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Simulating quantum states on a classical computer is hard, typically re-
quiring prohibitive resources in terms of memory and computational power.
Efficient simulation, however, can be achieved for certain classes of quantum
states, in particular the so-called Gaussian quantum states of continuous vari-
able systems. In this work we introduce QuGIT - a python numerical toolbox
based on symplectic methods specialized in efficiently simulating multimode
Gaussian states and operations. QuGIT is exact, requiring no truncation of
Hilbert space, and provides a wide range of Gaussian operations on arbitrary
Gaussian states, including unitaries, partial traces, tensor products, general-
dyne measurements, conditional and unconditional dynamics. To illustrate
the toolbox, several examples of usage relevant to quantum optics and op-
tomechanics are described.

1 Introduction
Simulating arbitrary quantum systems is a difficult task for classical computers. The
memory necessary to store quantum states in cache and the complex computations required
to emulate their dynamics generally scales exponentially with the number of modes for
finite-dimensional Hilbert spaces [1]. For infinite-dimensional systems the situation is even
worse since dynamics cannot be reproduced with limited memory in general, regardless
of the number of modes. To overcome these limitations, one often works with truncated
Hilbert space dimensions, which works well if the system has a small number of modes and
excitations. Dimensional truncation is commonly used in a variety of quantum numerical
packages [2, 3], and most prominently in the Quantum Toolbox in Python (QuTiP) [1, 4],
which has been extensively used to simulate a wide range of systems from parametric
amplifiers and frequency converters to superconducting qubits and quantum Monte-Carlo
trajectories in cavity QED [1].

While dimension truncation offers a viable path to simulating a myriad of quantum
systems, it is desirable to have complementary tools which are exact. Of particular in-
terest to us is the special class of continuous variable Gaussian quantum states, which
comprise a number of interesting situations, particularly in quantum optomechanics ex-
periments involving strong coherent states [5] and nanomechanical resonators interacting
with thermal environments possessing large occupation numbers [6, 7], both intractable
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using truncated Hilbert spaces. Quantum optical circuits involving Gaussian states with
a large number of modes such as in Boson sampling [8] and photonic quantum computing
[9] are also examples for which exact methods are desirable. For these needs we have
developed the Quantum Gaussian Information Toolbox - or QuGIT for short - a python
numerical toolbox for Gaussian quantum information applications.

Gaussian states are completely characterized by the first and second moments of their
phase-space distribution [10]. This lifts the requirement of dealing with the infinite-
dimensional objects characteristic of continuous variable systems, requiring only a finite
covariance matrix for the complete and exact description of the system’s state and dy-
namics. Consequently, memory requirements grow only quadratically with the number of
modes N ; specifically only 4N2 + 2N double-precision floating point numbers in memory
are needed to represent an N -mode Gaussian state. QuGIT builds upon the formalism
of Gaussian quantum states to implement a series of useful tools for continuous variable
quantum systems.

This paper is organized as follows. In Section 2, we present a brief introduction to
Gaussian quantum states, its symplectic representation and Gaussian-preserving dynam-
ics. The framework of QuGIT and how the toolbox is divided is presented in Section 3,
while a detailed discussion is provided in Section 4 through a series of illustrative examples
covering a wide range of the toolbox capabilities. The associated codes for these simula-
tions are presented in Appendix B, and the list of QuGIT’s built-in functions is given in
Appendix A. In Section 5 we discuss the performance of QuGIT to simulate dynamics in
comparison to QuTiP. Section 6 concludes with final considerations on the current state of
the toolbox and how it contributes to the list of already existing packages for simulating
quantum systems.

2 Brief review of Gaussian states and notation
2.1 Gaussian states
QuGIT is based on the formalism of continuous variable quantum systems whose states live
in an infinite-dimensional Hilbert space described by observables with continuous spectra.
In the remaining of this text we follow Refs. [10, 11, 12, 13] and a brief summary of the
main properties regarding continuous variable (CV) systems is provided in this section.

An N -mode CV state is characterized by annihilation and creation operators âj and

â†j (j = 1 . . . N) obeying the standard bosonic commutation relations
[
âj , â

†
k

]
= 1 δj,k. We

choose to work in units where h̄ = 2, such that the canonical observables associated to
each mode are defined as x̂j ≡ â†j + âj and p̂j ≡ i

(
â†j − âj

)
. These can be interpreted

as the position and momentum operators of a harmonic oscillator or field quadratures
of an optical mode. In the remaining of this work we shall refer to x̂j , p̂j as quadrature
operators and it follows from the bosonic commutation relations that [x̂j , p̂k] = 2i1 δj,k
and [x̂j , x̂k] = [p̂j , p̂k] = 0.

A convenient representation of quadrature operators is via a vector of the form r̂ =(
x̂1, p̂1, x̂2, p̂2, . . .

)T
. This allows one to write the canonical commutation relations in

compact notation,

[r̂j , r̂k] = 2iΩj,k , Ω ≡
N⊕
k=1

[
0 1
−1 0

]
. (1)

where Ω is the so-called symplectic form matrix.
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The continuous spectra of the quadrature operators span a real symplectic space [10]
referred to as phase-space. This allows for a convenient representation of arbitrary contin-
uous variable states: the complete information contained in an N -mode bosonic quantum
state ρ can be represented as a quasi-probability distribution in a 2N -dimensional phase-
space. In this work we are interested in the special class of continuous variable states for
which the phase-space distribution assumes a Gaussian form. These so-called Gaussian
states can be completely described by the first and second moments of their quadrature
operators.

Let ρG be an N -mode Gaussian state; its first moment is given by the quadrature
vector R ∈ R2N , defined as

R ≡ 〈r̂〉 = tr(ρGr̂) , (2)

while the second moments can be arranged into a real symmetric covariance matrix V ∈
R2n×2n, with entries given by

Vj,k = 1
2〈r̂j r̂k + r̂kr̂j〉 − 〈r̂j〉〈r̂k〉 . (3)

These are the basic data elements of QuGIT.

2.2 Gaussian preserving dynamics
Physical transformations that map Gaussian states to Gaussian states are called Gaussian-

preserving. To be a Gaussian-preserving unitary the operator Ŝ = exp
(
−iĤ0/2

)
must be

generated by a Hamiltonian Ĥ0 that is at most quadratic in the quadrature operators and
thus its most general form is

Ĥ0 = 1
2 r̂

TH(t)r̂ +αTH r̂ (4)

where H(t) is a time-dependent real symmetric 2N × 2N matrix and αH is a real vector
of length 2N . Using the Heisenberg equations for the quadrature vector alongside its
commutation relations given in Eq. (1) we find that Gaussian unitaries can be described
through an affine mapping of the quadrature operators

˙̂r = ΩH(t)r̂ + ΩαH1 . (5)

The discussion on Gaussian-preserving transformations may also be generalized to
account for open quantum system dynamics and continuous measurements. The open
dynamics is modelled by considering that the system of interest is weakly coupled to a
large reservoir in an M -mode Gaussian state with first and second moments RB = 0 and
VB. The environment is assumed to satisfy the white noise condition

〈
{
r̂B(t), r̂TB(t′)

}
〉 = 2VB δ(t− t′) , (6)

implying Markovian dynamics. Moreover, the environment and system are allowed to
interact through a quadratic coupling Hamiltonian, which preserves the Gaussian character
of the global state,

Ĥint = r̂TCr̂B , (7)

where C is a 2N × 2M real matrix describing the system-environment coupling and r̂B is
the quadrature operator vector for the environment.

Continuous measurements are modelled by a general-dyne detection scheme acting on
the environment giving rise to a conditional dynamics on the system. Note this scheme
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preserves the Gaussianity of the system. The choice of measurement is characterized by the
post-measurement covariance matrix of the monitored modes VM , while the probability
of measuring an outcome rM from these modes follows a Gaussian probability density
with mean RB and covariance (VB + VM )−1/2. For a detailed description of general-dyne
measurements see Ref [13].

After tracing out the environment, the conditional dynamics induced on the system
by the total Hamiltonian Ĥ = Ĥ0 + Ĥint plus continuous general-dyne measurements is
described by a set of stochastic Langevin equations together with a deterministic Riccati
equation for the first moments,

V̇ = AV + V TAT +D − χ(V ) , (8)
dR = (AR+N)dt+ (V CT + ΓT )dw , (9)

where dw = (VB + VM )−1/2(rm − RB) is a Wiener process with 〈{dw, dwT }〉 = 1dt.
The drift matrix A, diffusion matrix D and driving term N dictate the unconditional
dynamics on the system whilst the monitoring of the system is introduced through the
positive definite matrices C,Γ and χ(V ),

A = ΩH + 1
2ΩCΩCT ,

D = ΩCVBCTΩT ,

N = ΩαH ,

χ(V ) = (V CT + ΓT )(CV + Γ) ,
Γ = (VB + VM )−1/2VBCΩ ,

C = (VB + VM )−1/2ΩC .
(10)

We note that when C = Γ = 0 the deterministic unconditional dynamics is recovered from
the above equations and the Riccati equation reduces to a Lyapunov equation. We also
observe that the effect of continuous monitoring introduces stochasticity only in the mean
quadrature vector while the covariance matrix follows a deterministic dynamics.

The above matrices and vectors, alongside the initial state for the system are the basic
data elements necessary for QuGIT to calculate arbitrary Gaussian quantum dynamics.

3 QuGIT framework
3.1 Emulating Gaussian states
The toolbox is able to emulate an arbitrary multi-mode Gaussian state, perform Gaussian
operations and retrieve data from these simulations. This is achieved through the custom
Python class gaussian state. The attributes of this class encompass all the necessary
information to characterize the states: their number of modes, mean quadrature vectors,
covariance matrices and the associated symplectic form matrix, summarized in Table 1.

Table 1: Attributes of the gaussian state class

Attribute Description

R Mean quadrature vector
V Covariance matrix

N modes Number of modes
Omega Symplectic form matrix

Manipulations of the quantum state can be performed in two ways. One is through
class methods that alter the class instance. The other is via homonym built-in functions
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that take as argument a gaussian state and return a modified copy of the original class
instance. Details regarding these operations are listed in the Appendix A.

We now present a first working example using the gaussian state class. Consider a
pair of two-mode Gaussian states. With the following code, we can find the their quantum
fidelity:

import numpy as np
import quantum gaussian toolbox as qgt

R = np.array([1, 2, 3, 4]) # Mean quadrature vector for s tate 0
V = 10∗np.eye(4) # Covariance matrix for s tate 0
state 0 = qgt.gaussian state(R, V) # Multimode Gaussian state

alpha = 1 − 2.0j # Coherent s tate 1 complex amplitude
state 1 = qgt.coherent(alpha) # Single mode Gaussian state

# Tensor product of two copies of a coherent s tate ( s tate 1 )
state 2 = qgt.tensor product([state 1 , state 1]) # Library function
state 1.tensor product([state 1]) # Class method

F = qgt.fidelity(state 0 , state 1) # Quantum f i d e l i t y between sta tes

The first lines of the code import the QuGit and Numpy packages. Note Numpy is
necessary for the functioning of QuGIT. These imports and their aliases “qgt.” and
“np.” are assumed in all examples from now on. The creation of an arbitrary two-mode
Gaussian state is achieved by initialising the first two moments of the state (declared
as numpy.ndarrays) and passing these to the gaussian state class constructor. We can
initialise certain elementary Gaussian states - such as the vacuum, coherent, squeezed and
thermal states - by a builtin function with its associated parameter. In the above example
we can see the definition of a complex number (alpha) and the coherent state initialised
with corresponding complex amplitude (gqgt.coherent(alpha)). Next, we calculate the
tensor product of the initialised coherent state with itself. This tensor product can be
achieved in two different ways: first with the QuGIT library function qgt.tensor product,
which takes a list of gaussian state class instances and returns another instance with the
tensor product. Second, we can make use of the gaussian state class method to alter the
variable state 1 to the result of the tensor product. Finally, we calculate the quantum
fidelity between state 0 and state 1.

We note that while the above example contains some of the core mechanics of the class
gaussian state, there are numerous capabilities which can be achieved using the toolbox;
see Appendix A for more details. These capabilities include Gaussian unitaries, phase-
space representations, entanglement witnesses, general-dyne measurements and calculation
of density matrices in different basis. By retrieving the density matrix on the number basis,
the toolbox allows for almost effortless synergy with the widely used QuTiP package [1].

3.2 Simulating time evolution
In addition to the state class, QuGIT contains the gaussian dynamics class, for simulating
Gaussian-preserving time evolution of a given initial state.

The class attributes record the necessary information to calculate the time evolution,
meaning the initial state (which is an instance of gaussian state), the matrices appearing
in equations (8) and (9) (defined as numpy.ndarrays) and the list of time-evolved states.
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The class methods are able to perform unconditional and conditional time evolution of
multi-mode Gaussian states following the theory outlined in Section 2.1, as well as calculate
the semi-classical dynamics for the system and their steady states.

For the unconditional dynamics the class performs numerical integration of the deter-
ministic differential equations and finds the associated steady state by solving the algebraic
form of the Lyapunov and Langevin equations. Regarding the conditional case, the deter-
ministic Riccati equation is solved using the same standard numerical integration, while a
Monte Carlo method is employed to integrate the stochastic Langevin equation and yield
quantum trajectories, induced by continuous monitoring, upon the Hilbert space of the
system. Finally, for the semi-classical dynamics we generalize the unconditional case by
considering the effect of stochastic forces acting on the Langevin equation with zero mean
value and auto-correlation dictated by the diffusion matrix D; the resulting semi-classical
dynamics gives rise to semi-classical trajectories.

4 Examples
We now proceed to discuss some illustrative examples using QuGIT. The code to each
example is presented in the Appendix B. The associated lines of code used for plotting are
omitted for simplicity, however, we note that throughout the remaining of this work, the
matplotlib package [14] is used for data visualization.

4.1 Unitary field quadrature dynamics
A standard plot in quantum optics textbooks [15] is the unitary time development of
the mean field quadrature and its corresponding variances for the electromagnetic field in
various quantum states. We begin with this simple example as the information required
can be directly retrieved from the gaussian state class attributes and serves to illustrate
how one can use the toolbox to initialise states of interest, evaluate their unitary dynamics
and visualize results via expectation values of canonical observables.

We consider two states: a coherent state with complex amplitude parameter α = 2
and a squeezed-coherent state with amplitude α = 2 and squeezing parameter and phase
given by r = 1.2, φ = 0. The result of this simulation is shown in Figure 1.

5

0

5
a+ a

Coherent

0.0 0.5 1.0 1.5 2.0
0t

5

0

5
Squeezed

Figure 1: Time evolution of mean (solid line) and variance (shaded region) of the field quadrature for
a single mode. Top: a coherent state with |α|2 = 4. Bottom: a squeezed-coherent state with |α|2 = 4
and r = 1.2, φ = 0, displaying reduced noise at specific times showing that at those moments, the state
is closer to an eigenstate of the electric field (X quadrature) than a coherent state.
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4.2 Damped harmonic oscillator
We can extend the above example to include the effects of damping in the field. We
consider the time evolution of a damped quantum harmonic oscillator governed by the
Lindblad equation,

ρ̇ = − i
h̄

[
h̄ωâ†â, ρ

]
+ γ

(
âρâ† − 1

2 â
†âρ− 1

2ρâ
†â

)
, (11)

where ω is the frequency of the mode and γ is the damping constant. The commutator in
the master equation dictates unitary dynamics, while the second term governs the interac-
tion with the environment. The open quantum dynamics is modelled through amplitude
damping on the number of excitations of the harmonic oscillator. The associated Langevin
and Lyapunov equations entailed by Equation (11) are characterized by a vanishing driving
vector and the following drift and diffusion matrices,

A =
[
−γ/2 +ω
−ω −γ/2

]
, D =

[
γ 0
0 γ

]
. (12)

We consider the system initially in a coherent state |α〉 with α = 2. A visualization of the
dynamics can be seen in Figure 2. On the lower plots, we show snapshots of the Wigner
function for the state at different moments before a full oscillation is complete. The dashed
circles represent the expected mean trajectories produced by the unitary dynamics, for
comparison. One can observe that mean position of the Gaussian distribution undergoes a
circular damped motion, eventually settling at the origin corresponding to the stationary
vacuum state.

Figure 2: Damped time evolution of an initial coherent state, |α = 2〉. Top: occupation number
calculated through QuGIT (solid blue line) compared to QuTiP (orange dots), together with the variance
of the mode number operator (shaded light blue region). Bottom: Wigner functions evaluated using
QuGIT; time flows from left to right. Parameters used in the simulation are ω0 = 2π and γ = 2π×0.3.
For QuTiP, the Hilbert space dimension truncation was N = 30.
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This damped motion of the distribution can also be visualized on the top plot, through
the mean mode occupation number and its variance, both monotonically decreasing. For
comparison we present the same simulation performed using QuTiP, dotted orange line.
As a final check, one can also compute the quantum fidelity between the steady state of
the system and the vacuum state and verify it to be 100%.

We conclude this section on open quantum dynamics with an example of special in-
terest to quantum optics, namely squeezed states. These states are sensitive to damping
and photon-loss decoherence [16], as we now verify using QuGIT. We simulate an analo-
gous time evolution to the previous example, now with an initial squeezed-coherent state
|α = 2, r = 1.2〉 subject to a damping constant γ = 2π × 0.1. On the top plot of Fig-
ure 3 we observe a dynamics that initially resembles the unitary evolution of the field
quadrature described in the previous section. However, damping quickly acts on the field
causing it to approach the vacuum. Note the reduced variance associated to squeezing of
the quadrature is also affected, evidenced by a smoothing over time. The bottom plot of
Figure 3 further illustrates this effect by displaying the time evolution of the squeezing
degree, defined as the ratio of the squeezed to anti-squeezed field quadrature variances.
The squeezing degree starts near zero for a squeezed state, and gradually evolves to unity
as squeezing is degraded by the amplitude-damping dynamics. We numerically verify that
in the steady state, the squeezing degree approaches 1.

Figure 3: Damped time evolution of a squeezed state visualized in terms of time-dependent field
quadrature 〈X(t)〉 = 〈a† + a〉 (Top) and squeezing degree η(t) (Bottom). Initial squeezed state is a
squeezed-coherent state with α = 2 and r = 1.2. Parameters for the dynamics are: ω0 = 2π and
γ = 0.1× ω0.

4.3 Mode entanglement and displacement detection
A number of experiments in quantum networks use the so-called sources of heralded sin-
gle photon entanglement [17, 18], which consists in producing single photon states and
subsequently delocalizing these over different spatial modes using beam-splitters (BS).
Detection of single photon entanglement and more generally of mode-entanglement can
be achieved through the use of displacement-based detection schemes [19], which allow
for violations of Bell inequalities [20] as well as quantum communication protocols [21].
Displacement-based detectors are Gaussian operations and as such QuGIT can be used to
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Figure 4: a) Typical setup from single-photon entanglement experiments. b) Oscillations in photon-
counting statistics after a displacement-based detection scheme, calculated using QuGIT. Losses are
modelled through a BS interaction with ancillary vacuum modes; legend indicates transmission of the
setup.

explore the physics of these quantum communication experiments.
Figure 4a) shows a typical setup for a mode-entanglement experiment. A coherent

source pumps a second-order nonlinear crystal (which can be placed inside a cavity as in
the case of an optical parametric oscillator), producing Type II downconverted photon
pairs. The statistics of the generated state is that of a two-mode squeezed state (TMS).
The pump laser is filtered (F), and the modes in the TMS are spatially split using a
polarizing beam-splitter (PBS). Each mode is subsequently input into unbalanced beam-
splitters and mixed with local oscillators with a relative phase reference of eiθ. The joint
probability of photon counts is detected using photodiodes and coincidence logic. In this
setup, the joint photon number probability after displacement-based detection can undergo
oscillations as a function of the relative phase θ. In particular, the probability of detecting
zero photons at each of the photodiodes is given by,

p(0, 0) = Tr
(
Da(α)Db(αeiθ)|ΨTMS〉〈ΨTMS |D†a(α)D†b(αe

iθ)|0〉〈0|
)

(13)

where |ΨTMS〉 is the TMS state and Da, Db are displacement operators in modes a and b,
respectively. Figure 4b) displays a numerical plot of p(0, 0) calculated using QuGIT, taking
into account losses in the interferometer through BS interactions with ancilla modes. This
simple example demonstrates the power of the toolbox in simulating quantum interference
experiments performed using Gaussian operations plus photon-counting, such as required
in boson sampling [8] and photonic quantum computing [9].

4.4 Conditional dynamics
QuGIT is capable of solving general stochastic conditional dynamics. To demonstrate this
capability, we consider the example of an Optical Parametric Oscillator (OPO) generating
single mode squeezing via the Hamiltonian outlined in Section 6.1 of Ref [13], given by

Ĥ = χ

2 (x̂p̂+ p̂x̂) , (14)

where χ is the squeezing rate.
The OPO mode can interact with an environment, modelled as a thermal bath with

density matrix VB = (2nth + 1)1. For simplicity, we will consider nth = 0. Interaction
between the bath and the OPO mode is modelled by the interaction matrix C = √γ1,
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where gamma is a damping constant. The associated drift and diffusion matrices are
respectively given by [13],

A =
[
−χ− γ/2 0

0 χ− γ/2

]
, D = γ(2nth + 1)1 . (15)

This defines a stable unconditional dynamics whenever χ < γ/2, and one can show
that the steady state squeezing degree (defined as the ratio of squeezed to anti-squeezed
quadratures) reads [13]

ηuncond = 1− 2χ/γ
1 + 2χ/γ . (16)

We now consider the OPO mode is continuously monitored via projections onto the
covariance matrix Vm = diag(s, 1/s). We take the case of homodyne measurement of the
x̂ quadrature (s −→∞). In this case, the steady state acquires a squeezing degree given by

ηcond. =
(
γ − 2χ
γ

)2
(17)

Figure 5 shows the time evolution of the squeezing degree for χ = γ/3 for both the
unconditional and conditional dynamics, together with their corresponding values in the
steady state predicted by the theory. Observe that continuously monitoring the system
enhances the steady state squeezing of the OPO mode.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
t [a.u.]

0.2

0.4

0.6

0.8

1.0

Sq
ue

ez
in

g 
de

gr
ee

unconditional dynamics (numerical)
conditional dynamics (numerical)
unconditional steady state (theory)
conditional steady state (theory)

Figure 5: Unconditional and conditional dynamics of the squeezing degree of an OPO. In the conditional
case, the OPO mode is subject to continuous. homodyne detection of the x̂ quadrature. Ntraj = 100
quantum trajectories were considered for the quantum Monte-Carlo simulation.

This example illustrates the use of QuGIT to the study of conditional stochastic quan-
tum evolution. We close this example highlighting that the above-described stochastic
evolution tools can be further generalized to include feedback and optimal control accord-
ing to the needs of the studied system, as for example in [22].

4.5 Random Gaussian circuits
We now turn to the problem of random quantum circuits, for which the dynamics of
entanglement growth has recently gained increased attention [23, 24]. As we next demon-
strate, QuGIT can efficiently generate and simulate random unitary circuits and quantify
entanglement growth under increasing numbers of gates and modes.
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We generate circuits by randomly selecting a gate for each mode/pair of modes of
a N -mode Gaussian state for T turns, winding up with a quantum circuit made of NT
elementary gates. Elementary gates are taken from a list containing the identity, rotation,
displacement, squeezing, two-mode squeezing, and beam splitter operations. When nec-
essary, the parameter associated to each gate (such as the rotation angle for the rotation
operator) are uniformly chosen from a pre-established range. The random circuit is then
applied to a tensor product of N vacuum states, typically producing a highly entangled
random state.

We think of the modes as organized in a discrete 1D lattice with each mode located
at integer values. Define the spatial-dependent von Neumann entropy entropy S(x) as
the entropy of a bipartition of the system at mode x. S(x) is used as a spatial-sensitive
measure of entanglement, and the dynmanics of S(x) under varying number of gates
quantifies entanglement growth. Given large numbers of modes and elementary gates,
QuGIT has a solid advantage in simulating examples of this type with respect to QuTIP,
where trucation of Hilbert space would severely limit the simulation.

Figure 6: The spatial von Neumann entropy S(x) for random Gaussian states comprised of N = 200
modes, obtained by applying random unitary quantum circuits to an initial vacuum state. Each circuit
contains NT gates. For each curve shown we average over an ensemble of 100 realizations.

Figure 6 displays the simulation result for N = 200 modes with five increasing values
for T . Due to the statistical nature of this example ensembles of 100 realizations for
each value of T were considered, with each curve shown expressing the mean value of
S(x) over all realizations. The high value of N was selected to experiment with the
performance of the toolbox. In order to produce the plot in Figure 6, 500 random circuits
were simulated, with an overall number of 600, 000 gates. The von Neumann entropy had
to be calculated approximately 100, 000 times. The final result was obtained in 3 hours
with a simple average notebook, 1.8 GHz dual-core 8 GB laptop. The outcome is consistent
with simulations obtained with qubits and quantum circuits composed of Clifford gates
[23] providing a continuous-variable analogue for known results of entanglement growth
under random unitaries acting on finite-dimensional Hilbert spaces [25].
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5 Performance
We now turn our attention to the performance of QuGIT. In general, the number of
modes for the system in question heavily determines computation time. This can be
readily observed when considering the time evolution of systems with a large numbers of
interacting modes. Consider the problem of calculating the open quantum dynamics of
a system of N modes in which all modes interact with independent thermal baths and
with one another such that all mode-quadratures are coupled, i.e. the matrix H(t) in
Equation (4) has no vanishing elements. In this case the unitary dynamics is governed by
the Hamiltonian

Ĥ = h̄
N∑
j=1

ωj b̂
†
j b̂j +

N∑
j=1
k 6=j

αjkx̂j x̂k + βjkp̂j p̂k + γjkx̂j p̂k + δjkp̂j x̂k , (18)

while interaction with the environment is modelled as an independent thermal bath at
finite temperatures for each particle, inducing quantum Brownian motion on each mode.
Here, we refer to Ref [26] for the equations of motion dictating this Gaussian-preserving
open system dynamics.

Figure 7 shows the computation time needed to calculate the time evolution of the
system using QuGIT as a function of the number of interacting modes, averaged over 50
realizations. Note the polynomial scaling with the number of modes. It is instructive
to compare computation times for QuTiP versus QuGIT. While QuGIT could exactly
simulate a 50-mode Gaussian dynamics in 8 s, QuTiP takes 25 s to simulate a similar 4-
mode Gaussian dynamics with a Hilbert space of dimension of 5. It is expected that in
the ideal case the toolbox performance scales as N2, following the growth in size of the
covariance matrix for Gaussian states. Figure 7 includes a quadratic fit to the computation
time displaying good agreement with the data for N ≤ 50.

Figure 7: Blue: Computation time for a generic unconditional dynamics, averaged over 50 realizations,
as a function of the number of modes. Each simulation consisted of a time evolution of 10, 000
time steps spanning 5 complete cycles of the harmonic oscillators. Black dashed line: quadratic fit.
Parameters used were ωj = 2π × 305 kHz, and αjk = βjk = γjk = δjk ∼ ωj/3.

As a second example of performance, we revisit Section 4.5 and study the computation
time of QuGIT for random circuits. The total computation time including state initializa-
tion, application of the random quantum circuit and calculation of the spatial-dependent
von Neumann entropy is shown in Figure 8 as a function of number of modes and gates.
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Observe that the number of gates per mode has a more significant impact on the perfor-
mance over the number of modes. For the most challenging case of a total of NT = 720
gates applied to N = 40 modes the simulation completes in less than a third of a second
on the average laptop computer. All performance tests were carried out on a 2.80 GHz
quad-core, 16 GB laptop running Windows.

Figure 8: Computation time for random Gaussian circuits as a function of the number of modes N and
number of gates per mode T .

6 Conclusion
In this work, we report an open-source numerical Python toolbox to simulate Gaussian
quantum states and operations. By directly using the symplectic representation of Gaus-
sian states, the toolbox can exactly simulate multi-mode systems without the need for
truncated Hilbert spaces or other approximations. The resources needed to store and ma-
nipulate quantum states in QuGIT is greatly reduced prompting the use of the toolbox to
simulate systems with many constituents.

Various numerical examples were carried out to exhibit the toolbox versatility and
robustness for a variety of Gaussian quantum systems and dynamics. The performance
of the toolbox was considered. In conclusion, while the quantum information community
benefits from excellent packages for simulating quantum systems such as QuTiP, we hope
QuGIT will add to that list, providing complementary solutions when it comes to the
simulation of Gaussian continuous variable systems.

Citation guideline
If you make use of QuGIT in your research please add a citation to this paper and ac-
knowledge using:

This work makes use of the QuGIT toolbox.
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A Toolbox methods

Table 2: gaussian state class’ methods

Method Description Reference

displace Applies a displacement operator on a single mode Gaussian state [10]
squeeze Applies a squeezing operator on a single mode Gaussian state [10]
rotate/phase Applies a rotation operator on a single mode Gaussian state [10]
beam splitter Applies a beam splitter operator on a two mode Gaussian state [10]
two mode squeezing Applies a two mode squeezing operator on a two mode Gaussian state [10]
apply unitary Applies a generic unitary operator given its symplectic representation [10]
loss ancilla Applies a beam splitter operator between a desired mode and an ancilla —

tensor product Tensor product of two Gaussian states [11]
partial trace Partial trace over some modes [11]
only modes Partial trace over all but some modes [11]

matrix element coherent basis Calculates the density matrix elements on coherent state basis [27]
matrix element number basis Calculates the density matrix elements on number states basis [27]

purity Purity [10]
symplectic eigenvalues Symplectic eigenvalues of the covariance matrix [10]
von Neumann Entropy von Neumann entropy [10]
mutual information Mutual information —
squeezing degree Ratio of the variance of the squeezed and antisqueezed quadratures [28]
fidelity Quantum Fidelity between the two Gaussian states [29]
coherence Coherence of a multipartite Gaussian state [30]
occupation number Occupation number for each mode of the Gaussian state —
number operator moments Calculates means vector and covariance matrix of number operator [31]
number statistics Calculates the number distribution of the Gaussian state [27]

wigner Wigner function over a 2D grid for a single mode Gaussian state [10]
q function Hussimi Q-function over a 2D grid for a single mode Gaussian state [27]

logarithmic negativity Logarithmic negativity for a bipartition of a Gaussian state [10]

measurement general Conditional state after a partial Gaussian measurement [32]
measurement homodyne Conditional state after a partial homodyne measurement [32]
measurement general Conditional state after a partial heterodyne measurement [32]

print Prints the Gaussian state on the console log —
copy Creates an identical copy —

Table 3: Methods of the gaussian dynamics class

Method Description

unconditional dynamics Calculates the time evolution of an initial state following an unconditional dynamics
conditional dynamics Calculates the time evolution of an initial state following a conditional dynamics
steady state Calculates the steady state of an unconditional dynamics
semi classical Calculates the semi-classical time evolution of the mean quadratures, Monte Carlo method
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B QuGIT example codes
We now present the codes used on the examples of this work to illustrate the capabilities of
the toolbox. For simplicity, the lines of code associated with plotting have been omitted.

B.1 Unitary field quadrature dynamics

import numpy as np
import quantum gaussian toolbox as qgt

##### Parameters for the dynamics
omega = 2∗np.pi # Natural frequency [Hz]
t = np.linspace(0, 2/omega, int(200)) # Timestamps for simulation

A = np.array([[ 0 , +omega ],

[ −omega , 0 ]]) # Drift matrix
D = np.diag([0, 0]) # Diffusion matrix
N = np.zeros((2,1)) # Driving vector

##### Simulating coherent s tate time evolution
initial 0 = qgt.coherent(alpha=2) # I n i t i a l coherent s tate
simulation 0 = qgt.gaussian dynamics(A, D, N, initial 0)

states 0 = simulation 0.unconditional dynamics(t) # Simulate

##### Simulating coherent squeezed state time evolution
initial 1 = initial 0.copy() # Copy coherent s tate
initial 1.squeeze(r=1.2) # Apply squeezing operator

simulation 1 = qgt.gaussian dynamics(A, D, N, initial 1)

states 1 = simulation 1.unconditional dynamics(t) # Simulate

##### Retrieve information from time evolved s ta tes
mean x 1 = np.zeros(len(t)) # List to store mean quadrature , 1 s t simulation
var x 1 = np.zeros(len(t)) # List to store variance , 1 s t simulation

mean x 0 = np.zeros(len(t)) # List to store mean quadrature , 2nd simulation
var x 0 = np.zeros(len(t)) # List to store variance , 2nd simulation

for i in range(len(t)): # Loop through time−evolved s ta tes
mean x 0[i] = states 0[i].R[0]

var x 0[i] = states 0[i].V[0,0]

mean x 1[i] = states 1[i].R[0]

var x 1[i] = states 1[i].V[0,0]
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B.2 Damped harmonic oscillator code
Number operator moments and Wigner function dynamics for coherent state

import numpy as np
import quantum gaussian toolbox as qgt

##### Parameters
omega = 2∗np.pi; # Partic le natural frequency
gamma = 2∗np.pi∗0.3; # Damping constant
t = np.linspace(0, 3.5∗2∗np.pi/omega, int(200)) # Timestamps for simulation

x = np.linspace(−6,6,200)
p = np.linspace(−6,6,200)
X, P = np.meshgrid(x, p); # Meshgrid for phase−space

##### Matrices defining the dynamics
A = np.array([[−gamma/2, +omega],

[−omega ,−gamma/2]]) # Drift matrix
D = np.diag([gamma, gamma]); # Diffusion matrix
N = np.zeros((2,1)); # Driving vector

##### Simulation
initial = qgt.coherent(alpha=2) # I n i t i a l s ta te

simulation = qgt.gaussian dynamics(A, D, N, initial) # Time evolution instance
states = simulation.unconditional dynamics(t) # Simulate

##### Retrive information from time evolved s ta tes
n bar = np.zeros(len(t)) # List to store occupation numbers
n var = np.zeros(len(t)) # List to store variance of number operator
W = [] # List to store Wigner functions

for i in range(len(t)): # Loop through time−evolved s ta tes
n bar[i], n var[i] = states[i].number operator moments()

W.append(states[i].wigner(X, P))

ss = simulation.steady state() # Steady state of the system
F = qgt.fidelity(ss, qgt.vacuum()) # Fide l i ty with vacuum state
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Quadrature and squeezing degree dynamics for coherent-squeezed state

import numpy as np
import quantum gaussian toolbox as qgt

##### Parameters
omega = 2∗np.pi; # Partic le natural frequency
gamma = 2∗np.pi∗0.1; # Damping constant
t = np.linspace(0, 6, int(200)) # Timestamps for simulation

##### Matrices defining the dynamics
A = np.array([[−gamma/2, +omega],

[−omega ,−gamma/2]]) # Drift matrix
D = np.diag([gamma, gamma]); # Diffusion matrix
N = np.zeros((2,1)); # Driving vector

##### Simulation
initial = qgt.coherent(alpha=2) # I n i t i a l s ta te
initial.squeeze(r=1.2)

simulation = qgt.gaussian dynamics(A, D, N, initial) # Time evolution instance
states = simulation.unconditional dynamics(t) # Simulate

##### Retrive information from time evolved s ta tes
squeezing number = np.zeros(len(t)) # List to store occupation numbers

mean x = np.zeros(len(t)) # List to store mean quadrature
var x = np.zeros(len(t)) # List to store quadrature variance

for i in range(len(t)): # Loop through time−evolved s ta tes
squeezing number[i] = states[i].squeezing degree()[0]

mean x[i] = states[i].R[0]

var x[i] = states[i].V[0,0]

ss = simulation.steady state() # Steady state of the system
print(ss.squezzing degree()[0]) # Fide l i ty with vacuum state
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B.3 Mode entanglement and displacement detection

import numpy as np
import quantum gaussian toolbox as qgt

phi = np.linspace(0, 6∗np.pi, int(200)) # Relative phases
tau list = np.array([1, 0.8, 0.6, 0.5])

for j in range(len(tau list)):

bipartite = qgt.vacuum(N=2) # I n i t i a l s ta te
bipartite.two mode squeezing(r=0.4) # Apply two−mode squeezing operator

bipartite.loss ancilla(0, tau list[j]) # Apply BS with anc i l l a mode

Fidelity = np.zeros(len(phi)) # List of f i d e l i t i e s

for i in range(len(phi)):
coherent1 = qgt.coherent(alpha = 0.1)

coherent2 = qgt.coherent(alpha = 0.1 ∗ np.exp(1j∗phi[i]))
coherent12 = qgt.tensor product([coherent1 , coherent2])

Fidelity[i] = qgt.fidelity(coherent12 , bipartite)
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B.4 Conditional dynamics

##### Paramters
gamma = 2∗np.pi∗10
nbar env = 0

chi = gamma/3

A = np.block([[ −chi − gamma/2 , 0 ],

[ 0 , chi − gamma/2 ]]) # Drift matrix

D = gamma∗(2∗nbar env+1)∗np.eye(2) # Diffusion matrix
N = np.zeros((2,1)) # Driving vector

initial state = qgt.coherent(alpha=3) # I n i t i a l s ta te
t = np.linspace(0, 0.36, 2000) # Timestamps for simulation

##### Unconditional dynamics
simulation = qgt.gaussian dynamics(A, D, N, initial state) # Simulation instance

unconditional states = simulation.unconditional dynamics(t) # Simulate

unconditional sq = np.zeros(len(t)) # Calculate time evolved squeezing degree
for i in range(N time):

unconditional sq temp = qgt.squeezing degree(unconditional states[i])

unconditional sq[i] = unconditional sq temp[0]

###### Conditional dynamics
C = np.diag([np.sqrt(gamma), np.sqrt(gamma)]) # System−bath interaction
rho b = qgt.thermal(nbar env) # Bath ’ s s ta te

conditional states = simulation.conditional dynamics(t, N ensemble=100,

C int = C, rho bath = rho b , s list=[1e−5], phi list=[np.pi/2])

conditional sq = np.zeros(len(t))
for i in range(N time):

conditinal sq temp = qgt.squeezing degree(conditional states[i])

conditional sq[i] = conditinal sq temp[0]

###### Analytical predict ions
a = 1 / (1 + chi/(gamma/2))

b = 1 / (1 − chi/(gamma/2))

steady unconditional = (a/b) ∗ np.ones(N time) # Steady state unconditional

##### Analytical prediction for conditional dynamics
c = (gamma − 2∗chi) / gamma
d = 1/c

steady conditional = (c/d) ∗ np.ones(N time) # Steady state conditional
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B.5 Random Gaussian circuits
For this example, we focus on the toolbox usage and do not show the code that chooses
a random Gaussian circuit and applies it to an initial state. The circuits are composed
of: displacement, single-mode squeezing, rotation, beam-splitter and two-mode squeezing
operators, whose parameters are chosen at random. The choice of the circuit is done by
the method random circuit and its application on a tensor product of vacuum states is
carried out by apply circuit. The code for these methods can be found at:
https://github.com/IgorBrandao42/Quantum-Gaussian-Information-Toolbox.

import numpy as np
import random

import gaussian toolbox as qgt

N = 200 # Number of modes for the i n i t i a l s ta te
mean alpha = 0.1 # Mean real parameter for the displacement operator
std alpha = 0.01 # Standard deviation for the displacement operator ’ s parameter
T = [2,4,6,8,10] # Number of gates per mode to apply to the i n i t i a l s ta te
loops = 100 # Number of i t era t ions to find the mean entropy

s x = [] # List to store each mean von Neumann entropy
for i in range(len(T)): # For each gate

s x mean = np.zeros(N+1) # Mean entropy for th i s number of gates applied

for j in range(loops): # Repeat to find the average entropy
# Generate random Gaussian c i rcu i t
circuit = random circuit(N,mean alpha ,std alpha ,T[i])

initial state = qgt.vacuum(N) # I n i t i a l s ta te

# Apply random circu i t to i n i t i a l s ta te
final state = apply circuit(initial state ,circuit)

s x temp = np.zeros(N+1) # Temporary variab le

for k in range(1,N+1): # Loop through each mode to generate b ipar t i t ions

modes = list(range(k)) # Get indexes to f i r s t k modes

# Get b ipar t i t ion up to k−th mode
partition = qgt.only modes(final state ,modes)

s x temp[k] = qgt.von Neumann Entropy(partition) # Calculate i t s entropy

s x mean = s x mean+s x temp # Add current entropy to the sum

s x mean = s x mean/loops # Get average entropy
s x.append(s x mean) # Append i t to the l i s t of mean entropies
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