
ar
X

iv
:2

11
0.

11
66

0v
1 

 [
he

p-
ph

] 
 2

2 
O

ct
 2

02
1

FIESTA5: numerical high-performance Feynman

integral evaluation

A.V. Smirnova,c,∗, N. D. Shapurovb,c, L. I. Vysotskyb,c

aResearch Computing Center, Moscow State University, Moscow, Russia
bFaculty of Computational Mathematics and Cybernetics, Moscow State University,

Moscow, Russia
cMoscow Center for Fundamental and Applied Mathematics, Moscow, Russia

Abstract

In this paper we present a new release of the FIESTA program (Feynman
Integral Evaluation by a Sector decomposiTion Approach). FIESTA5 is
performance-oriented — we implemented improvements of various kinds in
order to make Feynman integral evaluation faster. We plugged in two new
integrators, the Quasi Monte Carlo and Tensor Train. At the same time
the old code of FIESTA4 was upgraded to the C++17 standard and mostly
rewritten without self-made structures such as hash tables. There are also
several essential improvements which are most relevant for complex integra-
tions — the new release is capable of producing results where previously
impossible.
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PROGRAM SUMMARY

Manuscript Title: FIESTA5: numerical high-performance Feynman integral eval-
uation
Authors: A.V. Smirnov, N. D. Shapurov, L. I. Vysotsky
Program title: FIESTA5
Licensing provisions: GPLv3
Programming language: Wolfram Mathematica 8.0 or higher, C++
Computer(s) for which the program has been designed: from a desktop PC to a
supercomputer
Operating system(s) for which the program has been designed: Unix, Linux, Mac
OS X, Windows (under WSL)
RAM required to execute with typical data: depends on the complexity of the
problem
Has the code been vectorized or parallelized?: both
Number of processors used: from 1 processor up to loading a supercomputer; from
a personal GPU up to professional GPUs at a supercomputer
Supplementary material: The article, usage instructions in the program package,
https://bitbucket.org/feynmanIntegrals/fiesta
Keywords: Feynman diagrams, Multiloop Feynman integrals, Dimensional regular-
ization, Computer algebra
CPC Library Classification: 4.4 Feynman diagrams, 4.12 Other Numerical Meth-
ods, 5 Computer Algebra, 6.5 Software including Parallel Algorithms
External routines/libraries used: Wolfram Mathematica [1], KyotoCabinet [2], Cuba
[3], QMC [4], Tensor Train [5], mimalloc [6]
Nature of problem: Sector decomposition is a well-known approach to the numerical
evaluation of Feynman integrals. Feynman integrals in 4 space-time dimension are
divergent and have to be regulated. Sector decomposition is used to resolve pole
singularities and consists of different stages — sector decomposition itself, contour
decomposition (in case of physical kinematics meaning base functions changing
sign therefore leading to integration in complex numbers), pole resolution, epsilon
expansion and numerical integration.
Solution method: Most stages are performed in Wolfram Mathematica [1] (re-
quired version is 8.0 or higher), this part is parallelized by the use of Mathematica
subkelnels in shared memory. As a result a database on hard disk is produced
with the use of the KyotoCabinet [2] database engine. The integration stage is
written in C++ and can be run on personal computers as well as on supercomputers
via MPI. It can make use of installed graphical processor units. As default integra-
tor we use Vegas from the Cuba library [3], but also it can be switched to QMC [4]
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or Tensor Tran [5]. The mimalloc memory allocator [6] can be used for improved
performance.
Restrictions: The complexity of the problem is mostly restricted by CPU time
required to perform the integration and to obtain the desired precision.
Running time: depends on the complexity of the problem.
References:
[1] http://www.wolfram.com/mathematica/, commercial algebraic software;
[2] http://fallabs.com/kyotocabinet/, open source;
[3] http://www.feynarts.de/cuba/, open source;
[4] https://github.com/mppmu/qmc/, open source;
[5] https://bitbucket.org/vysotskylev/c-tt-library, open source;
[6] https://github.com/microsoft/mimalloc.git, open source;
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1. Introduction

Sector decomposition is an already long-established method of numerical
Feynman integral evaluation. While sector decomposition itself is known
from mathematician papers from previous century, in particle physics was
first introduced by Binoth and Hienrich [1, 2, 3, 4] and the first public version
of a sector decomposition program was published by Bogner and Weinzierl [5,
6].

Nowadays there are two well-known public competitive programs for sec-
tor decomposition, SecDec by Binoth and Heinrich [4], later improved and
made public by other collaborators and at some point renamed to pySecDec [7,
8, 9, 10, 11, 12, 13, 14, 15, 16, 17] and FIESTA [18, 19, 20, 21].

In this paper we are not going to repeat detailed explanations what sector
decomposition is to avoid text borrowing (there is no original way to present
sector decomposition so many times) and are going to focus on how the sector
decomposition can be made effective taking most of CPUs and GPUs in use.

The new release of FIESTA is a significant upgrade of the previous FIESTA
version. The key features of the new release are

• improvement of contour decomposition algorithms in physical kinemat-
ics making FIESTA work in cases where it was previously impossible and
much faster;

• new integrators are available, the Quasi Monte Carlo algorithm [22]
and Tensor Train algorithm [23];

• multiple internal code optimizations including full support for AVX
(single instruction multiple data) processor instructions resulting in a
faster integrand evaluation;

• multiple options aimed at faster evaluation, for example, the possibil-
ity to seed a different number of sampling points in different sectors
depending in their contribution to the final result (balancing);

• the integral evaluation was measured with code profilers and some parts
of the code taking unreasonably large amounts of time were improved.

At the same time the new release is also a serious update of the codebase:

• the Mathematica part of the code is now a Mathematica package with-
out influencing global context, all functions have a usage explanation;
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• legacy code with self-made hash tables, tries and vectors was removed
and replaced with appropriate std structures;

• the code standard was upgraded from c99 to C++17;

• configure script was added making it possible to set up user preferences
before compilation;

• the code was covered with doxygen documentation and partially with
tests (any new change is automatically tested so that it does not break
the behavior in many situations).

While the points listed above do not produce direct benefit for a general
user, we pose them as an important advancement since now a larger team
of researchers might support and develop the code, and we have plans for
future advancement and releases.

The rest of the paper is organized the following way: in the next section we
give a brief description of the sector decomposition approach mainly focusing
on stages of this method since their understanding is essential for setting
proper options for FIESTA optimization. We also present the new features of
FIESTA5 related to each of the stages. In section 3 we explain how to install
FIESTA and how to use it. In section 4 we list all FIESTA options and provide
comments on how to set them properly depending on the example in use. In
section 5 we provide benchmarks comparing the usage with different options
and different versions of FIESTA.

2. Sector decomposition stages

The sector decomposition approach is a complex method consisting of
multiple stages, performed automatically one after another. Different sector
decomposition programs might have somewhat different approaches, so we
are going to list those stages in the way they are used in FIESTA and give
their characteristics and possible issues.

Sector decomposition starts from an integral over n variables from 0 to ∞
but this integration is actually in finite ranges since the integrand contains a
delta-function of the sum of all variables that is a function that is equal to 1
if the sum is equal to 1 and 0 otherwise. Apart from the delta function the
integrand consists of a product of polynomials of integration variables with
the exponent depending from a special variable, ε where d = 4 − 2ε us the
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space-time dimension. This ε is small and we are interested in the first terms
of the series of the integral in ε.

For a Feynman integral the formula is the following:

F(a1, . . . , an) = (iπd/2)l × (1)

Γ(A− ld/2)
∏n

j=1 Γ(aj)

∫

xj≥0
dxi . . . dxnδ

(

1−
n
∑

i=1

xi

)





n
∏

j=1

x
aj−1
j





UA−(l+1)d/2

(F − i0)A−ld/2
,

Here l is the number of loops of the Feynman diagram, A is the sum of
indices and U and F are certain polynomial of integration variables that are
constructively defined based on the diagram. We should also note that the
approach is valid for more general integrals. We are going to list all stages
we use, for details one can refer to previous papers on FIESTA.

If F is negative then there is no imaginary part. In particular, this hap-
pens in regions where all the kinematic invariants are negative. For physical
values of the kinematic invariants and the masses, this function can be posi-
tive so that a given Feynman integrals has a non-zero imaginary part.

2.1. Dealing with negative indices

If some of the indices are non-positive integers, the integration is per-
formed according to the rule (here f (n) is the a-th derivative of f):

lim
a→−n

∫ ∞

0
dx

x(a−1)

Γ(a)
f(x) = f (n)(0) (2)

Complexity : low;
Parallelization: no;
Possible issues: the resulting expression becomes more complex, there-

fore if one is aiming at results with reasonable precision, integrals without
negative indices should be chosen as master integrals (the integrals that one
reduced all integrals for a chosen diagram to).

2.2. Preresolution

The problem of integrals of equation 1 is that one should expand in ε be-
fore proceeding to numerical integration, but one cannot just change the order
of integration and the expansion operations. To be able to do this one should
first reveal possible singularities. While the basic sector decomposition ap-
proach aims at revealing singularities of the x[i]−1+ε type, the singularities
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might be also inside the integration region due to hidden (x[i] − x[j])−1+ε

terms.
The preresolution stage as we call it aims at getting rid of the singularities

of a special form. By default it is off in the complex mode, meaning physical
kinematics where F can change sign. But this stage is especially important
in threshold configurations (which are defined by an equality between the
square of the momentum flowing thorugh a cut of a given graph and the
square of the sum of the masses in the threshold) where F tends to zero not
only due to x[i] → 0 but also due to x[i] → x[j] and some more complex
combinations. In this case we start searching for pairs of i and j such that
dividing the integration region in two zones (x[i] ≤ x[j] and vice versa) and
performing a change x[i] → x[i] + x[j], x[j] → x[j] (and a similar one in the
opposite region) decreases the number of negative terms in F . This stage
can increase the number of starting sectors for sector decomposition.

Complexity : low;
Parallelization: no;
Related options: NegativeTermsHandling;
Possible issues: none.

2.3. Sector decomposition

Sector decomposition itself is the basis of the approach. This paper is
not pretending to be a detailed presentation of the method, so we are going
to skip details, but to be short, it is performed after removing the delta
function in equation 1 (so the integration region is at this point a unitary
hypercube) and an iterative sector decomposition step takes an expression
of the x[i] + x[j] type and again splits the integration region in two zones
(x[i] ≤ x[j] and vice versa) and performs a change x[i] → x[i] ∗ x[j], x[j] →
x[j] and a similar inverse one. After variable replacements we are again back
to the unitary hypercube, and the function takes the form x[i] ∗ (1 + x[j]).
The goal of the method is to end with a number of sectors (each of those
being a unitary hypercube after variable change) so that in each of the sectors
the expression is split into a product of a “well-behaving” term (a positive
polynomial containing a constant) and monomials of integration variables.

There are different sector decomposition strategies implemented in FIESTA.
In previous versions the default strategy was S (for details see [18]), that is
our original strategy on sector decomposition. The other two reasonable
possibilities were X, as we understood the original strategy from SecDec, and
also KU, that is the Kaneko-Ueda strategy [24].
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Although for following stages it is most profitable to have as small number
of sectors as possible, and although the KU strategy is supposed to result
in the smallest number of sectors in most cases, we do not set it as default
for two reasons. First, it requires the external program qhull to be installed
to be able to find a convex hull. More importantly at high dimensions in
equation 1 (around 8 − 10 or more depending on the diagram) the strategy
itself starts taking too much time and sector decomposition can become the
hardest stage making the strategy choice ineffective.

Note: a recent paper of Borinsky [25] is suggesting a tropical approach
to sector decomposition, but it is based on the same Kaneko-Ueda strategy.
Thus no new strategy was implemented in FIESTA to match the new ap-
proach. What we found much more valuable in that paper is the possibility
to estimate the contribution of different sectors in advance and thus to use
a different number of sampling points for different sectors. Inspired by this
idea we suggest our way to do a similar thing, but not depending on the sec-
tor decomposition strategy. We will explain details in the subsection devoted
to the integration stage.

New in FIESTA5: we now provide the KUS and S2 strategies (the second
is default now) performing sector decomposition for each function in the
product (U , F and such) separately. For each sector corresponding to the
first of the functions the algorithm performs a variable substitution for the
next and follows with a sector decomposition there if needed. This is not
optimal by the number of sectors but seriously more efficient in time for this
stage at high dimensions.

Complexity : depends on the number of positive indices and strategy,
might be high;

Parallelization: up to the number of primary sectors, with the use of
Mathematica subkernels;

Related options: Strategy, FixSectors, NumberOfSubkernels,

PrimarySectorCoefficients, MixSectors;
Possible issues: the strategy has to be chosen wisely. While the Kaneko-

Ueda strategy KU seems to be optimal according to the number of sectors, it
might take too much time for this stage with 8 or more positive indices.

2.4. Symmetries search

New in FIESTA5: at this stage we detect equal sectors. To do that we
bring the polynomials to canonical form as in the original code tsort of
Pak [26].
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Complexity : low;
Parallelization: none
Related options: SectorSymmetries;
Possible issues: this option is switched off in case of expansion by regions

(SDExpandAsy and similar) since it might incorrectly identify sectors.

2.5. Hypercube bisection

While the sector decomposition approach deals with singularities due to
x[i] → 0, in some cases, normally in physical kinematics this might hap-
pen also due to x[i] → 1. While being an unexpected equality, this spoils
completely the integration in rare situations.

New in FIESTA5: The older versions had options related to bisection be-
fore sector decomposition. Obviously this is inefficient since different sectors
might require bisection of different types. The following strategy appeared in
FIESTA5 and if turned on starts searching for variables responsible for turn-
ing F to zero when x[i] → 1 in each sector separately. If such variables are
found, a bisection of the corresponding axis is performed dividing the sector
in two (x[i] ≤ p and x[i] ≥ p for some p) and making a variable replacement
returning both parts to the range from 0 to 1 (here 1 is mapped to 0 and p
to 1).

After this stage an additional sector decomposition might be performed.
Complexity : low;
Parallelization: efficient with the use of Mathematica subkernels;
Related options: SectorSplitting, NumberOfSubkernels

Possible issues: the option is turned off by default. The reason is that it
produces extra sectors making following stages more complex, but the fact
that F turns to 0 when x[i] → 1 does not nesseseraly mean a numerical
singularity, so turning this option on might be a waist of time. Turn it on is
case of numerical problems.

2.6. Contour transformation

Contour transformation is a special stage required only in physical kine-
matics. If the function F changes sign in the integration region then it is ob-
viously equal to zero somewhere inside on a contour of an unspecified shape.
While we are able to deal with singularities at x[i] → 0 (with the sector de-
composition and pole resolution), at x[i] → 1 (with hypercube bisection) and
at x[i] → x[j] and similar (with preresolution), this is algebraically not possi-
ble for a general shape. Thus the only way to proceed is to avoid the contour
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by moving into the complex plane. The formula for contour transformation
was originally suggested by Binoth and Heinrich and has the form

x[i] → x[i] ∗ (1− I ∗ λi ∗ (1− x[i]) ∗D[F, x[i]]) (3)

for all integration variables. Obviously this formula does not change in-
tegration boundaries, and the idea is that F and the derivatives of F do not
turn to zero simultaneously for Feynman integrals.

The bad feature about this formula is that it makes the integrand much
more complex. Moreover one has to choose the λi wisely so that on the one
hand, the absolute value of the integrand after variable replacement is far
enough from the origin, on the other hand, we should not hit an other branch
of complex functions not to produce completely incorrect results.

This “lambda search” is the part of the sector decomposition approach
which does not have a simple solution. Thus, like in SecDec, FIESTA tries to
choose the lambdas, but sometimes the default settings are not optimal.

New in FIESTA5: this “lambda search” was improved greatly compared
to the previous versions of FIESTA. Partially the improvement is due to the
optimization of the Mathematica code — the “lambda search” stages mostly
consist of substituting multiple numerical values in some functions, and this
could be made a few times faster with the use of the Compile function. How-
ever the most serious improvement is the possibility to estimate beforehand
which of the integration variables might be responsible for the sign change.
Those, that are not, are not replaced by default with the contour transfor-
mation formula.

The contour transformation now has the following substages:

• balancing; here the shifts added to different variables are estimated;
if the shift is greater than 1 meaning that the complex part will be
greater that the real part, we multiply the shift for this variable by the
inverse of the estimate of the maximum;

• choosing, where we get rid of variable shifts that are not supposed to
change the sign of F ;

• maximum searching, where we estimate the maximum of λ, so that
the cubic terms are smaller that the linear terms in the expansion of
the shift (the quadratic terms do not matter since they are real, not
complex, and the fifth-order terms should be much smaller);
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• best lambda search, where we take a few possible λ from 0 (not inclu-
sive) to the one from the previous step and choose the one so that the
minimum of the norm of the function is maximal for this choice.

Complexity : average, but the very fact of running contour transformation
increases the complexity of following stages a lot;

Parallelization: close to linear by Mathematica subkernels;
Related options: ComplexMode, MinimizeContourTransformation,

ContourShiftCoefficient, ContourShiftIgnoreFail, LambdaSplit,

ContourShiftShape, FixedContourShift, LambdaIterations,

NumberOfSubkernels;
Possible issues: The optimal setting of options, especially such that

ContourShiftShape and ContourShiftCoefficient might be in some cases
a sort of a game with no obvious solution. FIESTA has default values for those
options set as seems to be appropriate for a large class of integrals, but if the
integration has a poor convergence, perhaps these options should be tuned.

2.7. Pole resolution

At this stage all the singularities of sector expressions are to be of the
form x[i]a ∗ (1 + . . .)b, where the second function never turns to zero, but a
can be a linear function of ε with a non-positive constant part. At this point
it is still impossible to change the order of integration and ε-expansion, so
this is solved by adding and subtracting the first terms of the Taylor series of
(1 + . . .)b in x[i]. The remainder is known to be finite even being multiplied
by x[i]a, and for the terms of the Taylor series the integration can be taken
out analytically.

There are other approaches to pole resolutions based on integration by
part relations, but our experience shows worse numerical behavior for those
approaches.

Note: in some cases an extra regularization variable is needed — a small
variable that tends to zero. In case it is used, before this step there is an-
other pole resolution stage (by the regularization variable) and then another
expansion stage by the regularization variable similar to ε expansion. These
stages are very similar and will not be discussed separately.

New in FIESTA5: nothing.
Complexity : average;
Parallelization: close to linear by Mathematica subkernels;
Related options: ResolutionMode, NumberOfSubkernels;
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Possible issues: in case for some reasons the sector decomposition resulted
in a pure negative power of an integration variable, there is a crash at this
stage. Normally it means that a regularization variable should be used.

2.8. Epsilon expansion

This stage is more or less straightforward — each expression is combined
and expanded in ε up to the required order. We do not use the Expand

function of Mathematica, but a faster approach with differentiation.
New in FIESTA5: nothing.
Complexity : average;
Parallelization: close to linear by Mathematica subkernels;
Related options: NumberOfSubkernels;
Possible issues: the expressions might grow in size significantly at this

stage, please monitor the RAM usage.

2.9. Expression generation

This might be a technical stage but we need to mention it for FIESTA

users. At this point integrands are translated from a Mathematica format
into a special format suitable for the C++ parser. This step might take longer
than expected of such a trivial operation.

New in FIESTA5: in previous versions we analyzed all integrals trying to
check whether they are exactly equal to zero, meaning that the expression
is a non-simplified algebraic expression equal to a constant zero. This was
a round-way for an integration problem sometimes resulting in an undefined
answer for totally zero integrals. Now this is no longer needed, and this check
is off by default. Thus this part is now much faster now since substituting
multiple values in a huge function might be slow in Mathematica.

Complexity : average;
Parallelization: close to linear by Mathematica subkernels;
Related options: ZeroCheckCount, OptimizeIntegrationStrings,

AnalyzeWorstPower, NumberOfSubkernels;
Possible issues: none we know.

2.10. Integration

Integration is the final and in general the most time-consuming stage of
the sector decomposition approach. While with the basic setup the integra-
tion might be not the longest stage, the point is that the better numerical
precision one wishes for results, the more sampling points need to be taken
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during integration, while previous stages do not depend on the planned pre-
cision at all (but can affect the integration precision due to an improper
choice of λ). Of course everything is not that straightforward, for example
the strategy KU might result in the smallest number of sectors thus resulting
in simpler integrands, but for a high number of positive indices it takes too
long to use this strategy. So ultimately previous stages should only serve the
goal of preparing expressions for integration as simple as possible.

Anyway the point is that as soon as one prepared the database with
integrands, the resulting precision depends greatly on the number of sampling
points used during integration, so apart from other options which should
be set up in a proper way, the more sampling points are taken the better
the result is. Hence this should be the most optimized part of a sector
decomposition program, so in FIESTA this part is written in C++ and has
multiple optimizations and possibility to run it on a cluster or with the use
of graphical processing units.

Integrating of a function over a unitary hypercube requires the following.
First the expression that arrived from Mathematica is parsed and translated
into a form suitable for a fast evaluation. This parser originated in old ver-
sions of FIESTA and is very fast, taking a negligible part of time. Then an
important part is to use a proper integrator that is a library that seeds sam-
pling points and uses function values in those points as information needed
to produce a result and error estimate. The old versions of FIESTA relied on
the Vegas algorithm from the Cuba library [27].

The other important part is the ability to evaluate sampling points fast.
In the end, after the choice of the integrator the time required to obtained
a good precision is linear to the number of sampling points requested by the
integrand.

On the other hand, a complex Feynman integral is represented as a sum
of a huge number of sector integrals, around 10 thousand or more. Those
integrands are completely independent from each other, so this task ideally
suits for the MPI approach on a supercomputer where each sector integral
can be evaluated on a separate node.

New in FIESTA5: There are many changes in the integration part of
FIESTA. To start with, there was a huge update of the code-base, rewriting
more that half of the code. The reason is that there were large pieces of
legacy code in pure c with self-made structures that exist in modern C++.
And some structures were replaced with ones more suitable.

More importantly for the user of FIESTA is that we now plugged in two ad-
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ditional integrators, the Quasi Monte Carlo (QMC) and Tensor Train (TT).
The first of those, QMC [22], is an integrator already used in SecDec and
suggested for use in FIESTA by Heinrich in her talk at the KIT TTP software
seminar. This integrator was modified in order to be able to request batches
of sampling points, and we made a pull request to the original repository.
The other integrator, TT [23] is an original one never previously used in
practical situations up to our knowledge.

The Tensor Train approach may be viewed as enhanced cubature-rule in-
tegration. The latter suffers from the “curse of dimensionality”, i.e. its com-
plexity grows exponentially with the number of variables. However, if the in-
tegrand is approximated by a function allowing low-parametric parametriza-
tion, the cubature sum can be computed efficiently. Tensor Train is one of
tensor factorizations that may be used in this approach.

There are multiple internal optimizations removing extra memory allo-
cations. Also we suggest to use the plugged in mimalloc memory allocator
for performance. However one of the most important upgrades is the possi-
bility to use AVX instructions. Already in previous versions of FIESTA we
used batches of points generated by integrators in order to request multiple
sampling points at a time. This lets processors optimize caches for improved
performance.

Moreover this fits well the function evaluation scheme in FIESTA. Unlike
SecDec we do not compile integrands but use our own parser to provide a
fast evaluation method running by tetrads (operation, first operand address,
second operand address, result address). Now if those operands are not just
single values but arrays of those operands, the operations can be performed
with the use of processor instructions that are capable of, for example, mul-
tiplying not just a pair of doubles but four pairs of doubles at a time.

Partially compilers are capable to carry out optimizations of this sort
for the current architecture, but it does not work with AVX. Therefore we
implemented a possibility to directly use those instructions with the use of
Intel intrinsic operations.

Another improvement is related to sector balancing. The results in differ-
ent sectors might differ in size by a few orders in magnitude, therefore there
is no sense to seed the same number of sampling points in all sectors. While
with the Borinsky approach with tropical sector decomposition one might
know beforehand those estimates, we do not rely solely on the Kaneko-Ueda
sector decomposition strategy used there, thus we suggest another approach.
First we use a smaller number of sampling points than the original maxeval
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setting, for example, 100 times less. After running such an integration we
estimate the results in all sectors and then choose the maxeval setting for
each sector depending on the size of those results or error estimates.

We will provide benchmarks in section 5.
Complexity : high;
Parallelization: close to linear for complicated integral up to the number

of threads in use (NumberOfLinks in Mathematica), possibility to use even
more cores on a supercomputer with the MPI version, AVX processor instruc-
tion utilization, GPU usage;

Related options: a large number of options that are passed to the binaries
CIntegratePool or CIntegratePoolMPI;

Possible issues: with the increase of the maxeval setting this part be-
comes the most lengthy stage of sector decomposition, but this might lead
to a precision improvement.

3. FIESTA installation and usage

3.1. Installation

FIESTA is distributed via bitbucket. We no longer provide binary packages
but do our best to provide an easy installation on different operating systems.

FIESTA is known to work under Ubuntu 18.04 and 20.04 (also as part of
the Windows subsystem for Linux, version 2), openSUSE Leap 15.2, macOS
Big Sur 11.5, Centos 8. FIESTA can be compiled with gcc (minimal version
is gcc-7, known to work with gcc-11 and will be updated to match newer
versions), icc 2021 and clang-10.

You will require some libraries to be installed to build FIESTA. We cannot
provide instructions for every operating system but will use Ubuntu at least
to name library package names and to simplify search. So on Ubuntu one
will need

apt-get install git g++ cmake zlib1g-dev libmpfr-dev

libgsl0-dev

For some of the integration strategies and for the region approach to
expansion also run
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apt-get install qhull-bin

For the tensor train integrator also

apt-get install gfortran

For the MPI version also

apt-get install mpich

For the GPU version also

apt-get install nvidia-cuda-toolkit nvidia-cuda-dev

For documentation also

apt-get install doxygen

To get FIESTA run

git clone https://bitbucket.org/feynmanIntegrals/fiesta.git
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This command creates a fiesta folder which can be renamed to some-
thing else without spoiling the installation. However please do not rename
internal folders. Now move to the internal folder

cd fiesta/FIESTA5

There run the configure script

./congigure

either with no options, or with some of the provided options (the script
lists them anyway). There are the following possible options:

• --enable-qmc: enable the quasi Monte-Carlo integrator;

• --enable-tt: enable the quasi Tensor Train integrator;

• --enable-mimalloc: switches memory allocator to mimalloc (faster);

• --enable-avx: turns on avx optimizations for evaluating in multiple
points at a time by processor extensions; does not work on old archi-
tectures and on Mac OS X for lack of the aligned_alloc function;

• --math=NAME: set up a proper Mathematica binary, needed in case of
multiple Mathematica installations if a specific needs to be chosen;

• -cpp=NAME: set the C++ compiler;

• -cc=NAME: set the c compiler needed for mathlink build;

• -mpicpp=NAME: set the MPI C++ for the MPI version.

Then build the dependency libraries shipped with FIESTA or downloaded
automatically during the build (as usual, add -j for parallel build).
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make dep

Now build FIESTA

make

In case you are building FIESTA on a cluster with no Mathematica in-
stalled for integration purposes you can skip the mathlink part of the build
with

make nomath

Also on a cluster you might need the MPI version.

make mpi

For support of graphical processing units for integration run

make gpu

After a successful build one can run some basic tests with

make test
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and some tests with Mathematica with

make testmath

The code is covered with doxygen documentation. To build it run

make doc

and then open documentation/html/index.html either directly in your
browser or open it with a default browser with

make showdoc

3.2. Basic usage

The basic usage of FIESTA is within Wolfram Mathematica. One should
load the file FIESTA5.m for example with

Get["FIESTA5.m"];

FIESTA5 is a Mathematica package meaning it affects no variables from
the global context. The public functions provided by this package are the
following:

UF[loop momenta, propagators, substitutions]
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generates the functions U and F and also the number of loops by the loop
momenta, list of propagators and list of replacements. This function can be
used in all following functions as a source of the first argument.

SDEvaluate[{U, F, loops}, indices, order, options]

This function evaluates a Feynman integral; indices is the set of indices,
their number has to coincide with the number of propagators, order is the
requested expansion order by ε (or other variable in case of options). Here
and below options is a non-obligatory list of options passed to FIESTA. All
of them will be discussed in section 4.

SDEvaluateG[{graph, external}, {U, F, loops}, indices,

order, options]

is the same with SDEvaluate, but {graph, external} is the most convenient
syntax to provide a graph for the Speer strategy [28, 29]; here graph is the
number of pairs of vertices (numbers) and external is the list of external
vertices; the order of lines has to coincide with the order of indices. For
details on the Speer strategy and examples see [29].

SDExpand[{U, F, loops}, indices, order, expand_degree,

options]

expands a Feynman integral; The syntax is the same with SDEvaluate, but
there is also a parameter with the order of the expansion variable. Default
expansion variable is t, but this can be changed by options. SDExpand can
work only in case F depends linearly on the expansion variable.
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SDExpandG[{graph, external}, {U, F, loops}, indices, order,

expand_degree, options]

is a mixture of SDExpand and SDEvaluateG, it expands an integral with the
help of Speer sectors.

SDExpandAsy[{U, F, loops}, indices, order, expand_degree,

options]

expands the integral with expansion by regions [30, 31, 32]. The syntax com-
pletely coincides with the syntax of SDExpand, and it can work also with
non-linear dependencies of F on the expansion variable. The disadvantage is
that an introduction of a regularization variable might be required. There
is an example in the examples folder (SDExpandAsyRegVar.m) that was dis-
cussed in previous FIESTA papers.

SDEvaluateDirect[functions, degrees, order,

deltas(optional), options]

evaluates a non-loop integral, where degrees is the list of function powers;
order is the expansion order; deltas, if provided, is the list of attached delta-
functions. The example can be found in examples/SDEvaluateDirect.m.

SDExpandDirect[functions, degrees, order, expand_degree,

deltas(optional), options]

is similar for expansion. See examples/SDExpandDirect.m for an example.
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SDAnalyze[U, F, h, degrees, dmin, dmax, options]

searches for values of space-time dimension resulting in possible ep-poles in
the range from dmin to dmax.

SDIntegrate[options] and GenerateAnswer[options] are also public
functions, but they will be explained in the advanced usage section.

Now FIESTA has a large number of options, which can be set in two ways,
either globally with something the help of SetOptions:

SetOptions[FIESTA, "NumberOfSubkernels" -> 4,

"NumberOfLinks" -> 4];

or as the last parameter of any of the basic commands, for example, with

SDEvaluate[{x[1] + x[2] + x[3] + x[4], x[1] x[3] + x[2]

x[4], 1}, {0, 1, 1, 1}, 1, NumberOfSubkernels->4,

NumberOfLinks -> 4];

In the latter case the option is applied only the the current command and
does not influence other integrals that might be evaluated later. Please note
that an option name in the global setting requires quotes and in the local
does not need them.

FIESTA is packaged with a number of examples. The basic ones are in
the examples/examples.nb file. There is also a number of *.m files that one
can test with math < examples/filename.m.

3.3. Advanced usage — integrating separately

The approach described above works in many cases, but if one is aiming
for a good precision, then the default number of sampling points (50000)
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during the integration phase is in most cases not sufficient. Hence one needs
to increase the number of sampling points. Moreover, one might not know
in advance how many sampling points are going to be needed. Thus, not to
rerun the algebraic preparation steps (everything but the integration) it is
recommended to first run FIESTA with the OnlyPrepare->True option. This
results in an integration database and the integration command, which is
returned as a result. This command should now be run in a command line.

This approach is useful also in case the integration should be performed
on a supercomputer with no Mathematica installed. Then a database can be
prepared elsewhere, transferred to the cluster and the integration should be
performed there. Also one might wish to experiment with different integra-
tors without rerunning the preparation part.

The key option use the possibility for separate integration is OnlyPrepare.
If DataPath is not set, the database is located inside the temp folder inside
the FIESTA5 folder. The database name contains process id in the path so
that multiple instances of FIESTA do not interfere with each other. After the
input database with integrals is produced, there are two ways to continue.
One can either run the command

SDIntegrate[options]

or, which is recommended, it is possible to run the integration from the
command line without invoking Mathamtcica using

bin/CIntegratePool --in temp/dbin.kch --threads 4

Note: in general the command will differ and contain a process id in the
database name as specified above; the number of threads is also provided
as an example. One knows the database path and other options from the
command returned by the Mathematica part.

The binary bin/CIntegratePool has a large number of options, and
a big part of options set in Mathematica are automatically translated to
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the command line options of bin/CIntegratePool. For example, setting
NumberOfLinks -> 4 is translated to --threads 4.

One can print out all options of bin/CIntegratePool with the --help

option, and all of them will be discussed in section 4.
The two options having a maximum impact on the performance are the

number of threads working in parallel --threads and the number of sam-
pling points (being a common option for all integrators). The integration
pool binary bin/CIntegratePool is in fact not performing any integration,
all that this binary does is launching a number (set by the threads option) of
instances of bin/CIntegrateMP(?C)(?G) (the binary name can either con-
tain the C and G letters or not, see the explanation below), reads integrals
from the input database and distributes them among integration processes,
then collects results, prints them out and puts in the output database.

The result can either be picked from the command line output or in
Mathematica with the command

GenerateAnswer[options]

As specified above, there are four integration binaries, either containing
letters C and G in their names or not. Here C stands for complex and G stands
for graphical processing unit — GPU. The binaries with complex support also
work in the case without complex numbers, but slower. The GPU binary is
needed to take advantage of GPU if it exists.

The number of threads should normally be chosen equal to the number
of cores on the computer — the overhead for the pool binary is in general
small, and FIESTA efficiently loads the CPU.

The number of sampling points is a common option for all integrators set
with --IntegratorOption maxeval:number or with IntegratorOptions

-> {{"maxeval", "number"}} from Mathematica, where number is the re-
quired number of points (50000 by default). Normally the integration time is
increased linearly with the number of sampling points after it becomes large
enough to ignore the overhead for database communication and expression
parsing. Increasing the number of sampling points is the most direct way to
improve the quality of the result. Surely, there are multiple options affecting
performance that will be discussed in section 4.
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When the number of sampling points becomes large, one might require a
lot of time to run the integration. One of the ways to improve performance
here is to take advantage of supercomputers and the MPI version of FIESTA.
Switching to supercomputers is easy as it can be — one needs to use the
CIntegratePoolMPI binary instead of CIntegratePool. Of course, there
might be a special command requires to utilize the MPI infrastructure, for
example,

mpirun -n 128 bin/CIntegratePoolMPI --in temp/dbin.kch

For details one should refer to the documentation of the supercomputer
in use. In section 5 we will show how this can affect integration time.

3.4. Special case — individual integrals

One might wish to analyze the integrals stored in the integration database
or to integrate expressions obtained elsewhere. FIESTA gives a possibility to
get out integrals from the integration database with the bin/CIntegrateTool
utility. Start with the command

bin/CIntegrateTool --in temp/dbin.kch

It prints possible tasks — individual Feynman integrals in the integration
database. Normally there is a single task, but within the expansion by regions
approach there might be multiple.

bin/CIntegrateTool --in temp/dbin.kch --task 1

This command prints the possible prefixes for first Feynman integral,
meaning possible sets of integrals with a common power of ε and power and
logarithm power of the regularization variable. For example, the prefix for
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power −2 of ε and no regularization variable is −2 − {0, 0} and one can
continue with

bin/CIntegrateTool --in temp/dbin.kch --task 1 --prefix

"-2-{0, 0}"

or a shorter version in case of no regularization variable:

bin/CIntegrateTool --in temp/dbin.kch --task 1 --prefix -2

This command prints the number of sectors for this integral and prefix.
One can not either print the number of functions in each sector with

bin/CIntegrateTool --in temp/dbin.kch --task 1 --prefix -2

–list

or the number of functions in an individual sector (for example, sector number
5) with

bin/CIntegrateTool --in temp/dbin.kch --task 1 --prefix -2

--sector 5

The functions are individual integrals in a sector that appear due to the
pole resolution stage and others.

Now with the number of functions one can either produce an integrand
with one of those functions, for example,
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bin/CIntegrateTool --in temp/dbin.kch --task 1 --prefix -2

--sector 5 --function 1

or make a combined expression with all of the functions in the given sector:

bin/CIntegrateTool --in temp/dbin.kch --task 1 --prefix -2

--sector 5 --all

The produced expression is in both cases exactly the input needed for
the CIntegrateMP binaries. It can be either sent directly there with pipe
redirecting or saved to a file. Please note, that one should choose the complex
or non-complex version of the binary. The binary without complex support
will fail on complex numbers, the binary with complex support will work in
the real case, but slower. The following information in this section is related
to the input of CIntegrateMP binaries. The binary, when launches, waits
for commands separated by line returns, the most important of those being
Integrate.

The structure of the integration expression after the Integrate command
is the following:

• the number of integration variables — integration dimension or number
of positive indices minus one;

• the number of auxiliary functions;

• the auxiliary functions;

• the integrand itself.

All items should end with the semi-column (;) and an a new line. The
whole expression ends with the vertical line symbol (|). The integration
variables are noted as x[i] with enumeration starting from 1. The auxiliary
functions are noted as f [i] with enumeration starting from 1. p[a, b] stands
for a in power b, l[a] stands for the natural logarithm of a, P stands for π
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and G stands for EulerGamma, and also the PolyGamma[a, b] notation is
supported.

Some examples can be found in the examples folder, all files with the int
extension.

The integration binary has no options but supports commands sent from
standard input. Many integration options are passed from the integration
pool and are translated to those options. For example, setting the maxeval

integrator parameter to 2000000 is set as

SetCurrentIntegratorParameter maxeval 2000000

To see the full list of those options launch one of those binaries and run
the Help command. Since for normal usage this subsection is normally not
needed and mostly is interesting for developers, we are not going to list the
options here in the paper, but are ready to help on request.

4. FIESTA options

Here we are going to list options of FIESTA, both run from Mathematica

and when running integation pool from command line. The Mathematica

options are set with

SetOptions[FIESTA, "NumberOfSubkernels" -> 4,

"NumberOfLinks" -> 4];

or as the last parameter of any of the basic commands, for example, with

SDEvaluate[{x[1] + x[2] + x[3] + x[4], x[1] x[3] + x[2]

x[4], 1}, {0, 1, 1, 1}, 1, NumberOfSubkernels->4,

NumberOfLinks -> 4];
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The CIntegratePool options are set with, for example,

bin/CIntegratePool --threads 4

In this example the threads options matches the NumberOfLinks, and
the NumberOfSubkernels has no match in C++ since it is related only to the
preparation of integrands performed purely in Mathematica. On the other
hand, some C++ options fine-tuning the integration process do not have their
analogue in Mathematica. The list of options with explanations follows (we
tried to place most commonly used options first; the options that exist only
in the C++ part of FIESTA are in the end of the list):

• NumberOfSubkernels — the number of Mathematica subkernels used
during all stages but integration in C++; default value is 1, it is rea-
sonable to set it equal to the number of processor cores, however in
complicated situations it should be made smaller to decrease RAM
usage;

• NumberOfLinks or --threads — the number of working in parallel
integration threads; default value is 1, this option has no effect for
bin/CIntegratePoolMPI;

• Strategy — sector decomposition strategy, possible recommended val-
ues are S2, S, KU, KUS, X. Default value is S2, default in previous versions
was S. Strategy KU is expected to end with the smallest number of sec-
tors, but might be too slow for a large number of positive indices. KUS
seems to be a good choice for a high number of positive indices balanc-
ing between speed and quality. X is not guaranteed to terminate, but
might be very effective;

• SectorSymmetries — whether sectors should be identified as symmet-
ric, default value is True;

• ComplexMode or --complex — in case of True turns on contour trans-
formation needed in physical kinematics; default version in Mathematica

is False, the option is missing (it has no argument) in C++; in C++ if
set uses another binary with complex support;
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• d0 — the space-time dimension, default is 4;

• UsingC — whether to use C++ integration, default is True;

• RegVar — if set, uses an extra regularization variable for pole resolution
and expansion, default value is None meaning no regularization variable;

• ExpandVar or --expandVar — expansion variable name for expand
modes, default value is t;

• XVar — coordinate variable name, default value is x;

• EpVar — small variable name, that is (4− d)/2, default value is ep;

• PMVar — error estimate variable name for output, default value is pm;

• Graph — internal option for Speer sector strategies, normally not set
manually;

• NegativeTermsHandling — the setting for the way of preresolution.
Default is Automatic, meaning it is off in case ComplexMode -> True

and AdvancesSquares3 otherwise;

• PrimarySectorCoefficients — the coefficients at primary sectors,
might be used to provide symetries manually or to split the integral
into parts; default value is Automatic meaning coefficient is equal to
1 at each sector. In case this option is set, FIESTA does not search for
symmetries between primary sectors. The value for the option should
be a list of coefficients of length equal to the number of non-negative
indices;

• OnlyPrepare — if set to True makes FIESTA only prepare databases
and not run the integration step; default value is False;

• FixSectors — if set to True runs the sector decomposition stage with
no parallelization making the numbering of sectors coincide for different
runs; useful for debugging; default value is False;

• MixSectors — if set to a positive number n, combines results of dif-
ferent n sectors into one; might be needed in rare cases; default value
is 0;
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• SectorSplitting — if set to True makes FIESTA search for possible
zeros of F due to x[i]− > 1 and bisect sectors by such variables; default
value is False; should be tried as True in case of convergence problems
in complex mode;

• MinimizeContourTransformation — if set to True (default value)
makes contour transformation only for those variables that we believe
to be responsible for sign change; might be set to False in case of
convergence problems in complex mode;

• ContourShiftShape — after balancing of shifts we allow maximum
lambda equal to ContourShiftShape; larger values let the imaginary
shift be larger than the original real value; default value is 1;

• ContourShiftCoefficient — after the best lambda is found, it is
multiplied by this coefficient; default value is 1;

• ContourShiftIgnoreFail — in case the contour transformation fails
for some reasons to find a reasonable lambda, and this option is at its
default value, False, FIESTA reports an error and stops working; if one
wishes to continue without contour transformation in this case, this
option should be set to True;

• FixedContourShift — if this option is set to True, then after balancing
the following steps are not performed and this value is taken for lambda;

• LambdaIterations — the number of numerical checks performed at
each of the substeps during the contour transformation, default value
is 1000; greater values slow the stage down, but might result in a better
lambda search improving integration convergence;

• LambdaSplit — the number of lambda values checked at the substep
searching for best possible lambda after finding the maximum; default
value is 4;

• ChunkSize — the number of functions passed in a chunk to subkernels
on all stages in Mathematica, default value if 1, can be increased in
case of simple integrals and poor performance (CPU not loaded well),
however making it bigger increases RAM usage, and the value should be
still much smaller than the number of sectors, otherwise performance
will go down;
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• OptimizeIntegrationStrings — if set to True runs Mathematica ex-
pression optimization at expression generation stage as it was done in
old versions of SecDec; default value is False and this stage might be
too slow with the True setting;

• AnalyzeWorstPower — if set to True analyzes expressions saves to
strings trying to recursively find worst behaviour of the x[i]−a type.
After that the expression is “multiplied” by such a monomial and inverse
one not changing the expression but letting the C++ part know such a
behavior. The default setting was True for previous expressions (in
face there was no option), now in is False. The “worst monomial”
knowledge is needed to properly decide which point should use multi-
precision calculations, however the direct approach of power analysis
inside the C++ seems to work; currently we know no single example
where this option should be set to True but this could be a test option
in case of completely incorrect results with even larger error estimates;
please notify us in case this option helps to improve results;

• ZeroCheckCount — if set to a non-zero value makes Mathematica at
expression generation stage perform that many checks substituting dif-
ferent numerical values into each function and checking if the result is
equal to zero; small values might result in incorrectly deciding that a
function is equal to zero totally, large values lead to low performance at
this stage; we believe that currently there is no need to change the de-
fault 0 value but in case the functions in your sector often have hidden
zeros this could be the case;

• ExpandResult — whether the final result after being collected from
result of different orders should be expanded in ε and other small vari-
ables; default value is True;

• FIESTAPath — path to the folder containing FIESTA5.m and other files,
normally is detected automatically when Mathematica loads FIESTA5.m
and should not be changed;

• DataPath — option setting the path for the databases with integrals;
this option is translated to the --in option (see below) when integration
pool is called; possible values: a specified path, Automatic meaning
a process id depending value inside the local temp folder inside the

32



FIESTA folder and Default meaning temp/dbin.kch; default value is
Automatic; in case one wishes the database files to be cleaned up in any
case including canceling a job he might consider changing directory to
a temporary folder and providing a local database path before starting
FIESTA;

• BucketSize or --bucket — specify kyotocabinet bucket value, might
be important for speed for databases with a large number of entries,
default value is 27;

• NoDatabaseLock — if set to True makes Mathematica not lock database
files on disk; this might be needed in rare cases due to problems with
network disks; default value is False;

• RemoveDatabases — whether to remove databases after integration is
over; default value is True;

• SeparateTerms or --separateTerms — each sector might contain sev-
eral expressions due to singularity resolution, this option makes terms
inside a sector to be sent for integration separately, not mixed; the op-
tion might have a great impact on performance (!), however it cannot
be predicted in advance, whether in should be set or not; default version
in Mathematica is False, the option is missing (it has no argument) in
C++;

• BalanceSamplingPoints or --balanceSamplingPoints — if set to
True in Mathematica (or just set in C++) first runs an estimation run
with a small number of sampling points, only then the final run; de-
fault version in Mathematica is False, the option is missing (it has no
argument) in C++;

• BalanceMode or --balanceMode — sets the mode used for balanc-
ing, one of realValue, realError, imaginaryValue, imaginaryError,
normValue and normError, comparing for each of the integrand results
either results or error estimates of real parts, imaginary parts of norms;
default value in Mathematica is Automatic meaning normError;

• BalancePower or --balancePower — the values from BalanceMode

are taken into this power, measured and compared with each other to
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choose the number of sampling points for the final run; default value
in Mathematica is Automatic meaning 0.5;

• ResolutionMode — one of resolution modes at the pole resolution
stage, default value is Taylor, other possible values are IBP0 and IBP1;

• AnalyticIntegration — option valid only for SDExpandAsy, if set to
True tries to analytically get rid of some integration variables after
regions detection, False by default;

• OnlyPrepareRegions — option valid only for SDExpandAsy, if set to
True, only reveals regions and prints them, False by default;

• AsyLP — option valid only for SDExpandAsy, now True by default,
using Lee-Pomeransky representation for regions search, which is much
faster;

• PolesMultiplicity — option having sense only for SDAnalyze, if set
to True lists poles with those multiplicities; default value is False;

• ExactIntegrationOrder — option having sense only in case of inte-
gration in Mathematica (UsingC -> False), if set to number tries to
integrate analytically up to provided order; default value is -Infinity
meaning no analytic integration attempts;

• ExactIntegrationTimeout — option having sense only in case of in-
tegration in Mathematica (UsingC -> False), sets the time limit for
an analytic integration attempt for a function in seconds; default value
is 10;

• GPUIntegration or --gpu — makes the pool use the GPU binary for
all (or some) threads; default value in Mathematica is False, by default
the option is not set (it has no argument) in C++;

• NoAVX or --NoAVX — if set to True in Mathematica switches off AVX
optimization for function evaluation, has sense only if configured with
--enable-avx; default value in Mathematica is False, by default the
option is not set (it has no argument) in C++;

• Precision or --precision — precision in digits used in results; default
value is 6;
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• ReturnErrorWithBrackets — if set to True the error estimate variable
is printed as pm[i] instead of pmi for integer i, default value is False,

• Integrator or --Integrator — sets the integrator provided by one
of the integration libraries, default value is vegasCuba;

• IntegratorOptions or multiple instances of --IntegratorOption —
sets options for the chosen integrator; in Mathematica the value should
be a list of pairs (option name and value); in C++ the syntax is --

-IntegratorOption <option_name>:<option_value> for each param-
eter; default value in Mathematica is Automatic meaning no change for
default integrator options; their list with values is printed when FIESTA

starts working;

• CIntegratePath or --cIntegratePath — provides a path to the CIn-
tegrate binary. Overrides GPUIntegration/--gpu and ComplexMode/--

-complex options used for detection of proper path; default value in
Mathematica is Automatic meaning no path passed to the integration
pool;

• MPSmallX or --MPSmallX — sets the coordinate value (all x) for the
small point where the worst monomial is measured; default value in
Mathematica is Automatic, meaning 0.001;

• MPThreshold or --MPThreshold — defines the limit for the worst
monomial in MPSmallX test point, so that for smaller products MPFR
is turned on; default value in Mathematica is Automatic, meaning
1E − 9;

• MPMin or --MPMin — sets the limit for the worst monomial on where
to stop using default precision and switch to shifts; default value in
Mathematica is Automatic, meaning 1E − 48;

• MPPrecisionShift or --MPPrecisionShift — sets additional bits for
mpfr precision when performing calculations in a point; default value
in Mathematica is Automatic, meaning 38;

• MathematicaBinary or --Math — provides path to the math binary
for the integrators, makes evaluation of non-predefined constants pos-
sible; default value in Mathematica is None meaning no value; if set to
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Automatic makes Mathematica detect the value from the build config-
uration (--math=...) and pass it to C++; Note: with personal edition
of Mathematica one cannot launch multiple instances of mathkernel
at a time. So one should run examples requiring calls for polygamma
evaluation from C++ first with OnlyPrepare -> True and then with 1
thread;

• QHullPath — the path to call the qhull binary needed for the KU strat-
egy and ASY modes; default value is qhull;

• DebugParallel — if set to True, prints information on the load of
subkernels, default value is False;

• DebugMemory — if set to True, prints information on memory usage,
default value is False;

• DebugAllEntries — if set to True, prints all intermediate expressions
(please be careful setting it on especially in a Mathematica notebook
since it might produce huge amounts of output), default value is False;

• DebugSector — if set to a positive number, restricts FIESTA to only
working in the specified sector; should be set together with FixSectors

-> True; default value is 0;

• --in — specifies input database with integrals; if name does not end
with .kch, the extension is appended automatically, if name ends with
in.kch, automatically sets the output database with the same value but
ending with out.kch in case it was not set; should be always set for the
integration pool;

• --out — specifies output database. If name does not end with .kch,
the extension is appended automatically; obligatory if the name of the
input database does not end with in or in.kch;

• --debug — prints results for all sectors and functions there; this option
is not related to different debug options for Mathematica;

• --gpuThreadsPerNode — only if --gpu set, makes only <value> in-
stances per node use GPU;
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• --gpuPerNode — only if --gpu set, makes instances using GPU use
different GPUs (by default all use GPU number 0);

• --fromMathematica — makes pool write intermediate results in special
files for communication with Mathematica instead of printing results
and saving them to output database;

• --queueSize — sets the queue size of jobs of integrands and results;
large sizes might be needed in case of many threads or MPI so that the
queue does not suddenly get empty; default value is 32;

• --printIntegrationCommand — prints the command the pool was
called with to stdout before working;

• --Preparse — runs the integrators first with a parse check only then
with real integration, might be useful for faster debugging of parse
problems;

• --task — sets the task number of integrals to be integrated from the
input database; for all modes but expansion with regions there is only
one task; see instructions for CIntegrateTool to get the list of tasks;

• --prefix — sets the prefix for integrals to be integrated from the
input database; prefixes are integration orders of form 0-{0, 0}; see
instructions for CIntegrateTool to get the list of prefixes;

• --onlyPrepare — with this option integration pool only creates the
output database and populates it with dummy result entries. This
option might be useful to create a database first and fill in with separate
task/prefix/part jobs later. Note: this option has nothing common with
the OnlyPrepare option in Mathematica;

• --part — with <value>=<part number>/<parts number> run this
option after preparing the out database consequently for <part num-
ber> = 1 .. <parts number> to get the final result in the out database;

• --continue — makes it possible to continue interrupted evaluation;
stores all intermediate results in out database;

• --continueKeep — in adition keeps intermediate results in output
database after calculation is over;
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• --noOutputDatabase" — prevents pool from saving results to an out-
put database, only keeps printing them;

• --printStatistics — print average number of sampling points used
for each prefix;

• --Test — only runs a sample integration test, no real integration is
perfomed;

• --FTest — instead of the integration picks the F-function from the
database and puts integrators in testF mode. In this mode the functions
are also integrated (however the result of F-integration is meaningless).
However the main purpose is a test that F functions always have same
sign (needed in complex mode). In case they are not, an x value is
printed and an error is produced. This mode cn be used to check
whether the contour transformation was OK if you observe convergence
problems in complex mode;

• --Native — forces integrators to use native evaluations only, no MPFR;
faster, but might lead to errors;

• --MPFR — forces integrators to use MPFR evaluations only, no native
arithmetic; much slower;

• --NoOptimization — switches off triad optimization in CIntegrate,
only for debugging reasons.

5. Examples and benchmarks

In this section we are going to provide some benchmarks showing perfor-
mance of FIESTA compared to old versions and also demonstrating differences
of performance between different options.

5.1. Example without complex numbers, comparing versions, strategies and

MPI

Let us first consider master integrals for the family of Feynman integrals
corresponding to the graph in equation (6) from [33]. Two external momenta
are on the light cone (p21 = p22 = 0) and all the masses are zero. The analytical
result for the integral with all the first 12 indices equal to one and all the
other indices equal to zero is given by the right-hand side of this equation.
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Analytical results for all the other master integrals will be presented in a
future publication.

Those integrals do not require contour transformation. However integrals
with a larger number of positive indices have poles of multiple orders that
require pole resolution, and as a result the preparation might take much time,
and the numerical integrals are quite complex. We produce results up to ε0.

We checked master integrals with new and old versions of FIESTA. The
tests were performed on a laptop with a 4-core AMD Ryzen 7 3750H processor
and are provided in table 1. The time is measured in seconds, the table header
contains integral numbers and corresponding number of positive indices. We
consider four typical integrals with the number of positive indices from 7 to
10. The numbers of integrals do not make much sense here because we do not
present the full list of the master integrals but the definitions of these typical
integrals can be directly obtained from the Mathematica commands in the
file with examples distributed together with the code. We used the version
12 of Wolfram Mathematica (note: Mathematica 12.0 has a bug resulting
in rare crashes of FIESTA, version 12.3 is recommended).

integral 9 (7) 19 (8) 42 (9) 58 (10)
FIESTA4 - strategy S 1 8 37 865

FIESTA4 - prepare after S 20 74 337 3985
FIESTA5 - strategy S 1 6 35 884

FIESTA5 - prepare after S 9 26 95 2528
FIESTA5 - strategy S2 (default) 1 5 29 405

FIESTA5 - prepare after S2 9 26 101 2570
FIESTA5 - strategy KUS 8 17 58 276

FIESTA5 - prepare after KUS 8 25 81 1250
FIESTA5 - strategy KU 9 19 265 *

FIESTA5 - prepare after KU 7 19 58 -

Table 1: Comparing versions and strategies. The labels in column heads designate integral
numbers and numbers of positive indices. Time is measures in seconds.

The result could not be achieved for integral 58 with strategy KU taking
forever.

We also measured the number of sectors obtained for different strategies.
The number of sectors generally defines the complexity of stages following
sector decomposition, the less sectors one has, the simpler is the task in
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general. Here are the numbers in pairs — all sectors and unique sectors for
different strategies:

• integral 9: 574/461 (KU), 650/521 (KUS), 652/407 (S2), 652/407 (S);

• integral 19: 1240/785 (KU), 1589/968 (KUS), 1676/865 (S2), 1726/827
(S);

• integral 42: 2733/1612 (KU), 3586/2039 (KUS), 4437/2569 (S2), 4025
/2144 (S);

• integral 58: no result (KU), 15982/15982 (KUS), 27542/27542 (S2),
38596/38596 (S).

There is no clear winner by the number of sectors between S2 and S,
but for higher number of positive indices S2 wins. Moreover, S2 is much
faster in this case. KUS produces much less sectors and is faster with more
positive indices but slow when the number of positive indices is smaller. KU
produces the minimal number of sectors but is too slow and fails with 10
or more indices. And anyway the new FIESTA is faster than the old one,
especially with a proper choice of strategies.

The example files (including diagram and master integral definitions) are
shipped with FIESTA. To prepare an integration database for this example,
run

examples/F1/generate_db.sh NUMBER CORES STRATEGY

where NUMBER is the number of master integral (all master integrals are
listed in examples/F1/F1-masters.m), CORES is the number of cores (trans-
lated to the NumberOfSubkernels option) and STRATEGY is the chosen
sector decomposition strategy. For example,

examples/F1/generate_db.sh 58 4 KUS
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The CORES and the STRATEGY options can be not filled, default is 1
and S2.

Now let us provide the integration comparison. After generating inte-
grand databases one can run the integration with the following command:

examples/F1/integrate_db.sh NUMBER CORES MAXEVAL

where NUMBER is the number of master integral, CORES is the number of
cores (translated to the NumberOfSubkernels option) and MAXEVAL is the
maximum number of sampling points. For example,

examples/F1/integrate_db.sh 58 4 500000

In our tests we used 500000 sampling points instead of the default 50000.
Increasing it further leads to about linear growth of time and provides no
extra information for tests.

We chose the KUS strategy for the new version of FIESTA based on the
previous table and compared integration time with the old version (the results
and error estimates are similar). We got the following timings (in seconds):

• integral 9: FIESTA4 — 21, FIESTA5 — 13;

• integral 19: FIESTA4 — 88, FIESTA5 — 32;

• integral 42: FIESTA4 — 245, FIESTA5 — 73;

• integral 58: FIESTA4 — 5333, FIESTA5 — 2043;

This shows a considerable speedup of the new version even in the case
without physical kinematics (complex numbers). One might notice a smaller
speedup for integral 58 compared to 42, this is due lack of symmetries for
this integral between sectors. The answers are known analytically and can
be checked with
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examples/F1/check_result.sh NUMBER

We also used this example to test the MPI mode of FIESTA. We used
integral 58 and the separateTerms mode — this was essential for a proper
parallelization with a large number of workers, otherwise some integrals were
dominating time usage. The test was performed on the cluster of the Institute
for Theoretical Particle Physics at the Karlsruhe Institute of Technology, and
the command was

srun -n $n ./bin/CIntegratePoolMPI

--in ./examples/F1/temp/db_58_in --separateTerms

--Integrator vegasCuba --IntegratorOption maxeval:10000000

--IntegratorOption epsrel:0.01

Note: the command to use the MPI system on a cluster might differ on
different clusters, please refer to the local documentation.

We obtained the timings with different number of cores and machines in
use, which can be seen in table 2.

5.2. Physical kinematics, comparing versions and options of the new FIESTA

We used FIESTA to check analytic results for the master integrals for
the second type of planar contributions to the massive two-loop Bhabha
scattering in quantum electrodynamics.

These analytic results were obtained in a recent paper [34] using differ-
ential equations with canonical bases.

This is a two-loop example, but it already demonstrates well the advance-
ment from FIESTA4 to FIESTA5. Here there is no difference between sector
decomposition strategies. We produce results up different orders depend-
ing on the integral (as required for the physical check). We consider four
typical integrals with the number of positive indices from 4 to 7. The defini-
tions of these integrals also can directly be obtained from the Mathematica
commands in the file with examples distributed together with the code.
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cores machines time cores machines time
2 1 4173 55 4 165
3 1 2451 79 2 100
4 1 2071 79 3 155
6 1 1268 79 4 130
9 1 845 114 3 74
13 1 554 114 5 99
18 1 424 114 6 101
18 2 421 165 3 60
27 1 256 165 7 100
27 2 316 165 8 82
27 3 310 237 8 67
38 1 201 237 5 47
38 2 247 342 6 44

Table 2: MPI example. The time is measured in seconds. The timings are unstable due
to the heterogeneous nature of the cluster in use

The results can be seen in table 3. Here we took 1000 times more sampling
points compared to the default value — 50 million sampling points. We also
used the default vegasCuba integrator. First of all, it is clearly obvious that
FIESTA5 completely outperforms FIESTA4 even on this two-loop example.
The integration results are known by other means and the results of FIESTA5
are much more close to them than the results of FIESTA4.

However, timings are not the only problem. For example, for the final part
of integral 40 FIESTA5 with these options returns 13.1300−18.3537 ∗ I while
the known result is 13.0927 − 18.3447 ∗ I being quite close, while FIESTA4

with the same number of sampling points produces 7.86407 + −1.79244 ∗ I
which is completely far from the answer. A better answer can be achieved
with the increase of the number of sampling points, but this might take too
much time.

These benchmarks with FIESTA5 can also be reproduced with

examples/pl2/generate_db.sh NUMBER CORES STRATEGY

43



integral 10 (4) 23 (5) 37 (6) 40 (7)
requested order 2 1 0 0

FIESTA4 - preparation 8 34 273 1242
FIESTA4 - integration 314 628 687 3269
FIESTA5 - preparation 2 3 9 10
FIESTA5 - integration 53 82 77 177

Table 3: Integration comparing in physical kinematics. The time is measured in seconds.

for database generation, with

examples/pl2/integrate_db.sh NUMBER CORES MAXEVAL

for integration and with

examples/pl2/check_result.sh NUMBER

to check results.
Now let us also demonstrate the balancing of the number of sampling

points of different integrals. The basic integration for integral 40 is performed
with

bin/CIntegratePool --in ./examples/pl2/temp/db_40_in

--threads 4 -v --IntegratorOption maxeval:50000000 --complex

--separateTerms

In takes 177 seconds and results in an error equal to 0.0372− 0.0090I for
the final part. However we can take advantage of balancing and run it with
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bin/CIntegratePool --in ./examples/pl2/temp/db_40_in

--threads 4 -v --IntegratorOption maxeval:50000000 --complex

--separateTerms --balanceSamplingPoints

Then it takes 66 seconds, and the error is only slightly larger being equal
to 0.0408− 0.01480I.

On the other hand, we can use this example to demonstrate, how impor-
tant the improvements with AVX instructions are by running the following
command:

bin/CIntegratePool --in ./examples/pl2/temp/db_40_in

--threads 4 -v --IntegratorOption maxeval:50000000 --complex

--NoAVX

It takes 342 seconds (with the same result as with AVX of course) being
almost twice longer.

5.3. Contour decomposition options and integrators

Let us consider one more example having two linear propagators with
dimension of momentum-space close to 3, not 4. This is an example with
two heavy quark propagators and three massless propagators, which appears
as a master integral in the computation of the two-loop static potential in
three-dimensions (this integral first appeared in the context of [35]).

If one simply tries to prepare the database with

SDEvaluate[UF[{l1, l2}, {-l1 u, l2 u, -(l1 + l2 - q)2, -(l1

- q)2, -(l2 - q)2}, {q2 -> -1, u2 -> -1, u*q -> 0}], {1, 1,

1, 1, 1}, 0, d0 -> 3, ComplexMode->True]
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then the following integration produces unstable results — the answer for
the finite part does not seem to converge with the growth of the number of
sampling points. There are a few things one should try in this case, and one
of them is to add

SectorSplitting -> True

to the list of options. This option leads to search for singularities at 1, not
also at 0 (see the corresponding section for details. As a result we can see
the following lines in the log file:

Counting different sectors: 32 terms. Searching for

x[i]->1 singularities..........58 terms. Additional sector

decomposition..........72 terms.

However, this still does not help, the result still does not converge. Now
the idea is to check whether perhaps the contour transformation went out
of bounds resulting in a positive imaginary part of F . This can be checked
with the FTest option:

bin/CIntegratePool --in ./examples/lin2/temp/db_in --threads

4 –Integrator vegasCuba --IntegratorOption maxeval:500000

--complex --separateTerms --FTest

This function performs the integration of F after transformation, which
has no particular meaning, but also watches for the sign. And as a result one
can see the following messages in the log file (many of those):

46



Integrating.......{0.647407, 0.996573, 0.983618, 0.997353, }

result: {1.248828898651168,0.026095569042321} {0.792542,

0.985277, 0.992735, 0.989432, } result:

{1.613810831804675,0.040549561921149}

{0.658998, 0.996897, 0.981823, 0.996996, } result:

{1.157437564597312,0.443214740778332}

{0.679699, 0.977365, 0.918743, 0.997780, } result:

{0.826571082996057,0.150831603598730}

{0.842319, 0.993608, 0.858646, 0.998647, } result:

{0.996115222194668,0.023579557535055}

This confirms that the reason is in a contour transformation that is too
large and can be fixed by making the ContourShiftCoefficient option
smaller, for example, equal to 1/2. This finally helps, and the setting can
be seen in examples/lin2/generate_db.m. The database can be generated
with

examples/lin2/generate_db.sh CORES STRATEGY

integrated with

examples/lin2/integrate_db.sh CORES MAXEVAL INTEGRATOR

and checked with

examples/lin2/check_result.sh
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However, sometimes the results are technically correct, but the conver-
gence is too slow. This could be the case that the contour transformation
is too small, and here the ContourShiftCoefficient option should be in-
creased.

We also use this example to compare different integrators. We checked
this example from 50 thousand sampling points to 5 billion sampling points
with two integrators, vegasCuba and quasiMonteCarlo. To force the inte-
grators produce more digits we set a small epsrel setting for both integrators
and also used the balancing mode of FIESTA. We do not provide the com-
paring of balancing and no balancing here, but one can easily check that
balancing is significantly faster, especially for a large number of sampling
points. The results are shown at table 4.

Sampling points vegas - time vegas - error qmc - time qmc - error
50 000 1 1.31565614 28 0.02736893
500 000 2 0.15482110 31 0.01538130

5 000 000 16 0.01413316 110 0.00272567
50 000 000 148 0.00188693 868 0.00005208
500 000 000 1420 0.00045132 3386 0.00000185

5 000 000 000 14649 0.00009603 9246 0.00000044

Table 4: Integrator comparing

The results show that the quasi monte carlo method produces better
results when a large number of sampling points is used. It first starts slower
due to the overhead, the larger number of sampling points it takes (exceeding
maxeval) and also due to a larger portion of sampling points that need to
be evaluated with the use of MPFR. However it produces better results and
in the end it becomes faster for the reason that it can stop with most of the
sector integrals early enough concentrating only on important one.

In practice one should choose the integrator wisely depending on pa-
rameters and the accuracy goal that should be achieved. For example, in
subsection 5.1 switching to QMC would only make the integration take more
time.

How to cite

FIESTA5 depends on a number of different libraries. Apart from citing
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this paper this would make sense to cite also:

• the Cuba library [27] as the default integrator;

• the QMC integrator [22] in case it is used;

• the tensor train integrator [23] in case it is used.

Conclusion

We presented a new release of FIESTA. The benchmarks show that it is
much more powerful than the old version of FIESTA, outperforming it from
2−3 times to 100 times or even more working where the previous version was
not capable to provide a result. This is achieved by new sector decomposition
strategies, improved contour transformation, new integrators and multiple
integration optimizations. We have more plans on how the code of FIESTA
should be developed to improve performance.
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