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Abstract

We present a numerical implementation of the guiding center approximation to describe the relativistic
motion of charged test particles in the PLUTO code for astrophysical plasma dynamics. The guiding center
approximation (GCA) removes the time step constraint due to particle gyration around magnetic field lines
by following the particle center of motion rather than its full trajectory. The gyration can be detached
from the guiding centre motion if electromagnetic fields vary sufficiently slow compared to the particle
gyration radius and period. Our implementation employs a variable step-size linear multistep method, more
efficient when compared to traditional one-step Runge Kutta schemes. A number of numerical benchmarks
is presented in order to assess the validity of our implementation.

Keywords: Numerical methods - Relativistic Particles - Guiding Center Approximation - PLUTO Code -
Astrophysical Plasma

1. Introduction

The dynamics of charged particles is of crucial importance in the realm of plasma physics, including high-
energy astrophysics, solar physics, space weather, laboratory plasma, and several others. For a field like
astrophysics which is largely inaccessible to experiments, numerical simulations represents the only viable
tool to gain insights on several physical processes such as particle acceleration, emission and propagation.
In this respect, Particle-In-Cell (PIC) codes (see, e.g., [4, 18, 16, 14, 33] and references therein), on the one
side, and magnetohydrodynamic (MHD)-PIC hybrid codes (see, e.g., [3, 1, 20, 35]), on the other, are now
routinely employed in addressing plasma dynamics at micro scales (for the former) or at large scales (for
the latter).

The basic equation governing the motion of a charged particle with mass m and charge e is given by

du

dt
=

e

mc
(cE + v ×B) , (1)

where u = γv represents the particle’s four-velocity, v is the particle velocity, c is the speed of light while
E and B are the electric and magnetic field vectors, respectively.

Eq. (1) can be solved accurately by means of standard time-reversible leap-frog type numerical methods,
the prototype of which is probably the Boris integrator ([7]). Other methods with similar properties (i.e.
time-reversibility, phase-space volume preservation, energy conservation properties) have also been proposed,
see the review by [32] and also [27]. The price to pay to maintain stability and to avoid large phase errors in
such methods is the resolution of the gyro-period since, even in the simplest case of a circular orbit, several
time-step must be taken to sample a single revolution. This conditions becomes particularly restrictive in
highly magnetized environments.
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On the contrary, in the Guiding Center Approximation (GCA) originally introduced by [24] (see also
[10, 11, 30, 31, 2] and references therein), the orbital motion of the particle is detached from its instantaneous
gyration center. This relaxes any constraints related to particle gyration, allowing systematic larger time
steps to be taken and thus a considerable saving in computational time. The guiding center (GC) equations
are obtained in the limit of slow-varying fields. This restricts its validity to situations in which the Larmor
radius remains negligible with respect to the overall electromagnetic field scale and in which the cyclotron
frequency is large enough so that adiabatic invariance holds. In this respect, the GCA is most suitable for
particles with large charge-to-mass ratios such as electrons.

In this paper, we describe the implementation of a GC equation solver as an alternative to the standard
Boris scheme already introduced for the MHD-PIC module of the PLUTO code ([19, 20]). The two methods
are compared in terms of performance and accuracy by a number of selected numerical benchmarks. The
paper is organized as follows. In Section 2 we present the formalism of the GCA together with the relevant
equations. In §3 we discuss the numerical implementation of the GCA equations in the PLUTO code while
its validity and accuracy are assessed in §4. Finally, conclusions are drawn in §5.

Since the GCA cannot violate the condition |E| < |B|, its applicability to astrophysical environments
that can be modeled through ideal MHD becomes seemingly manifest. These may include, e.g., solar physics,
diffusive shock acceleration, stochastic turbulent acceleration and charged particle dynamics in magentized
reconnecting current sheets (inasmuch as non-ideal effects are ignored). The GCA approach could also
be used in combination with the Boris pusher in regions that violate the guiding center approximation
conditions. This has been done, for instance, in [2].

2. Equations and Method of Solution

The GC formalism holds under two fundamental assumptions, namely: i) that the gyration radius must
remain small compared to the scale length upon which the electromagnetic field changes significantly and
ii) that the particle undergoes many gyrations before the electromagnetic field changes appreciably (slowly-
varying fields approximation). If we let % be the particle gyroradius (apart from a factor

√
2), xµ the particle

position, Xµ the GC position, τ the proper time and Fµν the electromagnetic (EM) field tensor, the two
conditions stated above can be mathematically expressed as

%

∣∣∣∣∂Fµν∂xα

∣∣∣∣� |Fµν | and
1

ω

∣∣∣∣∂Fµν∂xα

∣∣∣∣ ∣∣∣∣dXβ

dτ

∣∣∣∣� |Fµν |, (2)

where ω is the gyrofrequency. When the previous conditions hold, we can separate the particle trajectory
into a gyration and a motion of the guiding center.

The complete relativistic equations of motion for the GC position four-vector Xµ were derived by [34]
as a series expansion of the generalized Larmor frequency ω (see Eq. A.2) and are written as

d2Xµ

dτ2
− Fµν

dXν

dτ
+ %2

0ω0
∂ω

∂xµ
= 0 , (3)

where

Fµν =
e

mc


0 Bz −By −Ex
−Bz 0 Bx −Ey
By −Bx 0 −Ez
Ex Ey Ez 0

 (4)

is the standard electromagnetic field tensor, while %2
0ω0 = µ0 = mcγ2v2

⊥/2eB is the 0th-order approximation
(apart from a constant factor) to the particle magnetic moment µ and ω0 = eB/mc represents the lowest-
order approximation to the Larmor frequency in the case E � B.

More precisely, the magnetic moment should be regarded as constant only in the reference frame moving
at vE , because in that particular case E = 0. Indeed, a formal analysis ([25, 15]) shows that the correspond-
ing constant of motion in a general reference frame is actually an asymptotic series expansion in a smallness
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parameter ε = u/(ω0L) in the form µ = (e/c)
[
µ0 + εµ1 + ε2µ2 + · · ·

]
so that µ0 is not constant and can still

vary in compliance with the adiabatic theory. Nevertheless, extensive numerical testing confirms that the
errors due to assuming dµ0/dt ≈ 0 are at most of the same order of those introduced by the GC formalism, as
a consequence of the slowly varying field condition which prevents sensible changes in the magnetic moment.
Hence, we safely assume that µ ≈ (e/c)µ0 is invariant (for more details see [24]). The same assumption is
also accepted by other authors, see [5, 8, 9, 12, 28] and references therein. A short derivation of Eq. (3) is
provided in Appendix A.

Although deceitful simple, the GC equation of motion (3) is more conveniently cast in a form in which
the GC velocity appears explicitly, under the nearly-crossed (EM) fields condition

E‖ ·B
B2 − E2

⊥
� 1 , (5)

where the subscripts ‖ and ⊥ indicate the parallel and perpendicular components of the electric field with
respect to the magnetic field unit vector b. It can be proven that Eq. (5) allows the EM tensor field Fµν to

be split into a contribution F
(0)
µν constructed solely from E⊥ and B, plus a correction term F

(1)
µν depending on

E‖. A formal analysis leads to the conclusion that the GC four-velocity Uµ ≡ dXµ/dτ can be decomposed

into a 0th-order contribution U(0) (which contains the drift velocity vE = cE⊥ ×B/B2 = cE×b/B as well
as the velocity component parallel to the magnetic field line v‖b) plus 1st-order correction U(1), leading to

Uµ = (γc,U) ' (γc, γv‖b + γvE + U(1)), (6)

where γ is the particle Lorentz factor γ = (1 − v2/c2)−1/2. An equation for U(1) can be derived from Eq.
(3) using a recursive approach as shown in Appendix B, while from the spatial component one obtains
an equation (to the same order) for the parallel component of the GC four-velocity γv‖. These yield the
(1st-order) GCA system of ordinary differential equations (ODEs)

dX

dt
= vE + v‖b +

γ2
E

B
b×

[
mcγ

e

(
v‖L(b) + L(vE)

)
+M

(
B

γE

)
+
v‖E‖

c
vE

]
(7)

d(γv‖)

dt
=

e

m
E‖ − γb · L(vE)− µ

γm
b · ∇

(
B

γE

)
, (8)

where dX/dt = U(1)/γ represents the velocity of the guiding center, e/m is the particle charge-to-mass ratio
and µ0 = cµ/e. The operators L() and M() are defined as

L(x) =
∂x

∂t
+ v‖(b · ∇)x + (vE · ∇)x

M(x) =
µ

eγ

[
vE
c

∂x

∂t
+ c∇x

]
,

(9)

where γE =
(
1− E2

⊥/B
2
)−1/2

is the Lorentz factor associated to the drift velocity vE .
In the GCA Equations (7) and (8) information about motion perpendicular to the magnetic field is lost

and the only component of the particle velocity that is actually evolved in time is u‖, because the magnetic
moment µ0 ≈ cµ/e is now considered a constant of motion. Each term on the right hand side of Eq. (7)
corresponds to a specific drift motion. Indeed, the first term represents the E × B (perpendicular) drift,
while the second one accounts for particle motion in the direction parallel to magnetic field. The first two
terms in square bracket, L(b) and L(vE), describe the field curvature and polarization drifts (notice that
the L() operator is the Lagrangian derivative d/dt), respectively. The next term is the ∇B drift, while the
last one represents a relativistic drift in the direction given by b× vE (see also the description in [30, 31]).

Equations (7) and (8) lose their validity when either B → 0 (magnetic null) or E⊥ ≥ B, that is, when
the nearly-crossed EM fields condition, Eq. (5), is violated. While the first condition can easily occur
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inside a reconnection sheet, the second may occur in a non-ideal magnetohydrodynamic (MHD) regime
only. Violation of either condition breaks down the GCA and can lead to severe numerical errors (this is
further discussed in §3 and §4)

We point out that, as shown in the original work by Vandervoort [34], the time component of Eq. (3)
leads to an evolutionary ODE for the particle energy as a function of time, namely

dγc2

dt
=

e

m

dX

dt
·E +

µ

m

∂

∂t

(
B

γE

)
. (10)

In the time-independent case, Eq. (10) clearly shows that, when the GC velocity is perpendicular to the
electric field, no acceleration occurs and the particle energy is conserved. For numerical purposes, however,
Eq. (10) is not solved for retrieving the Lorentz γ-factor since, in our experience, we found that large values
of the right hand side could easily violate the condition γ ≥ 1 at the truncation level of the scheme, unless
small time steps are taken. Instead we note that, to 1st-order, the particle velocity can be decomposed into a
parallel component v‖, a drift component vE and a gyration component v⊥. This leads to the normalization
condition

γ2c2 − γ2v2
‖ − u

2
⊥ − γ2v2

E = c2. (11)

From the definition of the magnetic moment and the Larmor frequency as µ0 = mcγ2v2
⊥/ (2eB) = γ2v2

⊥/ (2ω0),
we compute the particle Lorentz factor as

γ =

√
c2 + γ2v2

‖ + 2µ0ω0

c2 − v2
E

. (12)

Eq. (12) replaces (10) in our implementation and the same approach is also followed by other investigators
(see, e.g., [5, 8, 9, 12, 28]).

3. Numerical Implementation

The GCA equations (7) and (8) provide a set of 4 ODEs in the unknowns
(
X, u‖

)
and can be integrated

by means of standard methods. In the following, we describe the most important aspects of the algorithm.

3.1. Connection between grid and particle quantities

In our implementation, the electromagnetic field is provided by the underlying MHD (classical or rela-
tivistic) solver directly on the finite volume mesh. Quantities on the right hand side of Eq. (7) and (8) are
therefore interpolated at the particle position while gradients must be first calculated using central finite
difference operators. In the case of ideal MHD, the electric field is obtained by first interpolating the fluid
velocity vg and then taking the cross product: cE = −vg ×B, in order to enforce orthogonality between E
and B.

We adopt traditional field weighting schemes [4] typically used by PIC codes: for any grid quantity Qijk,
the corresponding interpolated value qp at the particle position is given by the summation

qp =
∑
ijk

W (xijk − xp)Qijk , (13)

where only first neighbor zones give a nonzero contribution (see [20] for the explicit expressions). We
employ the triangular shape cloud (TSC) weighting scheme. Overall, the computation of the right hand side
of requires several interpolations, significant memory usage and CPU overhead since 21 grid-sized arrays are
needed in our implementation: B, cE, (b · ∇)b, (b · ∇)vE , (b · ∇)vE , (vE · ∇)vE and ∇(B/γE).
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3.2. Time-Stepping Scheme

Owing to the considerable computational cost, we adopt here a predictor-corrector linear multi-step ap-
proach with variable step size instead of traditional Runge-Kutta methods while solving the GCA equations.
This has the advantage of requiring fewer function evaluations per step and thus leading to a faster - albeit
equally accurate - integration method.

Let Y = {X, u‖} and R be, respectively, the array of unknowns and the corresponding array of right

hand sides in Eqns. (7) and (8). For the predictor step, we employ the 2nd-order Adams-Bashforth scheme
(AB2) with variable step size (see, e.g., [17]):

Y∗ = Yn + ∆t

[(
1 +

rn

2

)
Rn − rn

2
Rn−1

]
+O(∆t3) , (14)

where Rn ≡ R(Yn), Rn−1 ≡ R(Yn−1) while rn = ∆tn/∆tn−1 is the ratio between the current and previous
time steps. Eq. (14) is used to provide a 2nd-order accurate estimate of Yn+1. This value is modified during
the corrector step to provide a more accurate approximation to Yn+1. We achieve this through a 3rd-order
Adams-Moulton scheme (AM3) with variable step size:

Yn+1 = Yn +
∆tn

6(1 + rn)

[
Rn +Rn+1 + 4

(
Rn +

Rn+1

2

)
rn + (rn)2

(
Rn −Rn−1

)]
+O(∆t4) , (15)

where Rn+1 ≈ R(Y∗) is used to make the scheme explicit. Eq. (15) has been reported here (to the extent of
our knowledge) for the first time and it has been obtained by fitting [Rn−1,Rn,Rn+1] with a second-order
polynomial and then integrating the ODE between t ∈ [tn, tn+1]. For uniform step size (rn = rn−1 = 1) Eq.
(14) and (15) reduce, respectively, to the standard Adams-Bashforth and Adams-Moulton methods:

Yn+1 = Yn +
∆t

2

(
3Rn −Rn−1

)
,

Yn+1 = Yn +
∆t

12

(
5Rn+1 + 8Rn −Rn−1

)
,

(16)

where Rn+1 is “predicted” using the result of the explicit method. The combination of Eq. (14) and (15)
provides 3rd-order accuracy and it requires two right hand side evaluations with one extra array storage
(Rn−1) per step.

Several other predictor-corrector choices are of course possible. The Adams-Bashforth 3rd-order explicit
scheme (AB3) [17], for instance, requires only one right hand side evaluation but two extra array storage
per particles:

Yn+1 = Yn + ∆tΓ2 + ∆tΓ3, (17)

where

Γ2 =

[(
1 +

rn

2

)
Rn − rn

2
Rn−1

]
,

Γ3 =
rn

2

(
1− 1

3

rn

1 + rn

)
1 + rn

1 + 1/rn−1

[
Rn −Rn−1 − rn−1

(
Rn−1 −Rn−2

)]
,

(18)

with rn = ∆tn/∆tn−1 and rn−1 = ∆tn−1/∆tn−2.
However, the predictor-corrector method given by Eq. (14) and (15) is typically more accurate, it has a

larger stability region and it directly provides step size control through a local error estimation. For these
reasons, it will be our default time-stepping scheme. Starting values can be provided by an equally accurate
Runge-Kutta scheme.
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3.3. Time step control and runtime validity check

Particle step-size is limited by the condition that the maximum distance covered by a particle does not
exceed a fixed amount of computational zones,

1

∆tp
= max

p,d

[
Rn+1
p,d −Rnp,d

∆t(ε∆xp,d)

]
, (19)

where the maximum is taken over all particles p and over all directions d while ε ≈ 2 gives the number of
crossed cells. Here ∆xp,d represents the width of the cell hosting particle p, in the direction d. Note that
the number of ghost zones must be at least ∼ ε + 1 since one more boundary cell is needed for gradient
computations.

Starting values for particles GC positions and four-velocities are initialized through the same Cosmic Ray
(CR) module function available within the PLUTO code [20], allowing the user to readily switch between the
GC model and the standard Boris implementation. Since the particle initial positions in the two cases would
differ only by a small amount comparable to the gyroradius, we use the same assignment for both methods
in practice. By contrast, the three four-velocity components (ux, uy, uz) are converted into (u‖, γ, µ), i.e.
parallel component, Lorentz factor and magnetic moment, immediately after initialization.

During numerical integration, a number of conditions must be checked for, in order to ensure that GCA
equations do not become singular or that numerical integration exhibits unphysical behaviors. The first of
these is the absence of null points at the particle position, B 6= 0 and the validity of the nearly cross field
condition, E⊥ < B. Both are very strict conditions and, if either one occurs, the particle is permanently
deleted. The slow-varying condition is verified by comparing the Larmor radius, RL = u⊥/ω0, with the
magnetic field fluctuation scale, LB = B/(γE |∇B/γE |). A warning is issued whenever RL/LB > εL = 0.1.
In addition, we also monitor that u‖/(ω0LB)� ε and γvE/(ω0LB)� ε both of which can be inferred from
a combination of u/ω0LB � 1 (which was originally derived in [34]). Last, we also require that the GC
velocity remains sub-luminal at all times, i.e., |dX/dt| < c. A ceil value of 0.999c is enforced otherwise.

Future implementations will also consider other alternatives, such as the adaptive hybrid method of [2]
which switches between the full system of equations of motion and a guiding-center approximation, based
on particle magnetization.

4. Numerical Benchmarks

We now present a number of selected numerical benchmarks in order to assess both the validity and
accuracy of our implementation. In all tests we employ a uniform rectilinear Cartesian grid to store the
field values. Since temporal derivatives are not considered in our implementation, the MHD fluid equations
are not evolved in time. Unless specified, we use PLUTO default values for plasma density ρ0 = 1mp/cm

3,
scale length L0 = c/ωp (ωp is the plasma frequency) and velocity v0 = c = 1. The default value of the
charge-to-mass ratio is e/mc = 1 unless otherwise stated.

4.1. Simple Gyration

We first examine the case of a simple gyration in a uniform magnetic field B = (0, 0, 106), as in [26].
A single particle is initialized gyrating around the axis origin over a circumference of radius 1, starting
from X = (1, 0, 0) with four-velocity u = (0,−uy, 0) where uy = γ(1 − 5 × 10−13) with γ = 106. Since
a charged particle with perpendicular velocity is expected to gyrate around a magnetic field line, the GC
position should remain constant in time and no work should be done on the system. We employ a 2D
domain x, y ∈ [−2.5, 2.5] and a coarse grid resolution of (16×16×16) is prescribed since no spatial gradient
is present and the particle is followed for 100 complete periods Tc = 2πγmc/ (eB) = 2π with time step
∆t = 0.2π (100 steps per orbit).

The accuracy of both the Boris method and the GCA is shown in Fig. (1) where we plot using black
and red colors, respectively, the actual trajectories (left panel) and the relative errors on µ computed as
σµ = |µ(tn) − µ(0)|/µ(0) (right panel). We point out that the GCA keeps µ constant by construction and
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Figure 1: Numerical results for the simple gyration test case. Left panel : particle trajectory for Boris and GCA. The GC
position, which has been shifted in the origin for the sake of clarity (x = xGC − 1), remains constant to its initial value. Right
panel : Error on magnetic moment for Boris and GCA.

thus any error comes simply from initialization. On the other hand, the Boris algorithm leads to machine-
level small fluctuations, similarly to §4.3.1 of [29]. Note that the GC coordinates as well as the particle
energy (γ − 1) remain equal to their initial values since the same initialization is used for the two methods
and no electric field is present (see Eq. 12 and 8). It must as well be noted that the relativistic gyroradius
RL, computed as

RL =
mcu⊥
eB

, (20)

is of the same order of the cell dimension, and thus very large in comparison. This does not invalidate the
assumptions of the GCA inasmuch spatial gradients are not present (as it is the case here).

4.2. E×B Perpendicular Drift

A particle in a EM field is subject to a drift motion in the direction perpendicular to both E and B. Here
we consider a configuration similar to [26, 32] and prescribe electric and magnetic fields E = (E0, 0, 0) and
B = (0, 0, B0), respectively, with E0 < B0. The resulting particle motion is thus a composition of a gyration
plus a uniform drift in the y-direction. The electric field value E0 is recovered from the Lorentz factor
associated with the drift velocity γE = 1/

√
1− E2

0 = 10, corresponding to vE/c ≈ −0.995ey. A single test
particle is initialized at the origin X = (0, 0, 0) with zero velocity and evolved until t = 2π×104, undergoing
≈ 10 gyrations during its drift. In the zero electric field frame, in fact, the magnetic field is B′ = B/γE and
the Larmor frequency is thus eB′/(γEmc). An additional γE comes from time dilation between frames, so
that the time required to perform n gyrations, as measured in the Lab frame, is ∼ 2πnγ3

E . We employ a
larger time step for GCA (∆t = 10) and smaller ones for the Boris method, namely, ∆t = 0.1 and ∆t = 1.

Results on particle trajectory are shown in the left panel of Fig. 2, where the three cases are compared.
We also superimpose the exact solution (green line), obtained by first solving for the gyration in the frame
where the electric field is zero and then applying a Lorentz boost back to the laboratory frame (see, for
instance, §4.1 of [20]). The Boris method resolves the full trajectory, albeit with a significant loss of accuracy
and larger phase error when the time step is increased from ∆t = 0.1 to ∆t = 1 (dotted black line). On
the contrary, GCA does not resolve for particle gyration and yields a uniform motion along the y-axis with
constant velocity vE = c(E×b)/B = E0 êy, as expected. We also point out that particle energy, defined as
(γ − 1) with γ computed as in Eq. (12), is perfectly conserved since since u‖ cannot change, see Eq. (8).

To test the accuracy we compare the errors on the y-coordinate by computing

σy =
|∆y|
y
≡ |y − tE0|

tE0
, (21)
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Figure 2: Numerical results for the perpendicular drift test case. Left panel : particle trajectory obtained with the Boris method
(dashed and dotted lines for ∆t = 0.1 and ∆t = 1, respectively) and with GCA (solid line in red color for ∆t = 10.) A drift
motion along the y axis is present in all cases. The green line yields the analytical solution. Right panel : Relative error on the
Lorentz factor γ and y-coordinate position.

and plotting results in the right panel of Fig. 2. The errors of GCA remains at machine level (∼ 10−14)
since, for this particular case, the solution of Eq. (7) and (8) is exact (the right hand side is a constant).
On the contrary, the error obtained with the Boris scheme are larger.

This test clearly shows the advantages offered by the guiding center approximation when the full particle
trajectory is not needed.

4.3. Gradient Drift

We now consider a magnetic field aligned with the z-direction and varying over a length scale L:

B(x, y, z) = B0

(
1 +

x

L

)
ez. (22)

As stated before, the GC formalism is appropriate inasmuch as the field variation felt by a particle during
one or few gyrations is negligible. As noted by [32], this can be roughly estimated from RL|∇B|/B � 1
which, in the present case, reduces to RL � L. In this regime, the drift velocity is perpendicular to both
the magnetic field and its gradient and can be approximated analytically (see, e.g., [6]):

v∇B = ±v⊥RL
2

B×∇B
B2

, (23)

where the ± sign depends on the charge sign. In the region (x/L+ 1) > 0 the previous expression reduces
to

v∇B = ±v⊥RLB
2
0

2LB2

(
1 +

x

L

)
ey ' ±

v⊥RLB0

2LB
ey . (24)

Moreover, we also have that d(γv‖)/dt = 0 in absence of electric fields.
Similarly to [32], we initially place 20 particles at the origin with initial four velocities u = −u0ex

with u0 varying uniformly from 0 to 0.5. When integrating with the GCA, the initial y-coordinate is
initially shifted by one gyroradius. We set L = 1 and B0 = e/mc = 1 so that the initial gyroradius is
RL ≡ u⊥mc/eB ' u0 in these units. Therefore, increasing the initial four-velocity is likely to produce larger
errors as we depart from the condition RL ' u0 � L. Both the Boris method and the GCA are used with
fixed time step ∆t = 5 × 10−3 up to a time t = 102, during which particles undergo ∼ 15 gyrations. We
employ a 128×16×16 numerical grid covering the domain of size 2L×100L×100L, with outflow boundary
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Figure 3: Numerical results for the gradient drift test. Top Panels: Particle trajectory for v0 = 0.05 (left) and v0 = 0.5 (right)
using Boris and GCA (green and red, respectively). Bottom panels: Particle drift velocity vy (right) for Boris and GCA as a
function of the initial velocity v0; relative errors (right) on the drift velocity (σvy = |vy,GCA/vy,Boris − 1|) using both a fixed
time step ∆t = 5× 10−3 and a variable time step.

conditions in the x-direction and periodic ones in the y-direction. The larger resolution in the x-direction
is required to reduce the interpolation errors when computing magnetic field gradients on the grid. Results
are shown in Fig. 3.

As evident from the top panels, where we plot the trajectories of two particles with initial velocities u0 =
0.05 and u0 = 0.35 (respectively), the GCA (red squares) provides an averaged value for the position (and
velocity) while particles evolved using the Boris method (black plus signs) possess both a drift component
and a gyration motion. The drift velocities, shown in the bottom left panel, are obtained from a linear
fit through the particle’s y-coordinate as a function of time y(t) for GCA, while for the Boris method we
remove the gyration by fitting a line through the particle y-coordinate minima. As expected, the accuracy
of GCA gradually reduces as the gyroradius increases. This is quantitatively expressed in the right bottom
panel where we plot the relative error of the GCA drift velocity with respect to the (averaged-out) Boris
drift, again as a function of the initial velocity and for a constant time step (black plus signs). The error
is ∼ 1% at RL/L ≈ u0 = 0.22 and grows up to ∼ 10% at RL/L ≈ u0 = 0.4. We also repeated the same
test by considering a variable time step (typically much larger), confirming that the errors (circles) remains
practically unaltered regardless of the time step size. Note also that the particle energy cannot change since
the right hand side of Eq. (8) is trivially zero.

In terms of computational efficiency, the 3rd-order predictor-corrector method (AM3, Eq. 15) and the
explicit method (AB3) are, respectively, ∼ 3.5 and ∼ 2.2 more expensive than the Boris method. Neverthe-
less, while the Boris scheme requires a time step . 0.1 to accurately sample the Larmor time-scale, GCA
integration is only limited by the cell size crossing condition (Eq. 19) yielding a nominal time step of ∼ 100.
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4.4. Curvature Drift

We now turn our attention to the curvature drift by considering a magnetic field configuration in which
the only contribution to the Lorentz force comes from magnetic tension, namely

BR(R) = 0, Bφ(R) = B0
kR√

1 + k2R2
, Bz(R) = B0

1√
1 + k2R2

, (25)

so that B2 = const. Eq. (25) describes a helical field in cylindrical coordinates (R,φ, z) with constant pitch
1/k. We also include the additional effect of a purely radial electric field,

ER(R) =
R

R0
E0 . (26)

We employ Np = 4 particles, initially placed on a circle of radius R0 = 100 with angular position φ = j/Np
and four-velocity uR = 0, uφ = (j + 1)/Np, uz = 0.25, where 0 ≤ j < Np. At this distance, the vertical
magnetic field is negligible compared to the azimuthal component. Particles are evolved until t = 2 × 103

by solving the equations of motion in Cartesian coordinates on the computational box defined by x, y ∈
[−120, 120], z ∈ [−10, 110] covered by 128× 128× 64 grid zones. We set B0 = k = e/mc = c = 1 while two
values of the electric field are considered, E0 = 0 and E0 = 0.03. The time step is held fixed to ∆t = 0.1
(for the Boris method) and ∆t = 10 (for GCA).

Figure 4: Particle trajectories (top panels) and vertical position as a function of time (bottom panels) for the curvature drift
test problem. Black and red lines correspond to results obtained with the Boris and GCA scheme, respectively. Results on the
left (right) have been obtained with cEz = 0 (cEz = 0.03).

The top panels in Fig. 4 show the 3D trajectories of two particles with different initial velocities (u‖ = 1
and u‖ = 0.1) obtained, respectively, when the electric field is zero (left) or E0 = 0.03 (right). In both cases,
the solutions obtained with the GCA (red line) closely overlap with the full orbits recovered by the Boris
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method (black line). In the zero electric field case, from Eq. (7), one can easily verify that the non-vanishing

terms are the parallel velocity v‖b and the curvature drift velocity (γv2
‖/ω0)b̂ × κ, where κ = (b̂ · ∇)b̂ ≈

−êR/R0 is the magnetic field line curvature. The expected vertical position of the guiding center should thus
move with approximately constant velocity, vzC ≈ v‖[bz − u‖bφ/(ω0R0)]. This is confirmed in the bottom
left panel where we plot the particles vertical position as a function of time obtained with the two methods.
The slope obtained through a linear fit of the z-coordinate yields vzC ≈ (1.398, 1.035, 0.659, 0.298)× 10−2

for GCA and vzC ≈ (1.406, 1.040, 0.663, 0.300)× 10−2 for Boris. As expected, the curvature drift decreases
with lower parallel velocities.

The effect of a non-zero radial electric field is twofold. On the one hand, it produces an additional
perpendicular drift in the radial direction, thus leading to spiral orbits (see top right panel). On the other,
it enhances the curvature drift by increasing the vertical velocity. However, while particles gradually shift
to lower radii, the velocity does not remain constant as the ratio Bz/Bφ ∼ 1/(kR) becomes larger.

Lastly, we have verified that the particles energy gain is essentially the same for both the Boris scheme
and the GCA method, even though the time step of the latter is 100 larger than the former.

4.5. X-point

Following [21], we investigate the dynamics of charged particles by considering a X-point static configu-
ration given by

B = B0

(
y

L
,
x

L
,
Bz
B0

)
, (27)

where B0 = 1, while Bz and L (the guide field and the system scale, respectively) depend on the specific
configuration. This field shape typically occurs in reconnecting current sheets which are believed to be
efficient sources of non-thermal particles in several high-energy astrophysical environments, such as Active
Galactic Nuclei (AGNs; see [23]) and Blazars ([22]) as well as solar wind (see e.g. [13]). Notice that,
in absence of a guide field (Bz = 0), the GCA equations of motion (7) and (8) present a singularity at
(x, y) ∼ (0, 0) where the gyroradius (Eq. 20) becomes arbitrarily large and the approximation loses its
validity.

We assess the accuracy of the GCA by considering two cases corresponding, respectively, to E = 0 and
E 6= 0.

E = 0 Case. In the first configuration, we set L = 1 and initialize 500 equally-spaced particles along the
unit circle at z = 0 with purely radial initial velocity vr = −0.1 pointing towards the origin. No electric field
is present. As in [32] we consider the cube [−2.5, 2.5]3 covered with 64×64×16 zones and evolve the system
until te = 30 with fixed time step ∆t = 5× 10−3. Unlike [32], however, we employ e/mc = 100 in order to
make the Larmor radius smaller compared to L (RL ≈ 10−3). This will make the GCA more appropriate
for this test.

Results are shown in Fig. (5) for different values of the guide field, Bz = 0, 0.25 and 0.5. Particle
trajectories are affected by the relative orientation between the initial velocity and the magnetic field vectors.
Particles initially lying over one of the coordinate axes gyrate and drift perpendicularly to the field lines in
the z-direction. Conversely, particles located near the diagonals are very weakly deflected and can approach
the domain center because their velocity is initially parallel to the field. This conclusion holds also for non-
zero values of the guide field. However, regions with Bz = 0 (magnetic null) are critical for the GCA, since
many terms inside Eq. (7)-(8) grow indefinitely, leading to a loss of accuracy for the GC. This is confirmed
by inspecting the right panel of Fig. 5, where we plot the absolute error |xBoris − xGCA| at the final time
as a function of the initial angle. A further validation of the null point being the source of precision loss in
this test is the considerable reduction of the overall error with the presence of non-zero guide fields (green
and blue symbols).

E 6= 0 Case. Similarly to §4.6 of [20], we now introduce a static, uniform electric field E = (0, 0, E0) and
employ 1024 × 1024 uniformly spaced zones centered on the origin with domain size L = 8000 in both
directions. Slab symmetry is considered along the z-axis. We assign 4 particles per cell using a Maxwellian
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Figure 5: Magnetic null. Left panel: particles position colored by time for the magnetic null problem. Right panel: absolute
errors in the particle position (as a function of the initial angle) for different values guide fields, Bz = 0 (yellow), Bz = 0.25
(green) and Bz = 0.5 (blue).

four-velocity distribution with a thermal velocity corresponding to one-tenth of the speed of light, v = 0.1.
To avoid loss of validity in the GCA equation, we restrict our attention to configurations with a guide field
Bz 6= 0, in order to ensure that E/B < 1 is respected everywhere. Integration stops at t = 103 using a
variable step size.

The particle spatial distribution at t = 103, colored by Lorentz factor, is shown in the top panels of Fig.
6. Particles move under the combined effects of perpendicular, gradient and curvature drifts (see §4.6 of [20])
while favorable acceleration conditions take place in the central region, where Ez > B⊥. Energetic particles
arrange on an elongated strip approximately lying along the separatrix line y = x, which is determined by
the sign of the parallel components of the electric and magnetic fields. With the Boris scheme (top left
panel), the shape of the strip agrees with the results of [20] while a slightly more pronounced “S”-shaped
morphology is observed with the GCA (top right panel). This discrepancy is likely to be attributed to the
violation of the nearly crossed field condition (Eq. 5), as in the central region of the domain E ∼ E‖ ∼ B/2.
The condition implied by Eq. (5), in fact, allows to neglect higher-order terms in the equation of motion
for the guiding center (see, for instance, §12B in [34]). However, if E‖ becomes comparable to B, 2nd-order
terms may not be negligible anymore and the GCA results in a loss of accuracy. Indeed, additional tests
(not reported here) confirm that these differences disappear for larger values of the guide field.

The resulting energy spectral distributions, normalized to unity, for Bz = 0.2 and E0 = 0.1, are shown
in the bottom panels of Fig. 6 for e/mc = 1 (left) and e/mc = 50 (right). The power-laws obtained with
the standard Boris scheme and the GCA are comparable, with very small differences, and the maximum
energy roughly scales with the charge to mass ratio. During the initial stages of the simulation, stability of
the Boris scheme limits the time step to ∆t ∼ 7× 10−2mc/e, while for GCA we have ∆t ≈ 28 regardless of
mc/e. This offers a tremendous advantage in terms of CPU time even if our GC implementation is roughly
∼ 2.2 slower to advance a particle when compared to the Boris method.

Last, we consider the influence of different guide fields under the same charge-to-mass ratio e/m = 50
and electric field Ez = 0.1 in Fig. 7. The spectra feature a low-energy exponential cutoff, followed by a
power-law ∼ γ−p with index 2 . p . 3 and a sharp cutoff at high energies, in accordance with the results of
[20]. As the value of Bz grows, parallel acceleration increases (E ·B 6= 0 everywhere) and becomes significant
for all particles, including those initially away from the null point. This causes a systematic shift of the
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Figure 6: X-point test. Top panels: Spatial distributions at t = 103 colored by γ Lorentz factor with the Boris (left) and
GCA (right) method. Bottom panels: Comparison of the spectral distribution between Boris and GCA for e/mc = 1 (left) and
e/mc = 50 (right).

spectral distribution to larger energies while leaving the high-energy cutoff at γ ' 500 unaltered [20]. As
a result, the spectra retain their shape but become narrower for larger values of the guiding field. The
largest acceleration takes place near the X-point. The most significant difference appears when B = E = 0.1
(guiding field equal to the electric field): here particles near the origin cross regions with a very small
magnetic field (comparable to E), their gyration radius increases, and, as a consequence, the GCA approach
becomes less accurate.

5. Summary

The numerical implementation of the guiding center approximation (GCA) for the PLUTO code for as-
trophysical plasma dynamics ([20], [19]) has been the subject of this work. The method, originally developed
by Northrop [24] to describe the relativistic motion of charged particles, is suited for slowly varying fields in
which gyration around magnetic field lines is small enough to be neglected but the motion of the gyration
center can still be considered as representative of the main particle drifts. Such conditions are typically met
by high energy particles in a variety of highly magnetized plasma, thus of great interest from an astrophys-
ical point of view. The main strength of the GCA resides in possibility of taking larger computational time
steps, since the resolution constraint due to the gyro-period is not needed.

The GCA consists of four ordinary differential equations for the evolution of the guiding center coordi-
nates and the parallel velocity. Similarly to particle-in-cell codes, electromagnetic fields and their derivatives
are interpolated from the mesh at the particle position. Due to the large computational overhead, our method
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Figure 7: X-point test comparison for the Boris method (left) and GCA (right) with different guide fields, under the same
electric field and charge-to-mass ratio.

is based on a predictor-corrector linear multi-step method with variable step size. More specifically, we em-
ploy the 2nd-order Adams-Bashforth scheme during the predictor step and the 3rd-order Adams-Moulton
method for the corrector stage. This combination requires extra storage of the time-derivative (i.e. the
right hand side) values at the previous stage and it offers an attractive and more efficient alternative to the
traditional Runge-Kutta schemes.

Our implementation results have been validated against and compared to those obtained with the tra-
ditional Boris scheme through a selected suite of numerical benchmarks. Using the GCA, the particle
trajectories in the presence of various drifts (e.g. perpendicular, gradient and curvature drifts) are well
reproduced and errors are within the expected approximation, inasmuch the slow-varying condition is re-
spected. Our predictor-corrector scheme is ∼ 3.5 times more CPU intensive than the Boris scheme albeit the
scheme permits much larger time step, specially for large charge to mass ratios (e.g. electrons) and/or larger
magnetizations. Critical behavior has also been observed - as one would infer from theory - at magnetic null
points or in regions where the Larmor radius becomes comparable to the overall field fluctuations. In these
regions, the GCA leads to large errors and its employment becomes unreliable.

As an application example, we have considered particle acceleration in an X-point configuration under
the influence of different guide magnetic fields and nonzero electric fields. These environments are of great
interest in the context of magnetic reconnection and a naturally critical scenario for the GCA due to the
abrupt change in the magnetic field over small scales. A comparative study revealed that GCA consistently
reproduces the particles spatial and energy distributions obtained with the Boris method but at a much
cheaper numerical cost (∼ 102), specially during the first evolutionary stages. Also, in both cases, larger
guide fields lead to a more efficient acceleration over the whole domain.

Summarizing, our implementation confirms that the GCA can be an extremely powerful tool to decrease
simulation cost, to the extent permitted by the approximation limit. Its availability in the PLUTO code will
hopefully be of great interest to push forward integration times, especially in the field of particle acceleration.
Future extensions of this work will consider hybrid approaches to overcome the critical configurations and
inclusion of time-dependent terms.
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Appendix A. Derivation of GCA equations of motion

In this section we will provide the essentials points in the derivation of the guiding center equations of
motion (EOM). For a complete discussion refer to [34]. The equation of motion for a charged particle in
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an EM field are written in a tensorial form as

d2xµ
dτ2

= Fµν
dxν
dτ

, (A.1)

being xµ the particle four-coordinate, Fµν the EM tensor and τ the particle proper time. The general
solution is a linear combination of the two fundamental solutions related to the four EM tensor eigenvalues
q = ±iω and q = ±λ, where

ω =
e

mc

√
1

2
(B2 − E2) +

1

2

√
(B2 − E2)

2
+ 4 (E ·B)

2
, (A.2)

λ =
e

mc

√
−1

2
(B2 − E2) +

1

2

√
(B2 − E2)

2
+ 4 (E ·B)

2
. (A.3)

ω is a generalized relativistic form of the Larmor frequency ωξ = eB/(mc) in the case where E 6= 0 (this
can be easily verified by solving the limit E → 0). The general solution xµ of (A.1) is

xµ = ξµ% cos(ωτ)− ηµ% sin(ωτ) + αµν cosh(λτ) + βµν sinh(λτ). (A.4)

Note that the first two terms are related to a periodic motion, that is the gyration around magnetic field lines.
Here %, ν are constants defined by the initial conditions and ξµ, ηµ, αµ and βµ are four-versors normalized
in the manner

ξ2
µ = η2

µ = 1 and α2
µ = −β2

µ = 1 . (A.5)

Solutions for % = 0 and ν = 0 must be valid separately, so by replacing xµ for these two particular
cases inside Eq. (A.1) we can see that ξµ, ηµ, αµ and βµ form an orthogonal set of the Minkowsky space.
The orthogonality relations between this set of four-vectors in particular states that the periodic motion
(gyration) in the (ξµ, ηµ)-plane is perpendicular to the acceleration motion in the (αµ, βµ)-plane, and will
be useful later. At this point, another useful relation is retrieved from the squared velocity invariance

dxµ
dτ

dxµ
dτ

= −c2 , which leads to ω2%2 − λ2ν2 = −c2 . (A.6)

Since we are only interested in cases in which gyration appears, the only singular eigenvalue case we must
consider is the one with λ = 0, ω 6= 0, corresponding to E ·B = 0 and |E| → 0. The associated solution is

xµ = ξµ% cos(ωτ)− ηµ% sin(ωτ) + Uµτ . (A.7)

Here the gyration motion with Larmor frequency ωξ = ω is clearly shown, along with a uniform motion
(drift) with velocity Uµ = (γc,U) in the plane perpendicular to the (E,B)-plane. For verification simply
substitute xµ and Uµ in the left and right-end side of Eq. (A.1),respectively , to find that FµνUν = 0, and
rewrite the indexes of such equation explicitly. In this particular case, the squared velocity invariance (A.6)
becomes

ω2%2 + U2
µ = −c2 or U2

µ = −c2 − ω2%2 < −c2 . (A.8)

The last equation is of crucial importance in the GCA formalism, because the drift motion Uµ is the mean
motion separated from the gyration and corresponds to the GC motion itself, meaning that what we just
found is a relation between the energy and momentum of a particle guiding center. It is very similar to
the well-known formula of the squared four-velocity U

′2
µ = −c2, the only difference being an additional

term ω2%2. This suggests interpreting the motion of the GC as the one of a particle located in the center of
gyration, performing no gyration and possessing a squared four velocity as stated in Eq. (A.8), in agreement
with part of the particle kinetic energy being stored in the gyration motion through the term ω2%2. By
separating the spatial and temporal parts of Uµ and rearranging some terms inside Eq. (A.8), we can get a
relation for the GC Lorentz factor

γGC =

√
1 +
|U|2
c2

+
ω2%2

c2
=

√
1 +

γ2|v|2
c2

+
ω2%2

c2
. (A.9)
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Although we only considered a limit case, the same equation can be proven to be generally valid in the GCA
formalism.

We now want to isolate the gyration motion in a general case. This is done by separating the motion as
follows:

xµ = ξµx+ ηµy + x′µ +Xµ , (A.10)

where xµ is the space-time position of the particle and Xµ is the position of the guiding center. We associate
two variables x and y to describe the periodic motion in the (ξ, η)-plane, and the term x′µ will account for
the periodic motions which do not lie in the same plane. To more easily describe the gyration, we also
choose a new pair of variables

ζ =
1√
2

(x+ iy) and ζ∗ =
1√
2

(x− iy) , (A.11)

so that ξµx+ηµy = δµζ+σµζ
∗. The new variables will allow us to choose σµ and δµ in a more convenient way

and let some factor eiφ account for the initial conditions of the problem. We rewrite the particle coordinate
using Eq. (A.11)

xµ = δµζ + σµζ
∗ + x′µ +Xµ. (A.12)

The next step is substituting this expression into (A.1) and expand the second derivative, which leads to
a really long expression containing eight unkowns: ζ , ζ∗, two components of xµ (the condition with the
(σ, δ)-plane sets the other two), and four components of Xµ.

The conditions for the GCA expressed in Eq. (2) implicitly contain a parameter of smallness ε =
|u/ωL| � 1, where u is the typical particle four-velocity and L the scale length upon which the change in
the EM fields Fµν is comparable to Fµν (slowly-varying fields approximation). This allows to approximate
Fµν(xµ) (particle coordinate) by using a Taylor expansion about Xµ (the GC coordinate)

Fµν(xµ) = Fµν(Xµ) +
∂Fµν
∂xξ

(δξζ + σξζ
∗)

+
1

2

∂2Fµν
∂xξ∂xπ

[
δξδπζ

2 + σξσπζ
∗2

+ (σξδπ + σπδξ)
∣∣ζ2
∣∣ ]+

∂Fµν
∂xξ

x′ξ + · · ·

(A.13)

We should now substitute Fµν(xµ) inside Eq. (A.1) using the new coordinates in order to get a quite long
equation containing all quantities evaluated at the GC position Xµ up to 2nd−order, and group all 2nd−order
terms on the right-end side Gµ

δµ
d2ζ

dτ2
+ σµ

d2ζ∗

dτ2
+

(
iωδµ + 2

dδµ
dτ

)
dζ

dτ

+

(
−iωσµ + 2

dσµ
dτ

)
dζ∗

dτ
+
d2δµ
dτ2

ζ +
d2σµ
dτ2

ζ∗

− ∂Fµν
∂xξ

(δξζ + σξζ
∗)
dXν

dτ
− Fµν

(
dδν
dτ

ζ +
dσν
dτ

ζ∗
)

− ∂Fµν
∂xξ

(δξζ + σξζ
∗)

(
δν
dζ

dτ
+ σν

dζ∗

dτ

)
+

(
d2Xν

dτ2
− Fµν

dXµ

dτ

)
+

(
d2x′µ
dτ2

− Fµν
dx′ν
dτ

)
= Gµ ,

(A.14)

An expression for ζ is needed to further proceed, but since the derivation is quite long we will not explicitly
derive it here. The basic idea is to use the orthogonality equations for the new four-vectors σµ and δµ and
the antisymmetry property of the EM tensor inside Maxwell’s equations written in tensorial form, and then
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assume that a solution for Xµ has already been found. Considered that xµ is a 1st−order term in the GCA,
by ignoring 2nd−order quantities and writing terms independent from ζ as a numerical value P , then Eq.
(A.14) becomes

d2ζ

dτ2
+ iΩ

dζ

dτ
+
i

2

dΩ

dτ
ζ + Ωaζ + P = 0 , (A.15)

where Ωaζ contains all the linear terms in ζ. Consequently, the corresponding solution ζ, by analogy to the
Wentzel–Kramers–Brillouin (WKB) approximation in quantum mechanics, is

ζ = %0

√
ω0

Ω
e
−i
(

Φ+
∫ τ
τ0
σ1dτ

)
, (A.16)

to the 0th−order, being

Ω = ω − 2iσµ
dδµ
dτ

, Φ =

∫ τ

τ0

Ωdτ − φ and σ = a− a2

Ω
. (A.17)

The subscripts 0, 1 indicate the associated order of approximation for quantities defined above.
Since now we know the expression for ζ, we can write the 1st−order EOM for Xµ. For this purpose, we

require that in the left-end side of Eq. (A.14) the terms containing the 1st− and 2nd−order derivatives of
Xµ are balanced by the remaining nonoscillatory terms, that is

d2Xµ

dτ2
− Fµν

dXν

dτ
=
∂Fµν
∂xξ

(
δξσνζ

dζ∗

dτ
+ δνσξζ

∗ dζ

dτ

)
. (A.18)

Having found the solution (A.16) and making use once again of the orthogonality relations for δµ and σµ
and the tensorial Maxwell’s equations, we can write the equation of motion for the GC

d2Xµ

dτ2
− Fµν

dXν

dτ
+ %2

0ω0
∂ω

∂xµ
= 0 . (A.19)

Appendix B. First order solution for the GCA equations of motion

An explicit solution for Eq. (3) can be found under the approximation (5), which introduces a new
parameter of smallness λ/ω � 1. We will treat the new approximation analogously to the one introduced
in the slowly-varying field case, since we are interested in the first order in both cases and the distinction
between them would be a merely formal procedure. As stated in §2, we express the EM tensor under
this approximation as the sum of a 0th−order tensor, constructed from B and E⊥, and a 1st−order tensor,

constructed from E‖. In the same way, the GC four-velocity Uµ = dXµ/dτ is decomposed as Uµ = U
(0)
µ +U

(1)
µ

(we remind that the superscript i indicates the ith-order of approximation), so that Eq. (3) leads to a system
of two equations

F (0)
µν U

(0)
ν = 0, (B.1)

dU
(0)
µ

dτ
= F (0)

µν U
(1)
ν + F (1)

µν U
(0)
ν − ρ2

0ω0
∂ω

∂xµ
. (B.2)

By using the orthogonality relations between ξ, η, α and β and this last equations, it can be proved that

U
(1)
µ is composed of a 1st−order correction ULµ in the direction of U (0), and a term UPµ perpendicular

to the other two. Knowledge about ULµ is not useful for most applications of the GCA, so to find an

expression for the guiding center four-velocity we will only need to determine Uµ = U
(0)
µ + UPµ . We rewrite

Uµ = (γc,U) = (γc, γv), so that the separated space and time components of Eq.(B.1) are

U(0) ×B + E⊥γc = 0 (B.3)

E⊥ ·U(0) = 0 . (B.4)
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Here we can clearly see that the 0th−order term has to be

U (0)
µ =

(
γc, U

(0)
‖ b + γvE

)
=
(
γc, γv‖b + γvE

)
, (B.5)

being b the unit vector in the direction of B and vE = cE⊥ ×B/B2 = cE× b/B. This means that to the
lowest order the GC possesses a parallel velocity along magnetic field lines, as well as the known E×B drift
in the direction perpendicular to b. Likewise, Eq. (B.2) becomes

dU(0)

dτ
=

e

mc

(
U(1) ×B + U

(1)
0 E⊥ + γcE‖

)
− µ0∇ω, (B.6)

dγc

dτ
=

e

mc

(
E⊥ ·U(1) + E‖ ·U(0)

)
+
µ0

c

∂ω

∂t
. (B.7)

Eq. (8) can be obtained by multiplying the spatial part by b (and remembering the form we found for U(0))

d(γv‖)

dτ
= −γb · dvE

dτ
+

e

mc
γcb ·E‖ − µ0b · ∇ω , (B.8)

where some terms were simplified by virtue of the fact that b is orthogonal to both db/dτ and vE . Eq.

(B.8) can be used to determine γv‖ once we have an expression for UP . Since U
(1)
µ is perpendicular to the

magnetic field, we may take the vector product of Eq. (B.6) with b. This suppresses the components in the
direction of the field and results in an equation that can be used to determine UPµ

γv‖b×
db

dτ
+ b× vE

d(γ)

dτ
+ γb× dvE

dτ

=
eB

mc2

{
U(1) − b

(
b ·U(1)

)}
− eB

mc
U

(1)
0 vE − µ0b×∇ω .

(B.9)

We first note that Eq. (B.9) does not have components directed along the magnetic field, since the inhomo-
geneous terms have components only in the plane perpendicular to b. We then make use of Eq. (B.6) and
(B.5) to rewrite

b× vE
d(γ)

dτ
=
E⊥
B
ε
d(γc)

dτ

=
eB

mc

E2
⊥

B2
ε(ε ·UP ) +

eB

mc

E⊥
B2

γv‖E‖ +
E⊥
B

µ0

c

∂ω

∂t
,

(B.10)

where ε is a unit vector directed along E⊥ and we replaced ε ·U(1) = ε ·UP . We also make use of the fact

that UPµ is orthogonal to U
(0)
µ and its spatial part UP is perpendicular to b, so that the product U

(0)
µ UPµ = 0

can be rewritten as

eB

mc
αUP0 =

eB

mc3
vE(vE ·UP ) =

eB

mc

E2
⊥

B2
ε× b

{
(ε× b) ·UP

}
. (B.11)

Now we can substitute Eq. (B.10) and (B.11) inside (B.9), rearrange some terms and find

UP =
mcγv‖

e(B2 − E2
⊥)

B× db

dτ
+

mcγ

e(B2 − E2
⊥)

B× dvE
dτ

+
γv‖E‖

(B2 − E2
⊥)

E⊥ +
mcµ0

e(B2 − E2
⊥)

(
B×∇ω +

E⊥
c

∂ω

∂t

)
.

(B.12)

Finally, because the perpendicular electric field satisfies the relation E⊥ = b× (E×b) = B×vE , we obtain

UP =
b

B
(

1− E2
⊥
B2

) × mc

e

{
γ

(
v‖
db

dτ
+
dvE
dτ

)

+
µ0

c2
vE

∂ω

∂t
+
µ0

c
∇ω +

eγv‖E‖

mc2
vE

}
.

(B.13)
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This last expression, together with (B.5), provides the 1st-order velocity of the guiding center Uµ, from
which we get Eq. (7).
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