
LBcuda: a high-performance CUDA port of LBsoft for

simulation of colloidal systems

Fabio Bonaccorsoa,b,∗, Marco Lauricellab,∗, Andrea Montessoric,b, Giorgio
Amatid, Massimo Bernaschib, Filippo Spigae, Adriano Tiribocchib, Sauro

Succif,b,g

aDepartment of Physics and INFN, University of Rome Tor Vergata, Via della Ricerca
Scientifica 1, 00133 Rome, Italy

bIAC-CNR, Via dei Taurini 19, 00185 Rome, Italy
cDipartimento di Ingegneria, Università degli Studi Roma TRE, via Vito Volterra 62,

Rome, 00146, Italy
dSCAI, SuperComputing Applications and Innovation Department, CINECA, Via dei

Tizii, 6, Rome 00185, Italy
eNVIDIA Development UK Ltd, Milton Hall, Ely Rd, Milton, Cambridge CB24 6WZ,

United Kingdom
fCenter for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia

(IIT), 00161 Rome, Italy
gJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, 33

Oxford St., Cambridge, MA 02138, USA

Abstract

We present LBcuda, a GPU accelerated version of LBsoft, our open-source
MPI-based software for the simulation of multi-component colloidal flows.
We describe the design principles, the optimization and the resulting perfor-
mance as compared to the CPU version, using both an average cost GPU and
high-end NVidia GPU cards (V100 and the latest A100). The results show a
substantial acceleration for the fluid solver reaching up to 200 GLUPS (Giga
Lattice Updates Per Second) on a cluster made of 512 A100 NVIDIA cards
simulating a grid of eight billion lattice points. These results open attractive
prospects for the computational design of new materials based on colloidal
particles.

∗Corresponding authors
Email addresses: fabio.bonaccorso@roma2.infn.it (Fabio Bonaccorso),

marco.lauricella@cnr.it (Marco Lauricella)

Preprint submitted to Computer Physics Communications December 16, 2021

ar
X

iv
:2

11
2.

08
26

4v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 1
5

D
ec

 2
02

1

PROGRAM SUMMARY

Program Title: LBcuda

CPC Library link to program files: (to be added by Technical Editor)

Developer’s repository link: https://github.com/copmat/LBcuda

Licensing provisions: 3-Clause BSD License

Programming language: CUDA Fortran

Nature of problem: Hydro-dynamics of colloidal multi-component systems and

Pickering emulsions.

Solution method: Lattice-Boltzmann method solving the Navier-Stokes equations

for the fluid dynamics within an Eulerian description. Particle solver describing

colloidal particles within a Lagrangian representation coupled to the fluid solver.

The numerical solution of the coupling algorithm includes the back reaction effects

for each force terms according to a fluid-particle multi-scale paradigm.

Keywords: Lattice-Boltzmann, Colloids, CUDA, GPU

1. Introduction

In the last two decades, soft-glassy materials (SGM) have gained growing
attention due to their applications in several industrial sectors. In particular,
emulsions and foams are employed to design novel soft mesoscale materials
for chemical, food processing, manufacturing, and biomedical purposes [1,
2, 3]. Besides the technological relevance, their major significant theoretical
interest stems from their intriguing non-equilibrium effects, including long-
time relaxation, yield-stress behavior, and highly non-Newtonian dynamics.

In this context, computational fluid dynamics (CFD) provides a valuable
tool to improve the knowledge of the underlying physics of SGM. To that
purpose, a reliable SGM model alongside its software implementation is of
apparent interest for the rational designing and shaping up of novel soft
porous materials.

In this paper, we present and make available the CUDA Fortran code
LBcuda, specifically designed to simulate on GPUs bi-continuous systems
with colloidal particles under a variety of different conditions. LBcuda is
a direct port of the LBsoft code [4], an open-source software for simulations
of soft glassy emulsions originally developed for CPU-architectures, which
successfully combines the lattice-Boltzmann method (LBM) [5, 6, 7] with a

2

Lagrangian solver to tackle the multi-scale coupling of fluids and particles
[8].

Nowadays, the straightforward parallelization of LBM makes the lattice-
Boltzmann algorithm an excellent candidate for high-performance CFD, es-
pecially on GPU-based architectures, given the relative simplicity and local-
ity of its underlying algorithm. As a consequence, several LBM implemen-
tations have been developed for GPU architectures, both academic packages
such as the GPU-enabled versions of WaLBerla [9, 10], Palabos [11], Ludwig
[12], MUPHY [13], and commercially licensed software such as XFlow 2021
[14], to name a few.

As aforementioned, the model to describe colloidal particles is derived
from the previous CPU-based LBSoft code, to which the reader is referred for
further details [4]. Briefly, SGM modeling requires specific implementations
of LBM and Lagrangian solvers to include the hydrodynamic interactions
between solid particles and fluids, following several strategies reported in
the literature [15, 16, 17, 18]. This extension has opened the possibility to
simulate complex colloidal systems, also referred to as Pickering emulsions
[19] which are of primary interest for the rational design of SGM [20, 21,
22, 23]. This intrinsically multi-scale approach can catch, for example, the
dynamical transition from a bi-continuous interfacially jammed emulsion gel,
also referred to as bijel (see Fig. 1), capturing the associated mechanical and
spatial properties [24].

The paper is structured as follows. In Section 2 we report a very brief
description of the underlying method, referring our previous paper for a
deeper explanation of the details. In Section 3 we describe the details of the
data structures on the GPU, while in Section 4 we explain the parallelization
strategy and its impact on performance. In Section 5 we report a set of
tests used to validate the implementation and we investigate the performance
against the reference CPU version (LBsoft). Finally, conclusion and outlook
on future development directions are discussed.

2. Method

In this section, we briefly review the approach to the simulation of SGM
implemented in LBcuda alongside the more significant algorithmic adapta-
tions required by the GPU-based hardware. A more detailed illustration of
the underlying algorithms can be found in Ref. [4].

3

Figure 1: A typical bijel configuration with colloidal particles (blue spheres) entrapping
the interfaces between the two fluids (red and transparent green).

The code combines two different levels of description: the first exploits
a continuum approach for the dynamics of immiscible fluids, whereas the
second manages individual rigid bodies representing colloidal particles or
other suspended species. The two levels exchange information at each step
of the time integration scheme to describe the concurrent interaction among
particles and surrounding fluids.

In the first level, the LBM exploits a fully discretized analog of the Boltz-
mann kinetic equation to model flows and hydrodynamic interactions in flu-
ids.

In the LBM approach, the fundamental quantity is fi(~r; t), namely the
probability of finding a “fluid particle” at the spatial point mesh ~r and at time

4

t with velocity ~ci selected from a finite set of possible speeds. The LBcuda
code implements the 3-dimension 19-speed cubic lattice scheme (D3Q19)
with the discrete velocities ~ci with i ∈ [0, ..., 18] connecting mesh points with
spacing ∆x (length lattice unit) to first and second mesh neighbours, located
at distance ∆x and

√
2∆x, respectively (in other words, D3Q19 neglects 8

out of 27 possible velocities: those having distance
√

3∆x).
Denoted ρ(~r; t) and ~u(~r; t) respectively the fluid density and the fluid

velocity, the lattice-Boltzmann equation is implemented in single-relaxation
time (Bhatnagar-Gross-Krook equation) as follows:

fi(~r + ~ci; t+ 1) = (1− ω)fi(~r; t) + ωf eqi (ρ(~r; t), ~u(~r; t)) (1)

where f eq is the lattice local equilibrium, basically the local Maxwell-Boltzmann
distribution (see Appendix A), and ω is a frequency tuning the relaxation to-
wards the local equilibrium on a timescale τ = 1/ω. The relaxation frequency
ω controls the kinematic viscosity of the fluids according to the relation:

ν = c2
s

∆x2

∆t

(
1

ω
− 1

2

)
, (2)

where ∆x and ∆t are the physical length and time of the correspondent coun-
terparts in lattice units. Note that the positivity of the kinematic viscosity
requires the condition 0 < ω < 2.

In order to model a two component systems we adopted, a color gradient
(CG) algorithm, which enforces a diffuse interface between the two fluids [25].
In short, in the update phase of the populations, the CG collision contains
three sub-steps: a plain BGK collision, a perturbation operator, and a final
recoloring step. It is worth stressing that the last two sub-steps act only
near the interface between the two fluids. Further details are reported in
Appendix.

The second level of description involves a Lagrangian solver for the parti-
cle evolution, where each particle (colloid) is represented by a closed surface
S, taken, for simplicity, as a rigid sphere in the following.

The LBcuda code adopts the formulation given by Jansen and Harting
[23], where only the exterior regions are filled with fluid, whereas the interior
parts of the particles are solid nodes. The solid–fluid interaction is managed
via a simple generalization of the bounce-back rule including the correction
due to the relative motion of the solid particle with respect to the surrounding
fluid medium.

5

Hence, the particle position, speed ~vp and angular momentum ~ωp are
updated according to Newton’s equations of motion:

d~rp
dt

= ~vp,

mp
d~vp
dt

= ~Fp,

Ip
d~ωp

dt
= ~Tp,

(3)

where mp and Ip are the particle mass and moment of inertia, respectively.
Following Ladd’s seminal works [18, 26], we advance in time eq. 3 with

a leap-frog scheme, which is second order accurate in time. This set of
equations considers the full many-body hydrodynamic interactions since the
forces and torques are computed with the actual flow, as dictated by the
presence of all N particles simultaneously.

3. Implementation

The code is implemented in CUDA Fortran, using modules to minimize
code cluttering. The LBcuda code requires no external libraries besides the
CUDA runtime and compiles using a simple Makefile. The code is written
for the nvfortran compiler, with the GPU kernels confined in cuf extension
files, whereas the I/O part and the main are coded in standard FORTRAN
files.

The code is composed of 6 files:

• dimension.cuf, which sets constants for the LB algorithm and the
physical values of the simulation

• kernels fluid.cuf, containing all GPU variables

• kernels fluid CG.cuf, containing the color-gradient GPU code

• kernels fluid PART.cuf, containing the particles GPU code

• write output.f90, which outputs the VTK and VTI files for external
visualization by graphical programs (e.g, ParaView)

• main.f90, finally contains the driving code of all the subroutines.

Most of the input for the simulation is defined by setting Fortran param-
eters in dimension.cuf. In contrast, other runtime parameters, such as print

6

frequency of VTK output files and average statistical quantities, can be set
up without recompilation in a plain-text input file.

The data for each fluid component are organized in a five dimension
matrix having x,y,z, then the population index, and finally two possible values
for switching between old and new values during the collide-stream phases
of the LB algorithm, also referred to as one-step two-grid algorithm [27].

All data residing on the GPU are defined in kernels fluid.cuf, whereas
writing output files requires just a few memory passages from GPU to CPU
at the printing frequency for fluid densities, flow field, and particle positions.

In order to solve the lattice-Boltzmann equation with particle dynamics,
the algorithm proceeds executing the following sequence of subroutine calls:

• Each thread of the GPU device computes fluid and particle quantities
at a single spatial point, say located at the (i, j, k) node;

• In each node, the code proceeds according to three different cases:

1. If the node contains fluid far away from any particles, the thread
will only advance the LB algorithm;

2. If at that point a fluid touches a particle, the thread computes its
part for the LB algorithm, then it computes its contribute for the
force/toque integral. Note that when there are touching particles,
a point can contribute to more than one particle.

3. If the point is inside a particle, no computation is performed and
the following steps are skipped;

• Apply the collision step of Eq. 1;

• Apply the halfway bounce-back rule at particle surface and the relative
force terms on particles;

• Evolve position and angular velocity of particles (if present);

• Apply the stream step of Eq. 1.

It is worth stressing that the net force and torque exerted from the fluid
on the particle center of mass is obtained by summing over all the particle
surface nodes.

7

4. Parallelization strategy: CUDA and MPI

For the LB part of the algorithm, the CUDA porting decomposes the
global domain according to a 3D block distribution among the CUDA threads
(see Fig. 2). The selection of the block distribution is fixed at compile-time,
and it can be tuned to obtain the best performance given the global grid
dimension and the compute capability of the GPU device. Usually, a 3D
decomposition that emphasizes the x-axis dimension achieves the best per-
formance since it exploits the high memory bandwidth due to the data con-
tinuity in the column-major order of the FORTRAN language. Each thread
will be responsible for only one grid point of the fluid box in each CUDA
block. In the LB part, the thread iterates over all the fluid populations in
most kernels. On the other hand, the thread computes the contribution of the
fluid grid point to the force and torque of the overlapping particles, defined
as particles whose surface overlaps the fluid node owned by the thread.

The LBcuda code is designed to exploit multiple GPU devices. To that
purpose, the code resorts to MPI having one GPU card associated to each
MPI task. The LB domain is divided into sub-domains of equal size, whereas
the variables related to the particles are replicated in all the MPI processes.
Thus, the LB solver proceeds locally on each GPU device, with the extra
computational cost due to the communication of border information among
the local sub-domains of the neighbor MPI tasks.

Each MPI task computes the part (section) of the particles falling in its
sub-domain in the particle solver. In this framework, particles evolution is
crucial for achieving a high computational throughput by avoiding excessive
communication (or memory conflicts) among threads while integrating the
particle quantities. Thus, we have adopted a single particle list, which is
stored on GPU devices. In particular, whenever the multi GPU is used,
each MPI sub-domain has its list of owned particles on its GPU card. When
a LB time step is completed, each thread in the sub-domain checks if it
needs to compute the contribution of its fluid node to the computation of
the surface integral for the force and torque that the fluid exerts on each
particle surface node and vice versa. Hence, a global MPI reduction is used
to compute the corresponding total force and torque acting on the center of
mass of each particle, so that particle positions, orientations, and velocities
can be advanced in time on all the MPI processes. The selection of the
sub-domain particle list on each MPI process is made by a CUDA kernel,
leveraging the parallel computing power of each GPU card that makes the

8

Figure 2: Sketch showing the domain decomposition strategy used for the particle data on
the GPU device. On the left, each sub-domain (thread block) has a list of owned particles.
On the right, the global GPU data vector stores all the particles in contiguous way over
the sub-domains.

required computing time almost negligible.
It is worth highlighting that the overlap between particle and fluid node

provides an unbalance in the work performed by the CUDA threads, notably
wasting computational power at the surface particle node to treat the bound-
ary conditions and the momentum exchange between the surrounding fluid
and the particle. Nonetheless, we found that the overhead for the fluid solver
is quite marginal, retaining an acceptable code scalability.

5. Performance results

In order to analyze the computational performance of LBcuda, we con-
sider two cubic boxes of side 128 and 256 lattice nodes with periodic boundary
along the three Cartesian axes. We limited the size to a 256 cubic box, which
is the largest grid that fits in the memory of a single GPU device. We perform
three different test cases. First, we examine the case of a single fluid in a
cubic box with an initial density equal to one and zero velocity flow (case 1).
As a second test (case 2), a bi-component system is considered where all the

9

fluid nodes are randomly filled with fluid mass density of the two fluids, red
and blue component, to achieve the value of the order parameter, φ = ρr−ρb

ρr+ρb
,

equal to 1 or -1 with zero velocity flow field with the subscripts r and b
standing for “red” and “blue” fluids, respectively. The third test (case 3)
checks the entire LBcuda algorithm with the two-component fluid combined
with the particle solver describing the colloids in a rapid demixing emulsion.
In particular, we defined three sub-setups with different numbers of particles
to assess the performance of the particle solver. Hence, three values of the
volume fraction occupied by particles are considered: 0.1%, 1.0% and 10%,
labeled case 3a, case 3b, and case 3c, respectively.

To evaluate the performance of LBcuda, we compare the theoretical peak
performance to the actual one achieved by our code. In particular, the
roofline model [28] is used to rank the achievable computational performance
in terms of Operational Intensity (OI), defined as the ratio between flops per-
formed and data that need to be loaded/stored from/to memory. At low OI
(say, < 10), the performance is limited by the memory bandwidth, whereas
for higher OI values, the limitation comes from the availability of floating-
point units. It is well known that LB is a bandwidth-limited numerical
scheme, like most CFD models [29]. The OI index for LB schemes is around
0.7 for double-precision (DP) simulations using a D3Q19 lattice. As a matter
of fact, for a single fluid, since the number of floating-point operations per
lattice site and time step is F ' 200÷250 and the load/store burden in bytes
is B = 19 × 2 × 8 = 304 (using double precision), the operational intensity
is F/B ∼ 0.7, whereas in single precision is F/B ∼ 1.4 confirming that the
code is bandwidth limited (see also Figure 3).

In the following, we assess the efficiency of the LBcuda code by means of
the Giga Lattice Updates Per Second (GLUPS) metrics. In particular, the
definition of GLUPS reads:

GLUPS =
LxLyLz

109ts
, (4)

where Lx, Ly, and Lz are the domain sizes in the x−, y−, and z− axis, and
ts is the run (wall-clock) time (in seconds) per single time step iteration.

5.1. Single fluid

The case 1 with one fluid is tested using a plain BGK collision and a fused
implementation (in which the collision and streaming step are performed
simultaneously) of the LB time-advancing, the latter being the most popular

10

approach for major LB codes. The results are reported for two different
GPUs: a V100 and a GeForce RTX 2060S in Table 1.

Size GPU Time GLUPS Approach
1283 V100 1.09 ms/iter 1.923 fused
1283 2060S 1.64 ms/iter 1.278 fused
2563 V100 8.34 ms/iter 2.011 fused
2563 2060S 15.6 ms/iter 1.075 fused
1283 V100 2.09 ms/iter 1.003 plain
1283 2060S 3.14 ms/iter 0.667 plain
2563 V100 15.34 ms/iter 1.093 plain
2563 2060S 30.1 ms/iter 0.557 plain

Table 1: Timings alongside with GLUPS of 1283 and 2563 cubic boxes for the case 1 using
both the optimized fused and plain approach single fluid on a Tesla V100 and a GeForce
RTX 2060S in single precision.

The key differences between the two GPUs are: the V100 has 5132 Cuda
cores offering a peak performance of 14TFlop/s and a memory bandwidth
of 900GB/s, whereas the GeForce RTX 2060S has 2176 cores for a peak
of 6.4TFlop/s and a memory bandwidth of 448GB/s. On the other hand,
we observe that the obtained 2.011 GLUPS for a cubic box of side 256 is
comparable with the state-of-the-art represented, for instance, by the highly
optimized code by G. Falcucci et al. in Ref. [30] which reaches 3.406 GLUPS
on a single V100 with the fused implementation on the same cubic box size.

Although the fused approach reduces of a factor two the number of mem-
ory accesses, it is worth highlighting that the particle solver requires the
mandatory use of the plain approach, showing a decrease of the performance
of about a factor two for case 1. Indeed, the particle boundaries require using
the plain Lattice-Boltzmann algorithm, where the collision is first computed
for all the fluid lattice nodes. Then, the boundary conditions are applied
(internal walls or particles), and finally the streaming of the populations is
carried out (see Section 3).

From an in-depth analysis using the NVidia dedicated tool (NSight), we
observe that on the GeForce RTX 2060S the main kernel (the LB time-
stepping before the streaming substep)128x1x1 achieves better performance
achieves almost ∼ 520GFlop/s with an arithmetic intensity of 2.0 in single
precision (see Figure 3). This result shows that we are far from an intensity
∼ 15.0 which should give the peak performance, and in the case 1 we at-

11

Figure 3: Roofline model for single fluid using a GeForce RTX 2060S, as measured by
NVIDIA NSight in the plain LB approach and in single precision. Bandwidth and Float
point computation limits were obtained performing memory-stream and High Performance
Computing Linpack benchmark. Note that the LBcuda code lies on the left part of the
plot showing that it is bandwidth limited.

tain about 60% of memory bandwidth utilization due to its non-optimal use
following the plain approach.

5.2. Two fluid test

The case 2 is related to the simulation of a two-component system by the
color-gradient model (see Section 2). We remark that the time integration
is implemented using the plain approach with a standard collide-stream 2-
pass algorithm. Table 2 highlights the measured performance for the 1283

and 2563 cubic box. In particular, we observe an increase of about a factor
3 with respect to the previous case 1, which is mainly due to the larger
number of operations, more than doubled, in the color gradient collision
operator containing three steps (see Section 2) instead of the single step of
the plain BGK single fluid case.

12

Size GPU CUDA Block Time GLUPS
1283 V100 8x4x4 4.5 ms/iter 0.466
1283 2060S 8x4x4 11 ms/iter 0.190
2563 V100 8x4x4 34.1 ms/iter 0.492
2563 2060S 8x4x4 82.3 ms/iter 0.204

1283 V100 128x1x1 3.96 ms/iter 0.554
1283 2060S 128x1x1 8.96 ms/iter 0.245
2563 V100 128x1x1 27.9 ms/iter 0.601
2563 2060S 128x1x1 64.5 ms/iter 0.261

Table 2: Timings alongside with GLUPS for 1283 and 2563, 2 fluids with CG using a
Tesla V100 and a GeForce RTX 2060S with the plain approach in single precision with
two different decompositions of threads in CUDA block. Note that the CUDA block
configuration 128x1x1 achieves better performance exploiting the contiguous data over x
in the population arrays.

5.3. Particles

The entire LBcuda algorithm is evaluated with the two-component colour
gradient method (see Section 2) combined with the particle solver to model
the colloids in a rapid demixing emulsion. To assess the performance of the
particle solver, we prepared three simulation setups with different numbers
of particles with radius equal to 5.5 lattice units in a cubic box of side 256
lattice points. The three cases, in the following labelled case 3a, 3b, and 3c,
differ in the ratio between the volume occupied by the particles compared
to the box volume equal to ϕ = 0.1%, 1.0% and 10%, respectively, in order
to study the impact of the particle evolution on the simulation time. The
performance impact of having particles goes from negligible in case 3a to be
comparable with the LB computation in case 3c in which the time for each
iteration almost doubles, as shown in table 3.

13

case GPU ϕ Time GLUPS
3a V100 0.1 % 34.6 ms/iter 0.484
3a 2060S 0.1 % 84 ms/iter 0.199
3b V100 1.0 % 37.6 ms/iter 0.446
3b 2060S 1.0 % 88 ms/iter 0.190
3c V100 10 % 56 ms/iter 0.299
3c 2060S 10 % 113 ms/iter 0.148

Table 3: Timings alongside with GLUPS for the three cases with particle volume fraction,
ϕ, equal to 0.1%, 1.0%, and 10%, respectively, in a cubic box of 2563 lattice nodes in single
precision.

It is worth highlighting that LBcuda code implements a double precision
accumulator because of floating point accuracy problems related to the mo-
mentum transfer from the fluid to each particle. In particular, the particle
force and torque computation suffer from floating accuracy problems due to
strong cancellation between addends of alternating sign over the nodes of the
two-fluids interface.

The benchmark results can be also compared to the corresponding box
size without particles reported in Table 2. For the test in case 3 the particle
radius is equal to 5.5 lattice units, and the particle positions are randomly
distributed in the box. The initial particle velocity is zero in all runs. The
particle wettability is tuned to set an angle equal to 90◦ with respect to the
axis ~x? in the local reference frame of each particle. The impenetrability
among particles is avoided by an hertzian repulsive contact force computed
by means of neighbor’s lists (see Section 4). The lubrication force is also
considered by adding an extra force term whenever two particles are located
at a mutual distance lower than 2/3 lattice unit, as reported in previous sim-
ulations [23]. The particle mass was estimated as the weight corresponding
to a particle made of silica [31].

All runs were simulated on both the CPU and GPU architectures us-
ing the previous LBSoft code and the corresponding GPU ported version,
LBcuda. In all the cases 3 we observe only a small deviation in the position
always lower than 10−4 in lattice units, mainly due to the aforementioned
floating point accuracy problem. Indeed, the order of the addends over the
particle surface nodes is completely random on the GPU device. In the
case 3c we observe the arrest of the phase demixing process with particles
located at the fluid-fluid interface entrapping the demixing process into a

14

⠀愀⤀

⠀挀⤀ ⠀搀⤀

⠀戀⤀

Figure 4: Renderings for 2563 simulation without (plot d) and with particles (plot a,b,c).
From top-left to bottom-right) a) Initial condition for particle simulation. b) Density field
after 50k iterations with 10% volume fraction. c) Density field after 100k iterations (10%
vol. fraction). d) Density field after 100k iterations without particles starting from a
mixed bi-component fluid system (similar to plot a).

metastable state, the bi-continuous jammed gel state [32]. In Figure 4 we
show two of these numerical experiments, in which a random mixture of two
fluids evolves in a very different way in the presence of a high number of
particles (case 3c) and without particles (case 2). Indeed, the particles stop

15

the complete spinodal decomposition of the two fluids corresponding to the
condition of minimal energy and minimal interface between them. Whenever
a high volume fraction of particles is in the simulation box, the separation
surface becomes way more ”corrugated” showing the formation of the bi-
continuous jammed gel state. Figure 4 shows the initial condition, the fluids
after 50k (with particles), and final configurations of both simulations after
100k iterations (case 3c and case 2).

5.4. Multi GPUs Performance

The LBcuda code resorts to the Message Passing Interface (MPI) library
to exchange data among GPU devices running in parallel. The performance
obtained using multiple GPUs show a good scaling behavior as reported in
Tables 4 and 5. The benchmark in Table 4 was carried out on Marconi100 at
CINECA, a cluster of V100 cards, each with 16 GB of global memory using
a different number of GPU devices, for three cubic boxes: 2563, 5123, and
10243. The cluster is made of nodes, each endowed with four GPU cards so
that the MPI communication does not incur network latency unless the job
is using more than 4 GPU cards. The benchmark in Table 5 ran on a cluster
made of NVIDIA DGX A100. Each NVIDIA DGX A100 is equipped with 8
A100 NVIDIA GPU with 80 GB of RAM interconnected intra-node through
the NVswitch and 8 NVIDIA Infiniband HDR (one NIC for each GPU) for
multi-node scaling.

Grid 1 2 4 8 16 32
2563V 100 16GB 0.60 1.17 2.24 2.93 2.71 3.15
5123V 100 16GB x x 2.67 4.57 6.23 9.26
10243V 100 16GB x x x x x 12.48

Table 4: Performance for 2563, 5123, 10243, measured in GLUPS running on multiple
NVIDIA Volta V100 GPUs (each card equipped with 16 GB of RAM). Note that the
symbol (x) denotes a grid size too big to fit in the local GPU memory. For the 2563,
performance degrade dramatically when using more than 8 V100 GPUs and more than
64 A100 because each local domain becomes too small (256x256x8) to offset the cost of
scheduling the GPU task.

All benchmarks reported in Tables 4 and 5 were carried out on a bi-
component fluid system without particles (case 2). The data for the cubic
box sizes 2563, 5123 are also plotted in Figure 5 with an evident decrease
in the scalability whenever the code starts to run on more than one node

16

Grid 8 16 32 64 128 256 512
2563A100 80GB 6.17 9.42 12.38 15.38
5123A100 80GB 7.63 14.13 23.13 36.05
10243A100 80GB 11.65 20.57 28.59 49.11 76.91
20483A100 80GB x x x 55.22 102.3 160.9 204.5

Table 5: Performance for 2563, 5123, 10243, 20483 measured in GLUPS running on multiple
NVIDIA Volta A100 GPUs (each card equipped with 80 GByte of RAM). Note that the
symbol (x) denotes a grid size too big to fit in the local GPU memory.

(more than 4 GPUs). Hence, the three tests, case 3a, 3b, and 3c, with
different values in the particle volume fraction, ϕ, were performed to probe
the efficiency of the particles solver as a function of the particles number in
the system. All benchmarks were carried out on eight GPU cards: both V100
cards with a 16 GB RAM and A100 cards with a 40 GB RAM. In Table 6,
we observe a clear communication penalty as the particles number increases
that is mainly due to the replicated data strategy used for the particle solver
parallelization. Indeed, the replicated data parallel approach replicates the
physical quantities of all particles across the MPI processes, performing local
updating and global MPI sum reductions in order to advance the system
in time, which decreases the performance as the quantity of particles data
increases. Nonetheless, the analysis of the performance as a function of the
number of particles shows that the code is able to reach about 3.80 GLUPS
in a system with 10% in the particle volume fraction.

GPU No particles ϕ = 0.1% ϕ = 1.0% ϕ = 10%
8 V100@16 30 ms (4.47) 40 ms (3.35) 51 ms (2.63) 95 ms (1.41)
8 A100@40 18 ms (7.55) 19 ms (7.06) 22 ms (6.10) 35 ms (3.83)

Table 6: Time per single iteration alongside with GLUPS in parenthesis for 5123 with-
out and with particles (at different particle volume fraction ϕ) on 2 different machines:
using eight V100 with 16 GB of RAM on 2 nodes (connected by InfiniBand) and using
eight A100 with 40 GB in a single node (without the latency time due to the InfiniBand
communication).

5.5. Comparing LBcuda with LBsoft

For the sake of completeness, we probe the gain provided by the CUDA
port reported in the present article. Thus, the case 2 bi-component system

17

Figure 5: Top panel: Measured GLUPS for different numbers of V100 cards with a 16 GB
RAM, running two cubic boxes of side 256 and 512, respectively. Bottom panel: Measured
GLUPS for different numbers of A100 cards with a 80 GB RAM, running two cubic boxes
of side 1024 and 2048, respectively.

was initialized with the same values in density and flow field in both LBcuda
and LBsoft code. The cubic box size is equal to 5123 lattice points. Although
it is difficult to compare two completely different computing architectures, we
measure the wall-clock time obtained on a GPU cluster made of V100 cards
with 16 GB RAM and a CPU cluster containing two Intel Cascade Lake 8260

18

CPUs at 2.40 GHz with 48 cores and 384 GB of RAM per node. We note that
the code produces the same results in single precision unless a slight difference
of 10−4 order of magnitude in the particle positions due to floating point
accuracy problems (mainly due to different order of summation). The wall-
clock time for iteration results in 12 ms on 32 V100 cards of LBcuda versus
88 ms on 528 cores of LBSoft, confirming the clear advantage in running the
CUDA ersion on a GPU HPC cluster.

6. Conclusion

We have presented LBcuda, a CUDA port of LBsoft, an open-source soft-
ware aimed at simulating specifically colloidal systems. LBcuda is written in
CUDA Fortran and permits to simulate large system sizes running on mul-
tiple GPU devices by exploiting an efficient parallel domain decomposition
implementation.

In particular, the code shows good scaling behavior of the fluid solver
achieving the performance peak of 200 GLUPS on 512 NVIDIA A100 cards
with a grid of eight billion lattice points. On the other hand, the particle
solver combined with the LB approach shows a very satisfactory performance
in terms of scalability in both system size and number of processing cores,
especially using the Nvidia Ampere A100 cards.

In this work, the main structure of LBcuda has been outlined along with
the key steps of its implementation. Furthermore, several cases have been
introduced to test the code over typical problems that the LBcuda code
can deal with. In particular, the simulations with particles demonstrate the
capabilities of the present code to reproduce the complex dynamics of bi-jel
systems in a rapid de-mixing emulsion.

The LBcuda code is open source and completely accessible at the public
repository GitHub, which is in line with the spirit of open-source software,
mainly to promote the contribution of independent developers.

7. Acknowledgments

The research leading to these results has received funding from the Eu-
ropean Research Council under the European Union’s Horizon 2020 Frame-
work Programme (No. FP/2014- 2020)/ERC Grant Agreement No. 739964
“COPMAT” and from MIUR under the project “3D-Phys” (No. PRIN
2017PHRM8X). The CINECA is acknowledged for the support granted by

19

the ISCRA project “porting LBSOft in CUda on multi-node GPUs (LB-
SOCU)”.

Appendix

For the details of the color gradient (GC) model of the Lattice Boltzmann
method employed in the bi-component systems [25], we recall some notions.

In the color gradient LB for two-component flows, two sets of distribution
functions are defined to track the evolution of the two fluid components,
which occurs via a streaming-collision algorithm:

fki (~x+ ~ci∆t, t+ ∆t) = fki (~x, t) + Ωk
i (f

k
i (~x, t)), (5)

where fki is the discrete distribution function, representing the probability
of finding a particle of the kth component at position ~x and time t with
discrete velocity ~ci .

In the last Eq. i is the index running over the lattice discrete directions
i = 0, ..., b, where b = 18 for a three dimensional 19 speed lattice (D3Q19)
implemented in LBcuda. The lattice time step ∆t has been taken as 1 (in
lattice units) for convenience. The density ρk of the kth component is given
by the zeroth moment of the distribution functions:

ρk (~x, t) =
∑
i

fki (~x, t) , (6)

while the total fluid density is assessed as ρ =
∑

k ρ
k, and the total momen-

tum of the mixture is given as the sum of the linear momentum of the two
components:

ρ~u =
∑
k

∑
i

fki (~x, t)~ci. (7)

The collision operator in the CG model is made of three parts:

Ωk
i =

(
Ωk
i

)(3)
[(

Ωk
i

)(1)
+
(
Ωk
i

)(2)
]
. (8)

In the above,
(
Ωk
i

)(1)
stands for the standard collisional relaxation which

reads: (
Ωk
i

)(1)
= ω(fk,eqi − fki), (9)

where ω = 2/(6ν̄ − 1) is the effective relaxation parameter being ν̄ the mean
viscosity of the bi-component system computed as 1

ν̄
= ρ1

(ρ1+ρ2)
1
ν1

+ ρ2
(ρ1+ρ2)

1
ν2

20

(ν1 and ν2 are the kinematic viscosities of the two pure components in the
bulk). The equilibrium distribution function of the kth component fk,eqi is
given by a low-Mach, second-order, expansion of a local Maxwellian, namely:

fk,eqi = wiρ
k(1 +

~ci · ~u
c2
s

+
(~ci · ~u)2

2c4
s

− ~u · ~u
2c2
s

), (10)

where cs = 1/
√

3 is the sound speed of the model. The symbol
(
Ωk
i

)(2)

denotes the perturbation step, which contributes to the build up of an in-

terfacial tension. Finally,
(
Ωk
i

)(3)
is the recoloring step, which promotes the

segregation between species, so as to minimize their mutual diffusion.
In order to reproduce the correct form of the stress tensor, the perturba-

tion operator can be constructed by exploiting the concept of the continuum
surface force. Firstly, the perturbation operator must satisfy the following
conservation constraints:

∑
i

(
Ωk
i

)(2)
= 0 (11)∑

k

∑
i

(
Ωk
i

)(2)
~ci = 0 (12)

By performing a Chapman-Enskog expansion, it can be shown that the
hydrodynamic limit of Eq.5 is represented by a set of equations for the con-
servation of mass and linear momentum:

∂ρ

∂t
+∇ · ρ~u = 0 (13)

∂ρ~u

∂t
+∇ · ρ~u~u = −∇p+∇ · [ρν(∇~u+∇~uT)] +∇ ·Σ (14)

where p =
∑

k pk is the pressure and ν = c2
s(τ − 1/2) is the kinematic

viscosity of the mixture, being τ the single relaxation time.
The stress tensor in the momentum equation is given by:

Σ = −τ
∑
i

∑
k

(
Ωk
i

)(2)
~ci~ci (15)

Since the perturbation operator is responsible for generating interfacial
tension, the following relation must hold:

21

∇ ·Σ = ~F (16)

Denoting Θ = (ρ1− ρ2)/(ρ1 + ρ2) the phase field, by choosing the second
operator as: (

Ωk
i

)(2)
=
Ak
2
|∇Θ|

[
wi

(~ci · ∇Θ)2

|∇Θ|2
−Bi

]
, (17)

substituting it into Eqs 11 and 16 and by imposing that the set Bi must
satisfy the following isotropy constraints

∑
i

Bi =
1

3
;
∑
i

Bi~ci = 0 ;
∑
i

Bi~ci~ci =
1

3
I, (18)

we obtain an equation for the surface tension of the model:

σ =
2

9
(A1 + A2)

1

ω
=

4

9
A

1

ω
. (19)

The above relation shows a direct link between the surface tension and the
parameter A with A1 = A2. In actual practice, after choosing the viscosity
of the two components and the surface tension of the model, at each time
step, one locally computes the A coefficient by using the formula reported in
eq. (19).

As pointed out above, the perturbation operator generates an interfacial
tension in compliance with the capillary-stress tensor of the Navier-Stokes
equations for a multicomponent fluid system.

Nonetheless, the perturbation operator alone does not guarantee the im-
miscibility of different fluid components. For this reason, a further step is
needed (i.e. the recoloring step) to minimize the mutual diffusion between
components.

Following the work of Latva-Kokko and Rothman, the recoloring operator
for the two sets of distributions takes the following form:

(
Ω1
i

)(3)
=
ρ1

ρ
f ∗i + β

ρ1ρ2

ρ2
cosφif

eq,0
i (20)

(
Ω2
i

)(3)
=
ρ2

ρ
f ∗i − β

ρ1ρ2

ρ2
cosφif

eq,0
i , (21)

22

D3Q19 {i : |c|2 = 0} {i : |c|2 = 1} {i : |c|2 = 2}
wi 1/3 1/18 1/36
Bi -2/9 1/54 1/27

D3Q19 lattice velocity and weights [25].

where f ∗i =
∑

k f
k,∗
i denotes the set of post-perturbation distributions,

ρ = ρ1 + ρ2, cosφi is the angle between the phase field gradient and the ith

lattice vector and f eq,0i = fi(ρ, ~u = 0)eq =
∑

k f
k
i (ρ, ~u = 0)eq is the total

zero-velocity equilibrium distribution function. In Eq. 21, the coefficient β
is a free parameter which tunes the interface width, thus playing the role of
an inverse diffusion length scale. The coefficients used in Eqs 10 and 17 are
reported in Table.

For the details of the particle time evolution, a full explanation is in Ref.
[4]. For the sake of completeness, the main key steps are outlined in the
following.

The velocity at a boundary node of p-th particle is given by:

~ub = ~vp + ~rb × ~ωp, (22)

where, rb = ~rs + 1
2
~ci is the location of the moving wall along the i-th link

connecting the solid node ~rs to the fluid node ~ri = ~rs+~ci. All coordinates are
relative to the center of the p-th particle, located at position ~rp and moving
with translation and angular velocities ~vp and ~ωp, respectively.

The timestep is made unit for simplicity. This velocity sets the bias
between colliding pairs:

fi (~r + ~ci, t+ 1) = fī (~r + ~ci, t
′) + 2ρwiubi, (23)

fī (~r, t+ 1) = fi (~r, t
′)− 2ρwiubi (24)

where t′ denotes post-collisional states and we have set

ubi =
~ub · ~ci
c2
s

Note that these rules reduce to the usual bounce-back conditions for a solid
at rest, ~vp = ~ωp = 0.

These collision rules produce a net momentum transfer between the fluid
and the solid site:

~Fi(~rb, t+
1

2
) = 2~ci[fi(~r, t

′)− fī(~ri, t′)− 2ρwiubi] (25)

23

The net force acting upon particle p is obtained by summing over all
boundary sites ~rb and associated interacting links, namely:

~Fp =
∑

~rb,i∈Σp

~Fi(~rb). (26)

Similarly, the total torque ~Tp is computed as

~Tp =
∑

~rb,i∈Σp

~Fi(~rb)× ~rb, (27)

References

[1] A. Fernandez-Nieves, A. M. Puertas, Fluids, Colloids and Soft Materials:
An Introduction to Soft Matter Physics, volume 7, John Wiley & Sons,
2016.

[2] R. Piazza, Soft matter: the stuff that dreams are made of, Springer
Science & Business Media, 2011.

[3] R. Mezzenga, P. Schurtenberger, A. Burbidge, M. Michel, Understand-
ing foods as soft materials, Nature materials 4 (2005) 729.

[4] F. Bonaccorso, A.Montessori, A.Tiribocchi, G.Amati, M.Bernaschi,
M. Lauricella, S.Succi, Lbsoft: A parallel open-source software for sim-
ulation of colloidal systems, Computer Physics Communications 256
(2020) 107455.

[5] S. Succi, The lattice Boltzmann equation: for complex states of flowing
matter, Oxford University Press, 2018.

[6] T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, E. M.
Viggen, The lattice boltzmann method, Springer International Publish-
ing 10 (2017) 4–15.

[7] R. Benzi, S. Succi, M. Vergassola, The lattice boltzmann equation:
theory and applications, Physics Reports 222 (1992) 145–197.

[8] M. Bernaschi, S. Melchionna, S. Succi, Mesoscopic simulations at the
physics-chemistry-biology interface, Reviews of Modern Physics 91
(2019) 025004.

24

[9] M. Bauer, S. Eibl, C. Godenschwager, N. Kohl, M. Kuron, C. Rettinger,
F. Schornbaum, C. Schwarzmeier, D. Thönnes, H. Köstler, et al., wal-
berla: A block-structured high-performance framework for multiphysics
simulations, Computers & Mathematics with Applications 81 (2021)
478–501.

[10] M. Holzer, M. Bauer, H. Köstler, U. Rüde, Highly efficient lattice boltz-
mann multiphase simulations of immiscible fluids at high-density ratios
on cpus and gpus through code generation, The International Journal of
High Performance Computing Applications (2021) 10943420211016525.

[11] J. Latt, O. Malaspinas, D. Kontaxakis, A. Parmigiani, D. Lagrava,
F. Brogi, M. B. Belgacem, Y. Thorimbert, S. Leclaire, S. Li, et al.,
Palabos: parallel lattice boltzmann solver, Computers & Mathematics
with Applications 81 (2021) 334–350.

[12] J.-C. Desplat, I. Pagonabarraga, P. Bladon, Ludwig: A parallel lattice-
boltzmann code for complex fluids, Computer Physics Communications
134 (2001) 273–290.

[13] M. Bernaschi, S. Melchionna, S. Succi, M. Fyta, E. Kaxiras, J. K. Sir-
car, Muphy: A parallel multi physics/scale code for high performance
bio-fluidic simulations, Computer Physics Communications 180 (2009)
1495–1502.

[14] D. M. Holman, R. M. Brionnaud, Z. Abiza, Solution to industry bench-
mark problems with the lattice-boltzmann code xflow, in: Proceeding in
the European Congress on Computational Methods in Applied Sciences
and Engineering (ECCOMAS).

[15] A. J. Ladd, Lattice-boltzmann methods for suspensions of solid parti-
cles, Molecular Physics 113 (2015) 2531–2537.

[16] A. Ladd, R. Verberg, Lattice-boltzmann simulations of particle-fluid
suspensions, Journal of statistical physics 104 (2001) 1191–1251.

[17] C. K. Aidun, Y. Lu, E.-J. Ding, Direct analysis of particulate suspen-
sions with inertia using the discrete boltzmann equation, Journal of
Fluid Mechanics 373 (1998) 287–311.

25

[18] A. J. Ladd, Numerical simulations of particulate suspensions via a dis-
cretized boltzmann equation. part 1. theoretical foundation, Journal of
fluid mechanics 271 (1994) 285–309.

[19] S. U. Pickering, Cxcvi.—emulsions, Journal of the Chemical Society,
Transactions 91 (1907) 2001–2021.

[20] Q. Xie, G. B. Davies, J. Harting, Direct assembly of magnetic janus
particles at a droplet interface, ACS nano 11 (2017) 11232–11239.

[21] H. Liu, Q. Kang, C. R. Leonardi, S. Schmieschek, A. Narváez, B. D.
Jones, J. R. Williams, A. J. Valocchi, J. Harting, Multiphase lattice
boltzmann simulations for porous media applications, Computational
Geosciences 20 (2016) 777–805.

[22] S. Frijters, F. Günther, J. Harting, Effects of nanoparticles and surfac-
tant on droplets in shear flow, Soft Matter 8 (2012) 6542–6556.

[23] F. Jansen, J. Harting, From bijels to pickering emulsions: A lattice
boltzmann study, Physical Review E 83 (2011) 046707.

[24] Z. Sun, X. Yan, Y. Xiao, L. Hu, M. Eggersdorfer, D. Chen, Z. Yang,
D. A. Weitz, Pickering emulsions stabilized by colloidal surfactants:
Role of solid particles, Particuology (2021).

[25] S. Leclaire, A. Parmigiani, O. Malaspinas, B. Chopard, J. Latt, Gen-
eralized three-dimensional lattice boltzmann color-gradient method for
immiscible two-phase pore-scale imbibition and drainage in porous me-
dia, Physical Review E 95 (2017) 033306.

[26] A. J. Ladd, Numerical simulations of particulate suspensions via a dis-
cretized boltzmann equation. part 2. numerical results, Journal of fluid
mechanics 271 (1994) 311–339.

[27] M. Wittmann, T. Zeiser, G. Hager, G. Wellein, Comparison of different
propagation steps for lattice boltzmann methods, Computers & Math-
ematics with Applications 65 (2013) 924–935.

[28] S. Williams, A. Waterman, D. Patterson, Roofline: an insightful visual
performance model for multicore architectures, Communications of the
ACM 52 (2009) 65–76.

26

[29] S.Succi, G.Amati, F. Bonaccorso, M. Lauricella, M.Bernaschi,
A.Montessori, A.Tiribocchi, Towards exascale design of soft mesoscale
materials, Journal of Computational Science 46 (2020) 101175.

[30] G. Falcucci, G. Amati, P. Fanelli, V. K. Krastev, G. Polverino, M. Por-
firi, S. Succi, Extreme flow simulations reveal skeletal adaptations of
deep-sea sponges, Nature 595 (2021) 537–541.

[31] E. M. Herzig, K. White, A. B. Schofield, W. C. Poon, P. S. Clegg,
Bicontinuous emulsions stabilized solely by colloidal particles, Nature
materials 6 (2007) 966–971.

[32] K. Stratford, R. Adhikari, I. Pagonabarraga, J.-C. Desplat, M. E. Cates,
Colloidal jamming at interfaces: A route to fluid-bicontinuous gels, Sci-
ence 309 (2005) 2198–2201.

27

	1 Introduction
	2 Method
	3 Implementation
	4 Parallelization strategy: CUDA and MPI
	5 Performance results
	5.1 Single fluid
	5.2 Two fluid test
	5.3 Particles
	5.4 Multi GPUs Performance
	5.5 Comparing LBcuda with LBsoft

	6 Conclusion
	7 Acknowledgments

