simplex symmetry and even particle numbers are assumed
in angular momentum projection.
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1. Introduction

Over the past decades, the nuclear energy density func-
tional (EDF) framework has become a tool of choice for
describing the properties of nuclear structure and reactions
across the entire nuclide chart [1, 2, 3, 4]. It closely resem-
bles density functional theory (DFT), a method widely used
in condensed matter physics and quantum chemistry, inso-
far that it employs the mean-field approximation to map a
complex many-body problem onto a computationally feasi-
ble one-body problem. In nuclear physics, the EDF frame-
work is typically realized at two distinct levels. The single-
reference energy density functional (SR-EDF) method in-
troduces relatively simple functionals of nucleon densities
and currents, describing the nuclear ground states in terms
of symmetry-breaking mean-field wave functions. Most of
the EDF-based computer programs available on the market
correspond to different flavors of the SR-EDF method; see,
e.g., [5, 6, 7, 8, 9, 10] for some selected examples. How-
ever, a more advanced description requires the inclusion of
collective correlations related to the restoration of broken
symmetries and quantum shape fluctuations. This is the
basic tenet of the multi-reference energy density functional
(MR-EDF) method.

The previous versions of the hfbtho program are largely
implementations of the SR-EDF formalism in the axial har-
monic oscillator (HO) basis or the transformed harmonic
oscillator (THO) basis [11, 12, 5]. The core of the program
is a solver for the self-consistent Hartree-Fock-Bogoliubov
(HFB) equation. While the initial release [11] was restricted

to even-even nuclei with Skyrme EDFs and contact pair-
ing interactions, more recent versions expanded the theo-
retical framework significantly: to describe parity-breaking
shapes, nuclei with odd number of particles, and nuclei
at finite temperature [12]; to solve the HFB equation for
the finite-range Gogny potentials, compute the collective
mass tensor and zero-point energy corrections, regularize
the pairing interaction, and compute properties of fission
fragments [5].

Among the publicly available codes, MR-EDF capabil-
ities include the restoration of particle number symmetry in
the canonical basis in hfbtho (all versions) and the restora-
tion of rotational, isospin, particle-number, and reflection
symmetries of HFB states in hfodd 3.06h [13]. Note that
hfodd projects either on total particle number A or total
isospin projection Tz but not separately on the number of
protons Z and neutrons N. Compared to previous versions
of hfbtho, the present release contains a much more ex-
panded MR-EDF toolkit for symmetry restoration that is
tailored for large-scale applications of the MR-EDF frame-
work. Specifically, the version 4.0 of hfbtho implements
the restoration of rotational, particle number, and reflec-
tion symmetry for even-even nuclei. These restorations
can be performed either independently (e.g., either the ro-
tational and reflection symmetries only or the particle num-
ber symmetry only), or they can be combined in the joint
restoration of all three types of quantum numbers (angular
momentum, particle number, and parity). In addition, our
implementation of the angular momentum restoration by-
passes the need to use rotationally-invariant, closed bases.
Symmetry restoration can now be performed in the deformed
(stretched) HO basis typically employed in large-scale cal-
culations of potential energy surfaces.

In Section 2, we review the modifications introduced in
this version of the program. In Section 3, we give several
numerical benchmarks for the new capabilities. Finally, in
Section 4, we discuss the new options available in the input
file and explain how to run the code.

2. Modifications introduced in version 4.0

In this section, we present the new features added to the
code between version 3.00 and 4.0.

2.1. Restoration of Broken Symmetries

A module for restoration of broken symmetries is the
main new feature of version 4.0. In the following, we de-
scribe the underlying theoretical framework in detail.

2.1.1. General Framework
The HFB states break several symmetries of the nu-

clear Hamiltonian and consequently do not carry the as-
sociated good quantum numbers. Since its first published
version, the hfbtho program has implemented the particle
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number restoration in the canonical basis for even-even nu-
clei. The current version includes a new module for the si-
multaneous restoration of rotational, particle number, and
reflection symmetry of the HFB states for even-even nuclei
[1, 14, 15].

The main ingredient of symmetry-restoring calculations
are kernels of the form

O
JMK;NZ;p
qq = 〈Φq|ÔP̂J

MK P̂N P̂Z P̂p|Φq〉 . (1)

Here, |Φq〉 is an HFB state at point q in the collective space
defined by the set of active constraints on the HFB solution,
while Ô is either the identity operator for the norm overlap
kernel, OJMK;NZ;p

qq ≡ N
JMK;NZ;p
qq , or the Hamiltonian opera-

tor for the Hamiltonian kernel, OJMK;NZ;p
qq ≡ H

JMK;NZ;p
qq .

The operator that projects an HFB state onto a state
with good values of angular momentum J reads

P̂J
MK =

2J + 1
16π2

∫
dΩ DJ∗

MK(α, β, γ)R̂(α, β, γ), (2)

where α, β, and γ are the usual Euler angles,
∫

dΩ ≡∫ 2π
0 dα

∫ π

0 dβ sin β
∫ 4π

0 dγ, and DJ
MK(α, β, γ) is the Wigner

D-matrix [16]. The coordinate-space rotation operator reads

R̂(α, β, γ) = e−iαĴz e−iβĴy e−iγĴz . (3)

Note that the conservation of number parity [17] allows re-
ducing the integration interval over γ to [0, 2π]. This has no
practical consequence in hfbtho since integrals over Euler
angles α and γ are trivial and can be carried out analyti-
cally due to the axial symmetry. In addition, the current
version of hfbtho computes kernels (1) for the identity and
the Hamiltonian operator only. For such scalar operators,
only the M = K = 0 components of the total angular mo-
mentum do not vanish identically.

Furthermore, the operator that projects an HFB state
onto a state with a good number of particles reads

P̂X =
1

2π

∫ 2π

0
dϕ ei(X̂−X0)ϕ, (4)

where X = N (Z) is a label referring to neutrons (protons),
X0 = N0 (Z0) is the desired number of neutrons (protons),
and X̂ = N̂ (Ẑ) is the neutron (proton) number operator. In
practice, the integration interval over the gauge angle ϕ can
be reduced to [0, π] using the property of a good number
parity of an HFB state. The resulting integral is further dis-
cretized and particle number projection is performed using
the Fomenko expansion [18]

P̂X =
1

Nϕ

Nϕ∑
lτ=1

ei(X̂−X0)ϕlτ , ϕlτ =
π

Nϕ
lτ, (5)

where τ = n (p) for neutrons (protons) and Nϕ is the corre-
sponding number of gauge angle points which may in prin-
ciple be different for neutrons and protons.

Finally, the operator that projects an HFB state onto a
state with good parity reads

P̂p =
1
2

(
1 + pΠ̂

)
, (6)

where p = +1 (−1) for positive (negative) parity and Π̂ is
the standard parity operator [19].

Combining the expressions for projection operators and
assuming the same number of gauge angle points for neu-
trons and protons, the kernels (1) can be written as

O
J;NZ;p
qq =

2J + 1
2

∫ π

0
dβ sin β dJ∗

00(β)

×
1

N2
ϕ

Nϕ∑
ln=1

Nϕ∑
lp=1

e−iN0ϕln e−iZ0ϕlp

×
1
2

[
Oqq(β, ϕln , ϕlp ) + pOπqq(β, ϕln , ϕlp )

]
,

(7)

with the rotated kernels

Oqq(β, ϕln , ϕlp ) ≡ 〈Φq|Ôe−iβĴy eiϕln N̂eiϕlp Ẑ |Φq〉 , (8a)

OΠ
qq(β, ϕln , ϕlp ) ≡ 〈Φq|Ôe−iβĴy eiϕln N̂eiϕlp ẐΠ̂|Φq〉 . (8b)

The expression for kernels can be further simplified by us-
ing the symmetries of an HFB state. In particular, the anti-
linear y-time-simplex operator Ŝ T

y = Π̂T̂ e−iπĴy fixes a phase
through a symmetry transformation [20, 21, 15]

Ŝ T
y |Φq〉 = |Φq〉 . (9)

Using the time-reversal symmetry, we then obtain the fol-
lowing relation for the rotated kernels

OΠ
qq(β, ϕln , ϕlp ) = Oqq(π − β, ϕln , ϕlp ). (10)

This greatly facilitates calculations because only the ro-
tated kernels Oqq(β, ϕln , ϕlp ) need to be evaluated explic-
itly. Moreover, since only diagonal kernels are considered
in this version of the code, the second subscript q can be
dropped. Therefore, the rotated kernels will simply be de-
noted as Oq(β, ϕln , ϕlp ).

The symmetry-restoring framework enables us to ex-
pand an HFB state |Φq〉 into a basis of states with good
quantum numbers (angular momentum, particle number,
parity) and to extract their respective coefficients [17]. For
example, in the case of the particle number decomposition,
we can write

|Φq〉 =
∑

N

∑
Z

cNZ
q |NZ〉 , (11)

and the coefficients satisfy

∣∣∣cNZ
q

∣∣∣2 =
1

N2
ϕ

Nϕ∑
ln=1

Nϕ∑
lp=1

e−iN0ϕln e−iZ0ϕlpOq(0, ϕln , ϕlp ), (12)
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with
∑

N
∑

Z |cNZ
q |

2 = 1. Similarly, a decomposition onto
states with good angular momenta and parity implies that
the coefficients satisfy∣∣∣cJ;p

q
∣∣∣2 =

2J + 1
2

∫ π

0
dβ sin β dJ∗

00(β)

×
1
2

[
Oq(β, 0, 0) + pOq(π − β, 0, 0)

]
,

(13)

with
∑

J
∑

p |c
J;p
q |

2 = 1. Note that only collective states
obeying the natural spin-parity selection rule, p = (−1)J ,
are accessible within the present model. The coefficients
of the simultaneous expansion onto states with good angu-
lar momentum, particle number, and parity are given by
Eq. (7), i.e., |cJ;NZ;p

q |2 = O
J;NZ;p
qq . They satisfy the sum

rule
∑

J
∑

p
∑

N,Z |c
J;NZ;p
q |2 = 1. Finally, the energy of a

symmetry-restored state is calculated as

EJ;NZ;p
q =

H
J;NZ;p
q

N
J;NZ;p
q

. (14)

2.1.2. Bases Not Closed Under Rotation
Numerous implementations of the symmetry-restoring

framework (see Refs. [3, 4, 22] and references therein for
some recent results) relied on the expansion of HFB states
in spherical HO bases that are closed under rotation. How-
ever, such an approach becomes computationally intractable
when describing extremely heavy or deformed configura-
tions like those appearing in studies of nuclear fission or the
structure of superheavy nuclei. In these cases, numerical
convergence can typically be achieved only by expanding
HFB states in deformed HO bases with incomplete oscil-
lator shells. However, such bases are not closed under ro-
tation and the conventional symmetry-restoring framework
is consequently inapplicable1.

The elegant solution to this hurdle was proposed almost
three decades ago by L. Robledo [26], who reformulated
Wick’s theorem [27, 28] to encompass bases not closed
under rotation. The first implementations of the modified
symmetry-restoring framework were reported only very re-
cently [29, 30]. Version 4.0 of hfbtho is the first one to
contain this capability. In particular, for the case of bases
not closed under rotation, the rotated norm overlap kernel
for particle type τ = n, p reads

N
(τ)
q (x(τ)) =

√
det

[
A(τ)

q (x(τ))
]
det

[
R(x(τ))

]
, (15)

1Alternatively, symmetry restoration can also be performed with HFB
states obtained in a coordinate-space representation [2]. To avoid the large
computational cost associated to spatial rotations of HFB states during the
angular momentum projection, the relevant kernels are often computed in
the canonical basis. This can lead to similar difficulties as using incom-
plete HO bases; see [23, 24, 25] for a discussion.

where x(τ) ≡ {β, ϕlτ }, R(x(τ)) is the total rotation matrix, and
the A(τ)

q (x(τ)) matrix reads

A(τ)
q (x(τ)) = U(τ)T

q
[
RT (x(τ))

]−1U(τ)∗
q +V (τ)T

q R(x(τ))V (τ)∗
q . (16)

Here, the Bogoliubov matrices U(τ)
q , V (τ)

q correspond to the
HFB solution |Φq〉 for particle τ. Without breaking the
isospin symmetry, the full rotated norm overlap kernel is
separable in isospin

Nq(β, ϕln , ϕlp ) = N
(τ=n)
q (β, ϕln ) × N (τ=p)

q (β, ϕlp ). (17)

Moreover, in the case of a basis closed under rotation we
have | det[R(x(τ))]| = 1, and the expression (15) reduces to
the conventional Onishi formula [31].

Furthermore, the rotated density and pairing tensors for
particle type τ read

ρ(τ)
q (xτ) = R(x(τ))V (τ)∗

q
[
A(τ)

q (x(τ))
]−1

V (τ)T
q , (18a)

κ(τ)
q (x(τ)) = R(x(τ))V (τ)∗

q
[
A(τ)

q (x(τ))
]−1

U(τ)T
q , (18b)

κ∗(τ)
q (x(τ)) = −R∗(x(τ))U(τ)∗

q
[
A(τ)

q (x(τ))
]−1

V (τ)T
q . (18c)

The rotated Hamiltonian kernel Hq(β, ϕln , ϕlp ) is a func-
tional of the rotated density and pairing tensors; see Section
2.1.6 and Refs. [1, 2] for more details.

2.1.3. Structure of Matrices in the y-Simplex Basis
The rotation by an angle β about the y-axis of the ref-

erence frame breaks the axial symmetry of HFB solutions.
Computations can thus be facilitated by using a non-axially-
symmetric, computationally-efficient representation of the
Bogoliubov matrices U(τ)

q and V (τ)
q . This is achieved by in-

troducing the y-simplex basis.

The y-simplex Basis. The HO basis states |α〉 are character-
ized by the set of quantum numbers {α} = {nαz , n

α
⊥,Λ

α,Σα},
where nαz and nα⊥ represent the number of quanta (nodes)
in the z− and the r⊥− direction, respectively, while Λα and
Σα(≡ |↑〉 , |↓〉) denote the components of the orbital angular
momentum and of the spin along the z−axis. Starting from
these initial basis states, it is straightforward to show that
the linear combinations

|nαz nα⊥Λα; +〉 =
1
√

2

[
i |nαz nα⊥Λα ↑〉 + |nαz nα⊥−Λα ↓〉

]
,

|nαz nα⊥Λα;−〉 =
1
√

2

[
|nαz nα⊥Λα ↑〉 + i |nαz nα⊥−Λα ↓〉

]
,

(19)

are eigenstates of the y-simplex operator R̂y with eigenval-
ues of +i and −i, respectively. The y-simplex operator R̂y

is defined as a rotation around the y-axis by an angle π,
followed by the parity transformation Π̂

R̂y = Π̂ exp(−iπĴy). (20)

The y-simplex basis can be used to reduce the computa-
tional cost by exploiting symmetries of the problem at hand.
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Bogoliubov Matrices. In the y-simplex basis, the Bogoli-
ubov matrices acquire the block structure

U(τ)
q =

(
u(τ)

q 0
0 u(τ)∗

q

)
, V (τ)

q =

(
0 −v(τ)∗

q
v(τ)

q 0

)
. (21)

In this expression, the basis states are organized in two
blocks: the first block comprises all states with an eigen-
value +i, while the second block comprises all states with
an eigenvalue −i. The transformation between the compo-
nents k of Bogoliubov matrices in the y-simplex basis and
the HO basis reads

u(τ)[nαz ,n
α
⊥,Ω

α− 1
2 ]

q,k = (+1)U(τ)[nαz ,n
α
⊥,Ω

α− 1
2 ,Σ

α=+ 1
2 ]

q,k , (22a)

u(τ)[nαz ,n
α
⊥,−Ωα− 1

2 ]
q,k = (+i)U(τ)[nαz ,n

α
⊥,Ω

α+ 1
2 ,Σ

α=− 1
2 ]

q,k , (22b)

v(τ)[nαz ,n
α
⊥,Ω

α− 1
2 ]

q,k = (−1)V (τ)[nαz ,n
α
⊥,Ω

α− 1
2 ,Σ

α=+ 1
2 ]

q,k , (22c)

v(τ)[nαz ,n
α
⊥,−Ωα− 1

2 ]
q,k = (−i)V (τ)[nαz ,n

α
⊥,Ω

α+ 1
2 ,Σ

α=− 1
2 ]

q,k . (22d)

Using these expressions, one can construct U(τ)
q and V (τ)

q
matrices in the y-simplex basis from the HFB solutions ex-
pressed in the HO basis.

Rotation Matrix. The total rotation operator corresponds
to the combination of a spatial rotation for an angle β and a
gauge space rotation for an angle ϕlτ . In the y-simplex ba-
sis, the rotation matrix acquires the following block struc-
ture

R(x(τ)) = eiϕlτ

(
r(β) 0

0 r∗(β)

)
, (23)

where the matrix elements rαγ(β) of the r(β) matrix read

rαγ(β) =
1
2

cos
(β
2

)
〈nαz nα⊥Λα|e−iβL̂y |nγz nγ⊥Λγ〉

+
1
2

cos
(β
2

)
〈nαz nα⊥−Λα|e−iβL̂y |nγz nγ⊥−Λγ〉

+
i
2

sin
(β
2

)
〈nαz nα⊥Λα|e−iβL̂y |nγz nγ⊥−Λγ〉

+
i
2

sin
(β
2

)
〈nαz nα⊥−Λα|e−iβL̂y |nγz nγ⊥Λγ〉 .

(24)

Matrix elements of the e−iβL̂y operator are evaluated using
the prescription of Ref. [32].

Calculation of Overlaps. Using the block structure of the
Bogoliubov matrices and of the total rotation matrix, we
can recast the A(τ)

q (x(τ)) matrix in the y-simplex basis as

A(τ)
q (x(τ)) =

(
a(τ)++

q (x(τ)) 0
0 a(τ)−−

q (x(τ))

)
, (25)

where

a(τ)++
q (x(τ)) = e−iϕlτ a(τ)

Uq
(β) + eiϕlτ a(τ)

Vq
(β), (26a)

a(τ)−−
q (x(τ)) = e−iϕlτ

[
a(τ)

Uq
(β)

]∗
+ eiϕlτ

[
a(τ)

Vq
(β)

]∗
, (26b)

and

a(τ)
Uq

(β) =
[
u(τ)

q
]T [

rT (β)
]−1u(τ)∗

q , (27a)

a(τ)
Vq

(β) =
[
v(τ)

q
]T r∗(β)v(τ)∗

q . (27b)

The rotated norm overlap kernel then reads

N
(τ)
q (x(τ)) =

√
det

[(
n(τ)++

q (x(τ)) 0
0 n(τ)−−

q (x(τ))

)]
, (28)

with

n(τ)++
q (x(τ)) = eiϕlτ a(τ)++

q (x(τ))r(β), (29a)

n(τ)−−
q (x(τ)) = eiϕlτ a(τ)−−

q (x(τ))r∗(β). (29b)

Since the two y-simplex blocks yield identical overlaps, the
sign of the total overlap is fixed by the sign of any of them.

Rotated Density and Pairing Tensors. In the y-simplex ba-
sis, the density matrix acquires a diagonal block structure

ρ(τ)
q (x(τ)) =

(
ρ(τ)++

q (x(τ)) 0
0 ρ(τ)−−

q (x(τ))

)
, (30)

where

ρ(τ)++
q (x(τ)) = eiϕlτ r(β)v(τ)

q
[
a(τ)−−

q (x(τ))
]−1

v(τ)†
q , (31a)

ρ(τ)−−
q (x(τ)) = eiϕlτ r∗(β)v(τ)∗

q
[
a(τ)++

q (x(τ))
]−1

v(τ)T
q . (31b)

On the other hand, the pairing tensor acquires an off-diagonal
block structure

κ(τ)
q (x(τ)) =

(
0 κ(τ)+−

q (x(τ))
κ(τ)−+

q (x(τ)) 0

)
, (32)

where

κ(τ)+−
q (x(τ)) = −eiϕlτ r(β)v(τ)

q
[
a(τ)−−

q (x(τ))
]−1

u(τ)†
q , (33a)

κ(τ)−+
q (x(τ)) = eiϕlτ r∗(β)v(τ)∗

q
[
a(τ)++

q (x(τ))
]−1

u(τ)T
q . (33b)

Similarly,

κ∗(τ)
q (x(τ)) =

(
0 κ∗(τ)+−

q (x(τ))
κ∗(τ)−+

q (x(τ)) 0

)
, (34)

with

κ∗(τ)+−
q (x(τ)) = −e−iϕlτ r∗(β)u(τ)∗

q
[
a(τ)++

q (x(τ))
]−1

v(τ)T
q , (35a)

κ∗(τ)−+
q (x(τ)) = e−iϕlτ r(β)u(τ)

q
[
a(τ)−−

q (x(τ))
]−1

v(τ)†
q . (35b)
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2.1.4. Making Use of the Symmetries
The expansion in the y-simplex basis enables us to re-

duce the computational cost by making all matrices block-
diagonal. The computational cost can further be reduced by
exploiting the symmetries in rotational angle β and gauge
angle ϕlτ :

• For reflection-symmetric configurations (q30 = 0),
all quantities are symmetric around β = π/2. Con-
sequently, the projection interval can be reduced to
β ∈ [0, π/2]. This feature is automatically imple-
mented for all reflection-symmetric configurations.

• The projection interval in gauge angle ϕlτ can always
be reduced to ϕlτ ∈ [0, π] due to the number-parity
symmetry of an HFB state. In addition, using sym-
metries of the two simplex blocks, we have

N
(τ)
q (β, π − ϕlτ ) =

[
N

(τ)
q (β, ϕlτ )

]∗
, (36a)

ρ(τ)++
q (β, π − ϕlτ ) =

[
ρ(τ)−−

q (β, ϕlτ )
]∗
, (36b)

ρ(τ)−−
q (β, π − ϕlτ ) =

[
ρ(τ)++

q (β, ϕlτ )
]∗
, (36c)

κ(τ)+−
q (β, π − ϕlτ ) = −[κ(τ)−+

q (β, ϕlτ )]
∗, (36d)

κ(τ)−+
q (β, π − ϕlτ ) = −

[
κ(τ)+−

q (β, ϕlτ )
]∗
, (36e)

κ∗(τ)+−
q (β, π − ϕlτ ) = −[κ∗(τ)−+

q (β, ϕlτ )]
∗, (36f)

κ∗(τ)−+
q (β, π − ϕlτ ) = −

[
κ∗(τ)+−

q (β, ϕlτ )
]∗
. (36g)

Consequently, only quantities within the interval ϕlτ ∈

[0, π/2] are explicitly calculated.

2.1.5. Densities in the Coordinate-Space Representation
The expressions (18a) - (18c) for the rotated (transition)

density and pairing tensors are written in the configuration
space, that is, the quantities U(τ)

q , V (τ)
q , etc., are matrices.

When using Skyrme EDFs, the coordinate-space represen-
tation is also especially useful.

General Expressions. In the coordinate-space representa-
tion, the full one-body density matrix for particle type τ
can be written as

ρ(τ)
q (rσ, r′σ′) =

1
2
ρ(τ)

q (r, r′)δσσ′

+
1
2

∑
µ

〈σ|σ̂µ|σ
′〉 s(τ)

q,µ(r, r′),
(37)

where ρ(τ)
q (r, r′) is the non-local one-body particle density

ρ(τ)
q (r, r′) =

∑
σ

ρ(τ)
q (rσ, r′σ) (38)

and s(τ)
q,µ(r, r′) is the µ component of the non-local one-body

spin density

s(τ)
q,µ(r, r′) =

∑
σσ′

ρ(τ)
q (rσ, r′σ′) 〈σ′|σµ|σ〉 . (39)

These non-local densities can be used to generate an auxil-
iary set of local densities that will appear in the expression
for the energy density functional. In particular, the local
particle density ρ(τ)

q (r), the local spin density s(τ)
q (r), the ki-

netic energy density τ(τ)
q (r), the spin kinetic energy density

T(τ)
q (r), the current density j(τ)

q (r), and the spin current den-
sity J(τ)

q (r) read

ρ(τ)
q (r) = ρ(τ)

q (r, r), (40a)

s(τ)
q (r) = s(τ)

q (r, r), (40b)

τ(τ)
q (r) = ∇ · ∇′ρ(τ)

q (r, r′)|r′=r, (40c)

T (τ)
q,µ(r) = ∇ · ∇′s(τ)

q,µ(r, r′)|r′=r, (40d)

j(τ)
q (r) =

1
2i

(∇ − ∇′)ρ(τ)
q (r, r′)|r′=r, (40e)

J(τ)
q,µν(r) =

1
2i

(∇µ − ∇′µ)s(τ)
q,ν(r, r′)|r′=r, . (40f)

Furthermore, the non-local pairing densities for particle type
τ are defined through the corresponding pairing tensors as

ρ̃(τ)
q (rσ, r′σ′) = (−2σ′)κ(τ)

q (rσ, r′−σ′), (41a)

ρ̃∗(τ)
q (rσ, r′σ′) = (−2σ′)κ∗(τ)

q (rσ, r′−σ′). (41b)

They can be equivalently expanded as

ρ̃(τ)
q (rσ, r′σ′) =

1
2
ρ̃(τ)

q (r, r′)δσσ′

+
1
2

∑
µ

〈σ|σ̂µ|σ
′〉 s̃(τ)

q,µ(r, r′).
(42)

However, only local pairing densities will be considered in
the pairing term of the energy density functional

ρ̃(τ)
q (r) = ρ̃(τ)

q (r, r), (43a)

ρ̃∗(τ)
q (r) = ρ̃∗(τ)

q (r, r). (43b)

Formally, equations (40a) - (40f) and (43a) - (43b) look
identical regardless of whether ρ(τ)

q (rσ, r′σ′) is the diagonal
one-body density matrix,

ρ(τ)
q (rσ, r′σ′) ≡

〈Φq|c†(r′σ′τ)c(rστ)|Φq〉

〈Φq|Φq〉
(44)

or the rotated (transition) one-body density,

ρ(τ)
q (rσ, r′σ′; η) ≡

〈Φq|c†(r′σ′τ)c(rστ)R[η]|Φq〉

〈Φq|R[η]|Φq〉
, (45)

where c†(r′σ′τ) and c(rστ) are the creation and the anni-
hilation operator for particle τ corresponding to the single-
particle basis of choice, R is the transformation (rotation)
operator related to the symmetry being restored, and η de-
notes a set of real numbers parametrizing the elements of
the symmetry group(s) related to the transformation R (that
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is, in our case, η ≡ x(τ)). The main difference is that for di-
agonal one-body density matrix all local densities are real-
valued if axial-symmetry is enforced. On the other hand,
the densities stemming from the latter matrix are generally
complex-valued [33]. For completeness, we give the ex-
plicit expressions for the densities and currents (40a) - (40f)
and (43a) - (43b) in Appendix A.

Time-Odd Densities and Symmetry Restoration. Within the
HFB theory, the local densities ρ(τ)

q , τ(τ)
q , and J(τ)

q are even,
while s(τ)

q , T(τ)
q , and j(τ)

q are odd under the time-reversal
transformation [34]. When the HFB state |Φq〉 in (44) is
time-even, as is the case for even-even nuclei at the SR-
EDF level, the ρ(τ)

q (rσ, r′σ′) matrix is time-even as well.
Consequently, one can show that in such cases s(τ)

q (r) =

T(τ)
q (r) = j(τ)

q (r) = 0 and the corresponding energy contri-
butions vanish identically. Furthermore, blocking calcula-
tions for odd nuclei in hfbtho are implemented in the equal
filling approximation [35], which enforces the conservation
of time-reversal symmetry. Therefore, the time-odd densi-
ties do not contribute in this case either.

However, the situation is generally different for tran-
sition densities of Eq. (45), such as the gauge- and Euler-
rotated densities appearing at the MR-EDF level [33]. Most
importantly, the transition densities are generally not Her-
mitian. Consequently, even if the HFB state is time-even,
the time-odd densities and the corresponding energy con-
tributions may not vanish identically. In the particular case
of particle number projection (PNP), one can show that the
one-body density matrix is symmetric in the oscillator ba-
sis and that, as a result, the spin density transforms under
the time-reversal as T̂ s(τ)

q,µ(r, r′)=−s(τ)
q,µ(r, r′). This property

ensures that the spin density vanishes identically when the
reference state is time-even. However, this result is spe-
cific to the case of PNP alone. For the angular momentum
projection (AMP) or the combined PNP and AMP, all time-
odd densities are generally non-zero and contribute to the
projected energy (or any other observable).

2.1.6. Rotated Energy Density Functional
Rotated Hamiltonian Kernel. The rotated Hamiltonian ker-
nel is a functional of the rotated density and rotated pairing
tensors. It corresponds to a spatial integral of the rotated
energy density functional

Hq(x)[ρ, κ, κ∗] =

∫
d3rEq(r; x)[ρ, κ, κ∗], (46)

where x ≡ {x(τ=n), x(τ=p)}. Version 4.0 of hfbtho imple-
ments the restoration of symmetries for Skyrme-based EDFs
only.

The total EDF can be decomposed into the particle-hole
(Skyrme) part and the particle-particle (pairing) part

Eq(r; x) = E
Sky
q (r; x) + E

pair
q (r; x), (47)

where

E
Sky
q (r; x) = Ekin

q (r; x) + ECou
q (r; x) + E

pot
q (r; x). (48)

Note that functional dependencies on the rotated density
and pairing tensors were dropped for compactness on each
side of Eqs. (47) and (48). The kinetic term simply reads

Ekin
q (r; x) =

∑
τ=n,p

~2

2m
τ(τ)

q (r; x). (49a)

The Coulomb term can be decomposed into the direct and
the exchange part, ECou

q (r; x) = E
Cou,dir
q (r; x)+ECou,exc

q (r; x).
The direct contribution is calculated as

ECou,dir
q (r; x) =

1
2

∫
d3r′

ρ
(p)
q (r; x)ρ(p)

q (r′)
|r − r′|

, (50)

while the exchange contribution is calculated in the local
Slater approximation

ECou,exc
q (r; x) = −

3e2

4

(
3
π

)1/3 [
ρ

(p)
q (r; x)

]4/3
. (51)

Note that the pairing contribution of the Coulomb interac-
tion has been omitted and the Coulomb potential is com-
puted with the non-rotated density to save computational
time. The resulting error is less than 100 keV on the J = 10
state of Table 2.

Furthermore, the Skyrme pseudopotential term can also
be decomposed into two contributions

E
pot
q (r; x) =

∑
t=0,1

[
E

pot,even
q,t (r; x) + E

pot,odd
q,t (r; x)

]
, (52)

where the former is built from time-even densities and cur-
rents only, while the latter is built from time-odd densities
and currents only. Of course, both contributions are them-
selves time-even by construction. Furthermore, the sum-
mation over t in Eq. (52) reflects the coupling of neutron
and proton densities and currents into the isoscalar (t = 0)
and the isovector (t = 1) channel, i.e.

ρq,0(r; x) = ρ(n)
q (r; x) + ρ

(p)
q (r; x),

ρq,1(r; x) = ρ(n)
q (r; x) − ρ(p)

q (r; x),
(53)

and equivalently for other densities and currents. The time-
even contribution to the EDF then reads

E
pot,even
q,t (r; x) = Cρρ

q,t(r; x)ρ2
q,t(r; x)

+ Cρ∆ρ
t ρq,t(r; x)∆ρq,t(r; x)

+ Cρτ
t ρq,t(r; x)τq,t(r; x)

+ Cρ∇J
t ρq,t(r; x)∇ · Jq,t(r; x)

+ CJJ
t

∑
µν

Jq,t,µν(r; x)Jq,t,µν(r; x),

(54)
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and the time-odd contribution reads

E
pot,odd
q,t (r; x) = C ss

q,t(r; x)s2
q,t(r; x)

+ C s∆s
t sq,t(r; x)∆sq,t(r; x)

+ C s j
t j2q,t(r; x)

+ C s∇ j
t sq,t(r; x) ·

(
∇ × jq,t(r; x)

)
+ C sT

t sq,t(r; x) · Tq,t(r; x).

(55)

Note that the coupling constants Cρρ
q,t(r; x) and C ss

q,t(r; x) are
density-dependent. Furthermore, the last terms in Eqs. (54)
and (55) represent tensor contributions and are set to zero
by construction in a number of Skyrme EDFs. The full
expressions for coupling constants Ct in terms of the (t, x)
parameters of the Skyrme EDF are given in Appendix B.

Finally, the pairing term reads

E
pair
q (r; x) =

∑
τ=n,p

Cpair(τ)
q (r, x)ρ̃(τ)

q (r; x)ρ̃∗(τ)
q (r; x), (56)

with

Cpair(τ)
q (r, x) =

V (τ)
0

4

[
1 − V (τ)

1

(
ρq(r; x)
ρc

)]
, (57)

where V (τ)
0 is the pairing strength for particle τ, V (τ)

1 con-
trols the nature of pairing between the pure volume (V (τ)

1 =

0) and the pure surface (V (τ)
1 = 1) interaction, and ρc =

0.16 fm−3 is the saturation density of nuclear matter.

Rotated Hamiltonian Kernel of Density-Dependent Terms.
Nearly all parameterizations of Skyrme and Gogny EDFs
include a density-dependent two-body term. This term has
a strongly repulsive character and was originally introduced
to reproduce the saturation property of the nuclear interac-
tion. However, since it is not linked to a genuine Hamil-
tonian operator, its contribution to the rotated Hamiltonian
kernel is ambiguous. In fact, this contribution can be deter-
mined only by introducing an additional prescription [36,
37]. The choice of prescription will influence the calcu-
lated projected energies and can therefore be considered as
yet another parameter of a density-dependent EDF.

A common choice is the mixed density prescription

ρ(τ)
q,mix(r; β, ϕlτ ) =

〈Φq|ρ̂
(τ)(r)e−iβĴy eiϕlτ τ̂|Φq〉

〈Φq|Φq〉
, (58)

where ρ̂(τ)(r) is the one-body density operator for particle
type τ at point r. This prescription is motivated by the ex-
pression for the Hamiltonian kernel of density-independent
interactions based on the generalized Wick theorem. More-
over, it is the only prescription on the market satisfying all
the consistency requirements [36]. Most importantly, even
though the mixed density (58) is generally complex, the re-
sulting projected energies are always real and invariant un-
der symmetry transformations. Nevertheless, if a density-
dependent term contains a non-integer power of density, the

corresponding energy contribution is generally ill-defined.
This issue is essentially insurmountable and can be circum-
vented only by using density-dependent terms with integer
powers of density or a different density prescription. A pos-
sible alternative is the projected density prescription

ρ(τ)
q,proj(r; β) =

〈Φq|ρ̂
(τ)(r)e−iβĴy P̂X |Φq〉

〈Φq|e−iβĴy P̂X |Φq〉
, (59)

which is real by construction. Unfortunately, it yields non-
physical results when used in restoration of spatial sym-
metries, such as the rotational or reflection symmetry [37].
Nevertheless, a hybrid approach is possible in which the
mixed density prescription is used when restoring spatial
symmetries, while the projected density prescription is used
when restoring the particle number symmetry. Such an ap-
proach has been routinely employed in MR-EDF calcula-
tions with Gogny EDFs by the Madrid group [4].

The Skyrme EDFs included in the current implementa-
tion contain two density-dependent terms: (i) the volume
term proportional to ρα(r), where α can be either integer or
non-integer depending on the EDF, and (ii) the Coulomb
exchange term proportional to [ρ(p)(r)]4/3. In addition, the
pairing interaction is proportional to ρ(r), except in the case
of the pure volume pairing. The version 4.0 of hfbtho im-
plements the mixed density prescription in restoration of
the rotational, reflection, and particle number symmetry.
However, the code enables choosing the projected density
prescription in particle number projection for the volume
term with non-integer α and the Coulomb exchange term.

2.2. HFBTHO Library

The code source has been largely refactored to facili-
tate maintenance and future developments. This refactor-
ing included modularizing the code base, removing obso-
lescent Fortran statements, and generalizing Fortran 2003
constructs. In each module, module variables, functions,
and subroutines are thus explicitly declared as private
and public. Furthermore, arguments passed to each func-
tion and subroutine have the intent(in/out/inout) at-
tribute. The internal structure of the code has also been
reorganized in order to produce an hfbtho library.

Compiling the program generates the following three
objects:

• A Fortran executable called hfbtho_main. The call
sequence of the program has been modified to pro-
vide more flexibility while maintaining backward com-
patibility; refer to Sec. 5.2 for a short description.

• A static library libhfbtho.a. This library provides,
among others, the routine Main_Program() with the
following call sequence

Subroutine Main_Program(
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filename_hfbtho,filename_unedf, &
my_comm_world,my_comm_team, &
my_n_teams,my_team_color, &
toggle_output,filename_output, &
filename_dat,filename_binary)

This routine will execute a full hfbtho calculation,
possibly across different MPI ranks. Its arguments
are the following:

– filename_hfbtho: the name of the input data
file containing the Namelists.
Default: hfbtho_NAMELIST.dat;

– filename_unedf: the name of the input data
file containing the parameters of the EDF.
Default: hfbtho_UNEDF.dat;

– my_comm_world: the MPI world communica-
tor, typically MPI_COMM_WORLD. When compil-
ing the code without MPI support (USE_MPI =

0), this argument is inactive;

– my_comm_team: the MPI communicator used
to break the MPI processes into teams, each of
which handles a given hfbtho calculation. Cur-
rently, distributed parallelism through MPI is
only used when restoring broken symmetries.
Without MPI support, this argument is inactive;

– my_n_teams: the number of teams in the cal-
culation. Without MPI support, this argument
is inactive;

– my_team_color: the team "color" of the MPI
process, i.e., the unique ID number of the team
to which the process has been assigned. With-
out MPI support, this argument is inactive;

– toggle_output: if equal to 0, then no ASCII
output is recorded on file; if equal to 1, the two
files filename_output and filename_dat de-
scribed below are written on disk;

– filename_output: the name of the ASCII out-
put file where the results of the calculation are
written.
Default: hfbtho.out;

– filename_dat: the name of the ASCII output
file where extended results of the calculations
are written. Extended results include the self-
consistent loop, observables, quasiparticle en-
ergies, equivalent single-particle energies, and
Nilsson labels.
Default: thoout.dat;

– filename_binary: the name of the binary file
where the code will store the data needed to
restart the iterations.
Default: hfbtho_output.hel.

• A Python3 binding. The precise name of the binding
will depend on the user’s system, the Python version,
and the Fortran compiler. Assuming the binding is
(re)named hfbtho_library.so, it can be used di-
rectly from a Python environment and provides ac-
cess to the Main_Program() routine. For example:

from hfbtho_library import Main_Program

or

import hfbtho_library

2.3. Other changes

SeaLL1 Functional. The SeaLL1 EDF [38] is now avail-
able in the code. As a reminder, this functional reads

ESeaLL1(r) =
~2

2m

(
τ(n)(r) + τ(p)(r)

)
+

2∑
j=0

(
a jρ

5/3
0 (r) + b jρ

2
0(r) + c jρ

7/3
0 (r)

)
β2 j

+ηs

∑
τ=n,p

~2

2m
|∇ρ(τ)(r)|2 + W0 J0(r)·∇ρ0(r)

+
e2

2

∫
d3r′

ρ(p)(r)ρ(p)(r′)
|r − r′|

−
3e2

4

(
ρ(p)(r)

3π

)4/3

+
∑
τ=n,p

g(τ)
eff

(r)|ρ̃(τ)(r)|2.

(60)

The quantity g(τ)
eff

(r) is the renormalized pairing strength
which is obtained after regularizing a volume pairing inter-
action of the form g(τ)(r) = g(τ) [39, 40]; see [5] for details
about the implementation of the regularization procedure.
The SeaLL1 EDF is fully characterized by 11 parameters
({a j, b j, c j} j=0,1,2, ηs,W0) in the pairing channel and 2 pa-
rameters in the particle-particle channel (g(n) and g(p), with
g(n) = g(p) = g0 for SeaLL1). Note that, like the UNEDFn
functionals, SeaLL1 specifies both the particle-hole and the
pairing channel.

Exact Coulomb. In previous versions of hfbtho, the direct
(Hartree) term of the Coulomb potential is calculated us-
ing the substitution method [41], the exchange (Fock) term
is calculated at the Slater approximation, while the pair-
ing term is neglected. As discussed extensively in [12], the
substitution method can be numerically unstable because
of aliasing errors. In the current version, we have leveraged
the capability to compute mean-field and pairing energies
from finite-range two-body Gaussian potentials introduced
in version 3.00 to implement an "exact" calculation of the
direct, exchange, and pairing term of the Coulomb poten-
tial. In particular, we follow the technique implemented in
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Figure 1: Particle number projection in the quasiparticle basis for the 〈Q̂20〉 = 1 b configuration in 50Cr. (a): The PNP energy as a function of the number
of gauge angles Nϕ. The dashed horizontal line denotes the fully converged solution (Nϕ = 99). (b): The decomposition of an HFB state onto different
numbers of neutrons and protons for Nϕ = 15.

[42] and discussed in [43] and by exploiting the identity

1
r

=
2
√
π

∫ +∞

0
dα e−α

2r2

=
2

L
√
π

∫ 1

0
dξ (1 − ξ2)−3/2 exp

(
−

ξ2r2

L2(1 − ξ2)

)
,

(61)

where we used the change of variable α =
ξ
L (1 − ξ2)−1/2

and L stands for the larger of the two oscillator lengths,
L = max(bz, b⊥). The second integral can be efficiently
computed with Gauss-Legendre quadrature. If ωi and ξi are
the weights and the nodes of Gauss-Legendre quadrature,
then we can write

1
r

=

Nc∑
i=1

Aie−air2
, (62)

with Ai = 2ωi

L
√
π
(1 − ξ2

i )−3/2 and ai =
ξ2

i

L2(1−ξ2
i ) .

Overwrite Mode. The new version of the code provides
an option to use the information contained in the binary
hfbtho_output.hel file to overwrite some of the user-
defined inputs. This option is activated by setting the en-
ergy functional to READ (instead of the usual SLY4, SKM*,
etc.). In this case, the code will overwrite (i) all the pa-
rameters of the EDF, (ii) the pairing cut-off, (iii) the activa-
tion/deactivation of non-standard terms such as the center-
of-mass correction, tensor terms, or pairing regularization,
(iv) the parameters of the oscillator basis such as the maxi-
mal number of shells and oscillator lengths. The code will
then redefine the full HO basis to be consistent with the one
on file.

Bugfix of Blocking Calculations. In all versions of hfbtho
since 2.00d [12], there is a bug in the calculations of blocked

states when the "automatic" mode is activated. In this mode,
the code determines and computes all possible blocking
configurations within a 2 MeV energy window around the
Fermi level; see Section 4.2 of [12] for details. In practice,
the code loops over all N candidate configurations. Occa-
sionally, one of these configurations may diverge, e.g., the
particle number condition cannot be enforced. When this
happened to a configuration 1 ≤ k < N, the code would
simply exit the loop without trying to compute the remain-
ing configurations k < k′ ≤ N. Consequently, the results
of the converged calculations were correct but some poten-
tially valid configurations were not computed. In calcula-
tions near the ground state of stable nuclei, this situation
occurs very rarely; in calculations of very neutron-rich or
very deformed nuclei, it may happen more frequently. This
bug is fixed in the current version of the code.

3. Benchmarks and Accuracy

3.1. Particle Number Projection

As the first illustrative example, we perform the parti-
cle number projection for a range of quadrupole-deformed
configurations in 50Cr. Well-converged solutions are ob-
tained by expanding the HFB states in a spherical HO basis
with N0 = 8 shells and the oscillator length b0 = 1.7621858
fm. The SIII parametrization of the Skyrme EDF [44] is
used, alongside a volume (V (τ)

1 = 0.0) contact pairing inter-
action [39] with a 60 MeV quasiparticle cutoff and pairing
strengths V (n)

0 =V (p)
0 =−190.0 MeV. In addition, we employ

the mixed density prescription.

3.1.1. Convergence and Particle Number Decomposition
We start by testing the convergence of PNP energies

[EPNP
q ≡ENZ

q , Eq. (14)] and decomposing an HFB state onto
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different numbers of neutrons and protons [|cNZ
q |

2, Eq. (12)].
The quadrupole moment of the reference HFB state is con-
strained to 〈Q̂20〉 = 1 b, the dipole and the octupole mo-
ment are constrained to zero, while higher multipole mo-
ments are determined self-consistently. Figure 1(a) shows
the corresponding PNP energy as a function of the number
of gauge angles Nϕ. An excellent agreement with the fully
converged solution (represented by the dashed horizontal
line and computed for Nϕ = 99) is obtained for Nϕ = 15.
The convergence pattern will generally vary for different
HFB states, but at most Nϕ = 15 gauge angles should be
sufficient for most practical purposes.

Furthermore, Fig. 1(b) shows the decomposition of the
same HFB state onto different numbers of neutrons and
protons. A pronounced maximum is found at the correct
number of particles, |cN=26,Z=24

q |2 = 0.2278. Around this
point, the distribution drops sharply in all directions. For
example, the configuration with two protons less has about
twice smaller coefficient, |cN=26,Z=22

q |2 = 0.1197, while the
configuration with four protons less has only |cN=26,Z=20

q |2 =

0.0201. Note that, for this particular configuration, the pair-
ing gaps are ∆n = 1.0901 MeV and ∆p = 1.1773 MeV for
neutrons and protons, respectively.

3.1.2. PNP in Canonical and Quasiparticle Bases
The particle number projection in the canonical basis

had been incorporated to the hfbtho program since its ini-
tial release. On the other hand, the new version of the pro-
gram contains the particle number projection performed in
the quasiparticle basis. The two PNP methods are distinct
and can under certain circumstances yield different results.
Most notably, a difference will arise if the underlying HFB
calculations enforce a cutoff in the quasiparticle space. The
introduction of such a cutoff is a common way to render the
energies convergent for zero-range pairing interactions and
is therefore an integral part of Skyrme-EDF calculations
with hfbtho [11].

To compare the two methods, Fig. 2 shows the differ-
ence between the PNP energies obtained in the quasipar-
ticle and in the canonical basis, ∆EPNP

q = EPNP
q,qps − EPNP

q,can,
for three different values of a quasiparticle cutoff. We con-
sider a range of quadrupole deformations in 50Cr, 〈Q̂20〉 ∈

[−2.0 b, 4.0 b], and keep the other parameters fixed. For
a relatively low cutoff (Ecut = 40 MeV), the difference is
∆EPNP

q ≤ 0.5 MeV. For a cutoff value typically used in re-
alistic calculations (Ecut = 60 MeV), the difference reduces
to ∆EPNP

q ≤ 0.2 MeV. Finally, in the limit of an infinite
cutoff (Ecut = 6000 MeV) the difference between the two
methods vanishes.

In addition, Fig. 2 shows the difference between the
HFB energies obtained in the quasiparticle and in the canon-
ical basis, ∆EHFB

q = EHFB
q,qps − EHFB

q,can, for the three cutoff

values. The HFB curves largely follow the corresponding
PNP curves, corroborating the fact that the discrepancy in
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Figure 2: The difference between the PNP energies obtained in the quasi-
particle and in the canonical basis, ∆EPNP

q = EPNP
q,qps − EPNP

q,can, for three dif-
ferent values of a quasiparticle cutoff: 40 MeV, 60 MeV, and 6000 MeV
(an infinite cutoff). The difference in the corresponding HFB energies,
∆EHFB

q = EHFB
q,qps − EHFB

q,can, is also shown.

projected energies stems from the initial difference in HFB
states. Finally, an instructive limit to consider is the case
of a collapsing pairing interaction, which is a common fea-
ture of PNP models that perform variation before projec-
tion [14]. Note that the collapse of pairing happens around
〈Q̂20〉 = 2.5 b in our calculation. Regardless of the cutoff,
the two PNP methods then yield the same energy that also
coincides with the HFB energy.

3.1.3. The Choice of Density Prescription
As discussed in Sec. 2.1.6, the new implementation of

PNP enables the choice of density prescription for the parts
of an EDF that depend on non-integer powers of density.
In order to quantify the consequences of this choice, Fig. 3
shows the difference between the PNP energies obtained
with the mixed and the projected density prescription. We
consider three Skyrme EDFs whose volume terms depend
on different powers of density α: SIII (α = 1) [44], Sly4
(α = 1

6 ) [45], and SkO (α = 1
4 ) [46]. For all three EDFs,

the Coulomb exchange term depends on the 4/3-th power
of the proton density.

For SIII, the entire difference between the two prescrip-
tions lies in the Coulomb exchange term. In 50Cr, this dif-
ference amounts to about 0.1% of the term, or about 0.01
MeV, and is therefore not visible in Fig. 3. On the other
hand, for Sly4 and SkO an additional difference in the vol-
ume term comes into play. The difference in this term
amounts to about 0.1% as well, but it translates to a sizeable
absolute difference of 2 − 3 MeV. Again, the two prescrip-
tions yield the same result in the limit of a collapsing pair-
ing interaction (around 〈Q̂20〉 = 2.5 b). We note that the
difference from density prescriptions does not scale with
nuclear mass and that it remains of comparable magnitude
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Figure 3: The difference between the PNP energies obtained with the
mixed and the projected density prescription. We consider three Skyrme
EDFs whose volume terms depend on different powers of density α.

even in the heaviest nuclei.
Unfortunately, to the best of our knowledge, there are

no published comparisons of PNP energies obtained with
different density prescriptions. However, Ref. [47] contains
the comparison between the PNP dynamic moments of in-
ertia obtained with the mixed and the projected density pre-
scription, using a Gogny EDF and the Lipkin-Nogami ap-
proximation. The reported difference is sizeable and gen-
erally of the order of a few percent.

3.1.4. Benchmarking Against HFODD
To further verify our implementation, we tested the PNP

results of hfbtho against results obtained with hfodd. Since
the latest release of the code [13] cannot project on both
protons and neutrons and does not give a full breakdown
of the projected energy, we use for our benchmark a recent,
still unpublished, modification of the hfodd solver based on
version 2.73 [6]. In this version, PNP is implemented in the
canonical basis and the results must thus be tested against
the original hfbtho implementation [11]. As demonstrated
in Section 3.1.2, this implementation of PNP (in the canon-
ical basis) gives the same results as the new implementation
(in the quasiparticle basis) for infinite cutoffs.

Table 1 contains a breakdown of the PNP energy of the
〈Q̂20〉=1 b configuration in 50Cr, obtained with the hfbtho
and hfodd solvers. The calculation parameters are the same
as those described at the beginning of this section, except
that (i) N0 = 12 HO shells are used, (ii) a surface-volume
pairing interaction is used, and (iii) the Coulomb interac-
tion is entirely neglected. In both hfbtho and hfodd calcu-
lations, Nϕ = 15 gauge angles were used for both neutrons
and protons. The hfodd results correspond to a Gauss qua-
drature characterized by NXHERM = NYHERM = NZHERM =

30 points. The largest difference, for the density-dependent
volume term, does not exceed 3 eV.

Table 1: The breakdown of the PNP energy (in MeV) of the 〈Q̂20〉 =

1 b configuration in 50Cr, obtained with the hfbtho and hfodd solvers. A
spherical HO basis with N0 = 12 shells and the SIII EDF were used; see
text for more details on the parameters of the calculation.

hfbtho hfodd

E(n)
kin 466.236124 466.236123

E(p)
kin 415.937244 415.937243

Eρρ -1701.776220 -1701.776217
Eρτ 201.410935 201.410934
Eρ∆ρ 126.141959 126.141958
Eρ∇J -39.203075 -39.203075
E(n)

pair -0.333798 -0.333798
E(p)

pair -0.981203 -0.981203

EPNP -532.568034 -532.568034

3.2. Angular Momentum Projection

Next, we perform the illustrative angular momentum
projection calculations, using the same parameters as de-
scribed at the beginning of Section 3.1.

3.2.1. Convergence of Angular Momentum Decomposition
To start with, we test the convergence of AMP energies

[EAMP
q ≡EJ;p

q , Eq. (14)] and decompose an HFB state onto
different values of angular momenta [|cJ;p

q |
2, Eq. (13)]. As

before, the quadrupole moment of the reference HFB state
is constrained to 〈Q̂20〉 = 1 b, the dipole and the octupole
moment are constrained to zero, while higher multipole
moments are determined self-consistently. Fig. 4(a) shows
the AMP energies for Jp = 0+, 2+, 4+, and 6+ as a function
of the number of rotational angles Nβ. Note that the con-
sidered configuration is reflection-symmetric and thus only
positive-parity states can be obtained. In turn, the projec-
tion interval is reduced to β ∈ [0, π/2]. As expected, the
convergence is faster for lower values of J. For all J, an
excellent agreement with the fully converged solution (rep-
resented by the dashed horizontal lines and computed for
Nβ=100) is obtained already for Nβ=10. The convergence
pattern will generally depend on the properties of the HFB
state (e.g., the magnitude of the quadrupole deformation or
whether the parity is broken), as well as on the value of J.
Consequently, in practical applications, one should verify
the convergence of AMP with respect to Nβ.

Furthermore, Fig. 4(b) shows the decomposition of the
same HFB state onto different values of angular momen-
tum. The maximum is found for J = 2, |cJ;+

q |
2 = 0.4649,

while the coefficients for J ≥ 8 components are negligi-
ble. The inset shows the corresponding overlaps for both
neutrons and protons [N (τ)

q (β, 0), Eq. (15)]. The overlaps
for the two types of particles are very similar: they are real
and monotonously decrease fromN (τ)

q (0, 0) = 1 to their re-
spective minimal values at β = π/2. Since the quadrupole
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Figure 4: Angular momentum projection in the spherical HO basis for the 〈Q̂20〉 = 1 b configuration in 50Cr. (a): The AMP energy of the Jp = 0+, 2+, 4+,
and 6+ state as a function of the number of rotational angles Nβ. The dashed horizontal line denotes the fully converged solution (Nβ = 100). (b): The
decomposition of an HFB state onto different angular momenta for Nβ = 10. The inset shows the corresponding overlaps for neutrons and protons.

deformation is rather moderate, the overlaps at β = π/2 are
still sizeable. Note that the overlaps for β∈ [π/2, π] can be
obtained by a reflection around the β = π/2 vertical axis;
see Section 2.1.4.

3.2.2. Benchmarking Against HFODD
In full analogy with the case of PNP discussed in Sec-

tion 3.1.4, we can benchmark the AMP results obtained
with hfbtho against the results obtained with hfodd. The
main restriction in this case is that hfodd requires the us-
age of a spherical HO basis. Once again, we consider the
〈Q̂20〉 = 1 b configuration in 50Cr. The calculation param-
eters are the same as those described at the beginning of
Section 3.1, except that (i) the Coulomb interaction is en-
tirely neglected, (ii) all the higher multipole moments up
to the eighth order are constrained to zero, and (iii) in or-
der to additionally probe the contribution from the tensor
term of the functional, we used the SLy5 parametrization
of the Skyrme EDF [45]. In this case, the parameteriza-
tions of the pairing interaction yields pairing gaps that are
much smaller than the experimental ones. However, since
our goal is simply to compare the two codes against one
another, this discrepancy is irrelevant. All the AMP cal-
culations were performed with Nβ = 30 rotational angles
β∈ [0, π].

We compared our results to those generated with the
latest release of hfodd, where the AMP is implemented in
the Hartree-Fock basis [13]. Because the two codes employ
different bases, the obtained HFB energies slightly differ
and agree within 2.2 keV. For the projected energies, the
difference does not exceed 12 keV for the range of angu-
lar momentum J ∈ [0, 10]. Although this test is already
very encouraging, we can go one step further and test sep-

arately each contribution to the projected energy. To this
end, we use the same unpublished version of hfodd built
on top of the version 2.73 that was employed for the PNP
benchmark. In that version of the code, the AMP is imple-
mented in the HO basis so a closer comparison is possible.
As expected, we find that the HFB energies agree within 1
eV: EHFB = −531.370615 MeV.

Table 2 contains the breakdown of the AMP energy for
angular momentum J = 0 and J = 8; see Eqs. (54) - (55)
for the definition of each term. For the J = 0 state, the
differences between the two codes do not exceed 10 eV,
with most terms agreeing within 2 eV. Not surprisingly, the
differences increase a little for the J = 8 case. However,
they are still of the order of a few dozens or hundreds of
eV, and overall less than 1 keV. Considering the remaining
differences between the two codes – hfodd works with the
Cartesian basis and implements the full 3D rotation of wave
functions while hfbthoworks with the cylindrical basis and
implements only the rotation in the Euler angle β – this
benchmark is quite conclusive.

3.2.3. AMP in a Deformed Basis
One of the main advantages of the present implementa-

tion of AMP is that it can be performed in bases that are not
closed under rotation. Such deformed (or stretched) bases
are often used in calculations of potential energy surfaces
because they provide a computationally efficient way to ob-
tain precise representations of arbitrarily deformed HFB
configurations. The main downside of using a deformed
basis is the need to carefully study the convergence of cal-
culations as a function of the basis deformation; see [48]
for a discussion of the impact of basis truncation on HFB
observables. In this section, we demonstrate that the con-
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Table 2: The breakdown of the AMP energy (in MeV) of the 〈Q̂20〉 =

1 b configuration in 50Cr, obtained with the hfbtho and hfodd solvers.
Energies for J = 0 (top) and J = 8 (bottom) are shown. A spherical HO
basis with N0 = 8 shells and the Sly5 EDF were used; see text for more
details on the parameters of the calculation.

J = 0 hfbtho hfodd

E(n)
kin 475.811944 475.811932

E(p)
kin 418.693797 418.693807

Eρρ -1797.938577 -1797.938577
Eρτ 269.775424 269.775424
Eρ∆ρ 149.166859 149.166858
Eρ∇J -42.039341 -42.039339
EJJ 1.213084 1.213084
E ss 0.251440 0.251439
E s j 0.287586 0.287585
E s∆s 0.111281 0.111280
E s∇J 0.137866 0.137865
E sT 0.009186 0.009186
E(n)

pair -2.848138 -2.848137
E(p)

pair -4.507887 -4.507885
EAMP -532.307952 -532.307950

J = 8 hfbtho hfodd

E(n)
kin 467.384564 467.384572

E(p)
kin 437.860544 437.860226

Eρρ -1812.483313 -1812.482960
Eρτ 275.246980 275.246855
Eρ∆ρ 148.724958 148.724962
Eρ∇J -40.088099 -40.088112
EJJ 0.997760 0.997763
E ss -1.279415 -1.279386
E s j -1.763059 -1.763017
E s∆s -0.559418 -0.559406
E s∇J -0.449841 -0.449832
E sT -0.070601 -0.070600
E(n)

pair -1.159525 -1.159544
E(p)

pair -2.563745 -2.563772
EAMP -527.963805 -527.963895

vergence pattern of AMP calculations is generally different
from the one of the underlying HFB calculations.

Fig. 5 shows the HFB energy and the AMP (Jp = 0+)
energy in 50Cr as a function of the axial quadrupole mo-
ment 〈Q̂20〉 and obtained with three different HO bases: the
spherical (β2 = 0.0) basis, the prolate-deformed (β2 = 0.1)
basis, and the oblate-deformed (β2 = −0.1) basis. N0 = 8
HO shells were used in all three cases. For configura-
tions with moderate prolate deformation, the 0+ energies

obey EJ=0(β2 = −0.1) < EJ=0(β2 = 0.0) < EJ=0(β2 = 0.1).
The differences in HFB energies are much smaller, but they
obey the exact opposite rule: EHFB(β2 =−0.1)> EHFB(β2 =

0.0)> EHFB(β2 = 0.1). Interestingly, the pattern is reversed
for configurations with moderate oblate deformation. For
them, the prolate-deformed basis gives the lowest 0+ en-
ergy and the oblate-deformed basis gives the highest 0+ en-
ergy. In addition, the pattern is further modified as the de-
formation increases: for configurations with 〈Q̂20〉 ' 5.4 b
the HFB and the 0+ energy follow the same ordering and
the lowest energies are obtained with the prolate-deformed
basis.
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Figure 5: Total HFB and Jp = 0+ energy of 50Cr as a function of the con-
straint on the axial quadrupole moment 〈Q̂20〉. Blue curves with squares
show results obtained with a spherical basis; red curves with circles show
results obtained with a prolate-deformed basis of β2 = 0.1; green curves
with triangles show results obtained with an oblate-deformed basis of
β2 = −0.1. Plain symbols correspond to AMP results and open symbols
to HFB ones; see text for additional details.

The observed difference in patterns may have two main
origins:

• Numerical Precision. For a prolate-deformed ba-
sis, the number of basis states along the z-axis of the
reference frame, which coincides with the elonga-
tion axis of the HFB configuration, is larger than the
number of states along the perpendicular axis. Con-
sequently, the prolate-deformed HFB configuration
is numerically well described. However, the elonga-
tion axis of the rotated HFB configuration is not any-
more aligned with the z-axis of the reference frame.
In fact, for β = π/2 it is aligned with the axis per-
pendicular to it – where the number of basis states is
lower. Rotated prolate-deformed configurations are
thus described less precisely in a prolate-deformed
basis. Moreover, the weight of each rotated config-
uration is sin β dJ

00(β). For J = 0, d0
00(β) = 1, and

the weight is simply sin β. Consequently, the β≈π/2
configurations, which are numerically less precise,
have larger weights than the β ≈ 0 configurations,
which are numerically more precise. For J > 0, the
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function sin β dJ
00(β) is not monotonous and this sim-

ple analysis does not hold anymore.

• The Effect of the Rotation Matrix. The rotation
matrix [Eq. (24)] enters the calculation of overlaps
[Eq. (15)]. Furthermore, the overlaps enter the calcu-
lation of the norm overlap kernelN J;p

q and the Hamil-
tonian kernel H J;p

q , both of which are needed to cal-
culate the AMP energy [Eq. (14)]. However, the
properties of the rotation matrix depend on the ba-
sis deformation. For example, the determinant of the
rotation matrix equals to 1 in the spherical basis and
decreases rapidly as the basis deformation increases.
Without actually performing the calculations, it is not
clear how the deformation of the basis impacts the
rotation matrix, the subsequent kernels and, eventu-
ally, the AMP energy.
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Figure 6: The convergence of the HFB energy (bottom) and the AMP
0+ energy (top) as a function of the basis deformation β2 for three con-
figurations along the fission path of 240Pu: (Q20,Q30) = (90 b, 0 b3/2),
(Q20,Q30) = (140 b, 12 b3/2), and (Q20,Q30) = (240 b, 25 b3/2). All
curves are normalized relative to their respective minima over the inter-
val β2 ∈ [0, 0.9]; see text for additional details.

To get a better idea of the convergence pattern of AMP
calculations as a function of the basis deformation, Fig. 6

shows a semi-realistic example of the fission path of 240Pu.
We considered three different configurations along the path:
(Q20,Q30) = (90 b, 0 b3/2), (Q20,Q30) = (140 b, 12 b3/2),
and (Q20,Q30) = (240 b, 25 b3/2). For each configuration,
we computed the HFB solution in a basis characterized
by Nmax

0 = 24 HO shells and β2 = 0.0, 0.1, ..., 0.9 defor-
mation. In addition, the basis was truncated and only the
lowest Nstates = 1100 states were retained. The spherical-
equivalent oscillator length b0 was not adjusted and was
instead fixed at b0 = 2.288 fm. In other words, the oscilla-
tor lengths bz and b⊥ vary as a function of β2 in such a way
that the product bzb2

⊥ = b3
0 is constant.

The HFB convergence pattern (bottom panel) should be
familiar to the practitioners: very deformed configurations
require (very) deformed bases. In our example, the low-
est HFB energy is found for β2 = 0.6 (〈Q̂20〉 = 90 b and
〈Q̂20〉=140 b) and for β2 = 0.8 (〈Q̂20〉 = 240 b). Note that,
in principle, one should also adjust the oscillator frequency
as a function of the deformation; see discussion in [48]. For
very deformed configurations, the convergence pattern of
the 0+ energy is qualitatively similar to the HFB pattern in
the sense that the minimum is obtained for non-zero β2 val-
ues. However, these values are significantly smaller than in
the HFB case. In fact, for the least-deformed configuration
(which approximately corresponds to the fission isomer),
the lowest 0+ energy is obtained for a nearly spherical basis.
These results suggest that large-scale applications of AMP
in a deformed basis should be accompanied by a careful
study of the numerical convergence.

3.2.4. Limitations of the Model
The user should be aware of a number of limitations of

the novel symmetry restoration module, related to both the
underlying physics and the numerical implementation:

• Projection of the Eigenstates. Some HFB configu-
rations are already eigenstates of an operator related
to the symmetry being restored. For example, the
spherical configuration is an eigenstate of the angular
momentum operator with the eigenvalue J = 0. Sim-
ilarly, configurations with vanishing odd multipole
moments are eigenstates of the parity operator with
the eigenvalue p = +1. Projecting these configura-
tions onto other eigenvalues (J = 1, 2, ... for the for-
mer and p=−1 for the latter) will yield non-physical
results. In practice, one should be cautious because
numerical issues can occur already for configurations
that are sufficiently close to being eigenstates.

• Invertibility of the Rotation Matrix. The inverse
and the determinant of the rotation matrix enter our
calculations explicitly. However, as the size and the
deformation of the basis increase, the determinant
drops rapidly and the matrix can become numerically
non-invertible for some rotational angles close to β =
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π/2. These angles are then disregarded in AMP, un-
der the assumption that the corresponding overlaps
are negligible. This assumption is justified for very
deformed configurations, but it can break down for
configurations with moderate or small deformations.
Consequently, caution is advised when calculating
moderately deformed configurations with deformed
bases. In particular, the description of near-spherical
configurations with deformed bases is imprecise and
should therefore be avoided.

• Spuriosity of Projected Energies. The Hamiltonian
kernel is formally not well-defined for EDFs that are
density-dependent or omit parts of the interaction.
In the worst case scenario, this can lead to sizeable
finite steps and even divergences in projected ener-
gies. Such spuriosities were abundantly reported in
PNP [49, 50, 51, 52], while AMP in even-even nu-
clei seems to remain issue-free [22]. In many practi-
cal implementations, however, the scale of these spu-
riosities is smaller than the errors due to the various
numerical limitations. Nevertheless, as the quest for
spuriosity-free EDFs is under way, the user should
remain aware of this formal limitation.

3.3. Exact Coulomb
We tested our implementation of the "exact" Coulomb

calculation by comparing results obtained with the new ver-
sion of hfbtho and with the Gogny code used in [53, 54]. In
the latter, all contributions of the Coulomb interaction (di-
rect, exchange, and pairing) are computed exactly thanks
to the properties of the spherical HO basis.

For numerical comparison, we consider the 208Pb nu-
cleus and use the D1S Gogny EDF. Furthermore, we dis-
regard the two-body center-of-mass correction and neglect
the Coulomb contribution to pairing. Calculations are per-
formed in a spherical HO basis with N0 = 12 shells and the
oscillator length b0 = 2.5 fm. They were converged up to
10−12. Fig. 7 shows the absolute error ε = |EX

hfbtho −EX
Gogny|

as a function of the number of Gauss-Legendre quadrature
points NLeg. Here, X stands for either the direct or the ex-
change contribution to the Coulomb energy, and the sub-
scripts "hfbtho" and "Gogny" refer to the hfbtho 4.0 and
the spherical Gogny code, respectively.

For NGauss = 60 points in both the Gauss-Hermite and
Gauss-Laguerre integrations (the full lines), the expansion
of the Coulomb potential onto Gaussians converges nicely
to the exact value. In particular, at NLeg = 14, the difference
is 20 meV and 1 meV for the direct and the exchange term,
respectively. If the number of quadrature points is reduced
to NGauss = 40 (the dashed lines), we observe a saturation of
convergence at about 1 eV (direct) and 80 meV (exchange)
at NLeg = 14. For comparison, we also show the results
of the "standard" prescription for the direct term, which is
based on the substitution method in a box of size L = 50 fm
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Figure 7: The absolute error (in MeV) of the Gaussian expansion of the
Coulomb potential as a function of Gauss-Legendre quadrature points, i.e.,
the number of Gaussians approximating 1/r; see Eq. (62).

with 80 Gauss-Legendre quadrature points; see discussion
in [12], and for the exchange term, which is computed at
the Slater approximation.

4. Input data file

The input data file format remains similar to version
3.00 and only contains one additional namelist.

4.1. Sample input file
&HFBTHO_GENERAL
number_of_shells = 10,
oscillator_length = -1.0,
basis_deformation = 0.0,
proton_number = 24, neutron_number = 26,
type_of_calculation = 1 /
&HFBTHO_INITIAL
beta2_deformation = 0.0,
beta3_deformation = 0.0,
beta4_deformation = 0.0 /

&HFBTHO_ITERATIONS
number_iterations = 100, accuracy = 1.E-5,
restart_file = -1 /

&HFBTHO_FUNCTIONAL
functional = ’SLY4’,
add_initial_pairing = F,
type_of_coulomb = 2 /

&HFBTHO_PAIRING
user_pairing = F,
vpair_n = -300.0, vpair_p = -300.0,
pairing_cutoff = 60.0,
pairing_feature = 0.5 /

&HFBTHO_CONSTRAINTS
lambda_values = 1, 2, 3, 4, 5, 6, 7, 8,
lambda_active = 0, 0, 0, 0, 0, 0, 0, 0,
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expectation_values = 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0 /

&HFBTHO_BLOCKING
proton_blocking = 0, 0, 0, 0, 0,
neutron_blocking = 0, 0, 0, 0, 0 /

&HFBTHO_PROJECTION
switch_to_THO = 0,
projection_is_on = 0, gauge_points = 1,
delta_Z = 0, delta_N = 0 /

&HFBTHO_TEMPERATURE
set_temperature = F, temperature = 0.0 /

&HFBTHO_FEATURES
collective_inertia = F,
fission_fragments = F,
pairing_regularization = F,
localization_functions = F /

&HFBTHO_NECK
set_neck_constrain = F, neck_value = 0.5 /

&HFBTHO_DEBUG
number_Gauss = 40, number_Laguerre = 40,
number_Legendre = 80,
compatibility_HFODD = F,
number_states = 500,
force_parity = T, print_time = 0 /

&HFBTHO_RESTORATION
PNP_is_on = 0, number_of_gauge_points = 1,
delta_neutrons = 0, delta_protons = 0,
AMP_is_on = 0,
number_of_rotational_angles = 1,
maximal_angular_momentum = 0 /

4.2. Description of input data
We now define the new or updated inputs introduced in

version 4.0.

Keyword: HFBTHO_FUNCTIONAL

• type_of_coulomb = 2: Logical switch that defines the
treatment of the Coulomb potential. In previous versions,
this switch could only take values 0 (no Coulomb), 1 (direct
contribution only) or 2 (direct and exchange contribution
with the Slater approximation). In the current version, the
following new options are also available:

-1: direct Coulomb only by sum of Nc Gaussians;
-2: direct Coulomb by the substitution method, exchange

Coulomb by sum of Nc Gaussians;
-3: direct Coulomb by sum of Nc Gaussians, exchange

Coulomb with the Slater approximation;
-4: direct and exchange Coulomb by sum of Nc Gaus-

sians;
-5: direct, exchange, and pairing Coulomb by sum of Nc

Gaussians.

Here, Nc is the number of Gaussians in (62). It is stored
in the UNEDF module variable n_g_coul and is preset at

n_g_coul=9 in the file hfbtho_unedf.f90. There is no
option to change this number directly in the input file. De-
fault: 2.

Keyword: HFBTHO_RESTORATION

• PNP_is_on = 0: Logical switch that activates the par-
ticle number projection in the quasiparticle basis. When
set to 1 the mixed density prescription is used and when
set to 2 the projected density prescription is used (see Sec-
tions 2.1.6 and 3.1.3). This option is different from the old
projection_is_on switch in the HFBTHO_PROJECTION
namelist, which activates PNP with the mixed density pre-
scription in the canonical basis. For an infinite quasiparticle
cutoff, the two mixed density prescription options should
give the same result. This option is incompatible with:
finite-temperature, THO basis, and blocking calculations.
Default: 0;

• number_of_gauge_points = 1: Number of gauge an-
gles Nϕ for particle number projection. The same number
Nϕ is used for protons and neutrons. Default: 1;

• delta_neutrons = 0: Value of the shift in neutron num-
ber δN. In the case of PNP, one can project on all even neu-
tron numbers in the interval [N0 − δN,N0 + δN], where N0
is the number of neutrons of the considered nucleus (even
only for PNP). Default: 0;

• delta_protons = 0: Value of the shift in proton num-
ber δZ. In the case of PNP, one can project on all even
proton numbers in the interval [Z0 − δZ,Z0 + δZ], where Z0
is the number of protons of the considered nucleus (even
only for PNP). Default: 0;

• AMP_is_on = 0: Logical switch that activates (if equal
to 1) the restoration of angular momentum J and parity p.
This option can be combined with PNP to carry out a si-
multaneous projection on N, Z, J, and p. It is incompatible
with: finite-temperature, THO basis, and blocking calcula-
tions. Default: 0;

• number_of_rotational_angles = 1: Number of ro-
tational angles Nβ use for AMP. Internally, the code will
readjust Nβ if reflection symmetry is enforced. In such a
case, the program will compute either Nβ/2 (Nβ even) or
(Nβ + 1)/2 (Nβ odd) rotational angles (see Section 2.1.4).
Default: 1;

• maximal_angular_momentum = 0: Maximum value of
the angular momentum Jmax. In the case of AMP, all even
values of J in [0, Jmax] (parity conserved) or all values J in
[0, Jmax]. Default: 0.
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5. Program hfbtho

5.1. Structure of the code

Compared with version 3.00, we have substantially in-
creased the modularization of the source code since the
number of modules increased from 18 to 25. The code is
organized as follows:

• hfbtho_bessel.f90: defines the modified Bessel
functions of order 0 and 1;

• hfbtho_canonical.f90: defines the canonical ba-
sis of the HFB theory;

• hfbtho_collective.f90: computes the ATDHF
and GCM collective inertia tensor and zero-point en-
ergy correction in the perturbative cranking approxi-
mation; see [5] and references therein;

• hfbtho_elliptic_integrals.f90: defines com-
plete elliptic integral of the second kind used for the
Coulomb potential;

• hfbtho_fission.f90: computes the charge, mass,
and axial multipole moments of fission fragments and
the value of the Gaussian neck operator;

• hfbtho_gauss.f90: defines the quadrature meshes:
Gauss-Hermite, Gauss-Laguerre, and Gauss-Legendre;

• hfbtho_gogny.f90: computes the matrix elements
of the Gogny force as well as the corresponding mean
field and pairing field;

• hfbtho_io.f90: contains a collection of routines
handling inputs and outputs;

• hfbtho_large_scale.f90: contains a collection
of routines for mass table, drip lines, or potential en-
ergy surface calculations, as well as for the paral-
lelization of single HFB calculations;

• hfbtho_library.f90: provides the definition of
the main routine Main_Program() that launches com-
plete hfbtho calculations: stand-alone, mass tables,
drip lines, or potential energy surfaces;

• hfbtho_lipkin.f90: calculates the Lipkin-Nogami
correction, including the λ2 parameters, densities, and
energies;

• hfbtho_localization.f90: computes spatial lo-
calization functions;

• hfbtho_main.f90: calls the Main_Program() rou-
tine;

• hfbtho_math.f90: contains a collection of general-
use mathematical routines;

• hfbtho_multipole_moments.f90: computes the
expectation value and matrix elements of axial mul-
tipole moments;

• hfbtho_pnp.f90: implements particle number pro-
jection in the canonical basis;

• hfbtho_projections.f90: implements the angu-
lar momentum, particle number, and parity projec-
tion in the quasiparticle basis;

• hfbtho_read_functional.f90: contains a collec-
tion of routines to read the parameters of the EDF
from a file;

• hfbtho_solver.f90: solves the self-consistent it-
erations of the HFB theory;

• hfbtho_storage.f90: contains an interface to the
QRPA pnFAM code; see [55] and references therein;

• hfbtho_tho.f90: defines the transformed harmonic
oscillator basis; see [11] and references therein;

• hfbtho_unedf.f90: defines parameterizations of
the Skyrme and Gogny functionals, and computes
density-dependent coupling constants and fields of
generalized Skyrme energy functionals;

• hfbtho_utilities.f90: defines the integer and
real types used throughout the code, as well as vari-
ous numerical constants;

• hfbtho_variables.f90: contains list of global vari-
ables used throughout the code;

• hfbtho_version.f90: version number (currently
git commit number of the previous commit) and his-
tory of previous versions.

The programming language of most of the code is now
Fortran 2003. The code hfbtho requires an implementation
of the BLAS and LAPACK libraries to function correctly.
Shared memory parallelism is available via OpenMP prag-
mas.

This version comes with a built-in Doxygen documen-
tation. To benefit from this feature, the user should install
the doxygen software available at www.doxygen.org. The
documentation is built by typing

make doc

By default, Doxygen generates only an on-line HTML doc-
umentation. The main page is located in the source direc-
tory at ./src/doc/html/index.html. A PDF documen-
tation can also be generated by going into ./doc/latex
and typing

make

The PDF file is named refman.pdf.
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5.2. Running the code
The program ships with a Makefile that is preset for

a number of Fortran compilers. The user should choose
the compiler and set the path for the BLAS and LAPACK
libraries. In version 4.0 of the code, we have simplified the
call sequence of hfbtho. Assuming an executable named
hfbtho_main and a Linux system, execution is started by
typing

./hfbtho_main [input_file_name]

where [input_file_name] is an optional name of the
hfbtho input file that contains all the Namelists. If none
is given, the code will attempt to read the file with the
generic name hfbtho_NAMELIST.dat in the current direc-
tory. The code will also automatically generate two ASCII
output files: a compact one called hfbtho.out and a more
extended one called thoout.dat. Finally, the code gener-
ates a binary file named hfbtho_output.hel that is used
to restart calculations.

HFB calculations are greatly accelerated when OpenMP
multi-threading is activated. However, the user should keep
in mind that this requires setting additional environment
variables. In Linux/Unix machines, the default stack size
is not large enough to run the code and must be increased.
This can be achieved by instructions such as

ulimit -s unlimited
export OMP_STACKSIZE=32M

The value of ulimit defines the amount of stack size
for the main OpenMP thread. OpenMP supports control
over the stack size limit of all additional threads via the en-
vironment variable OMP_STACKSIZE. The value given above
should be sufficient for all applications. Note that this value
does not affect the stack size of the main thread set by
ulimit. For completeness, note that the GNU OpenMP
run-time (libgomp) recognizes the non-standard environ-
ment variable GOMP_STACKSIZE. If set, it overrides the value
of OMP_STACKSIZE. Finally, the Intel OpenMP run-time li-
brary also recognizes the non-standard environment vari-
able KMP_STACKSIZE. If set, it overrides the value of both
OMP_STACKSIZE and GOMP_STACKSIZE.
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Appendix A. Densities and Currents in the Coordinate-
Space Representation

Taking into account the block structure of the density
matrix in the y-simplex basis [cf. Eq. (30)], we can write

ρ(τ)(rσ, r′σ′) =
∑
αγ

ρ(τ)++
αγ Φs=+i∗

γ (r′σ′)Φs=+i
α (rσ)

+
∑
αγ

ρ(τ)−−
αγ Φs=−i∗

γ (r′σ′)Φs=−i
α (rσ),

(A.1)

where the sums run over HO basis states α and γ, while
Φs=+i
γ (rσ) and Φs=−i

γ (rσ) are the coordinate space represen-
tations of the eigenstates of the y-simplex operator [cf. Eqs.
(19) and (20)]

Φs=+i
γ (rσ) =

1
√

4π
ψnαz (z)ψ|Λ

α |

nα⊥
(r⊥)

×
[
ieiΛαφχ+ 1

2
(σ) + e−iΛαφχ− 1

2
(σ)

]
, (A.2a)

Φs=−i
γ (rσ) =

1
√

4π
ψnαz (z)ψ|Λ

α |

nα⊥
(r⊥)

×
[
eiΛαφχ+ 1

2
(σ) + ie−iΛαφχ− 1

2
(σ)

]
. (A.2b)

Components of the HO eigenfunctions ψnαz (z) and ψ|Λ
α |

nα⊥
(r⊥)

are defined in [11] and χ± 1
2
(σ) are the eigenstates of the

z-component of the spin operator. Note that in Eq. (A.1)
the dependence on x(τ) and q was dropped for compact-
ness in both ρ(τ)

q (rσ, r′σ′; x(τ)) on the left and ρ(τ)++
q,αγ (x(τ)),

ρ(τ)−−
q,αγ (x(τ)) on the right.

The auxiliary local densities (40a)-(40f) can then be
calculated from Eq. (A.1) as

ρ(τ)(r) =
∑
αγ

ρ(τ)
αγ,+F

1
αγ(r⊥, z) cos

[
(Λα−Λβ)φ

]
, (A.3a)

s(τ)
r⊥ (r) =−

∑
αγ

ρ(τ)
αγ,−F

1
αγ(r⊥,z) sin

[
(Λα+Λβ+1)φ

]
, (A.3b)

s(τ)
φ (r) =−

∑
αγ

ρ(τ)
αγ,−F

1
αγ(r⊥,z) cos

[
(Λα+Λβ+1)φ

]
, (A.3c)

s(τ)
z (r) = i

∑
αγ

ρ(τ)
αγ,+F

1
αγ(r⊥, z) sin

[
(Λα−Λβ)φ

]
, (A.3d)

τ(τ)(r) =
∑
αγ

ρ(τ)
αγ,+F

2
αγ(r⊥, z) cos

[
(Λα−Λβ)φ

]
, (A.3e)

T (τ)
r⊥ (r) =−

∑
αγ

ρ(τ)
αγ,−F

3
αγ(r⊥, z) sin

[
(Λα+Λβ+1)φ

]
, (A.3f)

19



T (τ)
φ (r) =−

∑
αγ

ρ(τ)
αγ,−F

3
αγ(r⊥,z) cos

[
(Λα+Λβ+1)φ

]
, (A.3g)

T (τ)
z (r) = i

∑
αγ

ρ(τ)
αγ,+F

2
αγ(r⊥, z) sin

[
(Λα−Λβ)φ

]
, (A.3h)

j(τ)
r⊥ (r) =

1
2i

∑
αγ

ρ(τ)
αγ,+F

4
αγ(r⊥, z) cos

[
(Λα−Λβ)φ

]
, (A.3i)

j(τ)
φ (r) =

1
2i

∑
αγ

ρ(τ)
αγ,+F

5
αγ(r⊥, z) sin

[
(Λβ−Λα)φ

]
, (A.3j)

j(τ)
z (r) =

1
2i

∑
αγ

ρ(τ)
αγ,+F

6
αγ(r⊥, z) cos

[
(Λα−Λβ)φ

]
, (A.3k)

J(τ)
r⊥r⊥ (r) = i

∑
αγ

ρ(τ)
αγ,−F

4
αγ(r⊥, z) sin

[
(Λα+Λβ+1)φ

]
, (A.3l)

J(τ)
r⊥φ(r) = i

∑
αγ

ρ(τ)
αγ,−F

4
αγ(r⊥,z) cos

[
(Λα+Λβ+1)φ

]
, (A.3m)

J(τ)
r⊥z(r) =

∑
αγ

ρ(τ)
αγ,+F

4
αγ(r⊥, z) sin

[
(Λα−Λβ)φ

]
, (A.3n)

J(τ)
φr⊥ (r) = i

∑
αγ

ρ(τ)
αγ,−F

7
αγ(r⊥,z) cos

[
(Λα+Λβ+1)φ

]
, (A.3o)

J(τ)
φφ (r) =−i

∑
αγ

ρ(τ)
αγ,−F

7
αγ(r⊥,z) sin

[
(Λα+Λβ+1)φ

]
, (A.3p)

J(τ)
φz (r) =

∑
αγ

ρ(τ)
αγ,+F

5
αγ(r⊥, z) cos

[
(Λα−Λβ)φ

]
, (A.3q)

J(τ)
zr⊥ (r) = i

∑
αγ

ρ(τ)
αγ,−F

6
αγ(r⊥, z) sin

[
(Λα+Λβ+1)φ

]
, (A.3r)

J(τ)
zφ (r) = i

∑
αγ

ρ(τ)
αγ,−F

6
αγ(r⊥, z) cos

[
(Λα+Λβ+1)φ

]
, (A.3s)

J(τ)
zz (r) =

∑
αγ

ρ(τ)
αγ,+F

6
αγ(r⊥, z) sin

[
(Λα−Λβ)φ

]
. (A.3t)

Here, we have introduced a shorthand notation for density
matrices

ρ(τ)
αγ,+ =

1
2π

(
ρ(τ)++
αγ +ρ(τ)−−

αγ

)
, (A.4a)

ρ(τ)
αγ,− =

1
2π

(
ρ(τ)++
αγ −ρ(τ)−−

αγ

)
, (A.4b)

as well as for the coordinate-dependent factors

F 1
αγ(r⊥, z) = ψnαz (z)ψ|Λ

α |

nα⊥
(r⊥)ψnβz

(z)ψ|Λ
β |

nβ⊥
(r⊥), (A.5a)

F 2
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F 7
αγ(r⊥, z) =

(Λα−Λβ)
r⊥

F 1
αγ(r⊥, z). (A.5g)

Furthermore, the local pairing densities read

ρ̃(τ)(r) =
∑
αγ

κ(τ)
αγ,−F

1
αγ(r⊥, z) cos

[
(Λα−Λβ)φ

]
, (A.6a)

ρ̃∗(τ)(r) =
∑
αγ

κ∗(τ)
αγ,−F

1
αγ(r⊥, z) cos

[
(Λα−Λβ)φ

]
, (A.6b)

with an equivalent shorthand notation

κ(τ)
αγ,− =

1
2π

(
κ(τ)+−
αγ −κ(τ)−+

αγ

)
, (A.7a)

κ∗(τ)
αγ,− =

1
2π

(
κ∗(τ)+−
αγ −κ∗(τ)−+

αγ

)
. (A.7b)

Appendix B. Coupling Constants of the Skyrme EDF

The time-even and time-odd contributions to the Skyrme
EDF [cf. Eqs. (54) and (55), respectively] contain a total
of twenty coupling constants in the isoscalar (t = 0) and
the isovector (t = 1) channel. Four of these constants are
density-dependent and can further be decomposed as

Cρρ
q,t(r; x) = Cρρ

t,0 + Cρρ
t,Dρ

α
q(r; x), (B.1a)

C ss
q,t(r; x) = C ss

t,0 + C ss
t,Dρ

α
q(r; x). (B.1b)

Here, the real number α can be considered as a parameter
of an EDF. The remaining twenty four density-independent
coupling constants can then be expressed in terms of the
(t, x) parameters of the Skyrme EDF. In the time-even chan-
nel, the coupling constants read

Cρρ
0,0 = +

3
8

t0, (B.2a)

Cρρ
0,D = +

1
16

t3, (B.2b)

Cρρ
1,0 = −

1
4

t0
(1
2

+ x0

)
, (B.2c)

Cρρ
1,D = −

1
24

t3
(1
2

+ x3

)
, (B.2d)

Cρ∆ρ
0 = −

9
64

t1 +
1

16
t2
(5
4

+ x2

)
, (B.2e)

Cρ∆ρ
1 = +

3
32
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)
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1
32

t2
(1
2
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)
, (B.2f)
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Cρτ
0 = +
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16
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1
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)
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)
, (B.2k)

CJJ
1 = −

1
16

(
t2 − t1

)
, (B.2l)

where b4 and b′4 are the parameters of the spin-orbit force
and we took te = to = 0 for the tensor terms [1]. In the
time-odd channel, the coupling constants read

C ss
0,0 = −

1
4

t0
(1
2
− x0

)
, (B.3a)

C ss
0,D = −

1
24

t3
(1
2
− x3

)
, (B.3b)

C ss
1,0 = −

1
8

t0, (B.3c)

C ss
1,D = −

1
48

t3, (B.3d)

C s∆s
0 = +

3
32

t1(
1
2
− x1

)
+

1
32

t2
(1
2

+ x2

)
, (B.3e)

C s∆s
1 = +

3
64

t1 +
1
64

t2, (B.3f)

C s j
0 = −Cρτ

0 , (B.3g)

C s j
1 = −Cρτ

1 , (B.3h)

C s∇ j
0 = +Cρ∇J

0 , (B.3i)

C s∇ j
1 = +Cρ∇J

1 , (B.3j)

C sT
0 = −CJJ

0 , (B.3k)

C sT
1 = −CJJ

1 . (B.3l)

Note that relations (B.3g) - (B.3l) are imposed by the local
gauge invariance of an EDF [1].
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