
Using Markov transition matrices to generate trial configurations in Markov
chain Monte Carlo simulations

Joël Mabillarda,1, Isha Malhotraa, Bortolo Matteo Mognettia,2,∗

aCenter for Nonlinear Phenomena and Complex Systems, Code Postal 231, Université Libre de Bruxelles, Boulevard du
Triomphe, 1050 Brussels, Belgium

Abstract

We propose a new Markov chain Monte Carlo method in which trial configurations are generated by evolving
a state, sampled from a prior distribution, using a Markov transition matrix. We present two prototypical al-
gorithms and derive their corresponding acceptance rules. We first identify the important factors controlling
the quality of the sampling. We then apply the method to the problem of sampling polymer configurations
with fixed endpoints. Applications of the proposed method range from the design of new generative models
to the improvement of the portability of specific Monte Carlo algorithms, like configurational–bias schemes.

Keywords: Monte Carlo methods, Mathematical physics methods, Chemical Physics & Physical
Chemistry, Classical statistical mechanics, Markovian processes, Path sampling methods.

This is a post-peer-review, pre-copyedit version of an article published in Computer Physics
Communications. The final authenticated version is available online at:
https://doi.org/10.1016/j.cpc.2022.108641

1. Introduction

Markov Chain Monte Carlo (MCMC) meth-
ods are portable algorithms universally employed
to sample probability functions (π) in high–
dimensional spaces [1–4]. Starting from an ini-
tial configuration, a MCMC scheme generates a se-
quence of states that asymptotically follow a distri-
bution equal to π. Specifically, if x is the current
configuration, a MCMC algorithm first proposes a
trial state y with probability Pgen(x → y). Such a
trial configuration is then accepted with probability
acc(P)(x→ y), where acc(P) is chosen to satisfy the
detailed balance condition

J(x→ y) = J(y → x) (1)

J(x→ y) ≡ π(x)Pgen(x→ y)acc(P)(x→ y) .

∗Corresponding author
Email address: Bortolo.Matteo.Mognetti@ulb.be

(Bortolo Matteo Mognetti)
1ORCID: 0000-0001-6810-3709.
2ORCID: 0000-0002-7960-8224.

(a)

2||π − π0||TV

(b) π0(x)

π(x)

Pgen(x)

Figure 1: (a) In a MCMC scheme with stationary distribu-
tion π, trial configurations can be generated by sampling a
prior distribution π0 (i.e., Pgen = π0) if π0 and π overlap
(i.e., if ‖π0 − π‖TV =

∫
dx|π(x) − π0(x)|/2 � 1). (b) If

π0 and π do not overlap (‖π0 − π‖TV / 1), configurations
sampled from π0 require to be further processed before being
used as trial configurations. (a, b) The area of the colored
regions corresponds to 2‖π − π0‖TV.

The previous relations imply that π is the station-
ary distribution of the Markov chain with transition
matrix equal to Pgen(x→ y)acc(P)(x→ y).

Except for studies breaking the microscopic re-
versibility condition [3, 5–7], many developments
have focused on designing methods to generate trial
configurations leading to high acceptance rates and
a fast decorrelation between the configurations vis-
ited by the simulation [1, 2]. A fast decorrelation

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

ar
X

iv
:2

10
1.

12
62

3v
4

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
 6

 J
an

 2
02

3

https://doi.org/10.1016/j.cpc.2022.108641
http://www.latex-tutorial.com

is achieved in algorithms that generate trial config-
urations that do not depend on the current state
x, i.e., Pgen(x → y) = Pgen(y). We also include
within these methods the heat–bath or Glauber al-
gorithm in which a subset of the system is updated
by a direct sampling of the distribution π condi-
tioned on the current state of the degrees of freedom
that are not touched by the move [4]. Trial con-
figurations can be proposed by direct sampling of
a prior distribution π0 if the latter overlaps with π
(Fig. 1a and Ref. [3]), i.e., if ‖π−π0‖TV � 1, where
‖·‖TV is the total variation distance [4] defined as
‖f‖TV ≡

∫
dx|f(x)|/2. A remarkable example is

the sampling of interacting bosons represented as
ring polymers [8]. In these systems, suitable choices
of the prior π0 allow for generating segments made
of many monomers in a single update [9–11]. In-
stead, when ‖π − π0‖TV / 1 (see Fig. 1b), con-
figurations sampled from π0 are not representative
states of π. Therefore, configurations sampled from
π0 should be further processed and evolved towards
π before being used as trial configurations. In re-
cent years, these transformations have been imple-
mented using learned maps based on normalizing
flows (e.g., [12]) resulting in generators capable of
mapping smooth priors into equilibrium states of
many–body systems [13].

In this work, we introduce a class of algo-
rithms that generate trial configurations that do
not depend on the current state x, using truncated
Markov Chains (tMC). Specifically, to engender a
trial configuration y, we first select an initial state
y0 by sampling a prior distribution π0. We then
evolve n times y0 using a Markov transition ma-
trix T , such that yi = T iy0 for i ∈ [1, n]. The
distribution of the states yi is defined as πi. We
finally identify the trial configuration y with yn,
distributed as πn, see Fig. 2c.3 The key question
addressed by this study is the identification of ac-
ceptance rules satisfying Eq. (1) for this type of
algorithm. In particular, as compared to hybrid
MCMC algorithms [14–16] based on symplectic in-
tegrators [17, 18], using tMCs to propose trial con-
figurations raises difficulties as Markov transition
matrices compress volumes in configuration space.

Notice that tMCs have already been used in
methods proposing trial configurations by perturb-
ing the current state x (Fig. 2 a and 2b). The work

3We do not identify πn with Pgen defined in Fig. 1b given
that in the following Pgen will be the probability for the tMC
to visit a given set of configurations (y0, y1, · · · , yn).

Crooks Path-sampling This work

Figure 2: MCMC methods generating trial configurations
using Markov transition matrices (T): (a) Crooks sam-
pling [19], (b) a path sampling method, [22–30], (c) the
algorithms proposed in this work.

of Crooks [19], based on Jarzynski’s results [20, 21],
shows how to write acceptance rules in which y
is generated by evolving n times the existing con-
figuration x using T , see Fig. 2a. The results of
Ref. [19] cannot be generalized to the present set-
ting in which y is generated from y0, see Fig. 2c.
Path sampling methods consider extended config-
uration spaces constituted by ensembles of config-
urations (or paths, x and y in Fig. 2b) [22–30].
Trial paths are typically proposed by first updating
a single configuration (e.g., by a local transforma-
tion, K in Fig. 2b) and then evolving it using a
Markov transition matrix T . As compared to path
sampling methods, the algorithms proposed in this
work accept trial configurations based on an exist-
ing configuration x and not a path. Similar to path
sampling methods, detailed balance conditions en-
force microscopic reversibility between two paths
which, however, are both generated while propos-
ing y.

In Sec. 2, we present the proposed MCMC
method and test it using a 2D model. We discuss
the factors controlling the quality of the sampling
by comparing two different algorithms (A and B).
Intriguingly, for Algorithm A, we show how an over-
lap between πn and π (Fig. 1b) does not necessar-
ily guarantee an efficient sampling. In Sec. 2.5, we
further discuss similarities and differences between
our scheme and path sampling methods (Fig. 2b).
In Sec. 3, we adapt the method to the problem of
sampling polymers with fixed endpoints and show
how, in certain conditions, it can perform better
than a Configurational–Bias Monte Carlo (CBMC)
algorithm [31]. CBMC methods require performing
direct sampling of a subset of degrees of freedom
on the fly, e.g., by generating polymer segments
following given torsional and bending potentials.
This pre–sampling task is usually addressed using
ad hoc, system–dependent algorithms [32–36] while
the proposed method is general and portable. Im-

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

http://www.latex-tutorial.com

portantly, Sec. 3 also shows how multiple tMCs can
be used to propose a single trial configuration. In
Sec. 4, we highlight the limits of the current version
of the methodology and discuss some directions for
improvement. Finally, Sec. 5 summarises our re-
sults.

2. Presentation of the algorithms

2.1. Generating trial configurations

Given a prior distribution π0, which we assume
simple enough to be sampled statically, we gener-
ate a starting configuration y0. We then recursively
evolve y0 using a Markov chain with transition ma-
trix T and define yi = T iy0 with i ∈ [1, n]. Specifi-
cally, for a given yi−1, we first propose a trial con-
figuration, Kiyi−1, using a transformation (e.g., a
local translation) Ki and then accept it with prob-
ability equal to acc(T)(yi−1 → Kiyi−1) such that

πT (yi−1)T (yi−1 → yi) = πT (yi)T (yi → yi−1), (2)

where T = Ki·acc(T) and πT is the stationary distri-
bution of T . This generative method is illustrated
in Fig. 3a and 3c, left, using a 2D model (detailed
in Sec. 2.3).

The functions π in Eq. (1) and πT in Eq. (2) are
independent. With the exception of the cases pre-
sented in Appendix D, in the remaining of the pa-
per we choose πT = π. The transformation Ki con-
serves volumes in configuration space and is sam-
pled from a generic distribution µ(Ki). No restric-
tions are put on µ(K), to the extent that the er-
godicity of the MCMC method is guaranteed. In
particular, the condition µ(K) = µ(K−1) is not re-
quired, see Sec. 2.5.

We define by y0,n the ensemble of configurations
(in the following also labelled with path or trajec-
tory) visited by the tMC, y0,n ≡ (y0, y1, · · · , yn).
Given the n proposed transformations, K =
(K1, K2, · · · , Kn) and the starting configuration
y0, the state yi is calculated as follows

yi = (Ki)
ηi . . . (K1)η1y0 (3)

where ηj = 0 or 1, respectively, if the transfor-
mation Kj is rejected or accepted, according to
acc(T)(yj−1 → Kjyj−1). There are 2n (possibly
degenerate) final configurations yn identified by the
set of acceptances η ≡ (η1, η2, · · · , ηn), see Fig. 3c,

left. The probability of generating y0,n for a given
K is then

Pgen(y0,n|K) = π0(y0)

n∏
i=1

fKi(yi−1, ηi) (4)

with

fKi
(yi−1, ηi) ={
acc(T)(yi−1 → Kiyi−1) if ηi = 1
1− acc(T)(yi−1 → Kiyi−1) if ηi = 0

(5)

where yi−1 is calculated using Eq. (3). In practice,
Pgen(y0,n|K) is computed directly while generating
y0,n, as described in Appendix A.1.

Having generated the trial configuration, it re-
mains to identify the acceptance rule. The prob-
ability Pgen(y0,n|K) cannot be directly identified
with Pgen(x→ y) appearing in Eq. (1) as the latter
includes the contributions of all trajectories termi-
nating in y, obtained by all possible choices of K.
In Sec. 2.2 and 2.4, we reconstruct trajectories end-
ing in x with the set of transformation K used to
generate yn. Similar to path sampling methods, we
then assign a statistical weight to each trajectory
y0,n defined on an extended configuration space.
Probability distributions defined over the extended
configuration space, along with Pgen(y0,n|K), allow
writing detailed balance conditions between trajec-
tories, and, therefore, acceptance rules for y.

Finally, let us stress again that trial trajectories
are not correlated with the current configuration x.
This property is pivotal in applications as the one
studied in Sec. 3 and allows estimating the free en-
ergy of the system. Moreover, in Sec. 2.5, we sketch
out an alternative method in which trial paths are
constructed starting from the existing one. The
latter method allows studying systems in which π0

cannot be sampled statically.

2.2. Algorithm A

We introduce the partition function Z(A) defined
over the ensemble of all possible trajectories x0,n =
(x0, x1, · · · , xn)

Z(A) =

∫
dx0

 n∏
i=1

∑
ηAi ∈{0,1}

dµ(Ki)

 e−βH(xn) (6)

where β = 1/(kBT), kB is the Boltzmann constant,
T the temperature, andH is the target Hamiltonian
π(x) ∼ exp[−βH(x)]. Given the set of transforma-
tions K, the configuration xi, with i ∈ [1, n], is

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

http://www.latex-tutorial.com

y=y 4

y 1= y 2

y3

y0

x 0
B = x 1

B
x 2

B

=x 4
B

x = x 4
A

=x 3
B

x 0
A

x 3
A= x 2

A= x 1
A

K 4
K 1 K 3

K 2

K 3

(K 1)
−1

(K 4)
−1

(K 3)
−1

(K 2)
−1

v2

v 1

v 1

v2

y0

y1 y2

y3 y 4=y
x 0

B

x1
B

x 2
B

x3
B

x 4
A= x 4

B =x

x 0
A x 1

A x 2
A x 3

A

Figure 3: (a) Schematic representation of the method for a 2D model (see Appendix B.1 for details of the model and simulation
parameters). Dashed and solid lines represent the level lines of the prior, π0, and target, π, distributions. A proposed path y0,n,
is generated by accepting or rejecting a series of local displacements Ki (in the panel the second displacement, K2, is rejected)
starting from y0 distributed as π0. Similarly, for a given state x ≡ xn, the method reconstructs an extended configuration by
accepting or rejecting the series of reverse transitions (K−1

n , K−1
n−1, · · · , K

−1
0). In the panel, Algorithm A accepts K−1

4 and

K−1
1 , while Algorithm B accepts K−1

3 and K−1
2 . (b) Full lines are marginal distributions of the target distribution of panel

(a). Algorithms A and B properly sample π (symbols). Dotted and dashed lines are the distributions of yn (πn) with n = 10
and n = 4. (c) Tree representation of all possible paths starting from y0 (left) and terminating in xn (right) for a given set of
transformation K. Highlighted using the color code of panel (a) are the paths generated (left) and reconstructed (right) by
Algorithms A and B. The distance and ordering between points belonging to the same level (vertical line) have no physical
meaning and multiple points may in fact correspond to the same physical configuration. In panels (a) and (c), we set n to
n = 4. In panels (a) and (b), the scale bar represents the unit length. The results of panel (b) have been obtained with 2 · 106

iterations.

uniquely determined by x0 and ηA = (ηA1 , · · · , ηAn)
as

xi = (Ki)
ηAi . . . (K1)η

A
1 x0 , (7)

see Fig. 3c, right.

Treating for convenience the physical variable xn
as an independent variable, we identify a state x0,n

in the extended space by xn and ηA, and calculate
x0 by inverting Eq. (7). Since K conserves volumes
in configuration space, the Jacobian of the change
of variables {x0, η

A} → {xn, ηA} is equal to 1,

leading to the following expression for Z(A)

Z(A) =

∫
dxn

 n∏
i=1

∑
ηAi ∈{0,1}

dµ(Ki)

 e−βH(xn) .

(8)

The marginal distribution of the physical variable
xn is π and, therefore, sampling trajectories ac-
cording to Z(A) provides configurations xn dis-
tributed as π(xn). For a given xn and K, Eq. (8)
shows how all ηAi ’s are uniformly distributed with

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

http://www.latex-tutorial.com

0 1 2 3 4 5 6 7 8 9 10

n

10−3

10−2

10−1

100

A
cc

ep
ta

n
ce

R
at

e

2D A

2D B

BM2 A

BM2 B

BM3 A

BM3 B

Figure 4: Acceptance rates of Algorithms A and B as a func-
tion of the number of states n generated by the truncated
Markov chain. We consider the 2D model of Fig. 3 (2D) and
the molecules with 3 and 4 branches (BM2 and BM3, see
Fig. 8).

Prob(ηAi = 0) = Prob(ηAi = 1) = 1/2. We stress
that in Eq. (3), the ηi’s are determined with an ac-
ceptance test whereas in Eq. (7) the ηAi ’s are sam-
pled with a uniform distribution.

A trial configuration y is generated using a set
of transformations K that does not coincide with
the set of transformations used to generate the cur-
rent configuration x. A trajectory x0,n ending in
the current configuration x must then be recon-
structed using the set K. Therefore, in contrast
with typical path sampling methods, for each con-
figuration x visited, the current methodology will
consider two or more paths. The final state xn of
the corresponding path x0,n being identified with x,
we sample n uniformly distributed ηAi , according to
Eq. (8). The configurations xi, for i = n − 1 to 0
are obtained by inverting Eq. (7), using iteratively

xi = (Ki+1)−η
A
i+1xi+1 such that

xi =

 n∏
j=i+1

K
−ηAj
j

xn . (9)

The process is illustrated in Fig. 3a and 3c, right.
Having reconstructed the trajectory ending in x,
the probability Pgen(x0,n|K) of generating x0,n us-
ing the tMC is computed as in Eq. (4).

The trial configuration is finally accepted with
probability acc(P) = F (zA), e.g., F (zA) =
min(1, zA) or F (zA) = zA/(1 + zA) when using,
respectively, the Metropolis or the heat–bath ac-
ceptance [1, 2] with

zA =
Pgen(x0,n|K)

Pgen(y0,n|K)

π(yn)

π(xn)
. (10)

A chart flow of Algorithm A is given in Appendix
A.2.

2.3. 2D model

To test Algorithm A, we consider a system in
which π0 and π do not overlap, see Fig. 3a. π0 is
a Gaussian distribution while π a multimodal dis-
tribution (the analytic expressions of π0 and π are
reported in Appendix B.1). Existing algorithms
combining local moves with (eventually learned)
global maps proposing jumps between different en-
ergy minima [37] would certainly outperform the
presented method. The purpose of this section is to
verify that the proposed algorithms are not biased.
In particular, we have not optimised the simulation
parameters (prior distribution and trial displace-
ments).
Ki attempts to displace a 2D vector within a

square with size equal to 4. We consider a tran-
sition matrix T that asymptotically samples π (i.e.,
π = πT). A case where π is different from πT is
studied in Appendix D.1. The sampling of the tar-
get distribution obtained with Algorithm A (with
n = 4 and n = 10) using 2 ·106 MC iterations [38] is
shown on Fig. 3b (red circles). A comparison with
the analytical prediction (solid line) shows that Al-
gorithm A properly samples the target distribution
π. Since π = πT , the distributions of yn (πn, dashed
and dotted lines in Fig. 3b) and π overlap at large
values of n. In general, yn remains far from π un-
til reaching the mixing time nmix (which we define
as ‖∑x π0(x)Tnmix(x → ·) − π(·)‖TV = 1/4). For
n � nmix the method cannot sample the target
distribution and features low acceptance rates (see
Sec. 4).

Despite the fact that yn samples π for n→∞ (if
πT = π), arbitrarily large values of n (n > nmix)
do not improve the quality of the sampling. In
particular, the acceptance of Algorithm A is non–
monotonous in n, see Fig. 4 “2D A”. The poor
performance of Algorithm A at large values of n is
explained by the fact that x0,n are random walks
that are not distributed as Pgen(x0,n|K). For in-
stance, in Fig. 3a, xA0 is found in the tail of π0

resulting in a small value of Pgen(x0,n|K). Recall
that x0,n and y0,n are distributed differently: y0,n

is determined by π0 and T as in Eq. (3), while
x0,n by the extended partition functions Z(A) in
Eq. (8). In general, small values of Pgen(x0,n|K)
are expected for n → ∞, leading to small zA in
Eq. (10) and small acceptances. This analysis is
supported by the comparison of the distributions

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

http://www.latex-tutorial.com

0.0 0.1 0.2 0.3 0.4 0.5

P gen

10−3

10−1

101

103
A, n=4

B, n=4

Trial, n=4

A,n=10

B, n=10

Trial, n=10

Figure 5: Distributions of the probability of generating trial
(“Trial”, see Eq. (11)) and equilibrium configurations using
Algorithms A and B (“A” and “B”, see Eq. (12)) for two
values of n. In Algorithm A, ηA is uniformly distributed
while in Algorithm B, ηB follows Eq. (15) (see Appendix
A.3 for more details). The distributions have been calculated
while producing the results of Fig. 3b.

of the averaged probabilities of generating trial and
equilibrium configurations, see Fig. 5. For the trial
configurations (Fig. 5 “Trial”) we have

P̄gen =

∫
dµ(K)dy0 π0(y0)Pgen(y0,n(η)|K)

(11)

with the acceptances η calculated as in Eq. (4). For
the equilibrium configurations we have (Fig. 5 “A”)

P̄gen =

∫
dµ(K)dxn π(xn)Pgen(x0,n(ηA)|K)

(12)

with ηA sampled as described above. Comparing
the case n = 4 with n = 10, we observe that
Pgen(x0,n|K) has on average much smaller values
for larger n.

2.4. Algorithm B

To alleviate the problem of low values of
Pgen(x0,n|K) as compared to Pgen(y0,n|K), we
modify the extended partition function in Eq. (8)
to increase the overlap between the distributions of
x0,n and y0,n, and, therefore, reduce the gap be-
tween Pgen(x0,n|K) and Pgen(y0,n|K). We define
the partition function in the extended space as

Z(B) =

∫
dxn

n∏
i=1

∑
ηBi ∈{0,1}

[
dµ(Ki)fKi

(xi−1, η
B
i)
]

× π0(x0)J(xn|K) exp[−βH(xn)], (13)

where each trajectory x0,n ending in xn =
x is weighted by its generating probability
Pgen(x0,n|K) (see Eq. 4). The term J is a bias that
constrains the marginal distribution of the physical
variable xn to be equal to π(xn) ∼ exp[−βH(xn)].
Given that πn 6= π, the distributions of x0,n and
y0,n are not identical, yn being distributed as πn
while xn as π. The bias term J reads as follows

J(xn|K) =

 ∑
ηB∈{0,1}n

Pgen(z0,n|K)δzn,xn

−1

(14)

where, for K given, a sum is performed over all
the 2n paths ending in xn, and identified by a set
of acceptances ηB , see Fig. 3c. In particular, the
trajectory z0,n = (z0, · · · , zn = xn) is constructed

by inverting Eq. (3) such that zi−1 = K
−ηBi
i zi.

As done in Algorithm A, we reconstruct the path
x0,n in the extended space by sampling the par-
tition function, Eq. (13). Given the set of dis-
placements K, we consider the tree made of the
2n possible trajectories leading to xn as shown in
Fig. 3c, right. A trajectory x0,n is selected by sam-
pling Pgen(x0,n|K) using Bayes’ theorem. Given
xi, we choose xi−1 (and, therefore, ηBi) among xi

and K−1
i xi with probability P (K

−ηBi
i xi|xi)

P (K
−ηBi
i xi|xi) =

fKi
(K
−ηBi
i xi, η

B
i)Pi−1(K

−ηBi
i xi|K)

Pi(xi|K)
(15)

with ηBi = 0 or 1 and where Pi(xi|K) is calculated
recursively

Pi(xi|K) = fKi
(xi, 0)Pi−1(xi|K)

+ fKi(K
−1
i xi, 1)Pi−1(K−1

i xi|K) (16)

with fKi
defined in Eq. (5). Pi(xi|K) is the proba-

bility to visit the state xi when sampling layer i at
a given (ηBi+1, η

B
i+2, · · · , ηBn), K and xn.4 In partic-

ular, we have P0(x0|K) = π0(x0) and Pn(xn|K) =
J(xn|K)−1. Importantly, the calculation of Pn lim-
its the algorithm to small values of n given the ne-
cessity of enumerating 2n states. An algorithm with

4Notice that some within the 2n−i possible states at layer
i may coincide. That is often the case when considering
discrete systems. In that case, Pi(yi) is the probability of
sampling yi divided by the multiplicity of yi at a given K
and xn.

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

http://www.latex-tutorial.com

polynomial computational complexity will be pre-
sented elsewhere.

After sampling the ηBi ’s with the iterative use of
Eq. (15), the probability of selecting x0,n is still
given by Eq. (4). The trial configuration is then
accepted with probability acc(P) = F (zB) with

zB =
J(yn|K)π(yn)

J(xn|K)π(xn)
=
Pn(xn|K)π(yn)

Pn(yn|K)π(xn)
. (17)

Interestingly, zB is not a function of Pgen(x0,n|K)
and Pgen(y0,n|K) as they cancel the corresponding
terms appearing in the distribution of the extended
configurations, see Eq. (13).

In Fig. 3b (blue crosses), we verify that Algo-
rithm B is not biased in reproducing the target
distribution (solid black line) for the 2D model of
Sec. 2.3. The acceptance rate now increases with
n, as seen on Fig. 4, “2D B” (blue solid line and
crosses). This improved acceptance rate is due to
higher values of P̄gen, as can be seen by compar-
ing “A” with “B” on Fig. 5. In this Figure, P̄gen

for Algorithm B is calculated using Eq. (12) with
the acceptances ηBi ’s obtained from Eq. (15). The
chart flow of Algorithm B with details about the
computation of Pn are given in Appendix A.3.

We note that the calculation of Pn(yn|K) allows
sampling the excess free energy ∆F of the targeted
system, defined as ∆F ≡ FT − F0,

e−β∆F =

∫
dx exp[−βH(x)]∫
dx exp[−βH0(x)]

=
Z(B)

Z(0)
. (18)

If π0(x0) ∼ exp[−βH0(x0)], Z(0) can be written as

Z(0) =

∫ n∏
i=1

∑
ηi∈{0,1}

dxne
−βH0(x0)

×
[
dµ(Ki)fKi(xi−1, ηi)

]
(19)

given that dxn = dx0, since Ki conserves volumes
in the configuration space. In Eq. (19) we have
also used the fact that the sum of the probabilities
of generating all possible paths emanating from a
given x0 at a given K is equal to 1, i.e.,∏n

i=1

∑
ηi∈{0,1} fKi(xi−1, ηi) = 1 .

The previous considerations and Eq. (13) allow
rewriting Eq. (18) as

e−β∆F = 〈exp[−βH(yn)]J(yn|K)〉y0,n , (20)

where the average is calculated using the ensem-
ble of paths obtained in the generative method of
Sec. 2.1.

Figure 6: (a) Ensemble of paths considered in the extended
partition functions presented in Ref. [27, 28] (left and center)
and in the current study (right). x0,n and xn,0 represent tra-
jectories generated using, respectively, the direct and reverse
protocol [19]. (b) (left) Local update of a path presented in
Ref. [23, 24]. yi,n and yi,0 are paths obtained by using, re-
spectively, the direct and reverse protocol. (right) Proposed
method that does not rely on reverse protocols to generate
trial paths.

As already observed, Algorithms A and B are not
peculiar to the use of transition matrices T hav-
ing π as asymptotic state. This property is crucial
in cases where the evaluation of π is computation-
ally expensive and could be approximated by a less
complex function [1]. As a proof of principle, in
Appendix D, we describe and validate the case in
which πT is constant, using the 2D model of Fig. 3.

2.5. Comparison with other path sampling methods

Path sampling methods have been used to cal-
culate free energies [25–28]. Based on Jarzynski’s
results [20, 21], the difference in free energy be-
tween two systems with Hamiltonian H0 (π0(x) ∼
exp[−βH0(x)]) and H (π(x) ∼ exp[−βH(x)]) can
be sampled using

∆F = −kBT log〈exp(−W)〉path , (21)

where W is the work performed by a protocol (in
the following labelled direct protocol) switching the
Hamiltonian of the system from H0 to H in n steps,
and the average is taken over all paths engendered
by the protocol.

Developments in path sampling methods focused
on finding extended partition functions promoting
trajectories that contribute the most to the average
in Eq. (21). For instance, Ref. [27, 28] considered
umbrella ensembles (Z̃θ) interpolating the two fol-
lowing extended partition functions (see Fig. 6a,

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

http://www.latex-tutorial.com

left and center)

Z̃1 =

∫
dxπ(xn)Pgen(xn,0|xn) (22)

Z̃0 =

∫
dxπ0(x0)Pgen(x0,n|x0) (23)

where Pgen(x0,n|x0) is the probability of gener-
ating a given path x0,n starting from x0, while
Pgen(xn,0|xn) is the probability of generating the
trajectory x from xn by the reverse protocol, driv-
ing the system from H to H0 [19–21].

Instead, using a notation similar to Eqs. (22)
and (23), ZB introduced in Eq. (13) would read
as follow (see Fig. 6a, right)

ZB =

∫
dxπ(xn)J(xn)Pgen(x0,n|xn) . (24)

Notice that∫
dx1 · · · dxn−1Pgen(xn,0|xn) = 1 (25)∫

dx2 · · · dxnPgen(x0,n|x0) = 1 (26)

while ∫
dx1 · · · dxn−1Pgen(x0,n|xn) 6= 1 . (27)

The previous equations explain why in the defini-
tion of Z̃0 in Eq. (23), one does not need to use the
term J as done in Eq. (24) to constrain the distri-
bution of xn to π, see Sec. 2.4. A similar conclusion
follows for Z̃1 with Eqs. (22) and (26).

As explained in Sec. 2.4, the motivation for
choosing an extended partition function as in
Eqs. (13) and (24) is to maximize the overlap be-
tween the distributions of trial and equilibrium
trajectories (y0,n and x0,n, using the notation of
Sec. 2.4). In this respect, a key difference between
our algorithms and existing path sampling meth-
ods is that we never propose trial configurations
by the reverse protocol. A typical move to pro-
pose trial configurations using the reverse protocol
is shown in Fig. 6b, left [23, 24]. In this setting, trial
trajectories are generated by a local update of one
of the configurations belonging to the current path
(xi → yi), followed by propagating yi to yn and yi
to y0 using the direct and reverse protocol, respec-
tively. In our setting, in which we instantaneously
drive the system from H0 to H, the reverse protocol
is very inefficient in sampling ZB given that reverse

and direct protocols coincide [19]. It follows that
the distribution of y0 (obtained using the reverse
protocol) would resemble more to π than π0, result-
ing in poor sampling when ‖π−π0‖TV / 1, Fig. 6b,
left. For the system of Fig. 6, reverse protocols will
be outperformed even by a random reconstruction
of the path (as in Algorithm A, Sec. 2.2) since in
the latter case y0 is generated from a random walk
which is not constrained by π.

As our approach does not involve reverse proto-
cols, the condition µ(K) = µ(K−1), which is nec-
essary to enforce the detailed balance condition in
such a method, is not required. To support this
statement, in Appendix C, we sample the 2D model
of Fig. 3 using an asymmetric distribution of the
trial displacements, µ(K) 6= µ(K−1).

It is worth pointing out that our method does not
necessarily require the ability to sample the prior
π0 statically. A possible algorithm generating trial
paths y0,n by updating the current configuration xn
is illustrated in Fig. 6b, right. In particular, start-
ing from xn, we generate a set of transformations
K and reconstruct the most likely path x0,n (as
done in Sec. 2.4) using K. We then generate a trial
path y0,n by a forward propagation of x0 identified

with y0 using K. A new set of transformation K ′

is used in the following move. This algorithm gen-
erates more correlated configurations (as compared
to the method presented in Sec. 2.4) but with a
higher acceptance rate given that, in this case, y0

asymptotically follows the path distribution defined
by ZB (note that in Eq. (13) and (24), x0 is not dis-
tributed as π0).

3. Sampling polymers with fixed endpoints

We develop a method to generate chains with
fixed endpoints based on Algorithm B (Sec. 2.4).
This problem underlies efficient sampling of the
configurational entropy of polymers and is usually
addressed using CBMC simulations [34]. In this
example, multiple tMCs are used to propose a trial
configuration.

We consider a chain with NT + 1 monomers
located at positions ri, i = 0, · · ·NT , and end-
points fixed at a distance equal to d, such that
|rNT

− r0| = d. Neighboring monomers interact
via a harmonic potential V0. The configurational

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

http://www.latex-tutorial.com

Figure 7: (a) Schematic of the truncated Markov chain strategy employed to sample polymers with fixed endpoints. (b)
Comparison of the acceptance rates obtained by CBMC (with k = 1000 trials) and Algorithm B (with n = 10) for a chain
with 6 and 11 monomers (NT = 5 and 11) as a function of the end–to–end distance d. Inset: Asymptotic distributions of the
ith monomer along the end–to–end direction rx,i (with i = 1, 5, 9, and NT = 10) sampled by Algorithm B compared with
the expected distributions (solid lines). (c) ∆F calculated using Eqs. (33) and (34) as compared to the analytic prediction of
Eq. (31). Inset: distribution of Xy (y=CBMC and y=tMC) using current (open symbols) and trial (full symbols) configurations
for d = 20.

energy of the system is given by

UHS =

NT∑
i=1

V0(ri, ri−1) . (28)

Details about the system are reported in Appendix
B.2.

As in CBMC, trial configurations are generated
one monomer at a time. We use NT − 1 dif-
ferent tMCs, with transition matrices given by
(T (1), · · · , T (NT−1)), to sequentially generate trial

monomers, rt
i ≡ y

(i)
n with i = 1, · · · , NT − 1. The

use of multiple Markov chains can leverage the fact
that the interactions between subsets of degrees of
freedom could be sufficiently weak to be sampled
perturbatively. For instance, in the present case,
only neighbouring monomers interact, see Eq. (28).

Given rtj−1 = y
(j−1)
n , we first sample y

(j)
0 from

π0(y
(j)
0) = exp[−βV0(y

(j)
0 , rt

j−1)]. A truncated

Markov chain with transition matrix T (j), attempt-
ing to displace a monomer within a cube of size

∆x = 4 5, is then used to evolve y
(j)
0 towards y

(j)
n ,

i.e., y
(j)
n = (T (j))ny

(j)
0 see Fig. 7a. The station-

ary distribution of T (j), πT (j) , is taken equal to

πT (j)(y(j)) ∼ PG(y
(j)
0 , rNT

)π0(y
(j)
0), where PG is a

guiding function biasing the chain’s growth towards
the fixed end monomer [1, 34]. PG is chosen as the
end–to–end distance distribution of a chain segment
of length NT − j with unconstrained end–to–end
distance. Given the set of the current monomers,

5∆x should be sufficiently big to generate sufficiently
stretched configurations, ∆x

√
n/2 > dmax/NT , where dmax

is the maximal end–to–end distance considered in Fig. 7b.
We did not further optimize ∆x.

(rc
1, · · · , rc

NT−1), we reconstruct the tree of possible

trajectories for each monomer using T (i). Fig. 7a
reports one of these trajectories for monomer i.
Each monomer contributes to the acceptance fac-
tor, F (ztMC), with a term given by Eq. (17). In
particular

ztMC =
exp(−βU t

HS)

exp(−βU c
HS)

NT−1∏
i=1

Pn(rc
i |K(i))

Pn(rt
i|K(i))

, (29)

where Pn(rαi |K(i)), with α standing for t or c, is
calculated using the tree engendered by T (i), as in
Fig. 3c right, while U t

HS/U c
HS is the configurational

energy of the trial/current configuration given by

Eq. (28). In Eq. (29), K(i) = (K
(i)
1 , · · · , K(i)

n) is
the set of transformations used by T (i).

We compare our method with a standard CBMC
algorithm in which monomer rt

i is selected from k

trials, distributed as π0 (r
(α)
i , α = 1, · · · k), using

PG

Prob(rt
i) =

PG(rt
i, rNT

)

W t
i

,

W t
i =

k∑
α=1

PG(r
(α)
i , rNT

) , (30)

where W t
i is the contribution of monomer i to the

Rosenbluth weight of the trial configuration. The
Rosenbluth weight of the current configuration, W c

i

is defined similarly [1]. The acceptance, F (zCBMC),
reads as follows

zCBMC =
e−βV0(rtNT−1,rNT

)

e
−βV0(rcNT−1,rNT

)

NT−1∏
i=1

[
W t
i

W c
i

PG(rc
i , rNT

)

PG(rt
i, rNT

)

]
.

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

http://www.latex-tutorial.com

The simulation results are shown on Fig. 7b. We
observe how CBMC is more efficient for small values
of d. However, when increasing d, the acceptance
of CBMC plummets while tMCs can more easily
generate overstretched configurations. This is more
evident in systems with small values of NT . In the
overstretched regime, CBMC fails since π0 and π
do not overlap. Instead, tMCs can sample distri-
butions that do not overlap with π0, as explicitly
shown in Fig. 3a and 3b. For d = 10, the inset
of Fig. 7b shows how the asymptotic distributions
of ri (with i = 1, 5, 9, and NT = 10) sampled by
Algorithm B follow the expected distributions.

As anticipated in Sec. 2.4, the sampling of
Pn(rt

i|Ki) (and, therefore, J) allows calculating the
excess free energy ∆F of tethering monomer NT−1
to NT . The expected expression of ∆F is the fol-
lowing

β∆Fexp =
3

2
logNT +

1

2NTσ2
(rNT

− r0)2.

(31)

By generalising the arguments leading to Eq. (20),
∆F is calculated as follows when using tMCs

e−β∆F = 〈XtMCs〉(rti)i , (32)

XtMCs = e−βU
t
HS

NT−1∏
i=1

1

Pn(rt
i|Ki)

. (33)

Instead, the estimator used in CBMC (XCBMC)
reads as follows [1]

XCBMC = e−βV0(rtNT−1,rNT
)
NT−1∏
i=1

W t
i

kPG(rt
i, rNT

)
.

(34)

Fig. 7c shows how the two estimators, Eqs. (33)
and (34), properly reproduce ∆Fexp at small values
of d. Discrepancies appear concomitantly with the
downfall of the acceptance rates. This is expected
and can be quantified by a poor overlap between
the trial and current distributions of X (see inset
of Fig. 7c): ∆F cannot be reproduced when the
generative method cannot produce representative
configurations of π(x).

Notice that the computational complexity of the
CBMC with k = 1000 is comparable with that of
Algorithm B with n = 10, as employed in Fig. 7b.
We stress that a more efficient CBMC algorithm
would generate trial segments distributed as cππ0,
where c is a normalization constant. However, sam-
pling ππ0 would require developing system–specific

!12 (Degree)
0.00

0.01

0.02

0.03

0.04 (a)

100 125 150 175 200 225 250 275

!12 (Degree)

0.00

0.02

0.04

0.06
(b)

Figure 8: Simulated (symbols) and expected distribution
(full line) of the dihedral angle (w12) of molecules with 3
branches, 2–methylpropane, panel a) and 4 branches (2,2–
dimethylpropane, panel b. Dotted and dashed lines are the
distributions of yn with n = 10 and n = 4, respectively.
The legend is as in Fig. 3c. The results are obtained with
106 iterations. More details of the models and simulation
parameters are reported in Appendix B.3 and in [38].

sampling procedures [34]. On the other hand,
the tMC method can readily be employed for any
type of potentials (including bending and torsional
terms). In that sense, tMC algorithms are more
portable.

4. Limitations of the current algorithms

We sample 2–methylpropane (BM2) and 2, 2–
dimethylpropane (BM3) molecules modeled, re-
spectively, as a 3– and 4–branched molecules (see
Fig. 8). The length of the branches is fixed while
pairs of branches interact through a bending poten-
tial Ubend. We fix the the direction of a branch, and
label the branches that are sampled from 1 to nb,
where nb = 2 for BM2 or 3 for BM3. The target
probability density function is given as

π = c
∏
i<j

exp[−βUbend(θij)] , (35)

where θij is the angle between the branches i and
j, and c a normalization constant. We choose the
following prior probability density function

π0 = c0
∏
i>0

exp[−βUbend(θi0)] , (36)

where c0 is the normalization factor. The trial
moves, Ki, employed by the Markov chain with

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

http://www.latex-tutorial.com

transition matrix T act as follows. One of the nb
dynamic branches is chosen with uniform probabil-
ity and rotated by a random angle chosen within
−π/2 and π/2 around a random unit vector cen-
tered at the center of the molecule. We consider
a Markov matrix T that asymptotically samples π,
such that π = πT . Explicit details on the model are
given in Appendix B.3.

In Fig. 8 we test the algorithms by sampling the
dihedral angle, ωij , defined as the angle between the
plane spanned by the branches 0 and i and the plane
spanned by the branches 0 and j. Algorithms A
and B reproduce the target distribution. However,
the acceptance rates could be quite small, especially
in the case of the 4–branched molecule, even when
using the expensive Algorithm B, see Fig. 4 “BM2”
and “BM3”,. Fig. 8 shows how the distributions of
yn are still far from π even for the highest value of
n considered.

The previous considerations unveil a limitation of
the method: In systems with many degrees of free-
dom, prohibitively large values of n may be required
to generate acceptable configurations. One should
mention that a reduction of the mixing time can be
achieved using a prior distribution overlapping with
π (notice that nmix = 0 if π0 = π). This could be
achieved, for instance, by using learned priors [37]
or an iterative scheme, the latter refining π0 on the
fly. Notice also that in the example of branched
molecules most of the proposed configurations were
rejected due to a random choice of the proposed up-
dates, K. Instead, one could envisage using sym-
plectic or learned [13, 39] transformations to gener-
ate updates driving far from equilibrium states into
the basins of π in fewer updates. Investigations
in this direction will be addressed in future efforts.
Finally, notice that a reduction of the mixing time
could be achieved by employing the presented algo-
rithm to relax a subset of the system’s degrees of
freedom as done in the heat–bath approach.

5. Conclusions

This paper studies the problem of generating
trial configurations in MCMC methods by evolv-
ing states sampled from a prior distribution (π0).
In particular, we consider the possibility of using a
Markov transition matrix T to evolve a configura-
tion y0 (y0 ∼ π0) into yn (yn ∼ πn), i.e., yn = Tny0,
and use yn as a trial configuration. A limiting con-
dition arises from the necessity of using a value of
n large enough to guarantee an overlap between πn

and the target distribution (π). We discussed how
this could be problematic when using an arbitrary
T and π0. Sec. 3 provides an example in which this
problem is sidestepped by using multiple Markov
transition matrices to generate a single configura-
tion.

As done in path sampling methods, we have de-
fined an extended space comprising all the trajec-
tories generated by T and derived two prototypi-
cal algorithms (Algorithm A and B). Intriguingly,
in Algorithm A, the quality of the sampling is not
only controlled by the overlap between the trial and
target distributions (‖πn − π‖TV) but also by the
overlap between the distribution of the equilibrium
and generated trajectories. Algorithm B addresses
the last issue at the price of a higher computational
cost (arising from the necessity of enumerating 2n

paths) which heavily limits the length n of the tMC.
We anticipate that it is possible to limit the number
of trajectories by modifying the generative method
of Sec. 2.1. Investigations in this direction will be
presented elsewhere.

The proposed methods could also inspire new de-
velopments in the field of generative models where,
traditionally, neural networks are used to map a
prior into a target distribution [13].

Acknowledgements

We thank two anonymous Reviewers and Manuel
Athènes for insightful comments and constructive
suggestions. We thank Manuel Athènes for bringing
to our attention relevant literature about path sam-
pling methods. We thank Alessandro Bevilacqua
for early discussions on the sampling of stretched
harmonic chains which motivated the developments
of the proposed methodology. This paper is dedi-
cated to his memory. Financial support was pro-
vided by the Université Libre de Bruxelles (ULB)
and an A.R.C. grant of the Fédération Wallonie–
Bruxelles. Computational resources have been pro-
vided by the Consortium des Équipements de Cal-
cul Intensif (CECI), funded by the Fonds de la
Recherche Scientifique de Belgique (F.R.S.–FNRS)
under Grant No. 2.5020.11.

Appendix A. Numerical recipes

In this section, we provide the flow charts of the
algorithms introduced in this work. In Appendix

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

http://www.latex-tutorial.com

A.3, we detail the algorithm used to sample the ac-
ceptances ηBi ’s employed in Algorithm B. These ac-
ceptances are used to calculate P̄gen, “B”, in Fig. 5.

Appendix A.1. Generating trial configurations

Flow chart to generate the path y0,n =
(y0, y1, · · · , yn) and compute Pgen(y0,n|K):

(i) Sample y0 from the prior distribution π0;
(ii) Sample a set of n transformations, K =

(K1, · · · ,Kn);
(iii) Initialize Pgen(y0,n|K), Pgen(y0,n|K) =

π0(y0);
(iv) Iterate from i = 1 to n :

• Generate ytrial
i = Kiyi−1;

• Calculate the acceptance rate for ytrial
i us-

ing πT , acc(T)(yi−1 → ytrial
i);

• If accepted, yi = ytrial
i , Pgen(y0,n|K) ←

Pgen(y0,n|K) · fKi
(yi−1, 1) (Eq. 5);

• Else, yi = yi−1 and Pgen(y0,n|K) ←
Pgen(y0,n|K) · fKi(yi−1, 0);

(v) Return y0,n, Pgen(y0,n|K), K.

Appendix A.2. Algorithm A

Flow chart to calculate the acceptance rate start-
ing from the current configuration x (in the physical
space):

(i) Generate the trial configuration y and the as-
sociate path y0,n, along with the set of trans-
formations K and the generating probabil-
ity Pgen(y0,n|K) with the steps described in
Sec. Appendix A.1;

(ii) Sample n random acceptances, ηAi ’s, where
ηAi = 0 or 1 with equal probability;

(iii) Construct x0,n by setting xn = x and iterating

xi = K
−ηAi+1

i+1 (xi+1), for i = n− 1, · · · , 0;
(iv) Compute the generating probability

Pgen(x0,n|K) using Eq. (4)

Pgen(x0,n|K) = π0(x0)

n∏
j=1

fKj (xj−1, η
A
j)

(A.1)

with fKj
defined in Eq. (5);

(v) Calculate the acceptance rate with zA given by
Eq. (10).

Appendix A.3. Algorithm B

Flow chart to calculate the acceptance rate start-
ing from the current configuration x (in the physical
space):

(i) Generate y and the set K with the steps de-
scribed in Appendix A.1;

(ii) Compute Pn(x|K) and Pn(y|K) using K and
the method described below;

(iii) Calculate the acceptance rate with zB given by
Eq. (17).

Flow chart to calculate Pn(xn|K) (or Pn(yn|K))
for a given set of transformations K

(i) Initialise a 2n–dimensional vector (vα, α =
0, · · · , 2n − 1) with the list of states at layer

0, x
(α)
0 (see Fig. 3c, right), leading to xn with

a combination of displacements taken from K.
In particular, if b1b2 · · · bn is the binary repre-

sentation of m = 2n + α, 6 we calculate x
(α)
0

as

vα = x
(α)
0 = (K−b11) · · · (K−bnn)xn (A.2)

(ii) Initialise Pα and Jα (α = 0, · · · , 2n − 1) as
Pα = Jα = π0(vα), where π0 is the prior dis-
tribution;

(iii) Iterate Pα and Jα n times using the follow-
ing procedure. At the ith iteration, update the
components of Pα and Jα with α = p · 2i, with
p = 0, 1, · · · 2n−i−1 using Eq. (15). In particu-
lar, defining V and γ as follows

V = Pp·2ifKi
(vp·2i , 0)

+ Pp·2i+2i−1fKi
(vp·2i+2i−1 , 1)

γ =
Pp·2i+2i−1fKi

(vp·2i+2i−1 , 1)

V

then

Jp·2i ←


Jp·2ifKi

(vp·2i , 0) ,
with Prob = 1− γ

Jp·2i+2i−1fKi(vp·2i+2i−1 , 1) ,
with Prob = γ

Pp·2i ← V

Note that, by construction, vp·2i =
Kivp·2i+2i−1 while, in general, Kivp·2i

(entering the calculation of fKi
(vp·2i , 0)) does

not belong to the set of 2n states listed by vα
(see Fig. 3c, right).

6We calculate the binary representation of m using
the routine available at https://www.geeksforgeeks.org/

python-slicing-extract-k-bits-given-position

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.geeksforgeeks.org/python-slicing-extract-k-bits-given-position
https://www.geeksforgeeks.org/python-slicing-extract-k-bits-given-position
http://www.latex-tutorial.com

(iv) After the nth iteration, the value of Pn(xn|K)
and Pgen(x0,n|K) are found as Pn(xn|K) = P0

and Pgen(x0,n|K) = J0.

Appendix B. Prior and target distributions
employed

Throughout this work, fN(x;µ,Σ) is a Gaussian
distribution

fN(x;µ,Σ) ≡ exp
[
− 1

2 (x− µ)>Σ−1(x− µ)
]

(2π)d/2|Σ|1/2
(B.1)

where µ is the d–dimensional mean vector and Σ
the covariance matrix.

Appendix B.1. 2D model (Fig. 3)

The prior distribution is a two–dimensional
Gaussian distribution

π0(v) = fN(v; 0,Σ0) , (B.2)

with a covariance matrix given by Σ0 =
diag(σ2

1 , σ
2
2) where σ1 = σ2 = 0.6.

We use a multimodal target distribution given by
the sum of three Gaussian distributions

π(v) =
1

3

3∑
i=1

fN(v;µi,Σi) (B.3)

where the inverse of the covariance matrix Σi is
given by

Σ−1
i =

1

σ2
i,1σ

2
i,2(1− ρ2

i)

(
σ2
i,2 −ρσi,1σi,2

−ρσi,1σi,2 σ2
i,1

)
,

(B.4)

with

µ1 = (−2,−2) , ρ1 = 0.7 ,

σ1,1 = 0.5 , σ1,2 = 0.5 ,

µ2 = (−1,−2) , ρ2 = 0 ,

σ2,1 = 0.3 , σ2,2 = 0.6 ,

µ3 = (−2, 2) , ρ3 = 0.3 ,

σ3,1 = 0.6 , σ3,2 = 0.3 .

Prior and target distributions are shown on Fig. 3a.

Appendix B.2. The harmonic chain system
(Sec. 3)

In the system of Sec. 3, neighboring monomers
interact via a harmonic potential, V0, which reads
as follows

V0(ri, ri−1) =
kBT

2
|ri − ri−1|2 . (B.5)

The prior distributions employed to select y
(j)
0 (j =

1, · · · , NT − 1) has a probability density function
given by

π0(y
(j)
0) = fN(y

(j)
0 ; rt

j−1,1) . (B.6)

The asymptotic state visited by the tMC with tran-
sition matrix T (j), πT (j) , is taken equal to

πT (j)(y(j)) =
PG(y(j), rNT

)π0(y(j))∫
dy(j)PG(y(j), rNT

)π0(y(j))
, (B.7)

with

PG(y
(j)
0 , rNT

) = fN(y
(j)
0 ; rNT

,
√
NT − j · 1) .

(B.8)

Appendix B.3. Branched molecules (Fig. 8)

We consider molecules constituted by nb + 1
branches (nb = 2 and 3, see Fig. 8). π reads as
follows

π(θ01, · · · , θ0nb
, θ12, · · · , θ(nb−1)nb

) =

1

N
exp

−β nb∑
i=0

nb∑
j>i

Ubend(θij)

 , (B.9)

where θij is the angle between the branches i and
j, and N a normalization constant. The bending
potential Ubend(θij) is defined as

Ubend(θ) =
1

2
kθ(θ − θ0)2 , (B.10)

where kθ and θ0 are parameters of the system (see
below). We choose the following probability density
function for the prior distribution

π0(θ01, · · · , θ0nb
) =

1

N0
exp

[
−β

nb∑
i=1

Ubend(θ0i)

]
,

(B.11)

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

http://www.latex-tutorial.com

where N0 is the normalization factor.
In Sec. 4, we consider 2–methylpropane molecules
with parameters

nb = 2 , (B.12)

T = 300 K , (B.13)

θ0 = 112 (deg) , (B.14)

kθ/kB = 62500 K , (B.15)

as well as 2, 2–dimethylpropane with parameters

nb = 3 , (B.16)

T = 300 K , (B.17)

θ0 = 109.47 (deg) , (B.18)

kθ/kB = 62500 K . (B.19)

The dihedral angle ωij (see Fig. 8) is the angle be-
tween the plane spanned by the branches 0 and i
and the plane spanned by the branches 0 and j.
This angle is obtained from the bending angles θ0i,
θ0j and θij as

cos(ωij) =
cos(θij)− cos(θ0i) cos(θ0j)

sin(θ0i) sin(θ0j)
. (B.20)

Appendix C. Asymmetrically distributed
displacements K

The condition µ(K) = µ(K−1), which is usually
required to enforce the detailed balance condition
in path sampling methods, is not required by Al-
gorithms A and B. To support this statement, in
Fig. C.9 we show that an asymmetric distribution
of displacements does not bias the sampling of the
2D model defined in Fig. 3a.

Appendix D. Truncated Markov chain sam-
pling with π 6= πT

We consider a special case of Algorithms A and
B where the trial configurations, yn, are gener-
ated using acceptances ηi’s uniformly distributed,
Prob(ηi = 1) = Prob(ηi = 0) = 1/2. In other
terms, proposed updates of yi with i = 0, · · · , n− 1
are accepted with probability 1/2, i.e. fKi = 1/2
for both η = 0, 1. The probability of generating a
path leading to yn, y0,n = (y0, · · · , yn) is then

Pgen(y0,n|K) = π0(y0)
1

2n
. (D.1)

v2

(a)

v1

(b)
Analytical

Algorithm A

Algorithm B

Prior-dist.

π4

π10

Figure C.9: 2D model: Comparison of the marginal distribu-
tions of v1 (a) and v2 (b) for Algorithms A and B (symbols)
for n = 4 and asymmetrically distributed displacements K,
with the analytical target distribution (solid line). Each
transformations Ki attempts to displace the current state
by (∆x,∆y) ∈ [−3, 1] × [−3, 1]. The dashed (dotted) lines
show the distributions of the trial configurations for n = 4
(n = 10), The dash–dotted lines depict the prior distribu-
tion. The scale bar represents the unit length. The results
have been obtained with 4 · 106 iterations.

In this case, the tMC would asymptotically sample
the constant distribution, πT ∼ 1. Contrary to the
choice made in the example of Figs. 3 and 5 (namely
π = πT), in this section the distribution of the trial
configurations do not attempt to reproduce the tar-
get distribution π. Below, we consider Algorithms
A’ and B’, as special cases of Algorithms A and
B respectively, where Pgen is given by Eq. (D.1).
Using the 2D model of Fig. 3, we show that the Al-
gorithms A’ and B’ are not biased, supporting that
the choice of πT is free.

Appendix D.1. Algorithm A’

Given xn and K, the probability of generating
the old configuration x0,n = (x0, · · · , xn) is given

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

http://www.latex-tutorial.com

v2

(a)

v1

(b)
Analytical

Algorithm A′

Algorithm B′

Prior-dist.

π4

π10

Figure D.10: 2D model: Comparison of the marginal distri-
butions of v1 (a) and v2 (b) for Algorithm A’ and B’, n = 4,
(symbols) with the analytical target distribution (solid line).
The dashed (dotted) lines show the distributions of the trial
configurations for n = 4 (n = 10). The dash–dotted lines de-
pict the prior distribution. The results have been obtained
with 2 · 106 iterations.

by

Pgen(x0,n|K) = π0(x0)
1

2n
, (D.2)

using Eq. (D.1) and where

x0 =

n∏
j=1

K
−ηAj
j xn . (D.3)

The trial configuration is then accepted with prob-
ability F (zA′) with

zA′ =
Pgen(x0,n|K)

Pgen(y0,n|K)

π(yn)

π(xn)
=
π0(x0)

π0(y0)

π(yn)

π(xn)
,

(D.4)

using Eqs. (10) and (D.2).
Fig. D.10 (red circles) shows that Algorithm A’

is not biased even if the distribution of yn (dashed
and dotted lines) does not attempt to reproduce

0 1 2 3 4 5 6 7 8 9 10

n

10−3

10−2

10−1

100

A
cc

ep
ta

n
ce

R
at

e

2D A’

2D B’

2D A

2D B

Figure D.11: Comparison of the acceptance rates of the Al-
gorithms A’ (circles, solid line) and B’(crosses, solid line)
with the Algorithms A (circles, dashed line) and B (crosses,
dashed line) as function of the number of n in the tMC for
the two–dimensional system (2D).

the target distribution (solid line). We observe
from Fig. D.11 “2D A” and “2D A”, that the ac-
ceptance rate is reduced compared to Algorithm A
for small values of n. This behaviour is explained
by a reduced overlap between the distribution of
the trial configurations (Fig. D.10 dashed and dot-
ted lines) with π as compared to Algorithm A, as
shown on Fig. 3b. For larger values of n, Algo-
rithm A’ outperforms Algorithm A as in the latter
case Pgen(x0,n|K)/Pgen(y0,n|K) is smaller.

Appendix D.2. Algorithm B’

If fKi
= 1/2 for η = 0 and η = 1, then Pn(yn|K)

becomes

Pn(yn|K) =

2n∑
i=1

π0(y0,i)
1

2n
, (D.5)

where y0,i with i ∈ (1, 2n) are the 2n states obtained
from yn

y0,i =

n∏
j=1

(Kj)
−ηB,i

j yn , (D.6)

for a set of acceptance ηB,i = (ηB,i1 , · · · , ηB,in).
There are 2n of such sets. Similarly for the old
configuration x we obtain

Pn(xn|K) =

2n∑
i=1

π0(x0,i)
1

2n
, (D.7)

x0,i =

n∏
j=1

(Kj)
−ηB,i

j xn . (D.8)

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

http://www.latex-tutorial.com

The trial configuration is accepted with probability
acc(P) = F (zB′) with (see Eq. (17))

zB′ =
Pn(xn|K)

Pn(yn|K)

π(yn)

π(xn)
=

∑2n

i=1 π0(x0,i)∑2n

i=1 π0(y0,i)

π(yn)

π(xn)
.

(D.9)

We verify that the conclusions made for Algo-
rithm A’ also apply here. Fig. D.10 (blue crosses)
shows that the Algorithm B’ is not biased but, as
shown in Fig. D.11 (blue crosses), has a lower ac-
ceptance rate as compared to Algorithm B.

References

[1] D. Frenkel, B. Smit, Understanding molecular simula-
tion: from algorithms to applications, Vol. 1, Elsevier,
2001.

[2] D. P. Landau, K. Binder, A guide to Monte Carlo
simulations in statistical physics, Cambridge University
Press, 2014.

[3] W. Krauth, Statistical mechanics: algorithms and com-
putations, Vol. 13, Oxford University Press, 2006.

[4] D. A. Levin, Y. Peres, Markov chains and mixing times,
Vol. 107, American Mathematical Soc., 2017.

[5] E. P. Bernard, W. Krauth, D. B. Wilson, Event-chain
monte carlo algorithms for hard-sphere systems, Phys.
Rev. E 80 (5) (2009) 056704.

[6] P. Diaconis, S. Holmes, R. M. Neal, Analysis of a non-
reversible markov chain sampler, Ann. Appl. Probab.
(2000) 726–752.

[7] M. Michel, A. Durmus, S. Sénécal, Forward event-chain
monte carlo: Fast sampling by randomness control in
irreversible markov chains, J. Comput. Graph. Stat.
29 (4) (2020) 689–702.

[8] D. M. Ceperley, Path integrals in the theory of con-
densed helium, Rev. Mod. Phys. 67 (2) (1995) 279.

[9] W. Krauth, N. Trivedi, D. Ceperley, Superfluid-
insulator transition in disordered boson systems, Phys.
Rev. Lett. 67 (1991) 2307–2310.

[10] E. L. Pollock, D. M. Ceperley, Simulation of quantum
many-body systems by path-integral methods, Phys.
Rev. B 30 (1984) 2555–2568.

[11] M. Boninsegni, N. Prokof’ev, B. Svistunov, Worm al-
gorithm for continuous-space path integral monte carlo
simulations, Phys. Rev. Lett. 96 (7) (2006) 070601.

[12] H. Wu, J. Köhler, F. Noé, Stochastic normalizing flows,
Advances in Neural Information Processing Systems 33
(2020) 5933–5944.

[13] F. Noé, S. Olsson, J. Köhler, H. Wu, Boltzmann gener-
ators: Sampling equilibrium states of many-body sys-
tems with deep learning, Science 365 (6457) (2019).

[14] S. Duane, A. D. Kennedy, B. J. Pendleton, D. Roweth,
Hybrid monte carlo, Phys. Lett. B 195 (2) (1987) 216–
222.

[15] B. Mehlig, D. W. Heermann, B. M. Forrest, Exact
langevin algorithms, Mol. Phys. 76 (6) (1992) 1347–
1357.

[16] B. Mehlig, D. W. Heermann, B. M. Forrest, Hybrid
monte carlo method for condensed-matter systems,
Phys. Rev. B 45 (2) (1992) 679.

[17] M. B. B. J. M. Tuckerman, B. J. Berne, G. J. Martyna,
Reversible multiple time scale molecular dynamics, J.
Chem. Phys. 97 (3) (1992) 1990–2001.

[18] M. Creutz, Microcanonical monte carlo simulation,
Phys. Rev. Lett. 50 (19) (1983) 1411.

[19] G. E. Crooks, Nonequilibrium measurements of free en-
ergy differences for microscopically reversible marko-
vian systems, J. Stat. Phys. 90 (5) (1998) 1481–1487.

[20] C. Jarzynski, Nonequilibrium equality for free energy
differences, Phys. Rev. Lett. 78 (14) (1997) 2690.

[21] C. Jarzynski, Equilibrium free-energy differences from
nonequilibrium measurements: A master-equation ap-
proach, Phys. Rev. E 56 (5) (1997) 5018.

[22] L. R. Pratt, A statistical method for identifying tran-
sition states in high dimensional problems, J. Chem.
Phys. 85 (9) (1986) 5045–5048.

[23] C. Dellago, P. G. Bolhuis, F. S. Csajka, D. Chandler,
Transition path sampling and the calculation of rate
constants, J. Chem. Phys. 108 (5) (1998) 1964–1977.

[24] P. G. Bolhuis, D. Chandler, C. Dellago, P. L. Geissler,
Transition path sampling: Throwing ropes over rough
mountain passes, in the dark, Annu. Rev. Phys. Chem.
53 (1) (2002) 291–318.

[25] F. M. Ytreberg, D. M. Zuckerman, Single-ensemble
nonequilibrium path-sampling estimates of free energy
differences, J. Chem. Phys. 120 (23) (2004) 10876–
10879.

[26] F. M. Ytreberg, D. M. Zuckerman, Erratum:“single-
ensemble nonequilibrium path-sampling estimates of
free energy differences”[j. chem. phys. 120, 10876
(2004)], J. Chem. Phys. 121 (10) (2004) 5022–5023.

[27] M. Athènes, A path-sampling scheme for computing
thermodynamic properties of a many-body system in
a generalized ensemble, Eur. Phys. J. B 38 (4) (2004)
651–663.

[28] G. Adjanor, M. Athènes, Gibbs free-energy estimates
from direct path-sampling computations, J. Chem.
Phys. 123 (23) (2005) 234104.

[29] G. Adjanor, M. Athènes, J. M. Rodgers, Waste-
recycling monte carlo with optimal estimates: Appli-
cation to free energy calculations in alloys, J. Chem.
Phys. 135 (4) (2011) 044127.

[30] M. Athènes, M.-C. Marinica, Free energy reconstruc-
tion from steered dynamics without post-processing, J.
Comp. Phys. 229 (19) (2010) 7129–7146.

[31] J. I. Siepmann, D. Frenkel, Configurational bias monte
carlo: a new sampling scheme for flexible chains, Mol.
Phys. 75 (1) (1992) 59–70.

[32] T. J. H. Vlugt, M. G. Martin, B. Smit, J. I. Siep-
mann, R. Krishna, Improving the efficiency of the
configurational-bias monte carlo algorithm, Mol. Phys.
94 (4) (1998) 727–733.

[33] M. G. Martin, J. I. Siepmann, Novel configurational-
bias monte carlo method for branched molecules. trans-
ferable potentials for phase equilibria. 2. united-atom
description of branched alkanes, J. Phys. Chem. B
103 (21) (1999) 4508–4517.

[34] C. D. Wick, J. I. Siepmann, Self-adapting fixed-end-
point configurational-bias monte carlo method for the
regrowth of interior segments of chain molecules with
strong intramolecular interactions, Macromolecules 33
(2000) 7207.

[35] A. Sepehri, T. D. Loeffler, B. Chen, Improving the effi-
ciency of configurational-bias monte carlo: A jacobian–
gaussian scheme for generating bending angle trials for

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

http://www.latex-tutorial.com

linear and branched molecules, J. Chem. Theory Com-
put. 13 (4) (2017) 1577–1583.

[36] A. Sepehri, T. D. Loeffler, B. Chen, Improving the ef-
ficiency of configurational-bias monte carlo: Extension
of the jacobian–gaussian scheme to interior sections of
cyclic and polymeric molecules, J. Chem. Theory Com-
put. 13 (9) (2017) 4043–4053.

[37] L. Sbailò, M. Dibak, F. Noé, Neural mode jump monte
carlo, The Journal of Chemical Physics 154 (7) (2021)
074101.

[38] The codes used for the simulations are publicly available
at https: // github. com/ jo-mab/ TruncatedMC .

[39] D. Wu, R. Rossi, G. Carleo, Unbiased monte carlo clus-
ter updates with autoregressive neural networks, Phys-
ical Review Research 3 (4) (2021) L042024.

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://github.com/jo-mab/TruncatedMC
http://www.latex-tutorial.com

	1 Introduction
	2 Presentation of the algorithms
	2.1 Generating trial configurations
	2.2 Algorithm A
	2.3 2D model
	2.4 Algorithm B
	2.5 Comparison with other path sampling methods

	3 Sampling polymers with fixed endpoints
	4 Limitations of the current algorithms
	5 Conclusions
	Appendix A Numerical recipes
	Appendix A.1 Generating trial configurations
	Appendix A.2 Algorithm A
	Appendix A.3 Algorithm B

	Appendix B Prior and target distributions employed
	Appendix B.1 2D model (Fig. 3)
	Appendix B.2 The harmonic chain system (Sec. 3)
	Appendix B.3 Branched molecules (Fig. 8)

	Appendix C Asymmetrically distributed displacements bold0mu mumu KKKKKK
	Appendix D Truncated Markov chain sampling with =T
	Appendix D.1 Algorithm A'
	Appendix D.2 Algorithm B'

