
Eilmer: an open-source multi-physics hypersonic flow solver

Nicholas N. Gibbonsa, Kyle A. Damma, Peter A. Jacobsa, Rowan J. Gollana,∗

aCentre for Hypersonics, School of Mechanical & Mining Engineering, The University of Queensland

Abstract

This paper introduces Eilmer, a general-purpose open-source compressible flow solver developed at the University of
Queensland, designed to support research calculations in hypersonics and high-speed aerothermodynamics. Eilmer
has a broad userbase in several university research groups and a wide range of capabilities, which are documented on
the project’s website, in the accompanying reference manuals, and in an extensive catalogue of example simulations.
The first part of this paper describes the formulation of the code: the equations, physical models, and numerical
methods that are used in a basic fluid dynamics simulation, as well as a handful of optional multi-physics models
that are commonly added on to do calculations of hypersonic flow. The second section describes the processes used
to develop and maintain the code, documenting our adherence to good programming practice and endorsing certain
techniques that seem to be particularly helpful for scientific codes. The final section describes a half-dozen example
simulations that span the range of Eilmer’s capabilities, each consisting of some sample results and a short explanation
of the problem being solved, which together will hopefully assist new users in beginning to use Eilmer in their own
research projects.

Keywords: Scientific Computing; Computational Fluid Dynamics; Hypersonics; Parallel Computing

PROGRAM SUMMARY
Program Title: Eilmer
CPC Library link to program files: (to be added by Technical
Editor)
Developer’s repository link: https://github.com/gdtk-uq/gdtk
Code Ocean capsule: (to be added by Technical Editor)
Licensing provisions(please choose one): GPLv3
Programming language: D, Lua
Supplementary material: https://gdtk.uqcloud.net
Nature of problem:
Eilmer solves the compressible Navier-Stokes equations with
a particular emphasis on flows at hypersonic speeds. The code
includes modelling for high-temperature gas effects such as
chemical and vibrational nonequilibrium. Eilmer can be used
for the simulation for unsteady and steady flows.
Solution method:
The code is implemented in D [1] and built on a finite-volume
formulation that is capable of solving the Navier-Stokes equa-
tions in 2D and 3D computational domains, discretised with
structured or unstructured grids. Grids may be generated using
a built-in parametric scripting tool or imported from commer-
cial gridding software. The inviscid fluxes are computed us-
ing the reconstruction-evolution approach. In structured-grid
mode, reconstruction stencils up to fourth-order spatial accu-

∗Corresponding author.
E-mail address: r.gollan@uq.edu.au

racy are available. In unstructured-grid mode, least-squares
reconstruction provides second-order spatial accuracy. A vari-
ety of flux calculators are available in the code. Viscous fluxes
are computed with compact stencils with second-order spatial
accuracy. For unsteady flows, explicit time-stepping with low-
order RK-family schemes are available, along with a point-
implicit Backward-Euler update scheme for stiff systems of
equations. For steady flows convergence can be greatly ac-
celerated Jacobian-free Newton-Krylov update scheme, which
seeks a global minimum in the residuals using a series of large
pseudo-timesteps. Domain decomposition is used for parallel
execution using both shared memory and distributed memory
programming techniques.
Additional comments:
Eilmer provides a programmable interface for pre-processing,
post-processing and user run-time customisations. The pro-
grammable interface is enabled using a built-in embedded
interpreter for the Lua programming language [2]. Run-
time customisations include used-defined boundary condi-
tions, source terms and grid motion.

References

[1] D Programming Language web page: https://dlang.org/

[2] Lua Programming Language web page: https://www.lua.org/

Preprint submitted to Computer Physics Communications June 6, 2022

ar
X

iv
:2

20
6.

01
38

6v
1

 [
cs

.C
E

]
 3

 J
un

 2
02

2

1. Introduction

Hypersonic flight is a frontier of aerodynamic science
that presents us with many challenges. Some arise from
the physical complexity of the fluid mechanics involved:
the presence of shockwaves, turbulence, thermochemi-
cal nonequilibrium, radiation, and other phenomena that
prevents us from developing a simple theory for the flow
around a hypersonic vehicle. Pushing from the other di-
rection are problems of operational requirements: the
engineering and practical considerations that must be
solved to build an efficient flying machine that can sur-
vive the extreme conditions, and with enough mass to
spare for a useful payload.

In spite of these challenges, recent successes in hy-
personic flight have shown that the challenges can be
overcome, thanks in part to the testing, simulation, and
design tools accumulated by the research community
over many decades of work. These tools include flight
testing of expendable models, ground testing in hyper-
sonic wind tunnels, and computer modelling and simu-
lation, chiefly, the use of computational fluid dynamics
(CFD).

The role of CFD in the study of hypersonic flows is
now ubiquitous. CFD is used in support of ground test-
ing, flight testing, and, increasingly, on its own as a nu-
merical wind tunnel. In ground testing, CFD is used in
the design and analysis of test articles, and in the de-
sign and analysis of the test facilities themselves. For
example, hypersonic test facilities typically cannot di-
rectly measure everything about the test flow they pro-
duce, and rely on CFD to reconstruct the full flow con-
ditions delivered during the experiment. Flight testing
is performed infrequently due to the time, expense and
risk involved. When flight testing is undertaken, CFD
is used in the design stage and as part of proving flight-
readiness. With advances in the accuracy and robust-
ness of CFD algorithms and the power of computers, it
is now possible to resolve all time and length scales of
a wall-bounded turbulent hypersonic flow. When used
in this manner, CFD becomes a numerical wind tunnel,
and, as such, a tool for investigation of flow physics.
This mode of CFD usage is quite different from engi-
neering analysis, which aims to support decision mak-
ing. This list is just a small sample of the roles for CFD
in advancing hypersonic vehicle design.

The varied roles for CFD in the study of hypersonic
flow present a challenge for the development of a CFD
tool. The strategies for addressing this challenge fall
broadly into two approaches: either develop a niche
code to tackle one application; or develop a comprehen-
sive code that has a broad range of capabilities but less

specificity. The advantages of the niche code approach
include: quick development time; limited feature set to
verify and validate; use of the best algorithms and com-
puter architectures for the application; and a relatively
small surface area for code maintenance. The princi-
pal disadvantage of this approach, the niche bespoke
code, is one of reusing the code for new applications.
As such, the niche code approach can face limitations
in versatility such as restricted sets of boundary condi-
tions, limitations on geometric complexity, and limita-
tions on physical modelling capability. In some cases,
these codes cannot be easily modified for new applica-
tions because the code is so highly customised towards
its original purpose.

At the other extreme, the strategy involves building
a comprehensive code that serves multiple purposes.
The advantages of comprehensive code development in-
clude: that developers and users learn one code base;
synergies in code re-use for varied applications (such as
I/O, message passing, geometry routines and gas mod-
elling); and relative ease to add new modelling capabil-
ity not originally envisaged. The disadvantages when
contrasted to the niche code are: long development
time; large modelling capability that requires verifica-
tion and validation (see Kleb and Wood [1] for a dis-
cussion of this issue); trade-offs on algorithm choices
against the need for generalisation; and a large surface
area of code for maintenance.

These approaches to development fall on a contin-
uum, and, likely, any comprehensive code began life
with a niche purpose. We are not advocating one ap-
proach over the other here as each has their merits rel-
ative to circumstances. For example, in academia, the
niche code approach makes a lot of sense in a world of
short funding cycles. The niche code is also extremely
useful when developing a completely novel algorithm.
By contrast, the comprehensive code approach is bet-
ter suited to government and industry institutions where
funding time scales are typically longer. We present
this view on simulation code development approaches
to give context to the work presented in this paper. Here
we describe the simulation code Eilmer. It is a com-
prehensive code for hypersonic multi-physics simula-
tion that has been developed for 30 years and, princi-
pally, that development has been at The University of
Queensland.

The advantages and disadvantages as described are
mostly concerns for the developer. When viewed from a
user’s perspective, the benefits of a comprehensive code
are clearer. These benefits are a reduction in the invest-
ment learning-curve time by using one tool for a vari-
ety of applications; and a larger community of users for

2

support. As mentioned earlier, a hypersonics engineer
has to use CFD in a variety of situations at varied levels
of modelling fidelity. So, there is good motivation for a
comprehensive simulation code for hypersonic flows.

The purpose of this paper is to introduce Eilmer as
a comprehensive hypersonic flow solver with multi-
physics capability. The timing of this paper coincides
with a version 4.0 release of the code. We wish to
show that there are few open-source CFD tools with hy-
personic multi-physics simulation capability. We also
aim to demonstrate that Eilmer is supported for gen-
eral use with extensive documentation. Furthermore,
modelling capability can be augmented by users in two
ways: by user-defined runtime customisations written in
the scripting language Lua; or by direct modification to
the source code.

There has been other recent activity in the develop-
ment of open-source flow solvers for the compressible
flow regime. We restrict our attention to open-source of-
ferings since we believe these offer the best opportunity
for code re-use and re-purpose. The STREAmS code [2]
is a specialised solver for performing direct numerical
simulation on wall-bounded compressible flows. The
code is specialised both in terms of algorithms and com-
puter architectures. It is designed for high-resolution
calculations and achieves this by demonstrating excel-
lent scaling on multi-GPU HPC platforms (up to 1024
GPUs). STREAmS is restricted to Cartesian domains.
For treating geometric complexity, Romero et al. have
released ZEFR [3] as an open-source code to simu-
late compressible viscous flows. ZEFR is also tar-
geted towards high-resolution capability and the asso-
ciated computational demands are met by developing
for multi-GPU architectures, as for STREAmS. OpenS-
BLI [4] is another open-source code that falls into the
category of scale-resolving flow codes, accelerated by
GPUs. OpenSBLI is actually a code-generation sys-
tem to produce code for heterogeneous architectures
on modern HPC platforms. In terms of algorithms,
it is based on high-order finite differences on struc-
tured curvilinear grids, with both WENO and TENO
schemes for shock-capturing. All of these codes sim-
ulate ideal gases. This is a limitation for application in
the high-temperature hypersonic flow regimes. By con-
trast, the HTR solver [5] by Di Renzo et al. include mod-
elling of thermochemical nonequilibrium effects typical
in hypersonic flows. HTR is also aimed at very high-
resolution calculations for DNS work, and is similarly
accelerated by implementation for multi-GPU architec-
tures. All of these codes could be considered quite niche
in terms of application.

The hy2Foam code [6] is an example of an open-

source hypersonic flow solver that is quite general pur-
pose. Built on top of OpenFOAM, hy2Foam has access
to numerical discretization algorithms to treat a variety
of geometric complexity. The hy2Foam authors added
physical modelling in terms of nonequilibrium thermo-
chemical effects so that the code can be applied in the
high-temperature flow regime. Another open-source
project for multi-physics simulation in the hypersonic
flow regime is SU2-NEMO [7]. This code, built as an
extension to SU2 [8], is an unstructured solver so that
objects with high geometric complexity can be simu-
lated. It has modelling for high-temperature nonequi-
librium effects, such as finite-rate chemistry and two-
temperature thermal relaxation, which are required for
providing engineering estimates of flow field quantities
in high Mach number flight.

The Eilmer code, presented in this paper, is a com-
prehensive open-source code for multi-physics simu-
lation of hypersonic flows fit for multiple purposes.
We believe this range of physical modelling capabil-
ity, combined with the open-source nature and ac-
tive development of the project, makes a novel con-
tribution to the academic CFD simulation community.
Eilmer offers capabilities for time accurate simula-
tion and accelerated steady-state analyses. Computa-
tional domains of considerable geometric complexity
are handled with multiple-block structured or unstruc-
tured grids. For simulating high-temperature effects,
the gas models include mixtures of thermally perfect
gases, multi-temperature Boltzmann gases, and state-to-
state models for extreme nonequilibrium. The code in-
cludes modelling of the nonequilibrium relaxation via
finite-rate chemistry modules and thermal energy ex-
change models. Multi-physics simulation capability in-
cludes fluid-structure interactions, fluid-thermal interac-
tions, and fluid-radiation coupling. Aerodynamic shape
optimisation with many design parameters is enabled
by an adjoint-solver. Most of these capabilities can be
customised for special purpose via user-defined runtime
controls.

In this paper, we present the Eilmer code showing
what it offers to the community in terms of application
and re-use. In Section 2, the core numerical formula-
tion based on a finite-volume approach is presented. To
build trust in the quality and longevity of the code, we
discuss the development process in Section 3, including
quality control via verification and validation. Section 4
presents the parallelisation algorithm used to run sim-
ulations on distributed computational hardware, and in-
cludes some test data to prove good scaling performance
up to 1000 physical cores. We have mentioned that
Eilmer supports a variety of use cases. In Section 5, we

3

present examples of those uses cases: engineering anal-
ysis, optimised aerodynamic design, and flow physics
investigation. An unusual aspect of Eilmer as a research
code is that it is used in the classroom; we include an
example of student simulations in Section 5 also.

2. Formulation

The core of Eilmer is a set of numerical routines for
solving mixed hyperbolic/parabolic partial differential
equations (PDEs) that have been discretised on a grid of
finite-volume cells. These PDEs are the compressible
Navier-Stokes equations for viscous flow in two or
three dimensions, augmented with various add-ons,
simplifications, and optional extras for including
additional physics. Rather than exhaustively document
the solver’s entire suite of capabilities, in this section
we present the core flow equations and the foundational
assumptions underlying them, followed by three of
the most common multi-physics capabilities that are
commonly used in hypersonics research calculations.
Additional details about any of these topics can be
found in the code’s online documentation or the cited
references.

2.1. The Navier-Stokes Equations

Equation 1 summarises the fundamental set of con-
servation equations of compressible fluid flow, ex-
pressed in conservative, integral form. They consist of
a vector of conserved quantities U that is tracked inside
of a small volume V , which changes in time as each
quantity flows through the surfaces of the volume, as
determined by the fluxes F, or generated internally by a
source term Q.

∂

∂t

∫
V

U dV = −

∮
S

(Fi − Fv) · n̂ dA +

∫
V

Q dV (1)

Embodied in these equations are two foundational as-
sumptions that underlie all simulations performed with
Eilmer. The first is that the flow is modelled as a con-
tinuum: A field with values at each point in space rather
than a discrete collection of molecules. The second is
that the fields are compressible, in the sense that in-
formation about a disturbance must travel in waves at
a finite speed from the point of the disturbance. The
first assumption is valid when the particles making up
the fluid are so small and so numerous that they form a
well behaved statistical ensemble, though the assump-
tion can break down in flows that are very cold, very

low density, or interacting with a very small object. The
second assumption is appropriate to flows of any veloc-
ity, although a low speed flow is much more efficiently
modelled by an incompressible formulation where the
signal speed can be approximated as infinitely fast.

For a nonreacting flow in three-dimensions, with no
additional physics present, the conserved quantities are
the mass, x-momentum, y-momentum, z-momentum,
and energy — or more precisely, the density per unit
volume of these quantities.

U =


ρ
ρu
ρv
ρw
ρE

 (2)

The inviscid flux vector Fi tracks the movement of
conserved quantities due to bulk fluid motion, and con-
sists of elements that are each in turn vectors in three-
dimensional space.

Fi =


ρu

ρu2 + p
ρvu
ρwu

ρEu + pu

 î +


ρv
ρuv

ρv2 + p
ρwv

ρEv + pv

 ĵ +


ρw
ρuw
ρvw

ρw2 + p
ρEw + pw

 k̂ (3)

These fluxes are distinguished from the viscous
fluxes, which arise from nano-scale disordered motion
of the particles making up the fluid, and tend to involve
derivatives of the primitive quantities:

Fv =


0
τxx

τyx

τzx

τxxu + τyxv + τzxw + qx

 î +


0
τxy

τyy

τzy

τxyu + τyyv + τzyw + qy

 ĵ

+


0
τxz

τyz

τzz

τxzu + τyzv + τzzw + qz

 k̂

(4)

where the viscous stress tensor τ is composed from
derivatives of the velocity vector, the viscosity µ and
the volume (or bulk) viscosity λ.

4

https://gdtk.uqcloud.net/docs/all-the-docs/about

τxx = 2µ
∂u
∂x

+ λ

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)
τyy = 2µ

∂v
∂y

+ λ

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)
τzz = 2µ

∂w
∂z

+ λ

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)
τxy = τyx = µ

∂u
∂y

+
∂v
∂x

τyz = τzy = µ
∂v
∂z

+
∂w
∂y

τxz = τzx = µ
∂u
∂z

+
∂w
∂x

(5)

The code generally assumes that λ can be evaluated
using Stokes’ hypothesis as λ = − 2

3µ. The heat conduc-
tion vector q is modelled using Fourier’s law and the
gradient of the temperature T , with conductivity κ.

qx = κ
∂T
∂x

qy = κ
∂T
∂y

qz = κ
∂T
∂z

(6)

The transport properties µ and κ can be computed by
any of several of different models depending the needs
of the user. For compressible flows with simple thermo-
chemistry Sutherland’s approximation can be used, but
for higher temperatures or complex mixtures of species
the user can request the curve-fits from the NASA Glenn
thermodynamic database [9], which includes a compre-
hensive database of individual species. For the thermal
equation of state we generally assume perfect gas be-
haviour, meaning that the internal energy is function of
temperature only. Under this assumption, the pressure
p can be computed using the temperature, total density,
and the specific gas constant R.

p = ρRT (7)

The last piece of the formulation is an expression for
the total energy E, which consists of a kinetic energy
component from the gas velocity and an internal energy
e that is a function of temperature.

ρE =
1
2
ρ
(
u2 + v2 + w2

)
+ ρ e(T) (8)

The relationship between internal energy e and tem-
perature can also be specified in different ways, includ-
ing an ideal gas assumption that is fast but valid only for

flow below < 500K, and a thermally perfect model with
Glenn database curve-fits [9] that are usually good up to
≈ 20, 000K.

2.2. Optional Extras for Hypersonic Multi-physics

Hypersonic flows exhibit a wide range of compli-
cated physical phenomena. High energies in the gas
state can cause chemical reactions or nonequilibrium
thermodynamics, both of which commonly progress
on similar timescales to the flow itself and lead to
time-dependant thermal behaviour that is difficult to
model analytically. Another complication is turbulence:
Three-dimensional, unsteady, fine scale fluctuations
in the fluid properties that occur unavoidably at a
high enough Reynolds number. These effects require
modifying the fluid-mechanic formulation above into
a coupled or “multi-physics” approach, with extra
equations added to the set of hyperbolic PDEs. In this
section we present the three most common extra physics
models, starting with those needed for simulating flows
with chemical reactions.

Both exothermic reactions like combustion and en-
dothermic reactions like air dissociation are commonly
simulated with Eilmer, which requires the introduction
of an extra transport equation for the partial density of
each chemical species ρs, where the index s runs across
every species in a given reaction mechanism.

U =



...
ρ1
ρ2
...
ρs


(9)

Each species is convected with the flow, diffused via
concentration gradients, and created or destroyed by
chemical reactions. These effects appear in the inviscid,
viscous, and source vectors respectively.

Fi =



...
ρ1u
ρ2u
...
ρsu


î +



...
ρ1v
ρ2v
...
ρsv


ĵ +



...
ρ1w
ρ2w
...

ρsw


k̂ (10)

5

Fv =



...

ρD1
∂Y1
∂x

ρD2
∂Y2
∂x
...

ρDs
∂Ys
∂x


î +



...

ρD1
∂Y1
∂y

ρD2
∂Y2
∂y

...

ρDs
∂Ys
∂y


ĵ +



...

ρD1
∂Y1
∂z

ρD2
∂Y2
∂z

...

ρDs
∂Ys
∂z


k̂ (11)

In these expressions, Ys and Ds are the mass fraction
and mixture-averaged diffusion coefficient of species s.
The diffusion of the species also introduces a new term
into the energy transport equation, to account for the
latent heat of formation tied up in the specific enthalpy
of each species hs. This alters the energy equation’s
entry in the viscous flux vector:

FρE
v =

(τxxu + τyxv + τzxw + qx −
∑

s

ρhsDs
∂Ys

∂x
) î

+(τxyu + τyyv + τzyw + qy −
∑

s

ρhsDs
∂Ys

∂y
) ĵ

+(τxzu + τyzv + τzzw + qz −
∑

s

ρhsDs
∂Ys

∂z
) k̂

(12)

The source term Q is usually zero for the fluid equa-
tions alone, although Eilmer does contain an axisym-
metric mode that includes geometric source terms that
account for the complications of a polar co-ordinate sys-
tem. But the source terms are also used heavily in al-
most all of the multiphysics models. For chemical re-
actions they consist of the net mass density production
rates for each species.

Q =



...
M1ω̇1
M2ω̇2
...

Msω̇s


(13)

These rates are assembled by summing over the reac-
tions in a reaction mechanism r.

ω̇s =
∑

r

−νrs

[
k f

r Πn[Xn]ν
f
rn − kb

r Πn[Xn]ν
b
rn

]
(14)

where ν f
rs and νb

rs are the forward and backward stoi-
chiometric coefficients for the species s in reaction r,
νrs is the net stoichiometric coefficient νrs = ν

f
rs − ν

b
rs,

[Xn] is the molar concentration of species n, and k f
r and

kb
r are the forward and backward reaction tick rates for

reaction r. (This nomenclature is similar to that pre-
sented by Anderson [10], which should be consulted for
further detail).

Usually k f is specified by an Arrhenius equation with
coefficients A, n, and C curve-fitted from reaction rate
data, each reaction in the set r having different coeffi-
cients.

k f = AT ne−C/T (15)

The backward rates kb can also be specified in the
same way, or they can be computed from the equilib-
rium coefficient for the given reaction Keq

kb =
k f

Keq
; Keq =

(
p◦

RuT

)∑
s νs

× exp
(∑

s νsg◦s(T)Ms

RuT

)
(16)

where g◦ = g − T s◦ is the Gibbs free energy per unit
mass at standard pressure p◦, and Ms is the molecular
mass of species s. The final change for chemically re-
acting flows involves the energy equation and equation
of state, which are assembled out of the partial densities,
the species internal energies es, and the standard-state
heats of formation h f

s = hs(T = 298.15), with 298.15
Kelvin chosen as the standard temperature.

p =
∑

s

ρsRsT (17)

ρE =
1
2
ρ
(
u2 + v2 + w2

)
+

∑
s

ρses(T) +
∑

s

ρsh
f
s (18)

Another common phenomenon present in hypersonic
flows is turbulence. Turbulence is the result of cascad-
ing instabilities in the flow that break down large distur-
bances in the flow into smaller ones, producing an un-
steady fractal of swirling motion with a wide range of
scales that is difficult to resolve on a finite-volume grid.
A straightforward and reasonably successful modelling
strategy to avoid this problem is Reynolds-Averaging,
where the turbulent structures are time-averaged out of
the simulation and accounted for with modified trans-
port properties such as the turbulent viscosity µt and tur-
bulent thermal conductivity kt. Eilmer is equipped for
Reynolds-Averaged Navier-Stokes (RANS) style turbu-
lence modelling using various models that have been
well-validated by the aerospace community, any of
which add a number of extra transport equations to the
formulation. As an example, the flux vectors for the
one-equation Spalart-Allmaras model [11] are shown

6

below, which adds a conserved quantity for the turbu-
lent viscosity ρν̂, an inviscid flux, a viscous flux, and a
complicated source term. The two equation k−ω model
[12] and the high-fidelity Improved Delayed Detached
Eddy Simulation [13] technique are also available.

U =

 ...
ρν̂

 (19)

Fi =

 ...
ρν̂u

 î +

 ...
ρν̂v

 ĵ +

 ...
ρν̂w

 k̂ (20)

Fv =

 ...
ρ(ν+ν̂)
σ

∂ν̂
∂x

 î +

 ...
ρ(ν+ν̂)
σ

∂ν̂
∂y

 ĵ +

 ...
ρ(ν+ν̂)
σ

∂ν̂
∂z

 k̂ (21)

Q =


...

ρcb1(1 − ft2)Ŝ ν̂ − ρ
[
cw1 fw −

cb1
κ2 ft2

] (
ν̂
d

)2
+

1
σ

∂
∂x j

(
ρ(ν + ν̂) ∂ν̂

∂x j

)
+ cb2

σ
ρ ∂ν̂
∂xi

∂ν̂
∂xi

 (22)

These equations introduce the kinematic viscosity ν,
and allow for the solution of the Spalart-Allmaras field
variable ν̂ throughout the flow, using a large number of
additional constants and functions that are defined in
Allmaras et al. [11]. The actual turbulent viscosity µt

is then computed as:

µt = ρν̂
(ν̂/ν)3

(ν̂/ν)3 + c3
v1

(23)

and the turbulent conductivity κt and diffusivity Dt from
the turbulent Prandtl number Prt and turbulent Schmidt
number Sct.

κt =
cpµt

Prt
Dt =

µt

ρSct
(24)

These transport properties are then added to their
laminar equivalents, and the sum is used in place of µ,
κ, and Ds in the preceding expressions.

The last commonly encountered multi-physics model
of interest is thermal nonequilibrium. This phenomenon
occurs during rapid expansions or compressions of the
flow, such as behind a shockwave, and affects the statis-
tical distribution of the molecules making up the gas. At
the molecular scale, the gas particles are rapidly churn-
ing through different internal states of translational ve-
locity as they drift and collide, but the average prop-
erties of the entire collection stays more-or-less con-
stant. This average state is well-described by a statis-
tical function called the Boltzmann distribution, which

is parameterised by the temperature. A sudden com-
pression can instantaneously change the distribution of
translational velocities, but the energy of the gas is also
stored in other modes, such as rotation or vibration of
the molecules, which may take a finite amount of time
to catch up as energy is transferred from the transla-
tional mode via collisions. During this time the ther-
modynamic state of the gas is in a time-dependent state
referred to as thermal-nonequilibrium, and the govern-
ing equations need to be modified to account for the dif-
ferent relationship between pressure, energy, and tem-
perature.

The starting point for this modification is to include
an extra transport equation for each additional energy
mode beyond the first. These equations track the con-
vection and diffusion of energy in each specific mode,
and have source terms describing the energy exchange
with the other modes via collisions. For the purposes of
illustration, this section describes the commonly applied
Two-Temperature model, in which the translational and
rotational energies of all the species are combined into
one thermal mode, and the vibration and electronic en-
ergies of all the species are combined into a second
mode. The vibrational/electronic energy ev is then gov-
erned by the following equations.

U =

 ...
ρev

 (25)

Fi =

 ...
ρevu

 î +

 ...
ρevv

 ĵ +

 ...
ρevw

 k̂ (26)

Fv =

 ...

κv
∂Tv
∂x −

∑
s ρhvsDs

∂Ys
∂x

 î

+

 ...

κv
∂Tv
∂y −

∑
s ρhvsDs

∂Ys
∂y

 ĵ

+

 ...

κv
∂Tv
∂z −

∑
s ρhvsDs

∂Ys
∂z

 k̂

(27)

Q =

 ...∑
s Qvib−trans +

∑
s Qelec−trans +

∑
r Qvib−chem

r


(28)

With the vibrational/electronic energies of each
species lumped together, the source term in this case
consists of a simple sum over all the energy exchange
mechanisms. Exchanges between the translational en-
ergy and the vibrational modes are typically modelled

7

using the Landau-Teller relaxation formula, with a re-
laxation time for each species τs computed using the
semi-empirical correlations of Millikan and White [14]
or, optionally, by custom-fitted constants.

Qvib−trans
s = ρ

ev − e∗v(T)
τs

(29)

At higher velocities such as those experienced by
reentering spacecraft, the flow may be ionised by the
large amounts of energy present in the flow. The elec-
trons freed by this process are sometimes assumed to
have their own energy mode, or they may be lumped in
with the vibrational/electronic mode as above. Energy
exchange from collisions between the free-electrons
translational energy and the heavy-particle translational
energy can be modelled using an expression from
Gnoffo et al. [15], which includes curve-fitted data for
the electron/heavy collision frequencies νes.

Qelec−trans
s = 2ρe−

3
2

Ru(T − Tv)
∑

s

νes

Ms
(30)

where ρe− is the partial density of free electrons. The
final term in expression 28 concerns energy exchanged
between modes by chemical reactions. We have imple-
mented a model based on the formulation in Knab et al.
[16] to account for this effect, which can be written as
follows by summing over the molecular dissociation re-
actions r,

Qvib−chem
r =

k f
r Πn[Xn]ν

f
rn ×

[
RuΘs

exp(Θv/T ∗) − 1
−

D
exp(D/Ru/T ∗) − 1

]
−kb

r Πn[Xn]ν
b
rn

1
2

[D − ΘvRu]
(31)

where Θv is the characteristic vibrational temperature of
the relevant molecule, D is the dissociation energy lib-
erated by the reaction, and k f

r and kb
r are the forward and

backward chemical reaction rates, as defined in equation
14.

2.3. Numerical Discretisation
Together the equations presented in sections 2.1 and

2.2 form a coupled set of partial differential equations
in three dimensions, which are not analytically solvable
except for a few special cases. However, by replacing
with the differential terms with their discrete equiva-
lents, it is possible to produce powerful and nearly exact
numerical solutions of the equations on a digital com-
puter. The first step in this process is to recast the con-
tinuous integral form of the conservation equations into

a form based on small but finite-sized polyhedra called
cells.

∂U
∂t

= −
1
V

f aces∑
f

(Fi − Fv) f · n̂ f A f + Q (32)

This form replaces the boundary integral with a sum
over the faces of the cell f , and the fluxes with the equiv-
alent averages over the face in question. Likewise the
conserved quantities U and the source terms Q are the
volume averages of the state inside the cell. The flow
field thus consist of a collection of small cells, each con-
taining numbers for the pressure, temperature, density,
flow velocity, and any other quantity of interest within.
These numbers are then advanced in time through a se-
quence of discrete steps by evaluating equation 32 over
and over again, each step broken up into the following
substeps.

1. Reconstruct the flow on both sides of each face
2. Compute the inviscid fluxes Fi

3. Compute the gradients of the flow at each face
4. Compute the viscous fluxes Fv

5. Compute the source term Q in each cell
6. Compute the residual R = ∂U/∂t
7. Advance the conserved quantities in time

Eilmer performs the reconstruction substep differ-
ently depending on whether it is operating in structured
or unstructured mode. When using a structured grid the
cells are arranged into rectangular arrays of hexahedral
elements, and each face is aware of its two adjacent cells
on each side, labelled L1, L0, R0, R1 in figure 1. This al-
lows the reconstruction algorithm to perform a pair of
quadratic interpolations of each variable to the face, one
on either side.

L1 L0 R0 R1

hL1

Figure 1: Reconstruction stencil for the structured grid interpolator.

The reconstruction of a variable q is then computed as
follows, accounting for the possibly nonuniform spac-
ing of the cells h,

qL = qL0 + αL
[
∆L+(2hL0 + hL1) + ∆L−hR0

]
sL

qR = qR0 − αR
[
∆R+hL0 + ∆R−(2hR0 + hR1)

]
sR

(33)

8

with the ∆ and α terms:

∆L− =
qL0 − qL1

1/2(hL0 + hL1)
, ∆R+ =

qR1 − qR0

1/2(hR0 + hR1)

∆L+ = ∆R− =
qR0 − qL0

1/2(hR0 + hL0)

αL =
hL0/2

hL1 + 2hL0 + hR0

, αR =
hR0/2

hL0 + 2hR0 + hR1

(34)

where sL and sR are slope limiters using the formulation
of van Albada et al. [17], which enforces the conser-
vation of total variation and includes a small constant
ε = 1 × 10−12 to prevent division by zero.

sL =
∆L−∆L+ + |∆L−∆L+| + ε

∆2
L− + ∆2

L+
+ ε

sR =
∆R−∆R+ + |∆R−∆R+| + ε

∆2
R− + ∆2

R+
+ ε

(35)

In unstructured mode (which may also use arrays of
hexahedra but is designed to be agnostic as to the grid
type), a cell-centred least-squares gradient calculation is
performed at each cell (see equations 41-44), and the re-
construction is completed with linear extrapolation us-
ing the computed gradients. Figure 2 shows the cloud of
cells used for the gradient calculation in each cell using
dotted lines, and the two displacement vectors from the
cell centers to the face mid-point ~pL and ~pR.

~pR~pL

L0 R0

Figure 2: Reconstruction stencil for the unstructured grid interpolator.

The left and right side face values are then recon-
structed as follows.

qL = qL0 + sL × ∇qL · ~pL

qR = qR0 + sR × ∇qR · ~pR
(36)

Once again the s terms are slope limiters, by default
the formulation of VenkataKrishnan [18], which consid-
ers the set of all the cells in the local cloud used to gen-
erate the gradients C and first computes the minimum
and maximum values of the variable.

qmax = max(q ∈ C) ; qmin = min(q ∈ C) (37)

The limiting function is based on a comparison be-
tween two differences in the variable q, the first being
that predicted by the gradient extrapolated to the face
∆grad = ∇q · ~p, and the second using either qmax or qmin

for the whole cloud.

∆di f f =

qmax − q : ∆grad > 0
qmin − q : ∆grad < 0

(38)

The slope limiter is then computed for each face, and
the final value is the minimum of the whole set of faces
surrounding the cell.

φ =
(∆di f f)2 + 2∆di f f ∆grad + ε

(∆di f f)2 + 2(∆grad)2 + ∆di f f ∆grad + ε
(39)

s = min(φ ∈ F) (40)

Once reconstructed, a variety of options are available
for computing the inviscid fluxes through a face, rang-
ing from the very dissipative Equilibrium-Flux-Method
[19] and Haenel [20] flux calculators to the less dissipa-
tive AUSMDV [21] scheme, as well as various hybrid
options that adaptively switch to a dissipative scheme
near a detected shock wave. The flux calculators used
in Eilmer are mostly Godunov-type schemes, which
consider both sides of the reconstructed interface as a
kind of Riemann problem and solve approximately for
the state in between to obtain the flux. This approach
is attractive because it allows shockwaves and other
discontinuities to be captured in the solution with
no other special handling, while at the same time
producing higher order spatial accuracy in smooth
regions of the flow. The different schemes all make
different assumptions and approximations in their
formulation which leads to situational strengths and
weaknesses, and users are encouraged to experiment
with the available options to find a flux calculator that
works well for their problem.

Although the viscous fluxes require less special han-
dling than the inviscid ones, they do require a calcula-
tion of the gradients of the primitive variables at each of
the cell faces. By default, this task is accomplished us-
ing a cell-centred least-squares gradient reconstruction
that proceeds as follows.

Consider a first-order extrapolation from the center
of a cell to a nearby point, say the centre of one of the
faces. If the gradient of a variable q were known, the
extrapolation would be computed as:

9

q f = qc + ∇q · ~dx f (41)

where qc is the value of q at cell center, q f is the value
at the face center, and ~dx f is the distance vector from
the former to the latter. In the CFD solver however, the
values of q f and qc are already known, specifically, q f

is computed as the average of the left and right state
reconstructions on each side of the face. This means
that the extrapolation will produce a value of q f with
some amount of error, which can be written as:

q f − (qc + ∇q · ~dx f) (42)

The least-squares gradient calculation proceeds by
applying this formula to every face in a given cell, and
then solving for the gradient that minimises the square
of the error summed across the entire cloud of faces.
Formulating this problem as a matrix equation, we be-
gin by presenting the extrapolation step as:



w0dx0 w0dy0 w0dz0
w1dx1 w1dy1 w1dz1
w2dx2 w2dy2 w2dz2
w3dx3 w3dy3 w3dz3
w4dx4 w4dy4 w4dz4
w5dx5 w5dy5 w5dz5


∇qx

∇qy

∇qz

 =



w0(q0 − qc)
w1(q1 − qc)
w2(q2 − qc)
w3(q3 − qc)
w4(q4 − qc)
w5(q5 − qc)


(43)

X · ∇q = dq

where we have assumed 3D flow with six faces attached
to the cell. Eilmer also assigns different weights w to
each face based on each one’s inverse distance to cell
center, effectively weighting nearer faces higher in the
error minimisation. The gradient that best minimises
the right hand side difference vector dq is then:

∇q = (XT X)−1XT dq (44)

An interesting property of this expression is that the
design matrix X depends only on the cell geometry,
which means that the complicated matrix (XT X)−1XT

need only be computed once for each cell during startup,
and then at each step of the calculation the gradients ∇q
are evaluated cheaply using the current solutions differ-
ence vector. This exact same procedure is used in the
unstructured solver to compute the inviscid reconstruc-
tion, however a cloud of nearby cells is used, and the
weightings w are all set to one.

Once the cell-centred gradients are computed, they
are then transferred to the faces by an averaging method
developed by Haselbacher and Blazek [22], which con-
siders the average gradient from both sides of the face

∇wav = 1
2 (∇wL + ∇wR) and the alignment between the

face normal vector n̂ and the vector between the two cell
centers ~e, as shown in figure 3.

L
R

~e

n̂

ê

Figure 3: Vector definitions for Ref. [22] face gradient calculation.

The face averaged gradients ∇w f are then computed
using the following equation.

∇w f = ∇wav −

(
∇wav · ê − (wR − wL)/|~e|

)
n̂ · ê

n̂ (45)

This formula corrects for some amount of cell
non-uniformity and is critically important for resolving
viscous flows on unstructured grids, but it has also
proven to be helpful for structured calculations as
well. The extra dissipation appears to help stabilize the
calculation especially in the boundary layer, where the
gradients are often high and the cell aspect ratios large.

Computing the source terms Q is reasonably straight-
forward except for the chemical reactions, which are
often numerically stiff and require special handling.
When running Eilmer in transient (explicit) mode,
the chemical state of each cell is decoupled from the
main flow solver and advanced using an Ordinary
Differential Equation (ODE) solver that integrates the
chemical state through a number of subcycles for each
timestep. For numerically stiff chemical reactions, such
as those encountered in combusting flows, Mott’s α-
quasi-steady-state integrator [23] is available. For other
cases, an adaptive Runge-Kutta-Fehlberg scheme [24]
is used for integrating the chemical kinetic ODE, which
computes both a fifth-order accurate and sixth-order
accurate solution of the ODE and adjusts the substep
size to keep the difference between the two within
a tolerance. When running in implicit (steady-state)
mode, no subcycling is performed and the source terms
for the chemistry are calculated directly, relying on
the inherent stability of the implicit update scheme to
handle the chemical stiffness.

The final substep of the simulation main loop is to
compute the rate of the change of the conserved vari-
ables (sometimes called the residual R) using equation

10

32 and update the conserved variables using a time-
stepping scheme.

∂U
∂t

= R (46)

Eilmer has a number of options for these schemes,
including a family of explicit integrators based on
the the Runge-Kutta approach, where the residual is
computed multiple times over a single step and the
results blended together to achieve higher-order time
accuracy. For example, a two-stage predictor corrector
explicit scheme computes the change in conserved
variable from timestep n − 1 to n as follows.

Un+1
pred = Un + R(Un)dt

Un+1 = Un +

(
1
2

R(Un) +
1
2

R(Un+1
pred)

)
dt (47)

For some problems, it is possible to gain significant
improvements in run time by using implicit time ad-
vancement schemes that are stable at large timesteps.
Eilmer contains a point-implicit update scheme which
is based on a Backward-Euler formulation where the
change in conserved quantities ∆U is computed using
the unknown residual at time n+1. This residual may be
unknown, but it can be approximated using a first-order
linearisation that couples the updates at every point of
the flow into a large linear system.

∆U
∆t

= Rn+1 = Rn +
∂R
∂U

n

∆Un (48)

Introducing the identity matrix I, this can be rear-
ranged into a large sparse matrix problem as follows.[

1
∆t

I +
∂R
∂U

n]
∆Un = Rn (49)

Equation 49 introduces the Jacobian matrix ∂R/∂U,
a measure of the sensitivity of the flow time derivatives
to the conserved variables. To evaluate the Jacobian,
Eilmer uses a complex-step finite differencing approach,
which proceeds by perturbing each component of U by
a small amount in the imaginary plane and comparing
the resulting difference in R.

∂Ri

∂U j
=

Im(Ri(U j + ih))
h

(50)

The complex number differentiation is implemented
using the D language’s templating capability, and has

proven to be a significant improvement over using real-
valued finite differencing, which often experiences diffi-
culties related to the choice of perturbation size, or ana-
lytic differentiation of the code, which would be a major
maintenance and development burden.

An exact solution to the matrix problem in equation
49 would be expensive to compute and is not generally
necessary, since for steady-state problems we are only
interested in reducing R with each iteration. The point-
implicit calculation thus approximates by setting all of
the off-diagonal terms in equation 49’s block matrix to
zero, effectively uncoupling the cells from each other
and turning the update problem into an isolated matrix
problem for each cell that can be solved one-at-a-time.
This produces a time advancement method with first-
order accuracy that is stable at large timesteps, allowing
the solver to rapidly approach a steady-state solution
that would otherwise take an impractically large num-
ber of explicit steps. Eilmer also has an experimental
solver specifically designed for steady flows, in which
equation 49 is solved for R = 0 using a series of pseudo-
timesteps by a Jacobian-Free Newton-Krylov method.

3. Development Processes

Software is as important to modern scientific
research as telescopes and test tubes.

Wilson et al. (2014) [25]

The earliest Eilmer code can be traced back to the
early 1990’s, when the era of modern CFD was inaugu-
rated by the invention of parallel hardware and advances
in applied mathematics like high-resolution flux calcu-
lators. In the years since, the code has evolved through
multiple languages, rewrites, and paradigm shifts, and
we have accumulated some lessons learned that may be
of interest to readers of this article. This section de-
scribes the behind the scenes detail that goes into devel-
oping the code; the programming practices, verification
and validation exercises, and testing protocols that we
use to write new code and ensure it works properly. It
follows in the spirit of articles such as Wilson et al. [25]
that call for scientific computing to be more responsi-
bly conducted and better scrutinised, noting as they do
that the risk of mistakes in our field is high and the con-
sequences potentially severe. We begin with the pro-
gramming framework and discuss the reasons for our
somewhat unusual choice of language and setup, then
describe the various forms of quality control and testing
the code is subjected to.

11

3.1. The D Programming Language

Eilmer is written in D: A high-level, multi-paradigm,
statically-typed, compiled programming language in-
tended to be a modernised revision of C++ with the
same speed and flexibility. Though D maintains a fa-
miliar C-like syntax, it features substantially redesigned
high-level features such as objects, templates, and au-
tomatic memory management, based on lessons learned
from C++ and other popular languages. Specific fea-
tures of D that have helped us include string mixins
for automatically generated inline code, improved tem-
plating syntax with much clearer error messages when
things go wrong, a module-based architecture that re-
moves the need for header files, and improved object-
orientated syntax with property functions that elimi-
nates the need for verbose getters and setters on all of
an object’s public-facing attributes.

Eilmer itself was written in C++ during the 2006-
2015 era of the code’s lifetime, but the 2016-present
implementation has greatly benefited from D’s many
improvements in terms of overall line count, complex-
ity, and programmer-friendliness. Our project in par-
ticular is maintained part-time by a small team of re-
searchers, and D’s helpful error messages and reduced
boilerplate has allowed us to make much better use of
our limited development time. The code is also used by
many students and faculty who are not professional pro-
grammers, and the shallower learning curve compared
to C++ ensures they are able to make genuine contribu-
tions in their teaching assignments and thesis projects.

Figure 4 shows the present division of D and other
languages present in the repository as a waffle plot,
where the area or number of squares corresponds to the
proportion of each language.

D - 83.7%
Lua - 6.9%

Python - 8.7%
Other - 0.7%

Figure 4: Division of languages within Eilmer as of April 2022.

Like many programs, Eilmer uses Lua as an internal
scripting language for configuration and run-time cus-
tomisation. This is facilitated by D’s C library bindings,
which are used to pass data in and out of a Lua inter-
preter that is co-compiled and linked into the main ex-
ecutable. The source code for this interpreter is a small
amount of lightweight C code that is carried around in

our repository, part of a general philosophy that tries
to minimise external dependencies that the user has to
obtain before compiling the code. This philosophy is
a lesson learned from the previous incarnation of the
code, which suffered from a degree of churn and rot in
the many open-source libraries and toolkits it relied on.
The current implementation requires only on a handful
of standard Linux development libraries, a D compiler,
and OpenMPI for parallelisation, with a few optional
extra features available if the foreign-function libraries
for Python and Ruby are installed. In this manner it
is compatible with a wide range of High-Performance
Computing (HPC) systems and should remain so even
as hardware and software trends shift in the future.

3.2. Verification and Quality Assurance

Modern scientific computing distinguishes two ways
of vetting that software is fit for purpose. Verification
(“are we solving the equations right”) involves check-
ing that the program is correctly achieving the intentions
of its programmers. An incorrectly spelled variable, an
unintended logical comparison, or a mistake in a math-
ematical formula are all examples of problems that are
in the realm of verification. The second activity, Valida-
tion (“are we solving the right equations”) is the subject
of the section 3.3.

The first technique applied to the verification of
Eilmer will be familiar to software engineers: unit tests.
A core principle of good software design is to break
a program up into encapsulated modules, each with a
single clearly defined responsibility. To ensure that the
smallest subcomponents of the code are performing cor-
rectly, each can be tested in isolation by being given a
small test problem and comparing the output to a known
good value.

Extensive unit tests are available for Eilmer’s sub-
components, including the modules for handling gas
behaviour, chemical kinetics, geometry, and numerical
methods/linear algebra. For example, the gas tests can
be invoked using:

$ cd src/gas

$ make test

This will compile a small executable for each of the
relevant gas models and use them to compute a set
of sample problems, such as the internal energy of a
mixture given a pressure, temperature, and composi-
tion. The output of each calculation is then compared
to a known good value, producing a summary of the
outcomes and a success message if all is well.

12

Another technique of verification used within Eilmer
is to compare an entire simulation against an exact solu-
tion computed using an analytic technique. Although
the equations of fluid mechanics are, in general, too
complex to be solved by these techniques, for some spe-
cial cases exact analytical solutions are available. One
example of this procedure applied to Eilmer is shown in
figure 5, a solution of the detonation wave problem pro-
posed by Powers and Aslam [26] in a paper calling for
more widespread and rigorous verification of numerical
codes.

The problem consists of a curved ramp that drives an
oblique detonation wave through the oncoming flow,
sustained by a simplified one-step chemical reaction
that activates once a temperature threshold has been
reached. The reaction rates and the curved ramp surface
are designed to ensure that the angle of wave is fixed
at 45◦, and exact solutions are available for postshock
flow conditions along streamlines through the shocked
gas. Figure 5 shows the solver’s computed solution,
with a regression line fitted to the cells where the shock
is detected. Even on a relatively coarse grid this agrees
well with the analytic solution, and further refinements
show good results for the postshock flowfield as well,
evidence that the reaction rates and the chemistry/flow
solver coupling has been implemented correctly.

-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

0.0

0.5

1.0

1.5

2.0

Linear Fit (45.10°)
Shocked Cells

Figure 5: Oblique detonation wave, mass fraction of species B.

Computational physics calculations can also be veri-
fied using the Method of Manufactured Solutions. This
technique takes advantage of an interesting feature of
the partial differential equations used in continuum me-
chanics codes, which typically have the following form.

∂U
∂t

+
∂F (U)
∂x

+
∂

∂x
∂V (U)
∂x

= 0 (51)

In general, any given U will not be a solution to these
equations, and putting it through the numerical machin-
ery for calculating the derivatives would give a non-
zero remainder on the right hand side. The essential
insight of the Method of Manufactured solutions is to
add an artificial source term to the equations that pre-
cisely matches this remainder.

∂U
∂t

+
∂F (U)
∂x

+
∂

∂x
∂V (U)
∂x

=
∂F (Umms)

∂x
+
∂

∂x
∂V (Umms)

∂x
(52)

By choosing an arbitrary solution U that is analyti-
cally differentiable, the source term on the right hand
side can be evaluated exactly. One can then run the nu-
merical solver with this manufactured source term in
every cell, which acts to drive the numerical solution
toward Umms, assuming that the numerical machinery
that approximates the spatial derivatives has been im-
plemented correctly. The discrepancy between the final
value arrived at by the solver and the manufactured so-
lution is then an estimate of the discretisation error in
the numerical algorithm, which should be small if all is
well.

Eilmer has several manufactured solution test cases
included in its examples directory and others that are
published in various places, which provide verification
coverage across both structured [27], and unstructured
[28] grids, as well as solid/fluid conjugate heat transfer
flows[29]. A new example of a manufactured solution,
this one for a viscous flow with the Spalart-Allmaras
turbulence model, is shown in figure 6. (The manufac-
tured solution itself is documented in Appendix 1.)

Merely converging the the manufactured solution is
a necessary but not sufficient condition for verification.
A key characteristic of the numerical methods used in
high-resolution CFD solvers is that they are higher or-
der: the discretisation error should not merely reduce as
the grid is refined, but the reduction will be nonlinear,
generally second order O(dx2). This property can be
checked by computing the total error of multiple MMS
cases with different levels of refinement, and plotting
the results on a logarithmic scale as in figure 7. The test
shows the expected nonlinear drop, with the slope of
each line indicated by an annotation for each variable.

13

0
1.00.2

0.2

0.8

0.4

0.4

Z

0.6X

0.6

Y0.6

0.8

0.4

1.0

0.8 0.2

1.0 0.0

300 325 350 375 400 425 450 475 500

T (K)

90 100 110 120 130 140 150 16055 60 65 70 75 80 85

u (m/s) p (kPa)

Figure 6: Colour maps of numerical solution to MMS test case. Exact
solution shown in white contour lines.

3.3. Validation and Reality Checks

Verification and Validation are the oft-confused twin
pillars of responsible scientific computing. The previ-
ous section has dealt with Verification: Are we solving
the equations correctly? This subsection takes up Vali-
dation: Are we solving the correct equations?

Validation involves checking a program’s correspon-
dence with the aspects of reality it is intended to sim-
ulate. Comparing numerical predictions against experi-
mental data is the gold-standard activity, but other valu-
able work includes checking the validity of assumptions
in the formulation and establishing boundaries where
missing physics models are required. In contrast to Veri-
fication, Validation is not so much the activity of a single
person but a shared responsibility of the entire research
community, as it relates to the shared pool of physical
models we have developed and our knowledge of their
limitations.

In this regard Eilmer benefits from a long history of
collaboration with experimental hypersonics. The an-
cestry of the code can be traced back to cns4u, a sin-
gle block Navier-Stokes integrator written by Peter Ja-
cobs in the early 90’s for simulating hypersonic wind
tunnels. Testing against measurements taken in an ex-
pansion tube revealed that the program could predict the
large scale wave processes reasonably well, as measured

16 32 64
Nc

10−4

10−3

10−2

10−1

100

101

102

ε

ρ (-1.95)

p (-2.54)

u (-1.98)
v (-1.66)

w (-1.84)

ν̂ (-1.96)

Figure 7: Error norms and orders of accuracy from 3D MMS cases,
with 163, 323, and 643 cells

by pressure sensors on the inside of the tunnel walls and
a rake of pitot-pressure sensors in the freestream [30].
Simulations of wind tunnel operation continue today us-
ing the modern incarnation of the code, for example in
Jewell et al. [31] who performed transient 2D calcula-
tions of the AFRL Mach 6 Ludwieg tube, and Gildfind
et al. [32] simulations of the large X3 expansion tube.
Both authors report good agreement with pressure mea-
surements taken inside the respective facilities, though
the expansion tunnel behaviour is complex and not per-
fectly captured for various reasons of approximation.

A common use for hypersonic wind tunnels is to gen-
erate experimental data solely for the purpose of vali-
dating CFD. Basic shapes such as ramps, cavities, and
spheres are typically used for this purpose, outfitted
with pressure and heat transfer sensors that measure the
state of the flow touching the model. An example is
the hollow flared-cylinder model tested by Holden and
Wadhams [33] in the CUBRC shock tunnel facilities,
part of a large library of experimental results intended
to be used for validation studies. The flow over the out-

14

0 200 400 600 800 1000 1200 1400
T (K)

30◦

101.7 118.3

φ 65

Figure 8: Temperature colour map of hollow cylinder flare solution. Dimensions in mm.

side of the cylinder features a separation and a viscous
shock interaction, shown in figure 8, as computed by
an Eilmer simulation that is available in the examples
directory online. The predicted heat load and pressure
on the walls compare quite closely to the experimen-
tal measurements (see figure 9), and are in line with
the predictions of other hypersonics codes reported in
MacLean and Holden [34].

Similar exercises have been reported in Sun et al.
[35], in which multiple codes (including Eilmer) are
compared on a cone-shock interaction problem; Park
et al. [36] who matched pressure and heat transfer
results on a high-enthalpy cylinder flow; and Damm
[28], who documents four different validation tests
including a double cone, shock interaction, and a
turbulent boundary layer, all non-reacting. An addi-
tional reacting flow exercise can be found in Hoste
et al. [37]. In general, these exercises generate rea-
sonably good agreement to pressure measurements,
though heat transfer is sometimes harder to match
due to the larger margins of error encountered in the
measurements. This problem has been underlined by
multi-code validation exercises such as Candler [38],
where consistent problems matching certain kinds
of experimental data have been found, especially in
high enthalpy flows. Interestingly, Ray et al. [39]
have suggested that the major cause of these problems
could be that the inflow conditions given to the CFD
solvers are often inaccurate, due to the large number
of approximations made in the facility flow models
that generate the predictions of what the conditions
are. Better numerical simulations of hypersonic facil-

ities (such as those described in an earlier paragraph)
are an obvious place to look for answers to this problem.

More direct measurements of a hypersonic flow can
be obtained using optical techniques such as Schlieren
photography. A handful of experiments (such as Lobb
[40] and Nonaka et al. [41]) have used this technique
to visualise the shockwave created by a blunt hyper-
sonic object as it flies through a ballistic range, a use-
ful arrangement that avoids the problem of reconstruct-
ing the test flow from a wind tunnel. The distance be-
tween the object’s leading edge and its bow shock (as
detected by the Schlieren) is called the shock standoff

distance, which can be used for code validation if the
precise shape of the shock can be reconstructed from
the image using a fitting technique.

A collection of these exercises, performed using
Eilmer, is reported in Gollan and Jacobs [42], with more
detailed analysis undertaken by Zander et al. [43] for
higher enthalpy flows. In general, the code performed
well, predicting the shock shape to within the range of
experimental error, as long as thermal and chemical
nonequilibrium are accounted for. Though these results
affirm the presence of nonequilibrium effects caused
by high temperatures, the data are currently too noisy
to distinguish which of the many reaction schemes and
relaxation models should be preferred.

Further insight into questions like this can be gained
using finer grained optical diagnostics, such as emis-
sion spectroscopy, to interrogate the bright light emit-
ted by a hot hypersonic flow and separate it into fre-

15

Figure 9: Surface pressure and heat transfer results from hollow cylin-
der flare solution. Experiments by Ref. [33]

quencies. In theory, one can even take the tempera-
tures and composition computed by a CFD simulation,
input them into a radiation program that accounts for
all the relevant lines, transitions, and atomic processes,
and compare the resulting artificial spectrum to a real
one measured in an experiment. In practice, these cal-
culations are fiendishly complicated and often have dis-
crepancies that are difficult to diagnose, given the many
steps between the input and output. Studies such as
Fahy et al. [44] have used Eilmer and the PARADE
radiation database to compute the radiation from the
2010 Hayabusa probe reentry, finding reasonably good
agreement with measurements in the near-infrared fre-
quencies (mostly oxygen and nitrogen lines), but poor
agreement in the ultraviolet range. Similar work by
Banerji et al. [45] considered a Venus-like CO2-N2
atmosphere, using Eilmer and the NEQAIR radiation

database to produce reasonable predictions of the visi-
ble wavelength range, although a number of lines gener-
ated by the complex C2 and CN radiators were missing,
with particular trouble again in the ultraviolet.

More interestingly (at least for validation purposes),
it is possible to take spectral information measured
in a real flow and work backwards to compute other
properties such as temperature or composition. One
example of this technique was developed by Potter
et al. [46], who performed least-squares fitting of
an artificial spectrum (generated by the Photaura
radiation calculator) to a real spectrum generated by a
CO2-N2 flow over a cylinder in an expansion tube. The
fitting produced a temperature and composition that
best matched the measured radiation, which could be
compared to an Eilmer CFD result. Although the error
bars of the resulting temperatures were fairly large
(≈ 10 − 20%), the results were good enough to make
some judgements about some of the different CFD
models present in the literature. This same technique
was later used by Banerji et al. [47], this time in an
Earth-like atmosphere, to diagnose an abundance of
N2+ that was causing overprediction of radiation in the
ultraviolet range, and by Gu et al. [48] to show that the
existing energy relaxation rates of CO2 are far too slow
in an expanding flow, such as behind the shoulder of a
reentry capsule. Even the spectral lines themselves can
be used for code validation. Liu et al. [49] measured
the width of Hydrogen lines in a simulated gas-giant
entry and used the amount of Stark broadening to
estimate the concentration of free electrons in the shock
layer. These measurements confirmed some suspected
problems in the ionisation rate models that are available
in the literature, and the authors were able to modify
an existing model to produce an Eilmer calculation that
showed good agreement with their measurements.

3.4. Continuous Integration Testing
Any quality control process is only as good as the

version of the code it makes use of. Eilmer is a large,
constantly evolving codebase with many contributions
from collaborators, and we have developed a continu-
ous testing program to keep the code in working order
as we add and change things. The core of this process is
a set of test simulations (fifty-six at the time of this writ-
ing) that can be automatically run and post-processed by
a set of scripts written in the Ruby scripting language.
The simulations are typically coarsened or scaled down
versions of the tests discussed in the prior sections, in-
cluding simple validation exercises, MMS verification
tests, flows with analytic solutions, and a handful of

16

other building block simulations that exercise major fea-
tures of the code.

At the end of each test the associated script extracts
a handful of diagnostic numbers and compares them to
a known good outcome; this may be the number of it-
erations taken by the solver, or the residuals at the final
step, or the drag on a flat plate, or the root-mean-square
error between the numerical solution and its analytical
counterpart. A too-large difference in any diagnostic is
reported as a failed test, which typically indicates some
kind of bug or regression in the code from the prior com-
mit.

Building a test suite with good coverage is helpful for
quality control reasons, but we have found the biggest
advantage is that we can do continuous testing, using an
automated system that tests every published commit and
reports via email if something is wrong. This system
was implemented in the last quarter of 2020 and has
been monitoring our repository ever since. A record of
its activity through early 2022 is shown in figure 10.

2021 2022
Nov Mar May Jul Sep Nov

0

25

50

75

100

125

150

R
un

tim
e

(m
in

s)

Eilmer Continuous Integration History

Build Issues
Test Issues

Figure 10: Runtime history of Eilmer continuous testing system.

The execution time of the entire suite has dropped
from over an hour to about forty-five minutes through-
out 2021 because of optimisations and changes to the
roster of tests, and the period includes 509 successful
runs, 16 issues with the build process, and 40 failures of
the automated tests for the entire period. Many of these
issues arose from compiler changes, platform specific
glitches, and other obscure problems that are hard for an
isolated developer to detect on their own, and it is fair
to say we were surprised at how helpful the automated
testing system turned out to be. Continuous testing can
be easily implemented in a Python script and then run as
a cron job using a server or virtual cloud machine, and
we highly recommend it to the authors of other scientific
and research codes.

4. Parallel Scaling

Fluid dynamics problems can require large amounts
of computation time. Like most modern scientific
codes, Eilmer can mitigate this problem by breaking a
simulation up into a number of independent pieces and
executing them in parallel, using multi-core CPUs or
groups of them joined by a high-speed network. The
core parallelisation strategy we use is block decompo-
sition, in which the fluid domain to be simulated is di-
vided into a jigsaw puzzle of non-overlapping blocks,
either manually by specifying the split points in a struc-
tured grid, or automatically using the external graph par-
titioning tool METIS [50]. Figure 11 is an example of
a 3D blunt cone partitioned using the automated proce-
dure.

Figure 11: Block decomposition for a viscous blunt cone mesh using
METIS, nblocks=48

Each block consists of cell elements that contain an
average state of the fluid variables U throughout a small
region of space. The change in state over a small step in
time ∆U is computed using the fluxes of each variable
F, which depend on both the cell in question and also its
neighbour, due to the reconstruction process discussed
in section 2.3. This spatial dependency makes paral-
lelising the solver a nontrivial problem at the boundaries
where one block meets another.

The main way that this problem is solved is by sur-
rounding each block in a layer of virtual or “ghost” cells
that are not part of the actual simulation, and instead are
simply filled with flow that matches the conditions in
each neighbouring block. The required data is passed
back and forth between the different processors work-
ing on each block, using standardised MPI (Message
Passing Interface) library functions, along with Reduce
and Barrier operations to synchronise control flow be-
tween the different processors. In this way, each proces-
sor marches independently through the same algorithm
but working only on its designated region of the flow.

17

In this section, we present the results of some scal-
ing experiments to benchmark the code’s parallel per-
formance and ensure the implementation is scaling effi-
ciently to the large number of cores that are sometimes
required for timely fluid dynamics research. Parallel ef-
ficiency can be assessed by using a simple model of task
scheduling where an algorithm is split into a Serial frac-
tion s and a Parallel fraction p, where p + s = 1. The
expected time taken Tn for a task running on n processes
is:

Tn = sT1 +
p
n

T1 (53)

The parameters s and p are not actually constants,
but they can be estimated for a typical simulation that
is representative of the large parallel calculations our
users perform on supercomputers. This section presents
the results of timing tests on such a case, the 5◦ blunt
cone depicted in figure 11, which uses a 2 million cell
3D viscous mesh immersed in a thermally perfect air
flow at Mach 3. The exact same simulation is performed
multiple times on different numbers of processors, and
the average time per iteration and estimated speedup is
shown in table 1.

In a perfectly parallel calculation the speedup would
exactly follow the number of processors, but the ta-
ble shows speed-up degrading as more and more cores
are added, an unavoidable reality of each one having
to duplicate the serial fraction s of the algorithm. The
above data can be used to curve-fit values of s and p
from equation 53, resulting in a parallel efficiency of
p = 0.99957 and the estimated performance shown in
figure 12.

These tests confirm that the parallelisation is scaling
efficiently up to ≈ 1000 processors, for this particular
problem. Note however that this will not be true in gen-
eral. Specifically, the efficiency p is a function of the
number of cells in the mesh, and a smaller simulation
than the 2 million cell test problem described here will
be expected to have a lower p value and much faster
degradation in the speed-up as the number of cores is
increased. Users are encouraged to perform a pair of
scaling simulations like in the above example for their
own simulations whenever parallel efficiency is impor-
tant, such as when using a shared cluster machine with
metered usage.

0 240 480 720 960
Processors

0

120

240

360

480

600

720

840

960

Sp
ee

du
p

Simulations
p = 0.99957 (Best Fit)
p = 1.0 (Ideal Maximum)

Figure 12: Parallel scaling performance with p = 0.99957 on blunt
cone problem.

5. Example Applications

This section showcases a handful of representative
simulations that cover most of the common applications
that Eilmer has been used for in the past. They range
from pure research in fluid dynamics to applied calcu-
lations of heat transfer and pressure in an engineering
problem, with aerodynamic shape optimisation and hy-
personic facility design somewhere in between. The fi-
nal example is slightly different — it consists of a sim-
ple blunt body flow calculation performed by our stu-
dents each year in the University of Queensland’s com-
putational fluid dynamics course. Taken together, the
examples give a broad outline of what Eilmer is capa-
ble of, though the range future applications is limited
only by the imagination and, of course, by the available
compute time.

5.1. Minimal Working Example

The very first simulation that most users of Eilmer
will run is the classic sharp-nosed 20◦ cone, a basic
test case that consists of a Mach 1.5 freestream and
an oblique shockwave in ideal, inviscid, air. Figure 13
shows the entire Lua configuration file required to set
up the simulation, including building the grid, setting
the gas model and boundary conditions, and configur-
ing the solver.

n Processors 48 96 144 288 576 768 960
time/iter 1.00 0.506 0.343 0.191 0.109 0.076 0.065
speed-up 48.0 95.0 140.1 250.6 439.7 632.16 741.6

Table 1: Results of parallel scaling tests using 3D blunt cone simulation

18

-- 1. Flow domain and grids , dimensions in metres.
config.axisymmetric = true
--
a0 = {x=0.0, y=0.0}; a1 = {x=0.0, y=1.0}
b0 = {x=0.2, y=0.0}; b1 = {x=0.2, y=1.0}
c0 = {x=1.0, y=0 .29118 }; c1 = {x=1.0, y=1.0}
--
quad0 = CoonsPatch:new{p00=a0, p10=b0 , p11=b1 , p01=a1}
quad1 = AOPatch:new{p00=b0 , p10=c0, p11=c1, p01=b1}
--
grid0=StructuredGrid:new{psurface=quad0 ,niv=11,njv =41}
grid1=StructuredGrid:new{psurface=quad1 ,niv=31,njv =41}
--
-- 2. Gas model and flow states. SI units.
setGasModel(’ideal -air -gas -model.lua ’)
initial = FlowState:new{p=5955.0 , T=304.0} -- Pa K
inflow = FlowState:new{p=95.84e3 , T=1103.0,

velx =1000 .0} -- Pa K m/s
--
-- 3. Fluid blocks , initial flow , boundary conditions.
blk0=FluidBlock:new{grid=grid0 ,initialState=inflow}
blk1=FluidBlock:new{grid=grid1 ,initialState=initial}
identifyBlockConnections ()
blk0.bcList[’west’]= InFlowBC_Supersonic:new{

flowState=inflow}
blk1.bcList[’east’]= OutFlowBC_Simple:new{}
--
-- 4. Simulation parameters.
config.max_time = 5.0e -3 -- seconds
config.max_step = 3000
config.dt_plot = 1.5e -3

Figure 13: Sharp-nosed 20◦ cone configuration script

Before running the simulation, this script is passed
to a preprocessor that produces Eilmer-native grid and
flow solution files, as well as a verbose machine-
readable configuration file (in JSON format) with all of
the available solver settings, including default values for
any that are not specified in the input script. The actual
simulation then proceeds using these preprocessed files
and not the user-facing Lua input script, eventually pro-
ducing the flowfield shown below.

This multi-stage workflow is partially a legacy of the
code’s early history, when stand-alone grid generation
tools did not exist and users had to specify their own
flow domain in precise detail, but the process contin-
ues to have many benefits. The built-in grid genera-
tion is useful for making parametric grids, and the pro-
grammable input allows the user to compute interesting
and complicated things in their setup process, such as
a spatially varying initial flowfield or boundary condi-
tions that depend on an in-situ compressible flow calcu-
lation. The verbose configuration files are also useful
for documentation and reproducibility purposes, essen-
tially serving as an automatically produced log of the
simulation settings used in any research work.

1.11.21.31.41.5

Mach Number

Figure 14: Sharp-nosed 20◦ cone results: Mach number

5.2. Free Piston Driver

The earliest calculations done with Eilmer’s prede-
cessors involved simulating expansion tunnels, large
machines which are used to generate controlled hyper-
sonic flow for laboratory experiments. These facilities
typically use a heavy piston to compress a large slug of
driver gas, which eventually bursts through a thick steel
diaphragm and drives an incident shockwave through
the facility, heating and pressurising the test gas that will
eventually flow over the model.

Numerical simulations are used extensively to con-
figure the tunnels before an experiment and to interpret
the results afterward, and the modern Eilmer code has
many capabilities of interest to experimenters, includ-
ing a moving mesh transient solver which is the subject
of this example. Figure 15 shows the results of a simple
calculation where a piston is driven at constant veloc-
ity through an axisymmetric tube. The motion drives a
shockwave through the gas with an analytically calcula-
ble velocity that compares well to the numerical results.

19

t= 300 µs

t= 900 µs

280 300 320 340 360 380 400
Gas Temperature (K)

0.0 0.1 0.2 0.3 0.4 0.5
X(m)

0
100
200
300

V
el

oc
ity

(m
/s

)Eilmer
Analytical Solution

0.0 0.1 0.2 0.3 0.4 0.5
X position (m)

0

100

200

300

V
el

oc
ity

(m
/s

)

t= 600 µs

0.0 0.1 0.2 0.3 0.4 0.5
X position (m)

0

100

200

300

V
el

oc
ity

(m
/s

)

Eilmer
Analytical Solution

Eilmer
Analytical Solution

Figure 15: Free piston driver results: Temperature (K) and X-velocity
(m/s)

5.3. Re-Entry Capsule

High fidelity CFD is also used extensively in the
design of the re-entry capsules that return people and
equipment from space. These capsules are equipped
with a sacrificial ablative heat-shield that absorbs some
of the ferocious heating applied to the spacecraft’s
windward flank, burning away in layers and ejecting
the absorbed energy away from the vehicle. Design-
ing these heat shields requires a reasonably precise esti-
mate of the peak and integrated heat transfer rates, since
a too-thin layer of ablative material will not protect the
vehicle properly, but a too-thick one will take up pre-
cious mass that could have been used for the payload.
For these reasons, a large amount of research has gone
into developing sophisticated engineering models for
re-entry flows and providing experimental datasets they
can be validated against. The application in this section
is one such validation exercise, a subscale Apollo cap-
sule model at conditions matching the second Project
FIRE flight test from May 1965, specifically the 1636
second trajectory point at 71 kilometres altitude, where
the model was travelling at 11.2 kilometres per second.
The flow is modelled using a viscous, two-temperature,
11-species air model based on Gnoffo et al. [15], with
reactions and thermal relaxation rates from Park [51].
A 2D axisymmetric structured grid with 100x257 ele-
ments is used, with geometric clustering applied to the
wall to achieve a first cell height of 2 µm, enough to
grid-converge the wall heat transfer.

The biggest modelling uncertainty in the problem
comes from the impact of surface chemistry. Fig-
ure 17 shows the predicted heat transfer rates for two
nearly identical simulations, one with a non-catalytic

0 4000 8000 12,000
Vibrational/Electronic Temperature (K)

Figure 16: Vibrational/Electronic temperature flowfield over a scaled
Apollo capsule. Capsule geometry from Ref. [52], Figure 1.

wall where the wall-normal species density gradient is
set to zero, and a second with a super-catalytic wall
where the actual mass fractions are specified to be the
same as the freestream. (This is effectively the same as
a fully catalytic wall, given the surface temperature at
these conditions is set to 810 K). At the stagnation point,
Eilmer predicts a wall heat transfer rate of 185.6 W/cm2

for the non-catalytic simulation and 306.6 W/cm2 for
the catalytic one, which neatly brackets the actual con-
vective heating rate of 264.5W/cm2, computed by sub-
tracting the measured radiative heating from the total
rate.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Arc length along heat shield (m)

0

100

200

300

400

H
ea

tt
ra

ns
fe

rr
at

e
(W

/c
m

2)

Fire II Flight Experiment: Wall Heat Transfer

Eilmer (Super-catalytic)
Eilmer (Non-catalytic)
Flight Data
Hash et al. (2007) [53]

Figure 17: Wall heat transfer data from simulation of Project FIRE,
flight II.

The computed values are also in good agreement with
the simulation results presented in Hash et al. [53], a
code comparison between NASA Ames’s DPLR code,

20

NASA Langley’s LAURA, and the University of Min-
nesota’s US3D, all using very similar physical models
to those implemented in Eilmer.

5.4. Aerodynamic Shape Optimisation

A single CFD solution of the flow around an object
can predict values of lift, drag and heat transfer that
an engineer can use in designing a supersonic aircraft.
But one of the most interesting frontier of numerical
research involves coupling the solver with a numeri-
cal optimisation technique to produce automated de-
signs that maximise performance subject to constraints.
This subsection is devoted to an example of this work-
flow using Eilmer, taken from Kyle Damm’s PhD thesis
[28]. The exercise is a simple proof-of-concept optimi-
sation of a slender axisymmetric body, which is known
to have a curved shape that minimises the total wave
drag. The body shape is controlled by a 20-point Bézier
curve with fixed ends, and the open-source optimisation
toolkit DAKOTA [54] is used to shift the Bézier con-
trol points around until a minimum drag configuration
is found.

0

100

200

300

400

Y
-V

el
oc

ity
(m

/s
)

Figure 18: Before (blue) and after (red) axisymmetric wedge sub-
jected to optimisation for minimum wave drag.

Figure 18 shows the before and after results of the op-
timisation, with the initial shape (a right circular cone)
shown in blue, the optimised curve shown in red, and
the steady flowfield of each state shown as the black-
on-white colourmap. The optimiser has induced a sub-
tle curvature to the surface and reduced the wave drag
by approximately 7%, using 66 iterations of the opti-
misation loop. Crucially, the gradient of the objective
function with respect to the Bézier control points is eval-
uated using an adjoint method that is built into the flow
solver. Adjoint methods are crucial to CFD-based opti-
misation, as they allow the objective function gradients
to be computed with just one CFD simulation, regard-
less of how many design variables are present. A more
complete explanation of this methodology can be found
in Damm et al. [55], which applies the same method to a
hypersonic vehicle inlet and presents more detail about
the adjoint solver and the simulations involved.

5.5. Double Cone Flow Physics Investigation

Another popular application for flow simulation
codes is doing fundamental research in theoretical fluid
mechanics. Numerical simulations have a number of
advantages over brick-and-mortar wind tunnels, and at
least in laminar flow they can usually be relied on to
generate exact and often quite complex solutions of the
Navier-Stokes equations. An example is the recent pa-
per of Hornung et al. [56], where Eilmer was used to
solve the high Mach-number flow over a large number
of double-cones with different angles, producing either
a stable or unstable shock structure in each case depend-
ing on the geometry. An example of the stable structure
is shown in figure 19.

Figure 19: Steady flow from Ref. [56], θ1 = 40◦, θ2 = 70◦, condition
A.

This figure is a numerical shadowgraph showing the
density gradients over a double cone with angles of
θ1 = 40◦ and θ2 = 70◦, with a flow Mach number of 7.7
and a composition of pure N2. The shock structure is
macroscopically steady, consisting of a conical oblique
shock attached to the tip of the first cone and a complex
triple point where it intersects with a supersonic jet and
a small separation close to the wall.

Decreasing the angle of the first ramp strengthens the
second shock in comparison to the first one, driving the
separation point forward and potentially causing it to
break free from the wall. At θ1 = 0◦ the geometry would
essentially be a blunt body with a detached bow shock,
but at intermediate values of θ1 the shock is neither at-
tached nor detached but instead oscillates violently back

21

and forth. A single frame of this process is shown in
figure 20, taken from a simulation with θ1 = 10◦ and
θ2 = 70◦, but otherwise using the same flow conditions
as figure 19. The shock structure is in the act of surg-
ing forward, producing a large region of chaotic sep-
arated flow, and will shortly detach from the tip of the
first cone and then reverse direction, eventually crashing
back against the wall and beginning a new cycle of un-
steadiness. The simulation captures multiple cycles of
this unsteadiness using Eilmer’s time accurate transient
solver, and Hornung et al. [56] use many simulations
over a wide parameter sweep to infer a boundary in θ1
vs. θ2 space where the instability begins.

Figure 20: Unsteady flow from Ref. [56], θ1 = 10◦, θ2 = 70◦, condi-
tion A.

5.6. Eilmer in the Classroom
Throughout its history Eilmer has been used for both

research and teaching at a handful of different universi-
ties. Many postgraduate students use the code in their
research projects, and the codebase is full of small con-
tributions from students who have have needed some
cutting-edge simulation capability and managed to im-
plement it themselves. This is one of the major advan-
tages of using open-source software for academic re-
search, and sparing students the fearsome learning curve
of C++ was one of the key drivers for our adoption of
the D programming language for the code’s 2016-era
rewrite.

At The University of Queensland, Eilmer is also used
in our undergraduate and masters level course in com-
putational fluid dynamics. This last example is a sim-
ple validation exercise performed by our final year me-
chanical and aerospace engineering students each year,
in which they must match the experimentally mea-
sured shock standoff around a blunt cone immersed in

a Mach 4 test flow generated by a small shock tun-
nel. The students do the experiments, collect high-speed
Schlieren video of the models, build grids, run the sim-
ulations, and are responsible for extracting the shape of
the shockwaves and accounting for the inevitable com-
plications that arise in any real experiment.

Figure 21: Steady flow Schlieren image from 2021 MECH4480 stu-
dent experiments

Figure 21 is an example of the experimental data, a
single Schlieren image of a 15mm radius cone with a
half angle of 20◦, extracted during the approximately
one millisecond window of steady test time. A circle
with a radius of 53 pixels has been fitted to the body,
which can be used to determine the scale of the image
and the position of the model. A cubic Bézier curve
has been fitted to the shock shape, which suggests an
experimental shock standoff distance of ≈ 2.2mm.

Figure 22 is the same data but with a shock-fitted ther-
mally perfect simulation of the experiment.

Figure 22: Shock fitted simulation temperature field overlayed on
Schlieren results

The simulation predicts a shock standoff of ≈ 2.4mm
and is a reasonably good match to the data close to the
stagnation point, though the simulated shape wanders
above the measurements further downstream. This is
most likely due to the unmodelled divergence in the noz-
zle’s core-flow, which is assumed to be uniform in the

22

simulation to avoid introducing undue complexity into
the problem. In fact, handling this kind of mismatch
between experiment and simulation is precisely what
makes the exercise a great learning experience for the
students.

6. Conclusions

This paper has been written to fulfil multiple pur-
poses. For the broad aerospace research community, it
gives a brief overview of the open-source compressible
flow simulation codes available, both niche and compre-
hensive, and explains how Eilmer fits into the landscape.
For users and future developers of the code, it lays out
the basic mathematical principles and governing equa-
tions that are solved to produce the simulation data they
rely on. A good understanding of these principles is crit-
ical for developers, and even casual users should have
some appreciation of the code’s fundamentals to avoid
wandering into areas where their results may be invalid.
For the developers of other scientific codes, we have
tried to document the programming principles, testing
tools, and Verification and Validation exercises that go
on behind-the-scenes of the project. We have found that
a small investment in diligent software engineering in
the present can avoid large amounts of extra work in
the future, and wish to join other advocates of adopting
programming best-practice ideas in scientific comput-
ing. For users who work with HPC facilities we have
included a section on parallelisation, with an example
of a scaling exercise that should serve as a blueprint for
others to follow. This should be particularly helpful to
those applying for scarce supercomputing time, whose
gatekeepers are increasingly anxious to know that their
allocations are being used efficiently. Finally, for the
general user who wants to know what Eilmer is capable
of, we have included a handful of interesting example
simulations that cover theoretical and applied fluid me-
chanics research, hypersonic engineering calculations,
and teaching exercises.

All of these purposes are really subgoals of the main
goal of this paper, which is to share our project with the
world. One of the great triumphs of the modern inter-
net is the open-source software movement, which has
strived to make computer programs that are free: Both
in the sense of free beer (they do not cost any money),
and free as in freedom (the source code is available for
anyone to download, inspect, and modify). This phi-
losophy overlaps with the broader mission of scientific
research, which aims to discover information about the
world that can be distributed to the benefit of everyone,
and the proliferation of open-source research codes is

the result of a harmonious match between the two ideas.
By publishing both our code and this paper, we hope to
join in this quiet revolution, and by helping others ad-
vance the march of scientific progress, to play a small
part in a brighter future.

References

[1] B. Kleb, W. Wood, CFD: A castle in the sand?, in: 34th
AIAA Fluid Dynamics Conference and Exhibit, AIAA-2004-
2627, 2004.

[2] M. Bernardini, D. Modesti, F. Salvadore, S. Pirozzoli,
STREAmS: A high-fidelity accelerated solver for direct nu-
merical simulation of compressible turbulent flows, Computer
Physics Communications 263 (2021) 107906.

[3] J. Romero, J. Crabill, J. Watkins, F. Witherden, A. Jameson,
ZEFR: A GPU-accelerated high-order solver for compressible
viscous flows using the flux reconstruction method, Computer
Physics Communications 250 (2020) 107169.

[4] D. Lusher, S. Jammy, N. Sandham, OpenSBLI: Automated
code-generation for heterogeneous computing architectures ap-
plied to compressible fluid dynamics on structured grids, Com-
puter Physics Communications (2021) 108063.

[5] M. Di Renzo, L. Fu, J. Urzay, HTR solver: An open-source
exascale-oriented task-based multi-GPU high-order code for hy-
personic aerothermodynamics, Computer Physics Communica-
tions 255 (2020) 107262.

[6] V. Casseau, D. E. Espinoza, T. J. Scanlon, R. E. Brown, A
two-temperature open-source CFD model for hypersonic react-
ing flows, part two: multi-dimensional analysis, Aerospace 3
(2016) 45.

[7] W. T. Maier, J. T. Needels, C. Garbacz, F. Morgado, J. J. Alonso,
M. Fossati, SU2-NEMO: An open-source framework for high-
mach nonequilibrium multi-species flows, Aerospace 8 (2021)
193.

[8] T. D. Economon, F. Palacios, S. Copeland, T. W. Lucaczyk, J. J.
Alonso, SU2: An open-source suite for multiphysics simulation
and design, AIAA Journal 54 (2016) 828–846.

[9] B. J. McBride, M. J. Zehe, S. Gordon, NASA Glenn Coeffi-
cients for Calculating Thermodynamic Properties of Individual
Species, Technical Report 211556, National Aeronautics and
Space Administration, 2002.

[10] J. D. Anderson, Jr., Hypersonic and High-Temperature Gas Dy-
namics, AIAA, 2000.

[11] S. R. Allmaras, F. T. Johnson, P. Spalart, Modifications and clar-
ifications for the implementation of the Spalart-Allmaras turbu-
lence model, in: Seventh International Conference on Compu-
tational Fluid Dynamics, Big Island, Hawaii, 2012.

[12] D. C. Wilcox, Turbulence Modelling for CFD, second ed., DCW
Industries, Inc., 2002.

[13] M. Shur, P. Spalart, M. Strelets, A. Travin, A hybrid RANS-
LES approach with delayed-DES and wall modelled LES capa-
bilities, International Journal of Heat and Fluid Flow 29 (2008)
1638–1649.

[14] R. C. Millikan, D. R. White, Systematics of vibrational relax-
ation, Journal of Chemical Physics 39 (1963) 3209–3213.

[15] P. A. Gnoffo, R. N. Gupta, J. L. Shinn, Conservation Equa-
tions and Physical Models for Hypersonic Air Flows in Thermal
and Chemical Nonequilibirum, Technical Report 2867, National
Aeronautics and Space Adminisation, 1989.

[16] O. Knab, H. H. Fruhauf, E. W. Messerschmid, Theory and val-
idation of a physically consistent coupled vibration-chemistry-

23

vibration model, Journal of Thermophysics and Heat Transfer 9
(1995). doi:10.2514/3.649.

[17] G. D. van Albada, B. van Leer, W. W. Roberts, A compara-
tive study of computational methods in cosmic gas dynamics,
Astronomy and Astrophysics 108 (1982) 76–84. doi:10.1007/
978-3-642-60543-7_6.

[18] V. VenkataKrishnan, Convergence to steady state solutions of
the euler equations on unstructured grids with limiters, Journal
of Computational Physics 118 (1995) 120–130. doi:10.1006/
jcph.1995.1084.

[19] M. N. Macrossan, The equilibrium flux method for the calcula-
tion of flows with non-equilibrium chemical reactions, Journal
of Computational Physics 80 (1989) 204–231. doi:10.1016/
0021-9991(89)90095-8.

[20] D. Haenel, R. Schwane, G. Seider, On the accuracy of up-
wind schemes for the solution of the Navier-Stokes equations,
in: 8th Computational Fluid Dynamics Conference, 1105, Hon-
olulu, HI, USA, 1987. doi:10.2514/6.1987-1105.

[21] Y. Wada, M.-S. Liou, A flux splitting scheme with high-
resolution and robustness for discontinuities, in: 32nd AIAA
Aerospace Sciences Meeting and Exhibit, AIAA-94-0083,
Reno, Nevada, 1994. doi:10.2514/6.1994-83.

[22] A. Haselbacher, J. Blazek, Accurate and efficient discretization
of Navier-Stokes equations on mixed grids, AIAA Journal 38
(2000) 2094–2102. doi:10.2514/2.871.

[23] D. R. Mott, E. S. Oran, B. van Leer, A quasi-steady-state solver
for the stiff ordinary differential equations of reaction kinetics,
Journal of Computational physics 164 (2000) 407–428. doi:10.
1006/jcph.2000.6605.

[24] R. J. Gollan, The Computational Modelling of High-
Temperature Gas Effects with Application to Hypersonic Flows,
Ph.D. thesis, The University of Queensland, School of Mechan-
ical and Mining Engineering, St Lucia, QLD 4072, 2008.

[25] G. Wilson, D. A. Aruliah, C. T. Brown, N. P. C. Hong, M. Davis,
R. T. Guy, S. H. D. Haddock, K. D. Huff, I. M. Mitchell, M. D.
Plumbley, B. Waugh, E. P. White, P. Wilson, Best practices
for scientific computing, PLoS Biology 12 (2014) 1–7. doi:10.
1371/journal.pbio.1001745.

[26] J. M. Powers, T. D. Aslam, Exact solution for multidimensional
compressible reactive flow for verifying numerical algorithms,
AIAA Journal 44 (2006). doi:10.2514/1.14404.

[27] R. J. Gollan, P. A. Jacobs, About the formulation, verification
and validation of the hypersonic flow solver Eilmer, Interna-
tional Journal for Numerical Methods in Fluids 73 (2013) 19–
57. doi:10.1002/fld.3790.

[28] K. A. Damm, Adjoint-Based Aerodynamic Design Optimisation
in Hypersonic Flow, Ph.D. thesis, The University of Queens-
land, School of Mechanical and Mining Engineering, St Lucia,
QLD 4072, 2020. doi:10.14264/uql.2020.207.

[29] A. Veeraragavan, J. Beri, R. Gollan, Use of the method of man-
ufactured solutions for the verification of conjugate heat transfer
solvers, Journal of Computational Physics 307 (2016) 308–320.
doi:10.1016/j.jcp.2015.12.004.

[30] P. A. Jacobs, Numerical simulation of transient hypervelocity
flow in an expansion tube, Computers and Fluids 23 (1994) 77–
101. doi:10.1016/0045-7930(94)90028-0.

[31] J. S. Jewell, C. C. Huffman, T. J. Juliano, Transient startup sim-
ulations for a large Mach 6 quiet Ludwieg tube, in: 55th AIAA
Aerospace Sciences Meeting, AIAA-2017-0743, Grapevine,
Texas, 2017. doi:10.2514/6.2017-0743.

[32] D. E. Gildfind, P. A. Jacobs, R. G. Morgan, W. Y. K. Chan, R. J.
Gollan, Scramjet test flow reconstruction for a large-scale ex-
pansion tube, part 2: axisymmetric CFD analysis, Shock Waves
28 (2018) 899–918. doi:10.1007/s00193-017-0786-9.

[33] M. S. Holden, R. P. Wadhams, A database of aerothermal mea-

surements in hypersonic flow in building block experiments for
CFD validation, in: 41st AIAA Aerospace Sciences Meeting
and Exhibit, AIAA-2003-1137, Reno, Nevada, 2003. doi:10.
2514/6.2003-1137.

[34] M. MacLean, M. Holden, Validation and comparison of WIND
and DPLR results for hypersonic, laminar problems, in: 42nd
AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2004-
529, Reno, Nevada, 2004. doi:10.2514/6.2004-529.

[35] M. Sun, T. Saito, P. A. Jacobs, E. V. Timofeev, K. Ohtani,
K. Takayama, Axisymmetric shock wave interaction with a
cone: a benchmark test, Shock Waves 15 (2005) 313–331.
doi:10.1007/s00193-005-0258-5.

[36] G. Park, S. L. Gai, A. J. Neely, Base flow of circular cylinder at
hypersonic speeds, AIAA Journal 54 (2016). doi:10.2514/1.
J054270.

[37] J.-J. O. E. Hoste, V. Casseau, M. Fossati, I. J. Taylor, R. J. Gol-
lan, Numerical modeling and simulation of supersonic flows
in propulsion systems by open source solvers, in: 21st In-
ternational Space Planes and Hypersonic Systems and Tech-
nologies Conference, AIAA-2017-2411, Xiamen, China, 2017.
doi:10.2514/6.2017-2411.

[38] G. V. Candler, Next-generation CFD for hypersonic and
aerothermal flows, in: 22nd AIAA Computational Fluid Dy-
namics Conference, AIAA-2015-3048, Dallas, Texas, 2015.
doi:10.2514/6.2015-3048.

[39] J. Ray, S. Kieweg, D. Dinzl, V. G. Weirs, B. Freno, M. Howard,
T. Smith, I. N. ad G. V. Candler, Estimation of inflow uncer-
tainties in laminar hypersonic double-cone experiments, AIAA
Journal 58 (2020). doi:10.2514/1.J059033.

[40] R. K. Lobb, Experimental measurement of shock detach-
ment distance on spheres fired in air at hypervelocites, in:
W. C. Nelson (Ed.), The High Temperature Aspects of Hy-
personic Flow, volume 68, 1962, pp. 519–527. doi:10.1016/
B978-1-4831-9828-6.50031-X.

[41] S. Nonaka, H. Mizuno, K. Takayama, C. Park, Measurement of
shock standoff distance for sphere in ballistic range, Journal of
Thermophysics and Heat Transfer 14 (2000) 225–229. doi:10.
2514/2.6512.

[42] R. J. Gollan, P. Jacobs, On the validation of a hypersonic flow
solver using measurements of shock detachment distance, in:
18th Australiasian Fluid Mechanics Conference, Launceston,
Tasmania, 2012.

[43] F. Zander, R. J. Gollan, P. A. Jacobs, R. G. Morgan, Hyperve-
locity shock standoff on spheres in air, Shock Waves 24 (2014)
171–178. doi:10.1007/s00193-013-0488-x.

[44] E. J. Fahy, D. R. Buttsworth, R. J. Gollan, P. A. Jacobs, R. G.
Morgan, C. M. James, Experimental and computational fluid
dynamics study of Hayabusa reentry peak heating, Journal
of Spacecraft and Rockets 58 (2021) 1–14. doi:10.2514/1.
A34863.

[45] N. Banerji, P. Leyland, E. Fahy, R. Morgan, Venus entry flow
over a decomposing aeroshell in X2 expansion tube, Journal of
Thermophysics and Heat Transfer 32 (2018) 292–302. doi:10.
2514/1.T5172.

[46] D. F. Potter, T. Eichmann, A. Brandis, R. Morgan, P. A. Jacobs,
T. J. McIntyre, Simulation of radiating CO2-N2 shock layer ex-
periments at hyperbolic entry conditions, in: 40th AIAA Ther-
mophysics Conference, AIAA-2008-3933, Seattle, Washington,
2008. doi:10.2514/6.2008-3933.

[47] N. Banerji, P. Leyland, E. Fahy, R. Morgan, Earth reentry flow
over a phenolic aeroshell in the X2 expansion tube, Journal of
Thermophysics and Heat Transfer 32 (2018) 414–428. doi:10.
2514/1.T5255.

[48] S. Gu, R. G. Morgan, T. J. McIntyre, A. M. Brandis, An exper-
imental study of CO2 thermochemical nonequilibrium, AIAA

24

http://dx.doi.org/10.2514/3.649
http://dx.doi.org/10.1007/978-3-642-60543-7_6
http://dx.doi.org/10.1007/978-3-642-60543-7_6
http://dx.doi.org/10.1006/jcph.1995.1084
http://dx.doi.org/10.1006/jcph.1995.1084
http://dx.doi.org/10.1016/0021-9991(89)90095-8
http://dx.doi.org/10.1016/0021-9991(89)90095-8
http://dx.doi.org/10.2514/6.1987-1105
http://dx.doi.org/10.2514/6.1994-83
http://dx.doi.org/10.2514/2.871
http://dx.doi.org/10.1006/jcph.2000.6605
http://dx.doi.org/10.1006/jcph.2000.6605
http://dx.doi.org/10.1371/journal.pbio.1001745
http://dx.doi.org/10.1371/journal.pbio.1001745
http://dx.doi.org/10.2514/1.14404
http://dx.doi.org/10.1002/fld.3790
http://dx.doi.org/10.14264/uql.2020.207
http://dx.doi.org/10.1016/j.jcp.2015.12.004
http://dx.doi.org/10.1016/0045-7930(94)90028-0
http://dx.doi.org/10.2514/6.2017-0743
http://dx.doi.org/10.1007/s00193-017-0786-9
http://dx.doi.org/10.2514/6.2003-1137
http://dx.doi.org/10.2514/6.2003-1137
http://dx.doi.org/10.2514/6.2004-529
http://dx.doi.org/10.1007/s00193-005-0258-5
http://dx.doi.org/10.2514/1.J054270
http://dx.doi.org/10.2514/1.J054270
http://dx.doi.org/10.2514/6.2017-2411
http://dx.doi.org/10.2514/6.2015-3048
http://dx.doi.org/10.2514/1.J059033
http://dx.doi.org/10.1016/B978-1-4831-9828-6.50031-X
http://dx.doi.org/10.1016/B978-1-4831-9828-6.50031-X
http://dx.doi.org/10.2514/2.6512
http://dx.doi.org/10.2514/2.6512
http://dx.doi.org/10.1007/s00193-013-0488-x
http://dx.doi.org/10.2514/1.A34863
http://dx.doi.org/10.2514/1.A34863
http://dx.doi.org/10.2514/1.T5172
http://dx.doi.org/10.2514/1.T5172
http://dx.doi.org/10.2514/6.2008-3933
http://dx.doi.org/10.2514/1.T5255
http://dx.doi.org/10.2514/1.T5255

Journal 60 (2022). doi:10.2514/1.J061037.
[49] Y. Liu, C. M. James, R. G. Morgan, P. A. Jacobs, R. J. Gollan,

T. J. McIntyre, Electron number density measurements in a Sat-
urn entry condition, AIAA Journal 60 (2022). doi:10.2514/1.
J060560.

[50] G. Karypis, V. Kumar, A fast and high quality multi-
level scheme for partitioning irregular graphs, SIAM Jour-
nal on Scientific Computing 20 (1999) 359–392. doi:10.1137/
S1064827595287997.

[51] C. Park, Review of chemical-kinetic problems of future NASA
missions, I: Earth entries, Journal of Thermophysics and Heat
Transfer 7 (1993). doi:10.2514/3.431.

[52] D. S. Liechty, C. O. Johnston, M. J. Lewis, Comparison of
DSMC and CFD solutions of Fire II including radiative heating,
in: 42nd AIAA Thermophysics Conference, AIAA-2011-3494,
Honolulu, Hawaii, 2011. doi:10.2514/6.2011-3494.

[53] D. Hash, J. Olejniczak, M. Wright, D. Prabhu, M. Pulsonetti,
B. Hollis, P. Gnoffo, M. Barnhardt, I. Nompelis, G. Candler,
FIRE II calculations for hypersonic nonequilibrium aerother-
modynamics code verification: DPLR, LAURA, and US3D,
in: 45th Aerospace Sciences Meeting and Exhibit, AIAA-2007-
605, Reno, Nevada, 2007. doi:10.2514/6.2007-605.

[54] B. Adams, L. Bauman, W. Bohnhoff, K. Dalbey, M. Ebeida,
J. Eddy, M. Eldred, P. Hough, K. Hu, J. Jakeman, Dakota: A
Multilevel Parallel Object-Oriented Framework for Design Op-
timization, Parameter Estimation, Etc: Version 6 User’s Manual,
Technical Report SAND2014-4633, Sandia National Lab, 2015.

[55] K. A. Damm, R. J. Gollan, P. A. Jacobs, M. K. Smart, S. Lee,
E. Kim, C. Kim, Discrete adjoint optimization of a hypersonic
inlet, AIAA Journal 58 (2020). doi:10.2514/1.J058913.

[56] H. G. Hornung, R. J. Gollan, P. A. Jacobs, Unsteadiness bound-
aries in supersonic flow over double cones, Journal of Fluid
Mechanics 916 (2021) 1–23. doi:10.1017/jfm.2021.203.

25

http://dx.doi.org/10.2514/1.J061037
http://dx.doi.org/10.2514/1.J060560
http://dx.doi.org/10.2514/1.J060560
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.2514/3.431
http://dx.doi.org/10.2514/6.2011-3494
http://dx.doi.org/10.2514/6.2007-605
http://dx.doi.org/10.2514/1.J058913
http://dx.doi.org/10.1017/jfm.2021.203

Appendix 1: Manufactured Solution for 3D Viscous, Turbulent Flow

ρ = 1 −
sin

(
9πy
20L

)
10

+
sin

(
4πz
5L

)
10

+
3 sin

(
πxz
2L2

)
25

+
3 cos

(
3πx
4L

)
20

+
2 cos

(
13πxy
20L2

)
25

+
cos

(
3πyz
4L2

)
20

u = 70 + 7 sin
(
πx
2L

)
− 4 sin

(
9πxz
10L2

)
− 15 cos

(
17πy
20L

)
− 10 cos

(
2πz
5L

)
+ 7 cos

(
3πxy
5L2

)
+ 4 cos

(
4πyz
5L2

)
v = 90 − 5 sin

(
4πx
5L

)
+ 5 sin

(
3πxz
5L2

)
+ 10 cos

(
4πy
5L

)
+ 5 cos

(
πz
2L

)
− 11 cos

(
9πxy
10L2

)
− 5 cos

(
2πyz
5L2

)
w = 80 + 10 sin

(
9πy
10L

)
− 12 sin

(
2πxy
5L2

)
+ 5 sin

(
3πxz
4L2

)
− 10 cos

(
17πx
20L

)
+ 12 cos

(
πz
2L

)
+ 11 cos

(
4πyz
5L2

)
p = 100, 000+20, 000 sin

(
17πz
20L

)
+10, 000 sin

(
4πxz
5L2

)
+20, 000 cos

(
2πx
5L

)
+50, 000 cos

(
9πy
20L

)
−25, 000 cos

(
3πxy
4L2

)
−10, 000 cos

(
7πyz
10L2

)

ν̂ = 1 +
4 sin

(
4πz
5L

)
5

−
3 sin

(
3πxz
5L2

)
5

+
6 cos

(
7πx
20L

)
25

−
3 cos

(
2πy
5L

)
10

+
3 cos

(
πxy
2L2

)
4

+
cos

(
πyz
4L2

)
2

26

	1 Introduction
	2 Formulation
	2.1 The Navier-Stokes Equations
	2.2 Optional Extras for Hypersonic Multi-physics
	2.3 Numerical Discretisation

	3 Development Processes
	3.1 The D Programming Language
	3.2 Verification and Quality Assurance
	3.3 Validation and Reality Checks
	3.4 Continuous Integration Testing

	4 Parallel Scaling
	5 Example Applications
	5.1 Minimal Working Example
	5.2 Free Piston Driver
	5.3 Re-Entry Capsule
	5.4 Aerodynamic Shape Optimisation
	5.5 Double Cone Flow Physics Investigation
	5.6 Eilmer in the Classroom

	6 Conclusions

