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Abstract

TC++ is a free/libre open-source software of the transcorrelated (TC) method for
first-principles calculation of solids. Here, the TC method is one of the promising
wave-function theories that can be applied to periodic systems with reasonable
computational cost and satisfactory accuracy. We present our implementation
of TC++ including a detailed description of the divergence correction technique
applied to the TC effective interactions. We also present the way to use TC++
and some results of application to simple periodic systems: bulk silicon and
homogeneous electron gas.
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1. Introduction

Accurate electronic-structure calculation of materials has been a long-standing
problem in materials science. Density functional theory (DFT) is one of the most
successful theories for this purpose, which enables efficient first-principles cal-
culation with satisfactory accuracy in many cases. However, several problems
in accuracy are known for standard approximations in DFT, such as difficul-
ties in describing electronic structure of strongly correlated systems. Since it is
difficult to systematically improve accuracy of the exchange-correlation energy
functional in DFT, another theoretical framework has also gathered attention:
wave function theory (WFT).

In WFT, many-body wave functions are explicitly handled, which requires
expensive computational cost while its accuracy can be systematically improved.
While WFT has been developed mainly in quantum chemistry, it has now been
applied to several solids. One representative example is quantum Monte Carlo
(QMC) methods [1] including variational Monte Carlo (VMC) and diffusion
Monte Carlo (DMC), where many-body integration such as the expectation
value of the physical quantities is performed with the Monte Carlo technique.
Other famous methods in WFT are the Hartree-Fock (HF) method and post-
HF methods such as Møller-Plesset (MP) perturbation theory and coupled-
cluster (CC) theory, where the Slater determinant consisting of the HF orbitals
is used as a starting point of approximation. More recently, full-configuration-
interaction (FCI) QMC method [2, 3, 4] has been paid much attention, where
linear combination of Slater determinants is optimized with a Monte Carlo tech-
nique. For small systems, accurate description of electronic structure using
WFT is well-established. On the other hand, for solid-state calculations, many
electrons require much demanding computation, which hinders efficient and ac-
curate calculation for many systems.

Transcorrelated (TC) method [5, 6, 7, 8, 9] is one of the promising WFTs,
which can be applied to calculations of homogeneous electron gas [10, 11, 12,
13, 14, 15] and solids [12, 16, 17, 18, 19] with efficient computational cost and
reasonable accuracy. In the TC method, many-body Hamiltonian is similarity-
transformed by the Jastrow correlation factor, by which electron correlation
effects are partially incorporated into Hamiltonian. For example, the similarity-
transformed Hamiltonian, called TC Hamiltonian, includes an effective Coulomb
interaction without divergence at the electron coalescence point for a singlet spin
pair when the cusp condition [20, 21] is imposed to the Jastrow factor. In the
single-determinant TC method, the HF approximation is applied to the TC
Hamiltonian, namely, the one-electron orbitals optimized for the TC Hamilto-
nian are obtained. Because of this construction, several post-HF methods can
be applied to the TC Hamiltonian in a straightforward manner. For example,
the TC method was combined with the coupled-cluster theory [22, 23], Møller-
Plesset (MP) perturbation theory [7, 8], and configuration interaction (CI) the-
ory [24, 25, 26, 27, 28] for atomic and molecular systems. The combination of the
TC method with the post-HF methods was also reported for solid-state calcula-
tions: calculation of optical absorption spectra by TC-CI singles [29], and TC-
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MP2 calculation for simple solids [30]. Several QMC methods using the Jastrow
factor can also be combined with the TC method [9, 31, 32, 33, 34, 35]. In partic-
ular, similarity-transformed FCIQMC, the combination of the TC and FCIQMC
methods, has recently been much attention [14, 36, 37, 38, 39, 40, 41, 42]. In ad-
dition, several important developments of the TC method have been recently re-
ported. Canonical TC method [43, 44] is an important development for treating
the non-Hermiticity of similarity-transformed Hamiltonian in the TC method.
TC method has also been applied to model systems [45, 40, 46, 47], quantum
gas [41], and cold-atom systems [42]. Using the TC method in the context of
quantum simulation is an interesting new direction of studies [48, 49]. Con-
struction of the exchange-correlation functional of DFT using the TC method
is also an intriguing attempt [50, 51].

As seen in the previous paragraph, the number of studies for solid-state TC
calculation [12, 16, 17, 18, 19, 29, 30] is relatively limited compared with that
for molecular systems. One problem in solid-state calculation is that we should
handle very complicated interaction terms of the similarity-transformed Hamil-
tonian, which shows divergent behavior in reciprocal space. Thus, it is important
to publish computational code of the TC method for solids and present how to
resolve these numerical difficulties. In this paper, we present our implementa-
tion of TC++, a free/libre open-source software of the single-determinant TC
method for first-principles calculation of solids, which was recently published
in github [52]. This paper is organized as follows. In Chapter 2, we present
computational algorithm of the single-determinant TC method for solid-state
calculations as implemented in our code. The way to use TC++ is shown in
Chapter 3. We present some results of application to simple systems in Chap-
ter 4. This paper is summarized in Chapter 5. Since our computational code
is focused on the single-determinant version of the TC method, we simply use
‘the TC method‘ to represent the single-determinant TC method hereafter in
this paper.

2. Algorithm

2.1. Transcorrelated method

For an N -electron system under an external potential vext(r), Hamiltonian
H reads

H =

N∑

i=1

(
−1

2
∇2

i + vext(ri)

)
+

N∑

i=1

N∑

j>i

1

|ri − rj |
, (1)

where x = (r, σ) denotes a set of spatial and spin coordinates associated with
an electron. The many-body wave function Ψ can be factorized as Ψ = FΦ
where

F = exp(−
N∑

i,j(>i)

u(xi, xj)), (2)
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is the Jastrow factor and Φ ≡ Ψ/F . We assume the Jastrow function u(xi, xj)
to be symmetric, i.e., u(xi, xj) = u(xj , xi), without loss of generality. By intro-
ducing a similarity-transformed Hamiltonian,

HTC ≡ F−1HF, (3)

the Schrödinger equation is rewritten as,

HΨ = EΨ⇔ HTCΦ = EΦ. (4)

In this way, electron correlation effects described by the Jastrow factor are
incorporated into the similarity-transformed Hamiltonian HTC, which is called
the TC Hamiltonian. TC Hamiltonian can be explicitly written as,

HTC =
N∑

i=1

(
−1

2
∇2

i + vext(ri)

)
+

N∑

i=1

N∑

j>i

v2body(x1, x2)

−
N∑

i=1

N∑

j>i

N∑

k>j

v3body(x1, x2, x3), (5)

where v2body(x1, x2) and v3body(x1, x2, x3) are the effective interactions defined
as,

v2body(x1, x2)

≡ 1

|r1 − r2|
+

1

2

[
∇2

1u(x1, x2) +∇2
2u(x1, x2)

−(∇1u(x1, x2))
2 − (∇2u(x1, x2))

2

]

+∇1u(x1, x2) · ∇1 +∇2u(x1, x2) · ∇2, (6)

and

v3body(x1, x2, x3)

≡ ∇1u(x1, x2) · ∇1u(x1, x3) +∇2u(x2, x1) · ∇2u(x2, x3)

+∇3u(x3, x1) · ∇3u(x3, x2). (7)

By applying the single-Slater-determinant (i.e., Hartree–Fock) approxima-
tion to TC Hamiltonian, Φ can be written as Φ = det[φi(rj)] consisting of
one-electron orbitals φ(r). In this paper, we assume one-electron orbitals are
assigned as spin-up or spin-down: to say, we do not consider a spinor orbital
where up- and down-components are hybridized. The following one-body self-
consistent-field (SCF) equation for one-electron orbitals can be derived (see,
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e.g., [9]):

(
−1

2
∇2

1 + vext(r1)

)
φi(r1)

+
N∑

j=1

∫
dr2 φ∗

j (r2)v2body(x1, x2)det

[
φi(r1)φi(r2)
φj(r1)φj(r2)

]

−
N∑

j=1

N∑

k>j

∫
dr2dr3 φ∗

j (r2)φ
∗
k(r3)v3body(x1, x2, x3)

×det



φi(r1)φi(r2)φi(r3)
φj(r1)φj(r2)φj(r3)
φk(r1)φk(r2)φk(r3)


 =

N∑

j=1

ǫijφj(r1), (8)

where the orthonormal condition, 〈φi|φj〉 = δi,j , is imposed. The TC one-
electron orbitals φi(r) are optimized by solving Eq. (8). This procedure costs
just the same order as the HF method thanks to an efficient algorithm of the
TC method [16]. Note that this equation comes down to the HF equation when
u = 0. In TC++, one-electron orbitals are expanded with a plane-wave basis set,
and their coefficients are determined by an iterative diagonalization scheme. In
particular, we adopt the block-Davidson method [59, 60], a detail of which are
presented in our previous study [18] and shall be presented in Sec. 2.4. The
total energy,

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 , (9)

is often approximated by the TC pseudoenergy,

ETC = Re

[ 〈Φ|HTC|Φ〉
〈Φ|Φ〉

]
, (10)

where these two quantities coincide when Φ is the exact eigenstate of HTC. An
important advantage for using the TC pseudoenergy is that ETC requires only
nine-dimensional (three-body) integration.

We also describe the biorthogonal formulation of the TC method, called the
biorthogonal TC (BITC) method. In the BITC method, we use left and right
Slater determinants consisting of different one-electron orbitals: X = det[χi(rj)]
and Φ = det[φi(rj)], respectively, with the biorthogonal condition 〈χi|φj〉 = δi,j
and the normalization condition 〈φi|φi〉 = 1. Then a one-body SCF equation
becomes slightly different from Eq. (8): φ∗(r) are replaced with χ∗(r) and the
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right-hand side of the SCF equation can be diagonal, i.e., ǫij = 0 (i 6= j):

(
−1

2
∇2

1 + vext(r1)

)
φi(r1)

+
N∑

j=1

∫
dr2 χ∗

j (r2)v2body(x1, x2)det

[
φi(r1)φi(r2)
φj(r1)φj(r2)

]

−
N∑

j=1

N∑

k>j

∫
dr2dr3 χ∗

j (r2)χ
∗
k(r3)v3body(x1, x2, x3)

×det



φi(r1)φi(r2)φi(r3)
φj(r1)φj(r2)φj(r3)
φk(r1)φk(r2)φk(r3)


 = ǫiiφi(r1). (11)

When diagonalizing this one-body SCF equation, we get χ and φ as the left
and right eigenstates. This procedure is equivalent to that we also impose the
one-body SCF equation for the left orbitals χ:

(
−1

2
∇2

1 + vext(r1)

)
χi(r1)

+
N∑

j=1

∫
dr2 φ∗

j (r2)v
†
2body(x1, x2)det

[
χi(r1)χi(r2)
χj(r1)χj(r2)

]

−
N∑

j=1

N∑

k>j

∫
dr2dr3 φ∗

j (r2)φ
∗
k(r3)v3body(x1, x2, x3)

×det



χi(r1)χi(r2)χi(r3)
χj(r1)χj(r2)χj(r3)
χk(r1)χk(r2)χk(r3)


 = ǫ∗iiχi(r1). (12)

The BITC pseudoenergy is defined as,

EBITC = Re

[〈X |HTC|Φ〉
〈X |Φ〉

]
. (13)

We can use many kinds of the Jastrow function u. At present, TC++ supports
the following simple Jastrow function [12, 53, 54, 55]:

u(x, x′) = uσ,σ′(|r − r′|) = Aσ,σ′

|r − r′|
(
1− e−|r−r′|/Cσ,σ′

)
, (14)

where
Cσ,σ′ =

√
2Aσ,σ′ (σ = σ′),

√
Aσ,σ′ (σ 6= σ′). (15)

This relation is derived by the cusp condition [20, 21]. Note that this Jastrow
function is actually spin-contaminated and does not satisfy the (true) cusp con-
dition. This deficiency can be avoided by constructing the Jastrow factor with
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the permutation operator, but this procedure introduces non-terminating series
of interaction in the TC Hamiltonian [56]. Thus, we adopt this approximate
cusp condition here. Fortunately, a VMC study reported that an effect of spin
contamination on accuracy of the wave function and its energy is small [57].
The parameter A is often determined by the long-range asymptotic behavior of
the Jastrow function determined by the random-phase approximation of homo-
geneous electron gas [58]:

A =

√
Ω

4πNunit
, (16)

where Ω and Nunit are the unit-cell volume and the number of electrons therein,
respectively. In TC++, one can use different values for the parameter A while
keeping the cusp condition by imposing Eq. (15), as adopted in [17].

2.2. Fourier transform and convolution formula

Before describing details of implementation, we define some notations in our
paper. Fourier transformation of the periodic function f(r) satisfying f(r +
R) = f(r) for an arbitrary lattice vector R, is denoted as f̃(G) in this paper:

f(r) =
∑

G

f̃(G)eiG·r, f̃(G) =
1

Ω

∫

Ω

dr f(r)e−iG·r, (17)

where the integration is performed in the unit cell, which yields the factor of
1/Ω. We also represent it as f̃(G) = FT[f(x)] or f(x) = FT−1[f̃(G)], both
of which are calculated using the Fast-Fourier-Transform technique. On the
other hand, Fourier transformation of the non-periodic function g(r) such as
the Coulomb potential is defined as

g(r) =
1

(2π)3

∫
dG g̃(G)eiG·r , g̃(G) =

∫
dr g(r)e−iG·r, (18)

in this paper, where the integration is performed in the infinitely large region.
For example, it is well known that the Fourier transform of 1/r is 4π/G2.

The following integration often takes place in electronic-structure calcula-
tion: ∫

dr′ g(r − r′)f(r′)eik·r
′

(19)

where f is periodic with respect to the lattice-vector translation while g and
eik·r

′

are not. We can derive the convolution formula even in this case:
∫

dr′ g(r − r′)f(r′)eik·r
′

(20)

=
1

(2π)3

∑

G

∫
dG′dr′ g̃(G′)f̃(G)eiG

′·(r−r′)ei(k+G)·r′

(21)

=
∑

G

g̃(k +G)f̃(G)ei(k+G)·r , (22)

as is often used in many calculation codes.
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2.3. One-electron orbitals

The left and right one-electron orbitals in the BITC method can be written
as

φj(r) =
eik·r√
Nk

φperiodic,j(r) =
eik·r√
Nk

∑

G

φ̃periodic,j(G)eiG·r , (23)

χj(r) =
eik·r√
Nk

χperiodic,j(r) =
eik·r√
Nk

∑

G

χ̃periodic,j(G)eiG·r , (24)

where the orbital index i denotes a pair of spin, k-vector, and band indices:
j = (σ,k, µj). Nk is the number of k points. The functions φperiodic,j and
χperiodic,j are periodic with respect to arbitrary translation compatible with the

unit cell. φ̃periodic,j and χ̃periodic,j are the Fourier transform of φperiodic,j and
χperiodic,j , respectively, as defined in Sec. 2.2. Normalization of the one-electron
orbital is imposed as follows:

〈φj |φj〉 =
∫

super

dr |φj(r)|2 =

∫

Ω

dr |φperiodic,j(r)|2 = 1, (25)

where the integration denoted as
∫
super is performed in the supercell with a

volume of NkΩ.
Here we explain how we impose the orthonormal condition on one-electron

orbitals in the TC method, while eigenvectors of a non-Hermitian operator are
not orthogonal each other. This method is described in [9]. First, we rewrite

the left-hand side of the SCF equation, Eq. (8), as ĥφi(r). By diagonalizing the

non-Hermitian operator ĥ, we get one-electron orbitals that are not orthogonal
each other. Then, we apply the Gram–Schmidt orthonormalization for these
orbitals. By this procedure, we can get the orthonormalized orbitals φi while
the eigenvalue matrix ǫij becomes non-diagonal owing to the Gram–Schmidt
orthonormalization. We note that the diagonal element ǫii is unchanged by the
Gram–Schmidt orthonormalization as proven in [9]. Another simpler proof is
shown in Appendix A. The real part of ǫii can be regarded as an one-electron
energy on the basis of the Koopmans’ theorem, which was also proven in [9].
This allows ones to depict the effective band dispersion, which is an important
advantage of the TC method.

For the BITC method, the situation is rather simple: ones just diagonal-
ize the SCF operator ĥ and set left and right eigenvectors as χ and φ. The
biorthogonal condition is automatically satisfied because

ǫii〈χi|φj〉 = 〈χi|ĥ|φj〉 = ǫjj〈χi|φj〉 ⇒ 〈χi|φj〉 = 0 (ǫii 6= ǫjj). (26)

Note that the biorthogonal condition can be easily applied also to eigenvectors
with degenerate eigenvalues.

2.4. Diagonalization

By rewriting the left-hand side of the SCF equation, Eq. (8), as ĥφi(r), the
SCF equation can be regarded as the eigenvalue problem of the non-Hermitian
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operator ĥ. We adopt the block-Davidson method [59, 60] for solving the eigen-
value problem, a detail of which are presented in our previous study [18].

In the block Davidson algorithm, we begin with the initial trial vectors

{v(1)1 , v
(1)
2 , . . . , v

(1)
nbands

} and estimated eigenvalues {ǫ(1)1 , ǫ
(1)
2 , . . . , ǫ

(1)
nbands

} for ĥ[φ],
where nbands is the number of bands considered at each k-point. Here, we con-
sider the diagonalization problem at each k-point while orbitals are updated for
all the k-points simultaneously. The trial vectors are used as basis functions
to represent the cell-periodic part of one-electron orbitals, φperiodic, and sat-

isfy the orthonormal condition, 〈v(1)i |v
(1)
j 〉 = δi,j . The initial trial vectors v(1)

and eigenvalues ǫ(1) are extracted from Quantum ESPRESSO (e.g., DFT or HF
results).

To obtain v
(1)
j (pnbands+1 ≤ j ≤ (p+1)nbands) from v

(1)
j ((p−1)nbands+1 ≤

j ≤ pnbands) (p = 1, 2, . . . , pmax), we calculate

v
(1)
pnbands+i = P̂ (ĥ(1) − ǫ

(1)
i )v

(1)
(p−1)nbands+i (i = 1, 2, . . . , nbands), (27)

where we used the preconditioner P̂ proposed by Payne et al. [61]

P̂ (G) =
27 + 18x+ 12x2 + 8x3

27 + 18x+ 12x2 + 8x3 + 16x4
, (28)

where

x =
1

2
|k +G|2

(
∑

G′

1

2
|k +G′|2ṽ(1)(p−1)nbands+i(G

′)

)−1

. (29)

This operator P̂ acts on the Fourier transform of (ĥ(1) − ǫ
(1)
i )v(1) in recipro-

cal space to suppress high-frequency components of plane waves. After that,
we perform the Gram-Schmidt orthonormalization for the new trial vectors

v
(1)
j (pnbands + 1 ≤ j ≤ (p + 1)nbands) so that all v

(1)
j obtained so far (i.e.,

1 ≤ j ≤ (p + 1)nbands) are orthonormalized. By repeating these processes

until all v
(1)
j and ĥ(1)v

(1)
j are obtained for 1 ≤ j ≤ (pmax + 1)nbands, we can

construct a subspace Hamiltonian 〈v(1)i |ĥ(1)|v(1)j 〉. The subspace dimension is
(pmax + 1)nbands. Note that the subspace dimension is sometimes smaller than
this value in real calculation, because we exclude a trial vector that is linearly
dependent on other trial vectors or has a very small norm (< 10−8 in the present
implementation) before Gram-Schmidt orthonormalization.

By diagonalizing the subspace Hamiltonian, we can get a better estimate
of the eigenvectors and the eigenvalues of ĥ. By using them, we update or-
bitals included in ĥ(1) and call it ĥ(2). The eigenvectors that have the low-

est nbands eigenvalues are used as new trial vectors {v(2)1 , v
(2)
2 , . . . , v

(2)
nbands} after

Gram-Schmidt orthonormalization, and these eigenvalues are also used as a new

estimate {ǫ(2)1 , ǫ
(2)
2 , . . . , ǫ

(2)
nbands}. Starting from these trial vectors and estimated

eigenvalues, other trial vectors are constructed using Eq. (27), namely,

v
(2)
pnbands+i = P̂ (ĥ(2) − ǫ

(2)
i )v

(2)
(p−1)nbands+i (i = 1, 2, . . . , nbands), (30)

9



for p = 1, 2, . . . , pmax. This self-consistent procedure is continued until the to-
tal energy and the charge density are sufficiently converged. For band-structure
calculation, we instead check convergence of the summation over the band eigen-
values.

We did not update orbitals in ĥ for every loop in our old implementation
shown in Ref. [18]. However, we update them in every loop of subspace diag-
onalization in our present implementation for efficient computation. For some
systems, there can be a chance that the former way is more efficient. In addi-
tion, we implemented the linear mixing of the electron density or the density
matrix in this self-consistent loop. The latter option is given because our TC-
SCF Hamiltonian is not determined only by the electron density. For the linear
mixing of the (spin) density [63] , the density is replaced as

nσ(r) =
∑

k,µ

χnew,∗
i (r)φnew

i (r)fnew
i , (i = (σ,k, µ)) (31)

→ β
∑

k,µ

χnew,∗
i (r)φnew

i (r)fnew
i + (1− β)

∑

k,µ

χold,∗
k (r)φold

k (r)fold
i , (32)

where β is a mixing ratio and new (old) quantities in the self-consistent loop are
shown with a superscript ‘new’ (‘old’). On the other hand, the linear mixing of
the density matrix is given as

∑

k,µ

χnew,∗
i (r′)φnew

i (r)fnew
i (33)

→ β
∑

k,µ

χnew,∗
i (r′)φnew

i (r)fnew
i + (1− β)

∑

k,µ

χold,∗
i (r′)φold

i (r)fold
i . (34)

We implemented the density-matrix mixing just by replacing orbitals and fillings
{χnew

i , φnew
i , fnew

i } with {{χnew
i , φnew

i , βfnew
i }, {χold

i , φold
i , (1− β)fold

i }}. To say,
old orbitals are considered with a fictitious band index with a rescaled band
filling.

For the BITC method, both the left and right eigenvectors are expanded with
the trial vectors vi in our algorithm. We have another choice for diagonalization;
we can use left and right trial vectors separately, as described in Ref. [62].
At present, we do not implement this alternative algorithm since it did not
improve convergence at least by our implementation. While more sophisticate
implementation might resolve this problem, this is a future issue for improving
convergence of BITC calculations.

2.5. Divergence correction in reciprocal space

Both the Coulomb potential and the Jastrow function used in this study,
Eq. (14), asymptotically behave as ∝ 1/|r− r′| for a long electron-electron dis-
tance, which yields a singularity of ∝ 1/q2 (q → 0) in reciprocal space after
Fourier transformation. The presence of the singularity means that we should
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integrate a rapidly varying function in reciprocal space, which makes the conver-
gence with respect to the number of k-points much worse. To say, the problem
is that the integral

I =
Ω

(2π)3

∫

1st BZ

dq
∑

G

1

|q +G|2 f(q +G), (35)

is difficult to approximate by a finite k-point sampling:

S =
1

Nk

∑

q,G
(q+G6=0)

1

|q +G|2 f(q +G), (36)

where the summation over q is performed within the first Brillouin zone. Here
we assume that f(q) is a slowly varying function and the integral, Eq. (35),
itself is well-defined. While I = S holds at the limit of Nk →∞, the diverging
behavior of the integrand makes it difficult to achieve good convergence with a
small number of k-point.

Gygi and Baldereschi proposed a way to alleviate this problem [64]. By using
an auxiliary function Aaux(q) having a singularity of 1/q2 (q → 0) in reciprocal
space, the difference I − S can be well approximated as

I − S ≃
[

Ω

(2π)3

∫

1st BZ

dq
∑

G

Aaux(q +G)− 1

Nk

∑

q,G
(q+G6=0)

Aaux(q +G)

]
f(0).

(37)
Therefore, if one can evaluate the right-hand side of Eq. (37), this quantity can
be a good correction to be added to S for approximating I. For this purpose,
we adopt the auxiliary function proposed in Ref. [65]:

Aaux(q) =
e−αq2

q2
, (38)

integration of which can be analytically evaluated as

∫

1st BZ

dq
∑

G

Aaux(q +G) =

∫

whole BZ

dq Aaux(q) = 2π

√
π

α
. (39)

For the finite k-point sampling, q = 0 is not necessarily included in
∑

q. When
q = 0 is included in

∑
q of Eqs. (36) and (37), while the q + G = 0 term,

Aaux(0), having an infinite value is excluded from it, this equation is a bit
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modified as follows:

I − S (40)

≃
[

Ω

(2π)3

∫

1st BZ

dq
∑

G

Aaux(q +G)− 1

Nk

(
− α+

∑

q,G
(q+G6=0)

Aaux(q +G)

)]
f(0)

(41)

=

[
Ω

4
√
π3α

− 1

Nk

(
− α+

∑

q,G
(q+G6=0)

Aaux(q +G)

)]
f(0) (42)

because limq→0(Aaux(q)− 1/q2) = −α for the auxiliary function, Eq. (38).
In the TC method, we should handle another type of divergence like

I′ =
Ω

(2π)3

∫

1st BZ

dq
∑

G

q +G

|q +G|2 f(q +G), (43)

S′ =
1

Nk

∑

q,G
(q+G6=0)

q +G

|q +G|2 f(q +G), (44)

for considering ∇u. The correction term for it is

I′ − S′ (45)

≃
[

Ω

(2π)3

∫

1st BZ

dq
∑

G

(q +G)Aaux(q +G)− 1

Nk

∑

q,G
(q+G6=0)

(q +G)Aaux(q +G)

]
f(0)

(46)

=

[
− 1

Nk

∑

q,G
(q+G6=0)

(q +G)Aaux(q +G)

]
f(0), (47)

because
∫
whole BZ dq qAaux(q) = 0.

Implementation of the divergence correction for each term in the TC-SCF
equation shall be presented later in this paper.

2.6. Details of implementation

From here on, we focus on ĥφ in the BITC method for simplicity in this
paper. However, that for the TC method can be obtained by simply replacing
χ∗(r) to φ∗(r). We use the following notation to represent integration:

〈∗, q1, q2|∇1u12∇1u13|q1, q2, j〉 ≡∫
dr2dr3 χ∗

q1(r2)χ
∗
q2(r3)∇1uσ1,σ2

(|r1 − r2|)∇1uσ1,σ(|r1 − r3|)

φq1 (r1)φq2 (r2)φj(r3) (48)

12



where each one-electron orbital is specified by a set of spin, k-vector, and band
indices:

q1 = (σ1, q1, µ1), q2 = (σ2, q2, µ2), j = (σ,k, µj). (49)

In our notation, ∗ in 〈∗, q1, q2|∇1u12∇1u13|q1, q2, j〉 means that there is no bra
orbital for x1 in the integrand, and integration over x1 is not performed. Be-
cause bra and ket orbitals with the same variable should have the same spin
indices (e.g., χ∗

q2(x3) and φj(x3) in Eq. (48)), σ = σ1 = σ2 is imposed for the
above integral. If one considers another term, 〈∗, q1, q2|∇1u12∇1u13|q2, q1, j〉, σ1

can be either parallel or anti-parallel to σ2 = σ. In this case, while u13 should
be the spin-parallel Jastrow function owing to σ2 = σ, u12 is the spin-parallel
and spin-anti-parallel Jastrow functions for σ1 = σ2 and σ1 6= σ2, respectively.
In the SCF calculation, we take a summation over occupied orbitals q1, q2:

occupied∑

q1,q2

〈∗, q1, q2|∇1u12∇1u13|q1, q2, j〉 ≡

∑

q1,q2

∫
dr2dr3 χ∗

q1(r2)χ
∗
q2(r3)∇1uσ1,σ2

(|r1 − r2|)∇1uσ1,σ(|r1 − r3|)

φq1(r1)φq2(r2)φj(r3)fq1fq2 , (50)

where fq is the occupation number of the state q, satisfying 0 ≤ fq ≤ 1.

2.6.1. Computational treatment of one-electron orbitals

For representing a cell-periodic function f(r), such as a cell-periodic part
of the one-electron orbital φperiodic, as a discrete numerical array fi in our
computational code, we used a dimensionless array defined as

fi =
√
Ωf(ri) (51)

so that the normalization condition satisfies

1

Npw

∑

i

|fi|2 = 1 =

∫

Ω

dr |f(r)|2, (52)

where Npw is the number of plane waves for Fourier transform, which equals
the number of discrete points in the real-space mesh. This equality can be
understood by ∫

Ω

dr ≃ (∆x∆y∆z)
∑

i

=
Ω

Npw

∑

i

. (53)

To represent f(r) by fi, we often divide calculated quantities by Ω and/or Npw

in our code, but we did not use fi in this paper and so did not show such factors
in equations shown in this paper.

We also mention how the crystal symmetry is applied to one-electron or-
bitals. Suppose that a system has a symmetry operation,

r → r′ = S(r + t), (i.e., r = S−1r′ − t) (54)
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where S and t are a symmorphic symmetry operator and a translation vector,
respectively. Then, by applying this symmetry operation to the one-electron
orbital for the state j0 = (σ,k0, µj),

φj0(r) =
eik0·r

√
Nk

φperiodic,j0(r) =
eik0·r

√
Nk

∑

G0

φ̃periodic,j0(G0)e
iG0·r, (55)

we can suppose that φj0 (r
′) is also the eigenstate of ĥ [66]. Note that this is

not always true, e.g., when a symmetry breaking for the electronic state takes
place. Thus, we can choose whether the symmetry operations are used in an
input file of calculation. By using this symmetry operation, we can get

φj0 (r
′) =

eik0·S(r+t)

√
Nk

∑

G0

φ̃periodic,j0(G0)e
iG0·S(r+t) (56)

∝ ei(S
†k0)·r

√
Nk

∑

G0

φ̃periodic,j0(G0)e
i(S†G0)·tei(S

†G0)·r, (57)

where we discard a constant phase of exp[ik0 ·St] in the second line. By defining

k = S†k0, G = S†G0, (58)

we can rewrite Eq. (57) as follows:

φj0(r
′) ∝ eik·r√

Nk

∑

G0

φ̃periodic,j0(G0)e
iG·teiG·r, (59)

which can be regarded as a one-electron orbital for the state j = (σ,k, µj):

φj(r) =
eik·r√
Nk

∑

G

φ̃periodic,j(G)eiG·r, (60)

where
φ̃periodic,j(G) = φ̃periodic,j0(G0)e

iG·t. (61)

One often considers that T [φj(r
′)] is the eigenstate of ĥ, where T is a time-

reversal operation. In this case, the following equalities instead hold:

j = (−σ,k, µj), k = −S†k0, G = −S†G0, (62)

φj(r) =
eik·r√
Nk

∑

G

φ̃periodic,j(G)eiG·r, (63)

φ̃periodic,j(G) = (φ̃periodic,j0(G0))
∗e−iG·t. (64)
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2.6.2. One-body terms

One-body terms included in TC Hamiltonian are the kinetic-energy term
and the pseudopotential term, which are evaluated in the same way as that
adopted in many calculation codes. The kinetic-energy operator can be easily
applied to the one-electron orbital of the state j = (σ,k, µ),

φj(r) =
eik·r√
Nk

φperiodic,j(r) =
eik·r√
Nk

∑

G

φ̃periodic,j(G)eiG·r, (65)

and we get

− ∇
2

2
φj(r) =

eik·r√
Nk

∑

G

(k +G)2

2
φ̃periodic,j(G)eiG·r . (66)

TC++ at present only accepts a norm-conserving pseudopotential without the
partial core correction. For such a pseudopotential, a pseudopotential operator
consists of the local and non-local terms for each atom τ :

V τ
pp = V τ

loc + V τ
nloc. (67)

The local potential V τ
loc = V τ

loc(r) asymptotically behaves as −Zτ/|r − rτ | for
a large |r − rτ |, where rτ and Zτ are the position and the number of valence
electrons for the atom τ . We assume that the local potential is spherically
symmetric, and thus given as V τ

loc(|r − rτ |). We evaluate the local potential in
the following way. First, the following formula is well known in the context of
the Ewald summation:

∑

R

erf(a|r − rτ −R|)
|r − rτ −R| =

4π

Ω

∑

G

exp(−G2/(4a2))

G2
eiG·(r−rτ ), (68)

where R and a are the lattice vector and the Ewald parameter, respectively.
Next, the local potential is decomposed into long-ranged and short-ranged func-
tions using the above formula:

∑

R

V τ
loc(|r − rτ −R|) = V τ

loc,1(r − rτ ) + V τ
loc,2(r − rτ ), (69)

V τ
loc,1(r − rτ ) =

∑

R

[
V τ
loc(|r − rτ −R|) + Zτerf(a|r − rτ −R|)

|r − rτ −R|

]
, (70)

V τ
loc,2(r − rτ ) = −

4πZτ

Ω

∑

G

exp(−G2/(4a2))

G2
eiG·(r−rτ ). (71)

Because V τ
loc,1 is a short-ranged function with the lattice periodicity (i.e., V τ

loc,1(r−
rτ+R) = V τ

loc,1(r−rτ ) for an arbitrary lattice vectorR), we can safely perform
Fourier transformation of V τ

loc,1:

V τ
loc,1(r − rτ ) =

∑

G

Ṽ τ
loc,1(G)eiG·(r−rτ ), (72)
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where

Ṽ τ
loc,1(G) =

1

ΩNR

∫
dr V τ

loc,1(r − rτ )e
−iG·(r−rτ ) (73)

=
4π

Ω

∫ ∞

0

dr̃

(
V τ
loc(r̃) +

Zτerf(ar̃)

r̃

)
sin(|G|r̃)
|G|r̃ r̃2. (74)

The integration in Eq. (73) is defined in the supercell with a volume ΩNR, to
consider

∫∞

0
dr̃ integration. NR is the number of R vectors, and we consider

the NR → ∞ limit. In V τ
loc,2, we can exclude a 1/G2 divergence in the G = 0

component because it should be canceled with G = 0 components of the ion-
ion and electron-electron (Hartree) Coulomb potential terms under the charge
neutrality. This is considered in the usual Ewald summation [67]. Therefore,
V τ
loc,1(r) + V τ

loc,2(r) can be calculated as

∑

G6=0

[(
Ṽ τ
loc,1(G)− 4πZτ

Ω

exp(−G2/(4a2))

G2

)
eiG·(r−rτ )

]
(75)

+ lim
G→0

(
Ṽ τ
loc,1(G)− 4πZτ

Ω

exp(−G2/(4a2))− 1

G2

)
(76)

=
∑

G6=0

[(
Ṽ τ
loc,1(G)− 4πZτ

Ω

exp(−G2/(4a2))

G2

)
eiG·(r−rτ )

]
(77)

+ Ṽ τ
loc,1(G = 0) +

πZτ

a2Ω
. (78)

Finally, the summation over the atom index τ is performed, and then we get
the local part of the pseudopotential.

The non-local part of the pseudopotential with the Kleinman-Bylander form [68]
for an atom at rτ is given as follows:

∑

l,m,i1,i2

|βl,m,i1(|r − rτ |)Ylm(êr−rτ
)〉Di1,i2〈βl,m,i2(|r − rτ |)Ylm(êr−rτ

)|, (79)

where β, Ylm, D, and êv are the short-ranged (i.e., zero outside the cutoff radius)
radial projector function, the spherical harmonics, the coefficient, and the unit
vector along the vector v, respectively. To evaluate the non-local terms, using
the Rayleigh expansion,

ei(k+G)·(r−rτ ) =
∑

l,m

4πiljl(|k +G||r − rτ |)Y ∗
lm(êk+G)Ylm(êr−rτ

), (80)

where jl is the spherical Bessel function, we get the formula

〈β(|r − rτ |)Ylm(êr−rτ
)|k +G〉 (81)

=

∫
dr β∗(|r − rτ |)Y ∗

lm(êr−rτ
)ei(k+G)·r (82)

= ei(k+G)·rτY ∗
lm(êk+G)4πil

∫
dr̃ r̃2β∗(r̃)jl(|k +G|r̃). (83)
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Using this formula, we apply the non-local operator to the one-electron orbitals
expanded with the plane-wave basis set.

2.6.3. Two-body terms

We classify the two-body Hartree (h) terms in TC Hamiltonian as follows:

2ah
∑occupied

q 〈∗, q|V2a|j, q〉

2bh1
∑occupied

q 〈∗, q|∇1u12 · ∇1|j, q〉

2bh2
∑occupied

q 〈∗, q|∇2u12 · ∇2|j, q〉,

where

V2a(x1, x2) = V σ1,σ2

2a (|r1 − r2|) (84)

=
1

|r1 − r2|
+

1

2

[
∇2

1uσ1,σ2
(|r1 − r2|) +∇2

2uσ1,σ2
(|r1 − r2|)

− (∇1uσ1,σ2
(|r1 − r2|))2 − (∇2uσ1,σ2

(|r1 − r2|))2
]
. (85)

In the same way, the two-body exchange (x) terms are defined as follows:

2ax −∑occupied
q 〈∗, q|V2a|q, j〉

2bx1 −∑occupied
q 〈∗, q|∇1u12 · ∇1|q, j〉

2bx2 −∑occupied
q 〈∗, q|∇2u12 · ∇2|q, j〉.

Here we present how to calculate each term. The 2ah term is calculated as
follows: (1) calculate the spin density,

nσ′(r) =
∑

q,µ

χ∗
q(r)φq(r)fq,µ, (q = (σ′, q, µ)) (86)

(2) use the convolution formula, Eq. (22), as

occupied∑

q

〈∗, q|V2a|∗, q〉 =
∑

σ′

∫
dr2 V σ,σ′

2a (|r1 − r2|)nσ′ (r2) (87)

=
∑

σ′

∑

G6=0

Ṽ σ,σ′

2a (G)ñσ′(G)eiG·x1 , (88)

and (3) multiply φj(x1) with Eq. (88). In our implementation, the spin density
is calculated and saved before evaluation of several terms in the TC Hamiltonian.
A pseudocode for calculating the 2ah term is shown in Algorithm 1. Here we
omit the G = 0 component in Eq. (88) because that for the Coulomb potential
is already considered in the Ewald summation and we assume u(G = 0) = 0.
For the Hartree terms, this treatment is valid because a constant shift of the
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Algorithm 1 Calculate 2ah: gj(r1) =
∑occupied

q 〈∗, q|V2a|j, q〉 × exp(−ik · r1)
1: for j = 1 to N (MPI parallelized) do

2: h̃σ
1 (G)←∑

σ′ Ṽ
σ,σ′

2a (G)ñσ′(G)

3: hσ
1 (r1)← FT

−1[h̃σ
1 (G)]

4: gj(r1)← hσ
1 (r1)φperiodic,j(r1)

5: end for

Jastrow function u (i.e., a constant multiplication with the Jastrow factor F )
does not change TC Hamiltonian HTC = F−1HF . A bit different situation for
the exchange terms shall be described later. The 2bh1 and 2bh2 terms are
calculated in the same way. Note that a derivative of the one-electron orbital is
easily calculated in reciprocal space. The remaining problem is to calculate the
Fourier transform of the effective interactions. For the Jastrow factor shown in
Eq. (14), its Fourier transform is calculated as follows:

ũ(G) = 4πA

(
1

G2
− 1

G2 + 1/C2

)
= 4πA

1/C2

G2(G2 + 1/C2)
, (89)

which immediately yields

∇̃2u(G) = −G2ũ(G) = −4πA 1/C2

G2 + 1/C2
. (90)

The Fourier transform of (∇u)2 is a bit complicated. It is given as

˜(∇u)2(G) =
4πA2

Cg

[
− π

4
g2−

(
1 +

g2

2

)
arctan

g

2
+(1+g2) arctan g

]
(g = CG),

(91)
the derivation of which is shown in Appendix B.

The exchange terms are calculated in the following way. For calculating the
2ax term, we use the convolution formula, Eq. (22), as follows:

∫
dr2 V σ,σ

2a (|r1 − r2|)χ∗
q(r2)φj(r2) (92)

=
1

Nk

∫
dr2 V σ,σ

2a (|r1 − r2|)χ∗
periodic,q(r2)φperiodic,j(r2)e

i(k−q)·r2 (93)

=
1

Nk

∑

G

Ṽ σ,σ
2a (k − q +G)FT[χ∗

periodic,qφperiodic,j ](G)ei(k−q+G)·r1 , (94)

for the states q = (σ′ = σ, q, µ) and j = (σ,k, µj). Note that the spin indices
for q and j should be the same in the exchange terms. A pseudocode for calcu-
lating the 2ax term is shown in Algorithm 2. Here, the function hσ

2 (r1) in the
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Algorithm 2 Calculate 2ax: gj(r1) = −
∑occupied

q 〈∗, q|V2a|q, j〉× exp(−ik ·r1)
(except the divergence correction terms)

1: for j = 1 to N (MPI parallelized) do
2: gj(r1)← 0
3: for q = 1 to N do
4: if σ 6= σ′ then
5: continue
6: end if
7: hσ

1 (r2)← χ∗
periodic,q(r2)φperiodic,j(r2)

8: h̃σ
1 (G)← FT[hσ

1 (r2)]
9: h̃σ

2 (G)← Ṽ σ,σ
2a (k − q +G)h̃σ

1 (G)
10: hσ

2 (r1)← FT
−1[h̃σ

2 (G)]
11: gj(r1)← gj(r1)− hσ

2 (r1)φperiodic,q(r1)fq/Nk

12: end for
13: end for

pseudocode is defined as

hσ
2 (r1) =

∑

G

Ṽ σ,σ
2a (k − q +G)FT[χ∗

periodic,qφperiodic,j ](G)eiG·r1 , (95)

and gj(r1) in Algorithm 2 is −∑occupied
q 〈∗, q|V2a|q, j〉 multiplied by e−ik·r1 .

This algorithm is the same as that for calculating the exchange term in the HF
method using the plane-wave basis set (see, e.g., Ref. [69]). As shown in the
pseudocode, MPI parallelization is performed for the index j.

We note that the divergence correction is required for the term 2ax. For
the SCF calculation, the correction terms can be calculated using Eq. (42) as
follows:

−
[

Ω√
πα
− 4π

Nk

(
− α+

∑

q,G
(k−q+G6=0)

Aaux(k − q +G)

)]

×
∑

µ

[ ∫
dr2 χ∗

periodic,qk(r2)φperiodic,j(r2)

]
φperiodic,qk(r1)fqk , (96)

where qk = (σ,k, µ) belongs to the same k-point with that for j = (σ,k, µj).
This is because the coefficient f(0) in Eq. (42) should be calculated at the
diverging point q = k for the q-integration. A factor of 4π is multiplied with
the whole terms because the Coulomb potential exhibits a 4π/q2 divergence
in reciprocal space, while Eq. (42) represents the correction term for the 1/q2

divergence. Here, we consider the divergence correction only for the Coulomb
potential because both ∇2u and (∇u)2 does not exhibit divergence at the origin
in reciprocal space.
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The divergence correction for the band-structure calculation (or for zero-
weight k-points even in SCF calculation) is a bit different. In the band-structure
calculation, while q belongs to the SCF k-mesh, k is defined along the band
k-path and so is not necessarily included in the SCF k-mesh. In this case, the
summation over q,G in the divergence correction does not necessarily include
the diverging point k − q + G = 0. For band k-points k included in the
SCF k-mesh, the divergence correction term is the same as that for the SCF
calculation, Eq. (96). For band k-points k not included in the SCF k-mesh, we
should instead use Eq. (37), and then consider the following correction terms,

−
[

Ω√
πα
− 4π

Nk

∑

q,G

Aaux(k − q +G)

]

×
∑

µ

[ ∫
dr2 χ∗

periodic,qk
(r2)φperiodic,j(r2)

]
φperiodic,qk(r1)fqk . (97)

The 2bx1 and 2bx2 terms are calculated in the same way as that for the 2ax
term, except the divergence correction. For the 2bx1 term, −

∑occupied
q 〈∗, q|∇1u12·

∇1|q, j〉, the correction terms are calculated using Eq. (47) as follows:

[
− 4πAσ,σ

Nk

∑

q,G
(q+G6=0)

(q +G)Aaux(q +G)

]

·
∑

µ

[∑

G′

(k +G′)FT[φperiodic,qk ](G
′)eiG

′·r1

]

×
[∫

dr2 χ∗
periodic,qk(r2)φperiodic,j(r2)

]
fqk . (98)

A factor of 4πAσ,σ is multiplied with the whole terms because the Jastrow
function u exhibits a 4πAσ,σ/q

2 divergence in reciprocal space, while Eq. (47)
represents the correction term for the 1/q2 divergence. In addition, a factor

of −1 originating from the sign of the exchange term (−∑occupied
q . . . ) and

another −1 originating from Fourier transform of two ∇ in ∇u ·∇: i2 = −1, are
multiplied. The correction terms for the 2bx2 term, −

∑occupied
q 〈∗, q|∇2u12 ·

∇2|q, j〉 are similarly calculated as follows:

−
[
− 4πAσ,σ

Nk

∑

q,G
(q+G6=0)

(q +G)Aaux(q +G)

]

·
∑

µ

[ ∫
dr2 χ∗

periodic,qk(r2)
∑

G′

(k +G′)FT [φperiodic,j ](G
′)eiG

′·r1

]

×φperiodic,qk(r1)fqk , (99)

where an additional factor of −1 is multiplied because of ∇2u21 = −∇1u12.
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We note two things here. One is that these divergence corrections for ∇u ·∇
are not required when k is included in the SCF k-mesh, because the correction
term shown in Eq. (47) becomes zero due to the symmetry of the auxiliary
function Aaux(G). We here assume that the SCF k-mesh is uniform. The other
thing is that the divergence correction is considered only for the exchange terms
that include q,G-summation, but not so for the Hartree terms because they
only have a discrete G-summation. This is because the former summation gets
closer to the integration over a continuous variable in the Nk →∞ limit, while
the latter summation does not. This is also true for three-body terms as we
shall see next.

2.6.4. Three-body terms

We classify the three-body terms including ∇1u12 · ∇1u13, called 3a* terms
in this paper, as follows:

3a1 −1

2

∑occupied
q1,q2

〈∗, q1, q2|∇1u12 · ∇1u13|j, q1, q2〉

3a2
1

2

∑occupied
q1,q2

〈∗, q1, q2|∇1u12 · ∇1u13|j, q2, q1〉

3a3
1

2

∑occupied
q1,q2

〈∗, q1, q2|∇1u12 · ∇1u13|q1, j, q2〉

3a4 −1

2

∑occupied
q1,q2

〈∗, q1, q2|∇1u12 · ∇1u13|q1, q2, j〉

3a5 −1

2

∑occupied
q1,q2

〈∗, q1, q2|∇1u12 · ∇1u13|q2, j, q1〉

3a6
1

2

∑occupied
q1,q2

〈∗, q1, q2|∇1u12 · ∇1u13|q2, q1, j〉.

Here, 3a3 and 3a6 are equivalent by the simultaneous permutations of q1 ↔ q2
and x2 ↔ x3. Also, 3a4 and 3a5 are equivalent by the same operation. The
three-body terms including ∇2u21 · ∇2u23, called 3b* terms, are classified as

3b1 −1

2

∑occupied
q1,q2

〈∗, q1, q2|∇2u21 · ∇2u23|j, q1, q2〉

3b2
1

2

∑occupied
q1,q2

〈∗, q1, q2|∇2u21 · ∇2u23|j, q2, q1〉

3b3
1

2

∑occupied
q1,q2

〈∗, q1, q2|∇2u21 · ∇2u23|q1, j, q2〉

3b4 −1

2

∑occupied
q1,q2

〈∗, q1, q2|∇2u21 · ∇2u23|q1, q2, j〉

3b5 −1

2

∑occupied
q1,q2

〈∗, q1, q2|∇2u21 · ∇2u23|q2, j, q1〉

3b6
1

2

∑occupied
q1,q2

〈∗, q1, q2|∇2u21 · ∇2u23|q2, q1, j〉.
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The remaining three-body terms including ∇3u31 ·∇3u32 are equivalent to these
3b* terms, which is shown by the permutation of x2 ↔ x3. Therefore, we
should consider ten kinds of three-body terms in total: 3a[1-4] and 3b[1-6].
We shall present how to calculate each term. For efficient computation, we
used the algorithm we developed for solid-state calculation [16], by which the
computational time of the (BI)TC method involving the three-body terms is
the same order as that for the HF method involving up-to the two-body terms.

A pseudocode for calculating the 3a1 term is shown in Algorithm 3. This

Algorithm 3 Calculate 3a1: gj(r1) = −1

2

∑occupied
q1,q2

〈∗, q1, q2|∇1u12 ·
∇1u13|j, q1, q2〉 × exp(−ik · r1)
1: for j = 1 to N (MPI parallelized) do
2: h̃σ

1 (G)←∑
σ′ iGũσ,σ′

(G)ñσ′(G)

3: hσ
1 (r1)← FT

−1[h̃σ
1 (G)]

4: gj(r1)← −|hσ
1 (r1)|2φperiodic,j(r1)/2

5: end for

term does not need the divergence correction by the same reason as the two-body
Hartree terms.

A pseudocode for calculating the 3a2 term is shown in Algorithm 4. There
is at most a doubly nested loop of (q1, q2;0) even though we handle three orbital
indices (j, q1, q2) for the three-body terms, which is an important advantage
of the (BI)TC method [16]. To reduce computational cost, we consider q2;0 =
(σ2, q2;0, µ2), where q2;0 is the irreducible k-point corresponding to q2: there
exists a symmorphic symmetry operator S satisfying q2 = S†q2;0 (see Sec. 2.6.1).
The number of the states q2;0 with irreducible k-points is Nirred, which is smaller
than N . Considering the symmetry, Eq. (54),

hσ,σ2

5 (r1; q2) = Nk

occupied∑

q1

〈∗, q1, q2|∇1u12 · ∇1u13|∗, q2, q1〉 (100)

satisfies hσ,σ2

5 (r1; q2) = hσ,σ2

5 (S(r+t); q2;0), similarly to φq2 (r) ∝ φq2;0(S(r+t)).
Thus,

h̃σ,σ2

5 (S†G; q2) =
1

Ω

∫

Ω

dr hσ,σ2

5 (r; q2)e
−i(S†G)·r (101)

=
1

Ω

∫

Ω

dr hσ,σ2

5 (S(r + t); q2;0)e
−iG·S(r+t)ei(S

†G)·t (102)

= h̃σ,σ2

5 (G; q2;0)e
i(S†G)·t (103)

holds, which is used to obtain h̃σ,σ2

5 (S†G; q2) from h̃σ,σ2

5 (G; q2;0). When the
time-reversal symmetry is applied to the state,

h̃σ,σ2

5 (−S†G; q2) = (h̃σ,σ2

5 (G; q2;0))
∗e−i(S†G)·t (104)
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Algorithm 4 Calculate 3a2: gj(r1) =
1

2

∑occupied
q1,q2

〈∗, q1, q2|∇1u12 ·
∇1u13|j, q2, q1〉 × exp(−ik · r1) (except the divergence correction terms)

1: hσ
6 (r1)← 0

2: hσ,σ2

5 (r1; q2) (q2 = 1 to N) ← 0
3: for q2;0 = 1 to Nirred do
4: for q1 = 1 to N (MPI parallelized) do
5: if σ1 6= σ2 then
6: continue
7: end if
8: hσ2

1 (r3)← χ∗
periodic,q2;0

(r3)φperiodic,q1(r3)

9: h̃σ2

1 (G)← FT[hσ2

1 (r3)]
10: h̃

σ,σ2

2 (G)← i(q1 − q2;0 +G)ũσ,σ2(q1 − q2;0 +G)h̃σ2

1 (G)

11: h
σ,σ2

2 (r1)← FT
−1[h̃σ,σ2

2 (G)]
12: hσ2

3 (r2)← χ∗
periodic,q1

(r2)φperiodic,q2;0(r2)

13: h̃σ2

3 (G)← FT[hσ2

3 (r2)]
14: h̃

σ,σ2

4 (G)← i(q2;0 − q1 +G)ũσ,σ2(q2;0 − q1 +G)h̃σ2

3 (G)

15: h
σ,σ2

4 (r1)← FT
−1[h̃σ,σ2

4 (G)]
16: hσ,σ2

5 (r1; q2;0)← hσ,σ2

5 (r1; q2;0) + h
σ,σ2

2 (r1) · hσ,σ2

4 (r1)fq1/Nk

17: end for
18: MPI Allreduce for q1-parallelization
19: for symmetry operation (q2;0 → q2) do
20: make hσ,σ2

5 (r1; q2) from hσ,σ2

5 (r1; q2;0) by symmetry operation
21: hσ

6 (r1)← hσ
6 (r1) +

∑
σ2

hσ,σ2

5 (r1; q2)fq2/Nk

22: end for
23: end for
24: for j = 1 to N (MPI parallelized) do
25: gj(r1)← hσ

6 (r1)φperiodic,j(r1)/2
26: end for

is used instead. Here we do not directly use hσ,σ2

5 (r1; q2) = hσ,σ2

5 (S(r + t); q2;0)
to get hσ,σ2

5 (r1; q2) in our computational code, because S(r+t) is not necessarily
included in the real-space grid.

The divergence correction for hσ,σ2

5 (r1; q2;0) in 3a2 is considered as follows.
hσ,σ2

5 (r1; q2;0) can be written as

hσ,σ2

5 (r1; q2;0) =

− 1

Nk

∑

q1,G,G′

(q1 − q2;0 +G)ũσ,σ2(q1 − q2;0 +G)FT[χ∗
periodic,q2;0φperiodic,q1 ](G)

· (q2;0 − q1 +G′)ũσ,σ2(q2;0 − q1 +G′)FT[χ∗
periodic,q1φperiodic,q2;0 ](G

′)

× ei(G+G′)·r1fq1δσ1,σ2
, (105)
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where the negative sign comes from the square of the Fourier transform of ∇.
Here we should consider the following two types of the correction terms. One is
that for G = G′ = 0 contribution, where two Jastrow functions simultaneously
diverge. By considering the divergence at q1 = q2;0, we obtain the following
correction terms,

4πAσ,σ2

[
Aσ,σ2

Ω√
πα

− 4πAσ,σ2

Nk

(
− α+

∑

q,G
(k−q+G6=0)

Aaux(k − q +G)

)
+

ũσ,σ2

short(0)

Nk

]
fq2;0 ,

(106)

where ũσ,σ2

short is a short-range component of ũ defined as

ũσ,σ2

short(0) = lim
q→0

[
ũσ,σ2(q)− 4πAσ,σ2

q2

]
, (107)

and we use

lim
q1−q2;0,G,G′→0

(q1−q2;0+G) · (q2;0−q1+G′)ũσ,σ2(q1−q2;0+G) = −4πAσ,σ2
,

(108)
lim

q1→q2;0

FT[χ∗
periodic,q2;0φperiodic,q1 ](0) = δµ1,µ2

(for σ1 = σ2), (109)

and Eq. (42). The other correction terms come from G 6= G′ contribution,
where one of the two Jastrow functions in Eq. (105) diverges. By considering
the divergence at q1 = q2;0, we obtain the following correction terms,

2× 4πAσ,σ2

Nk

∑

G6=0

ũσ,σ2(G)FT[χ∗
periodic,q2;0φperiodic,q2;0 ](G)eiG·r1fq2;0 , (110)

where the factor of two comes from two contributions for the G 6= G′ divergence
correction: G = 0 while G′ 6= 0 and vice versa. For deriving this correction
term, we decompose

(q1 − q2;0 +G) · (q2;0 − q1 + 0) = −(q1 − q2;0)
2 +G · (q2;0 − q1) (111)

for the G′ = 0 contribution, and consider the divergence correction for the
first term in the right-hand side of Eq. (111): −(q1 − q2;0)

2ũσ,σ2(q1 − q2;0) →
−4πAσ,σ2

. Note that the second term in the right-hand side of Eq. (111) does not
require the divergence correction. The reason for it is the same as the treatment
of ∇u in the 2bx1 and 2bx2 terms. Namely, for the divergence correction of
(q1 − q2;0)ũ

σ,σ2(q1 − q2;0), Eq. (47) becomes zero due to the symmetry of the
auxiliary function Aaux(G).

We note that Eq. (109) breaks when one uses the density-matrix mixing (see,
Sec. 2.4), because the electron orbitals in two different SCF loops (i.e., ‘new’
and ‘old’ orbitals) are not orthogonalized. In that case, Eqs. (106) and (110)
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should be replaced with

4πAσ,σ2

[
Aσ,σ2

Ω√
πα

− 4πAσ,σ2

Nk

(
− α+

∑

q,G
(k−q+G6=0)

Aaux(k − q +G)

)
+

ũσ,σ2

short(0)

Nk

]

×
∑

µ1

FT[χ∗
periodic,q2;0φperiodic,q̃1 ](0)FT[χ

∗
periodic,q̃1φperiodic,q2;0 ](0)fq̃1 , (112)

where q̃1 = {q2;0, µ1, σ2}, and

4πAσ,σ2

Nk

∑

G6=0

ũσ,σ2(G)

∑

µ1

(
FT[χ∗

periodic,q2;0φperiodic,q̃1 ](G)FT[χ∗
periodic,q̃1φperiodic,q2;0 ](0)+

FT[χ∗
periodic,q2;0φperiodic,q̃1 ](0)FT[χ

∗
periodic,q̃1φperiodic,q2;0 ](G)

)
eiG·r1fq̃1 , (113)

respectively. Since our implementation of the density-matrix mixing is applied
only to the orbitals included in the SCF k-mesh, such a replacement is not
necessary for other correction terms that are non-zero only for the orbitals not
included in the SCF k-mesh.

A pseudocode for calculating the 3a3 term is shown in Algorithm 5. Because

Algorithm 5 Calculate 3a3: gj(r1) =
1

2

∑occupied
q1,q2

〈∗, q1, q2|∇1u12 ·
∇1u13|q1, j, q2〉 × exp(−ik · r1) (except the divergence correction terms)

1: h̃σ
1 (G)←∑

σ2
iGũσ,σ2(G)ñσ2

(G)

2: hσ
1 (r1)← FT

−1[h̃σ
1 (G)]

3: for j = 1 to N (MPI parallelized) do
4: hσ

4 (r1)← 0
5: for q1 = 1 to N do
6: if σ1 6= σ then
7: continue
8: end if
9: hσ

2 (r2)← χ∗
periodic,q1

(r2)φperiodic,j(r2)

10: h̃σ
2 (G)← FT[hσ

2 (r2)]
11: h̃σ

3 (G)← i(k − q1 +G)ũσ,σ(k − q1 +G)h̃σ
2 (G)

12: hσ
3 (r1)← FT

−1[h̃σ
3 (G)]

13: hσ
4 (r1)← hσ

4 (r1) + hσ
3 (r1)φperiodic,q1(r1)fq1/Nk

14: end for
15: gj(r1)← hσ

1 (r1) · hσ
4 (r1)/2

16: end for
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hσ
4 (r1) =

∑occupied
q1

〈∗, q1|∇1u12|q1, j〉 (×exp[−ik · r1]) in Algorithm 5 is similar

to the 2bx1 term, −
∑occupied

q 〈∗, q|∇1u12 · ∇1|q, j〉, the divergence correction
for 3a3 is calculated in a similar way. Namely, the correction term for hσ

4 (r1)
in 3a3 is

[
− i

4πAσ,σ

Nk

∑

q,G
(q+G6=0)

(q +G)Aaux(q +G)

]

×
∑

µ1

[ ∫
dr2 χ∗

periodic,q1k(r2)φperiodic,j(r2)

]
φperiodic,q1k(r1)fq1k , (114)

where q1k = (σ,k, µ1) belongs to the same k-point with that for j = (σ,k, µj).
This correction term becomes zero when k is included in the SCF k-mesh.

A pseudocode for calculating the 3a4 term is shown in Algorithm 6. To ob-
tain hσ2

3 (r1; q2) from hσ2

3 (r1; q2;0) in Algorithm 6, we used the following relation
in the same way as 3a2:

h̃σ2

3 (S†G; q2) = S†h̃σ2

3 (G; q2;0)e
i(S†G)·t, (115)

for the case when the time-reversal symmetry is not used, and

h̃σ2

3 (−S†G; q2) = −S†(h̃σ2

3 (G; q2;0))
∗e−i(S†G)·t (116)

for the case when the time-reversal symmetry is used. We note that (−)S† in
the right-hand side comes from the fact that h̃σ2

3 is a vector quantity. More
concretely, calculation of h̃σ2

3 involves the Fourier transform of ∇u, which is
proportional to q2;0 − q1 +G where (−)S† should be operated.

The divergence correction for 3a4 is calculated in the following way. gj(r1)
in Algorithm 6 can be written as

gj(r1) =

− 1

2N2
k

∑

q2,q1,G,G′

(q2 − q1 +G)ũσ,σ(q2 − q1 +G)FT[χ∗
periodic,q1φperiodic,q2 ](G)

· (k − q2 +G′)ũσ,σ(k − q2 +G′)FT[χ∗
periodic,q2φperiodic,j](G

′)

× φperiodic,q1(r1)e
i(G+G′)·r1fq1fq2δσ,σ1

δσ,σ2
. (117)

The q1-summation of the former Jastrow function in Eq. (117) requires no
correction since Eq. (47) becomes zero for this case. Here, note that q1,G-
summation includes the diverging point q2 − q1 +G = 0 because both q1 and
q2 are on the SCF k-grid. Thus, we only consider the divergence correction at
k = q2 with G′ = 0. By substituting them into Eq. (117), we get the correction
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Algorithm 6 Calculate 3a4: gj(r1) = −1

2

∑occupied
q1,q2

〈∗, q1, q2|∇1u12 ·
∇1u13|q1, q2, j〉 × exp(−ik · r1) (except the divergence correction terms)

1: gj(r1)← 0
2: hσ2

3 (r1; q2) (q2 = 1 to N) ← 0
3: for q2;0 = 1 to Nirred do
4: for q1 = 1 to N (MPI parallelized) do
5: if σ1 6= σ2 then
6: continue
7: end if
8: hσ2

1 (r2)← χ∗
periodic,q1

(r2)φperiodic,q2;0(r2)

9: h̃σ2

1 (G)← FT[hσ2

1 (r2)]
10: h̃σ2

2 (G)← i(q2;0 − q1 +G)ũσ2,σ2(q2;0 − q1 +G)h̃σ2

1 (G)

11: hσ2

2 (r1)← FT
−1[h̃σ2

2 (G)]
12: hσ2

3 (r1; q2;0)← hσ2

3 (r1; q2;0) + hσ2

2 (r1)φperiodic,q1(r1)fq1/Nk

13: end for
14: MPI Allreduce for q1-parallelization
15: for symmetry operation (q2;0 → q2) do
16: make hσ2

3 (r1; q2) from hσ2

3 (r1; q2;0) by symmetry operation
17: for j = 1 to N (MPI parallelized) do
18: if σ 6= σ2 then
19: continue
20: end if
21: hσ2

4 (r3; q2)← χ∗
periodic,q2

(r3)φperiodic,j(r3)

22: h̃σ2

4 (G)← FT[hσ2

4 (r3)]
23: h̃σ2

5 (G)← i(k − q2 +G)ũσ2,σ2(k − q2 +G)h̃σ2

4 (G)
24: hσ2

5 (r1)← FT
−1[h̃σ2

5 (G)]
25: gj(r1)← gj(r1)− (1/2)hσ2

3 (r1; q2) · hσ2

5 (r1)fq2/Nk

26: end for
27: end for
28: end for

term for Eq. (117):

− 1

2N2
k

∑

µ2

∑

q1,G

(k − q1 +G)ũσ,σ(k − q1 +G)FT[χ∗
periodic,q1φperiodic,q2k ](G)

·
[
− 4πAσ,σ

∑

q,G′

(q+G′ 6=0)

(q +G′)Aaux(q +G′)

][ ∫
dr3 χ∗

periodic,q2k
(r3)φperiodic,j(r3)

]

× φperiodic,q1(r1)e
iG·r1fq1fq2kδσ,σ1

, (118)

where q2k = (σ,k, µ2) belongs to the same k-point as that for j = (σ,k, µj),
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and ∑

q2,G′

(k − q2 +G′)ũσ,σ(k − q2 +G′) (119)

in Eq. (117) is replaced with

− 4πAσ,σ

∑

µ2

∑

q,G′

(q+G′ 6=0)

(q +G′)Aaux(q +G′) (120)

by taking a limit of k − q2 +G′ → 0 and considering the correction term as in
Eq. (47). We note that the correction term, Eq. (118), should also be corrected
for considering the diverging behavior of the Jastrow function therein. Thus,
we should also consider the additional correction for Eq. (118),

− 1

2N2
k

∑

µ1,µ2

[
− 4πAσ,σ

∑

q,G′

(q+G′ 6=0)

(q +G′)Aaux(q +G′)

]2

×
[ ∫

dr2 χ∗
periodic,q1k(r2)φperiodic,q2k(r2)

][ ∫
dr3 χ∗

periodic,q2k(r3)φperiodic,j(r3)

]

× φperiodic,q1k(r1)fq1kfq2k , (121)

= − 1

2N2
k

∑

µ1

[
− 4πAσ,σ

∑

q,G′

(q+G′ 6=0)

(q +G′)Aaux(q +G′)

]2

×
[ ∫

dr3 χ∗
periodic,q1k(r3)φperiodic,j(r3)

]
φperiodic,q1k(r1)f

2
q1k . (122)

For k included in the SCF k-mesh, both of the divergence correction terms,
Eqs. (118) and (122), become zero.

A pseudocode for calculating the 3b1 term is shown in Algorithm 7. This
term does not need the divergence correction by the same reason as the two-body
Hartree terms.

A pseudocode for calculating the 3b2 term is shown in Algorithm 8. Sym-
metry operation for obtaining hσ2

3 (r1; q2) from hσ2

3 (r1; q2;0) is exactly the same
as Eqs. (115) and (116). The 3b2 term does not require the divergence cor-
rection because ∇2u21 only involves a G-sum in reciprocal space (see h̃σ

6 (G) in
Algorithm 8) and ∇2u23 yields a summation over a reciprocal-space grid includ-
ing the zero vector, which makes no correction term: Eq. (47) becomes zero for
this case.

A pseudocode for calculating the 3b3 term is shown in Algorithm 9. The
divergence correction for 3b3 is calculated as follows. gj(r1) in Algorithm 9 can
be written as

gj(r1) =
−i
2Nk

∑

q1,G

(k − q1 +G)ũσ,σ(k − q1 +G)

· FT[χ∗
periodic,q1φperiodic,jh

σ
1 ](G)φperiodic,q1(r1)e

iG·r1fq1δσ,σ1
, (123)
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Algorithm 7 Calculate 3b1: gj(r1) = −1

2

∑occupied
q1,q2

〈∗, q1, q2|∇2u21 ·
∇2u23|j, q1, q2〉 × exp(−ik · r1)
1: for j = 1 to N (MPI parallelized) do
2: h̃σ1

1 (G)←∑
σ2

iGũσ1,σ2(G)ñσ2
(G)

3: hσ1

1 (r2)← FT
−1[h̃σ1

1 (G)]
4: hσ1

2 (r2)← hσ1

1 (r2)nσ1
(r2)

5: h̃σ1

2 (G)← FT[hσ1

2 (r2)]
6: h̃σ

3 (G)←∑
σ1
−iGũσ,σ1(G) · h̃σ1

2 (G)

7: hσ
3 (r1)← FT

−1[h̃σ
3 (G)]

8: gj(r1)← −hσ
3 (r1)φperiodic,j(r1)/2

9: end for

the divergence correction for which is,

−i
2Nk

∑

µ1

[
− 4πAσ,σ

∑

q,G′

(q+G′ 6=0)

(q +G′)Aaux(q +G′)

]

·
[ ∫

dr2 χ∗
periodic,q1k(r2)φperiodic,j(r2)h

σ
1 (r2)

]
φperiodic,q1k(r1)fq1k , (124)

where q1k = (σ,k, µ1) belongs to the same k-point as that for j = (σ,k, µj),
and ∑

q1,G

(k − q1 +G)ũσ,σ(k − q1 +G) (125)

in Eq. (123) is replaced with

− 4πAσ,σ

∑

µ1

∑

q,G′

(q+G′ 6=0)

(q +G′)Aaux(q +G′) (126)

by taking a limit of k − q1 +G → 0 and considering the correction term as in
Eq. (47). For k included in the SCF k-mesh, the divergence correction term,
Eq. (124), becomes zero: Eq. (47) becomes zero due to the symmetry of the
auxiliary function Aaux(G).

A pseudocode for calculating the 3b4 term is shown in Algorithm 10. The
divergence correction for 3b4 consists of the following two contributions. One
is that for hσ

3 (r2) in Algorithm 10, which comes from the divergence correction
for ∇2u23. Since hσ

3 (r2) is written as,

hσ
3 (r2) =

1

Nk

∑

q2,G

i(k − q2 +G)ũσ,σ(k − q2 +G)

×FT[χ∗
periodic,q2φperiodic,j ](G)φperiodic,q2(r2)e

iG·r2fq2δσ,σ2
, (127)
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Algorithm 8 Calculate 3b2: gj(r1) =
1

2

∑occupied
q1,q2

〈∗, q1, q2|∇2u21 ·
∇2u23|j, q2, q1〉 × exp(−ik · r1)
1: hσ2

5 (r2)← 0
2: hσ2

3 (r2; q2) (q2 = 1 to N) ← 0
3: for q2;0 = 1 to Nirred do
4: for q1 = 1 to N (MPI parallelized) do
5: if σ1 6= σ2 then
6: continue
7: end if
8: hσ2

1 (r3)← χ∗
periodic,q2;0

(r3)φperiodic,q1(r3)

9: h̃σ2

1 (G)← FT[hσ2

1 (r3)]
10: h̃σ2

2 (G)← i(q1 − q2;0 +G)ũσ2,σ2(q1 − q2;0 +G)h̃σ2

1 (G)

11: hσ2

2 (r2)← FT
−1[h̃σ2

2 (G)]
12: hσ2

3 (r2; q2;0)← hσ2

3 (r2; q2;0) + hσ2

2 (r2)χ
∗
periodic,q1

(r2)fq1/Nk

13: end for
14: MPI Allreduce for q1-parallelization
15: for symmetry operation (q2;0 → q2) do
16: make hσ2

3 (r2; q2) from hσ2

3 (r2; q2;0) by symmetry operation
17: hσ2

4 (r2)← hσ2

3 (r2; q2)φperiodic,q2(r2)
18: hσ2

5 (r2)← hσ2

5 (r2) + hσ2

4 (r2)fq2/Nk

19: end for
20: end for
21: h̃σ2

5 (G)← FT[hσ2

5 (r2)]
22: h̃σ

6 (G)←∑
σ2
−iGũσ,σ2(G) · h̃σ2

5 (G)

23: hσ
6 (r1)← FT

−1[h̃σ
6 (G)]

24: for j = 1 to N (MPI parallelized) do
25: gj(r1)← hσ

6 (r1)φperiodic,j(r1)/2
26: end for

the correction term for which is

1

Nk

∑

µ2

[
− 4πiAσ,σ

∑

q,G′

(q+G′ 6=0)

(q +G′)Aaux(q +G′)

]

×
[∫

dr3 χ∗
periodic,q2k

(r3)φperiodic,j(r3)

]
φperiodic,q2k(r2)fq2k , (128)

where q2k = (σ,k, µ2) belongs to the same k-point as that for j = (σ,k, µj),
and ∑

q2,G

(k − q2 +G)ũσ,σ(k − q2 +G) (129)
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Algorithm 9 Calculate 3b3: gj(r1) =
1

2

∑occupied
q1,q2

〈∗, q1, q2|∇2u21 ·
∇2u23|q1, j, q2〉 × exp(−ik · r1) (except the divergence correction terms)

1: h̃σ
1 (G)←

∑
σ2

iGũσ,σ2(G)ñσ2
(G)

2: hσ
1 (r2)← FT

−1[h̃σ
1 (G)]

3: for j = 1 to N (MPI parallelized) do
4: gj(r1)← 0
5: for q1 = 1 to N do
6: if σ1 6= σ then
7: continue
8: end if
9: hσ

2 (r2)← hσ
1 (r2)χ

∗
periodic,q1

(r2)φperiodic,j(r2)

10: h̃σ
2 (G)← FT[hσ

2 (r2)]
11: h̃σ

3 (G)← −i(k− q1 +G)ũσ,σ(k − q1 +G) · h̃σ
2 (G)

12: hσ
3 (r1)← FT

−1[h̃σ
3 (G)]

13: gj(r1)← gj(r1) + (1/2)hσ
3 (r1)φperiodic,q1(r1)fq1/Nk

14: end for
15: end for

in Eq. (127) is replaced with

− 4πAσ,σ

∑

µ2

∑

q,G′

(q+G′ 6=0)

(q +G′)Aaux(q +G′) (130)

by taking a limit of k − q2 +G → 0 and considering the correction term as in
Eq. (47). The other correction is required for ∇2u21 in gj(r1) in Algorithm 10.
Since gj(r1) in Algorithm 10 can be written as,

gj(r1) =
1

2Nk

∑

q1,G

i(k − q1 +G)ũσ,σ(k − q1 +G)

·FT[χ∗
periodic,q1h

σ
3 ](G)φperiodic,q1(r1)e

iG·r1fq1δσ,σ1
, (131)

the correction term for which is

1

2Nk

∑

µ1

[
− 4πiAσ,σ

∑

q,G′

(q+G′ 6=0)

(q +G′)Aaux(q +G′)

]

·
[ ∫

dr3 χ∗
periodic,q1k(r3)h

σ
3 (r3)

]
φperiodic,q1k(r1)fq1k , (132)

where q1k = (σ,k, µ2) belongs to the same k-point as that for j = (σ,k, µj).
Note that hσ

3 in Eq. (131) is already corrected by adding Eq. (128). These two
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Algorithm 10 Calculate 3b4: gj(r1) = −1

2

∑occupied
q1,q2

〈∗, q1, q2|∇2u21 ·
∇2u23|q1, q2, j〉 × exp(−ik · r1) (except the divergence correction terms)

1: gj(r1)← 0
2: for j = 1 to N (MPI parallelized) do
3: hσ

3 (r2)← 0
4: for q2 = 1 to N do
5: if σ2 6= σ then
6: continue
7: end if
8: hσ

1 (r3)← χ∗
periodic,q2

(r3)φperiodic,j(r3)

9: h̃σ
1 (G)← FT[hσ

1 (r3)]
10: h̃σ

2 (G)← i(k − q2 +G)ũσ,σ(k − q2 +G)h̃σ
1 (G)

11: hσ
2 (r2)← FT

−1[h̃σ
2 (G)]

12: hσ
3 (r2)← hσ

3 (r2) + hσ
3 (r2)φperiodic,q2(r2)fq2/Nk

13: end for
14: for q1 = 1 to N do
15: if σ1 6= σ then
16: continue
17: end if
18: hσ

4 (r2)← hσ
3 (r2)χ

∗
periodic,q1

(r2)

19: h̃σ
4 (G)← FT[hσ

4 (r2)]
20: h̃σ

5 (G)← −i(k− q1 +G)ũσ,σ(k − q1 +G) · h̃σ
4 (G)

21: hσ
5 (r1)← FT

−1[h̃σ
5 (G)]

22: gj(r1)← gj(r1)− (1/2)hσ
5 (r1)φperiodic,q1(r1)fq1/Nk

23: end for
24: end for

corrections, Eqs. (128) and (132), become zero when k is included in the SCF
k-mesh: Eq. (47) becomes zero due to the symmetry of the auxiliary function
Aaux(G).

A pseudocode for calculating the 3b5 term is shown in Algorithm 11. Since
hσ2

3 (r1; q2) in Algorithms 8 and 11 are exactly the same, the symmetry operation
for obtaining hσ2

3 (r1; q2) from hσ2

3 (r1; q2;0) is also the same between them. The
divergence correction for 3b5 is calculated in the following way. First, gj(r1) in
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Algorithm 11 Calculate 3b5: gj(r1) = −1

2

∑occupied
q1,q2

〈∗, q1, q2|∇2u21 ·
∇2u23|q2, j, q1〉 × exp(−ik · r1) (except the divergence correction terms)

1: gj(r1)← 0
2: hσ2

3 (r2; q2) (q2 = 1 to N) ← 0
3: for q2;0 = 1 to Nirred do
4: for q1 = 1 to N (MPI parallelized) do
5: if σ1 6= σ2 then
6: continue
7: end if
8: hσ2

1 (r3)← χ∗
periodic,q2;0

(r3)φperiodic,q1(r3)

9: h̃σ2

1 (G)← FT[hσ2

1 (r3)]
10: h̃σ2

2 (G)← i(q1 − q2;0 +G)ũσ2,σ2(q1 − q2;0 +G)h̃σ2

1 (G)

11: hσ2

2 (r2)← FT
−1[h̃σ2

2 (G)]
12: hσ2

3 (r2; q2;0)← hσ2

3 (r2; q2;0) + hσ2

2 (r2)χ
∗
periodic,q1

(r2)fq1/Nk

13: end for
14: MPI Allreduce for q1-parallelization
15: for symmetry operation (q2;0 → q2) do
16: make hσ2

3 (r2; q2) from hσ2

3 (r2; q2;0) by symmetry operation
17: for j = 1 to N (MPI parallelized) do
18: if σ 6= σ2 then
19: continue
20: end if
21: hσ2

4 (r2)← hσ2

3 (r2; q2)φperiodic,j(r2)

22: h̃σ2

4 (G)← FT[hσ2

4 (r2)]
23: h̃σ2

5 (G)← −i(k− q2 +G)ũσ2,σ2(k − q2 +G) · h̃σ2

4 (G)
24: hσ2

5 (r1)← FT
−1[h̃σ2

5 (G)]
25: gj(r1)← gj(r1) + (1/2)hσ2

5 (r1)φperiodic,q2(r1)fq2/Nk

26: end for
27: end for
28: end for

Algorithm 11 can be written as

gj(r1) =

− 1

2N2
k

∑

q1,q2,G,G′

(q1 − q2 +G)ũσ,σ(q1 − q2 +G)FT[χ∗
periodic,q2φperiodic,q1 ](G)

· (k − q2 +G+G′)ũσ,σ(k − q2 +G+G′)FT[χ∗
periodic,q1φperiodic,j ](G

′)

× φperiodic,q2(r1)e
i(G+G′)·r1fq1fq2δσ,σ1

δσ,σ2
. (133)

Here, q1-summation does not require the divergence correction since the diver-
gence correction for

∑
q1,G

(q1−q2+G)ũσ,σ(q1−q2+G) becomes zero: Eq. (47)
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becomes zero due to the symmetry of the auxiliary function Aaux(G). Thus, we
concentrate on the divergence at k − q2 +G +G′ → 0 in the second Jastrow
function in Eq. (133). By considering a limit of q2 → k and G′ → −G for
Eq. (133), we get the following correction term,

− 1

2N2
k

∑

q1,µ2,G

(q1 − k +G)ũσ,σ(q1 − k +G)FT[χ∗
periodic,q2kφperiodic,q1 ](G)

·
[
− 4πAσ,σ

∑

q,G′′

(q+G′′ 6=0)

(q +G′′)Aaux(q +G′′)

]
FT[χ∗

periodic,q1φperiodic,j ](−G)

× φperiodic,q2k(r1)fq1fq2kδσ,σ1
, (134)

where q2k = (σ,k, µ2) belongs to the same k-point as that for j = (σ,k, µj),
and ∑

q2,G′

(k − q2 +G+G′)ũσ,σ(k − q2 +G+G′) (135)

in Eq. (133) is replaced with

− 4πAσ,σ

∑

µ2

∑

q,G′′

(q+G′′ 6=0)

(q +G′′)Aaux(q +G′′). (136)

This correction term, Eq (134), should also be corrected for the divergence of
the Jastrow function therein. This additional correction for Eq (134) can be
obtained by considering the divergence at q1 − k +G→ 0 in Eq (134):

− 1

2N2
k

∑

µ1,µ2,G

FT[χ∗
periodic,q2kφperiodic,q1k ](0)

[
− 4πAσ,σ

∑

q,G′′

(q+G′′ 6=0)

(q +G′′)Aaux(q +G′′)

]2

× FT[χ∗
periodic,q1kφperiodic,j ](0)φperiodic,q2k(r1)fq1kfq2k

= − 1

2N2
k

∑

µ1,G

[
− 4πAσ,σ

∑

q,G′′

(q+G′′ 6=0)

(q +G′′)Aaux(q +G′′)

]2

×
[ ∫

dr2 χ∗
periodic,q1k

(r2)φperiodic,j(r2)

]
φperiodic,q1k(r1)f

2
q1k

, (137)

where q1k = (σ,k, µ1).
A pseudocode for calculating the 3b6 term is shown in Algorithm 12. The

divergence correction for 3b6 is the most complicated because (k − q2 + G)
divergence appears twice in Algorithm 12. We shall see what correction terms
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Algorithm 12 Calculate 3b6: gj(r1) =
1

2

∑occupied
q1,q2

〈∗, q1, q2|∇2u21 ·
∇2u23|q2, q1, j〉 × exp(−ik · r1) (except the divergence correction terms)

1: gj(r1)← 0
2: for j = 1 to N (MPI parallelized) do
3: for q2 = 1 to N do
4: if σ2 6= σ then
5: continue
6: end if
7: hσ

1 (r3)← χ∗
periodic,q2

(r3)φperiodic,j(r3)

8: h̃σ
1 (G)← FT[hσ

1 (r3)]
9: h̃

σ1,σ
2 (G)← i(k − q2 +G)ũσ1,σ(k − q2 +G)h̃σ

1 (G)
10: h

σ1,σ
2 (r2)← FT

−1[h̃σ1,σ
2 (G)]

11: h
σ1,σ
3 (r2)← h

σ1,σ
2 (r2)nσ1

(r2)
12: h̃

σ1,σ
3 (G)← FT[hσ1,σ

3 (r2)]
13: h̃σ

4 (G)←∑
σ1
−i(k − q2 +G)ũσ1,σ(k − q2 +G) · h̃σ1,σ

3 (G)

14: hσ
4 (r1)← FT

−1[h̃σ
4 (G)]

15: gj(r1)← gj(r1) + (1/2)hσ
4 (r1)φperiodic,q2(r1)fq2/Nk

16: end for
17: end for

are required. gj(r1) in Algorithm 12 can be written as

gj(r1) =

1

2Nk

∑

σ1,q2,G,G′

(k − q2 +G)ũσ1,σ(k − q2 +G)FT[χ∗
periodic,q2φperiodic,j ](G)

· (k − q2 +G+G′)ũσ1,σ(k − q2 +G+G′)ñσ1
(G′)

× φperiodic,q2(r1)e
i(G+G′)·r1fq2δσ,σ2

. (138)

First, we consider the case where k is included in the SCF k-mesh. For this
case, the divergence correction can be considered by a similar way to that for
3a2. The divergence correction term for the G = G′ = 0, q2 → k component
in Eq. (138) is

∑

σ1,µ2

2πAσ1,σ

[
Aσ1,σΩ√

πα
− 4πAσ1,σ

Nk

(
− α+

∑

q,G′′

(k−q+G′′ 6=0)

Aaux(k − q +G′′)

)
+

ũσ,σ2

short(0)

Nk

]

×
[ ∫

dr2 χ∗
periodic,q2k(r3)φperiodic,j(r3)

]
ñσ1

(0)φperiodic,q2k(r1)fq2k , (139)

where q2k = (σ,k, µ2) belongs to the same k-point as that for j = (σ,k, µj),
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and we use

lim
k−q2,G,G′→0

(k−q2+G)·(k−q2+G+G′)ũσ1,σ(k−q2+G+G′) = 4πAσ1,σ (140)

and Eqs. (42) and (107). The divergence correction for G = 0,G′ 6= 0, q2 → k

in Eq. (138) is

∑

σ1,µ2,G′ 6=0

2πAσ1,σ

Nk

[∫
dr2 χ∗

periodic,q2k
(r3)φperiodic,j(r3)

]

× ũσ1,σ(G′)ñσ1
(G′)φperiodic,q2k(r1)e

iG′·r1fq2k , (141)

where we only consider the first term of the right-hand side in

(k − q2 +G) · (k − q2 +G+G′) = (k − q2 +G)2 + (k − q2 +G) ·G′ (142)

and the second term is not considered because the divergence correction for
(k − q2 + G)ũσ1,σ(k − q2 + G) becomes zero when k is included in the SCF
k-mesh, as we have seen for several cases in this paper. In the same manner,
the divergence correction for G 6= 0,G+G′ = 0, q2 → k in Eq. (138) is

∑

σ1,µ2,G6=0

2πAσ1,σ

Nk

ũσ1,σ(G)FT[χ∗
periodic,q2k

φperiodic,j ](G)ñσ1
(−G)

× φperiodic,q2k(r1)fq2k . (143)

Second, we consider the case where k is not included in the SCF k-mesh.
The divergence correction term for the G = G′ = 0, q2 → k component in
Eq. (138) is

∑

µ2,σ1

2πA2
σ1,σ

[
Ω√
πα
− 4π

Nk

∑

q,G′′

Aaux(k − q +G′′)

]

×
[ ∫

dr2 χ∗
periodic,q2k(r3)φperiodic,j(r3)

]
ñσ1

(0)φperiodic,q2k(r1)fq2k , (144)

where α and ũσ,σ2

short in Eq. (139) are removed (see Sec. 2.5). For the divergence
correction for G = 0,G′ 6= 0, q2 → k in Eq. (138), we consider the divergence
correction for ∇u. Namely, the divergence correction is

−
∑

σ1,µ2,G′ 6=0

2πAσ1,σ

Nk

[ ∑

q,G′′

(k − q +G′′)Aaux(k − q +G′′)

]

·
[∫

dr2 χ∗
periodic,q2k(r3)φperiodic,j(r3)

]
G′ũσ1,σ(G′)ñσ1

(G′)φperiodic,q2k(r1)e
iG′·r1fq2k ,

(145)
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by using Eq. (47). In the same manner, the divergence correction for G 6=
0,G+G′ = 0, q2 → k in Eq. (138) is

−
∑

σ1,µ2,G6=0

2πAσ1,σ

Nk

Gũσ1,σ(G)FT[χ∗
periodic,q2kφperiodic,j ](G)

·
[ ∑

q,G′′

(k − q +G′′)Aaux(k − q +G′′)

]
ñσ1

(−G)φperiodic,q2k(r1)fq2k . (146)

2.6.5. Equations used for calculating the two-body and three-body terms

As a short summary, we show a list of equations used for calculating the
two-body and three-body terms in the (BI)TC method as follows.

2ah Algorithm 1

2bh1, 2bh2 in the same way as Algorithm 1 (not shown)

2ax Algorithm 2 with the divergence correction, Eq. (96) (for k included in the
SCF k-mesh) or Eq. (97) (otherwise)

2bx1 in the same way as Algorithm 2 (not shown) with the divergence correc-
tion, Eq. (98) (for k not included in the SCF k-mesh)

2bx2 in the same way as Algorithm 2 (not shown) with the divergence correc-
tion, Eq. (99) (for k not included in the SCF k-mesh)

3a1 Algorithm 3

3a2 Algorithm 4 with the divergence correction for hσ,σ2

5 (r1; q2;0), Eqs. (106)
and (110). When the density-matrix mixing is used, these equations are
replaced with Eqs. (112) and (113).

3a3 Algorithm 5 with the divergence correction for hσ
4 (r1), Eq. (114) (for k

not included in the SCF k-mesh)

3a4 Algorithm 6 with the divergence correction, Eqs. (118) and (122) (for k

not included in the SCF k-mesh)

3a5 equivalent to 3a4

3a6 equivalent to 3a3

3b1 Algorithm 7

3b2 Algorithm 8

3b3 Algorithm 9 with the divergence correction, Eq. (124) (for k not included
in the SCF k-mesh)

3b4 Algorithm 10 with the divergence correction for hσ
3 (r2), Eq. (128), and

that for gj(r1), Eq. (132) (for k not included in the SCF k-mesh)
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3b5 Algorithm 11 with the divergence correction, Eqs. (134) and (137) (for k
not included in the SCF k-mesh)

3b6 Algorithm 12 with the divergence correction, Eqs. (139), (141), and (143)
(for k included in the SCF k-mesh) or Eqs. (144), (145), and (146) (oth-
erwise)

3c* equivalent to 3b*

3. How to use TC++

3.1. Requirements

TC++ requires an MPI C++ compiler that supports C++11, a Fortran90
compiler, and the following libraries: FFTW3 [70], Eigen (Eigen 3) [71], and
Boost [72]. Quantum ESPRESSO (QE) ver.6.2 or newer is also required for
performing calculation in advance of the TC calculation.

3.2. Download and install

Download the source files from https://github.com/masaochi/TC and unzip
it. Then,

cd src

and edit Makefile to specify compilers and libraries. Finally, typing

make

will create an execution file named tc++ in src. As an alternative way for
installation, cmake is also available in our code (from ver.1.2). Typing

mkdir build && cd build

cmake ..

make

make install

will also create the execution file tc++. Several options for cmake that might
be required to specify the compilers and libraries are listed in the online users’
guide.

After compilation, it is recommended to perform test calculation to verify
that your installation was successfully done. A test suite is provided in test
folder (from ver.1.2). Please type

cd test

and copy the execution file tc++ to the test directory. Finally, you can perform
test calculation by typing

python3 test.py

and its result will be shown in your screen.
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3.3. Functionalities

TC++ is a free/libre open-source software of the TCmethod for first-principles
calculation of solids. Supported functionalities are listed below.

• Method: free-electron mode (FREE), HF, TC, BITC

• Mode: SCF and band calculations

• Solid-state calculation under the periodic boundary condition. Homogeneous-
electron-gas calculation using a periodic cell is also possible by ignoring
pseudopotentials.

• Plane-wave basis set

• Norm-conserving pseudopotentials without partial core correction

• Non-spin-polarized calculation or spin-polarized calculation with the fol-
lowing conditions satisfied: spin-collinear state without spin-orbit cou-
pling, no t rev and noinv should be true in QE

• Monkhorst-Pack k-grid [73] with/without a shift. A k-grid should not
break any crystal symmetry (e.g., a 2 × 3 × 4 k-grid for the simple-cubic
lattice is not allowed). Γ-only calculation is at present not supported.

3.4. How to use

3.4.1. Precalculation using QE

Before performing TC++ calculation, one should perform calculation using
QE to get the crystal-symmetry information, initial estimate of one-electron
orbitals, and so on. Any calculation method in QE, such as DFT and HF, is
acceptable as long as one can get one-electron orbitals.

Note that acceptable pseudopotentials are a bit limited: norm-conserving
pseudopotentials without partial core correction. You can get them, e.g., in
Pseudopotential Library [74].

It is recommended to perform QE calculation in the same environment for
Fortran90 as TC++ because TC++ reads binary files containing wave-function
data dumped by QE. In TC++, Fortran90 is used only for this purpose.

3.4.2. Input files for TC++

Three inputs are required for TC++. One is the save directory obtained by
QE calculation, which includes data-file-schema.xml and wave-function files
such as wfc1.dat. Another one is pseudopotential files that should be the same
as those used in the QE precalculation. Also TC++ requires input.in containing
several input keywords for running TC++. The example is shown below.

calc_method TC # comment can be added like this

calc_mode SCF

pseudo_dir /home/user/where_pseudo_potentials_are_placed

qe_save_dir /home/user/where_QEcalc_was_performed/prefix.save
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Table 1: Mandatory Keywords in input.in. Optional keywords are shown in Table 2.

keyword type description
calc method string [available values: FREE, HF, TC, BITC] Calculation

method. No electron-electron interaction is consid-
ered for FREE, i.e., the kinetic energy and pseudopo-
tentials are only considered.

calc mode string [available values: SCF, BAND] Calculation mode.
BAND calculation should be performed after SCF
calculation.

pseudo dir string A directory where pseudopotential files are placed,
e.g., /home/user/where pseudopot are placed

qe save dir string A save directory created by QE, e.g.,
/home/user/where QEcalc was performed/prefix.save

A complete list of keywords in input.in is shown in Tables 1 and 2. For restart-
ing SCF calculation or performing band calculation after SCF, TC++ requires
some other input files dumped by TC++. Please see Sec. 3.4.4.

3.4.3. How to run TC++

An example command to run TC++ is as follows.

mpirun -np 4 $HOME/TC++/ver.1.0/src/tc++

Since TC++ does not use OpenMP parallelization, please setOMP NUM THREADS
to be 1.

3.4.4. Output files for TC++

The following outputs are obtained by TC++ calculation:

• Standard output shows error messages. Please check it when calculation
unexpectedly stops.

• output.out shows much information including a list of k-points and sym-
metries, total energy, eigenvalues, computation time, and convergence in-
formation.

• tc bandplot.dat shows band eigenvalues obtained by BAND calculation.
Users can plot the band dispersion using this file. For example, “plot
’tc bandplot.dat’ u 4:5 w l” in gnuplot will show the band structure. The
Fermi energy obtained by SCF calculation is also shown in the second line
of this file.

The following binary files are dumped and required for subsequent TC++
calculation:

• tc energy scf.dat contains SCF energy eigenvalues that are used for
restarting SCF calculation or performing subsequent BAND calculation.
Dumped in SCF calculation.
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Table 2: Optional keywords in input.in. Mandatory keywords are shown in Table 1.

keyword type description
A up up real [default: 1.0] A↑,↑ in Eq. (14), normalized by Eq. (16).

Namely, 1.0 means the value shown in Eq. (16). C↑,↑

in Eq. (14) is set so as to satisfy the cusp condition.
Not used for calc method = FREE or HF.

A up dn real [default: 1.0] A↑,↓ = A↓,↑, same as above.
A dn dn real [default: 1.0] A↓,↓, same as above. Users cannot spec-

ify different values for A up up and A dn dn in
non-spin-polarized calculation.

num bands tc integer (≥ 1, ≤
nbnd in QE)

[default: nbnd in QE] The number of bands, which
can be smaller than nbnd in QE.

smearing mode string [default: gaussian] [available values: fixed, gaussian]
We recommend smearing mode = fixed and gaus-
sian for insulators and metals, respectively.

smearing width real (≥ 0) [default: 0.01] In Hartree unit. Not used for smear-
ing mode = fixed. A negative value will be ignored.

restarts boolean [default: false] When restarts = true, TC++ restarts
calculation from a previous run.

includes div correction boolean [default: true] Whether the divergence correction de-
scribed in this paper is included.

energy tolerance real (≥ 0) [default: 1e-5] In Hartree unit. Convergence criteria
for the total energy (calc mode = SCF) or a sum of
eigenvalues (calc mode = BAND).

charge tolerance real (≥ 0) [default: 1e-4] In e−. Convergence criteria for the
charge density, used only for calc mode = SCF.

max num iterations integer (≥ 0) [default: 30 for calc mode= SCF, 15 for calc mode
= BAND] Maximum number of iterations for the self-
consistent-field loop.

mixes density matrix boolean [default: false] The density matrix (true) or the den-
sity (false) is used for mixing.

mixing beta real (> 0) [default: 0.7] Mixing ratio for simple density mix-
ing: new density = mixing beta × new density
+ (1−mixing beta) × old density, used only for
calc mode = SCF.

num refresh david integer (≥ 1) [default: 1] Trial vectors are updated by
num refresh david times for each update of
the Fock operator in Davidson diagonalization.

max num blocks david integer (≥ 2) [default: 2] This keyword determines a size
of subspace dimension: subspace dimension =
max num blocks david × num bands tc (see di-
ago david ndim in QE). Increasing this value can
improve convergence while computational time is pro-
portional to it.

is heg boolean [default: false] Switches on the homogeneous-
electron-gas mode where pseudopotentials and the
Ewald energy are ignored (i.e., a lattice is ignored).
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• tc energy band.dat contains BAND energy eigenvalues that are used
for restarting BAND calculation. Dumped in BAND calculation.

• tc wfc scf.dat contains SCF wave functions that are used for restarting
SCF calculation or performing subsequent BAND calculation. Dumped
in SCF calculation.

• tc wfc band.dat contains BAND wave functions that are used for restart-
ing BAND calculation. Dumped in BAND calculation.

• tc scfinfo.dat contains several information of SCF calculation that are
used for subsequent BAND calculation. Dumped in SCF calculation.

Here, tc energy *.dat and tc wfc *.dat are dumped in each self-consistent
iteration so that users can restart calculation when calculation stops.

4. Results

4.1. bulk silicon

As the first example, we show how to run the band-structure calculation of
bulk silicon using TC++. First, we performed SCF calculation using QE by the
following input file,

&control

prefix = ’prefix’

calculation = ’scf’

pseudo_dir = ’/home/user/QE/pseudo_potential/’

outdir = ’./’

verbosity = ’high’

disk_io = ’low’

/

&system

ibrav = 2

celldm(1) = 10.26

nat = 2

ntyp = 1

nbnd = 10

ecutwfc = 20.0

occupations = ’fixed’

/

&electrons

conv_thr = 1.0d-8

/

ATOMIC_SPECIES

Si 1.0 Si.upf

ATOMIC_POSITIONS {alat}

Si 0.00 0.00 0.00
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Si 0.25 0.25 0.25

K_POINTS {automatic}

8 8 8 0 0 0

Here, we used the Ne-core pseudopotential of silicon [75] taken from Pseudopo-
tential Library [74]. Any calculation method in QE, such as DFT and HF, is
acceptable as long as one can get one-electron orbitals. To obtain a band struc-
ture, we also performed the band calculation using QE by the following input
file,

&control

prefix = ’prefix’

calculation = ’bands’

pseudo_dir = ’/home/user/QE/pseudo_potential/’

outdir = ’./’

verbosity = ’high’

disk_io = ’low’

/

&system

ibrav = 2

celldm(1) = 10.26

nat = 2

ntyp = 1

nbnd = 10

ecutwfc = 20.0

occupations = ’fixed’

/

&electrons

conv_thr = 1.0d-8

/

ATOMIC_SPECIES

Si 1.0 Si.upf

ATOMIC_POSITIONS {alat}

Si 0.00 0.00 0.00

Si 0.25 0.25 0.25

K_POINTS {crystal_b}

3

0.5 0.5 0.0 20

0.0 0.0 0.0 20

0.5 0.0 0.0 0

Here, we copied the directory for SCF calculation and performed band calcula-
tion there. Namely, we performed band calculation in a different directory from
that for SCF calculation.

Next, we performed SCF calculation with HF or TC or BITC using the
following input file, input.in,

calc_method HF # change here (TC, BITC)
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calc_mode SCF

pseudo_dir /home/user/QE/pseudo_potential

qe_save_dir /home/user/where_QE_SCFcalc_was_performed/prefix.save

smearing_mode fixed

where pseudo dir and qe save dir should be appropriately specified. After
SCF calculation, we should check whether “convergence is achieved!” is shown
in output.out. If the convergence is not achieved, we can restart calculation
using input.in with the following line added:

restarts true

However, it is often difficult to achieve convergence in BITC calculations (see
Sec. 4.3). While convergence can be improved by increasing the number of k-
points and/or max num blocks david (e.g., to 5), we did not do so in this
tutorial calculation since it is often not necessary to get convergence with a de-
fault value of convergence criteria, energy tolerance and charge tolerance.
To improve the convergence, it is also effective to reduce mixing beta with
mixes density matrix = true. The band structures shown later were obtained
without taking these ways or restarting calculation. Finally, we performed the
band calculation using the following input file, input.in,

calc_method HF # change here (TC, BITC)

calc_mode BAND

pseudo_dir /home/user/QE/pseudo_potential

qe_save_dir /home/user/where_QE_BANDcalc_was_performed/prefix.save

smearing_mode fixed

Note that qe save dir is different from that used in SCF calculation. Users
can apply restarts = true also for BAND calculation if necessary. A small
error will remain in these tutorial calculations of the TC and BITC methods,
which can be reduced by increasing the number of k-points and/or changing the
choice of the band k-points (see Sec. 4.3).

The calculated band structures are shown in Fig. 1, which were plotted
using the fourth and fifth columns in tc bandplot.dat. The indirect band gap
is 0.5 eV, 6.4 eV, 1.5 eV, 1.6 eV for PBE-GGA, HF, TC, and BITC methods,
respectively. Since the experimental band gap of bulk silicon is 1.17 eV [77],
the accuracy of the band gap is improved in TC calculation as reported in our
previous study [16]. On the other hand, the valence bandwidth is overestimated
in the TC method (≃ 15 eV) compared with the experimental value, 12.5±0.6
eV [78]. We reported in the previous study that the overestimation of the valence
bandwidth is much improved by using a He-core pseudopotential where 2s, 2p
orbitals are treated as the valence orbitals [18].

In TC++, so-called fake-SCF calculation is also possible, where SCF and
band calculations are simultaneously performed by specifying the k-points with
an appropriate weight. Namely, users can use the following input file for QE
when using a 4× 4× 4 k-mesh,
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Figure 1: Band structures of bulk silicon calculated with PBE-GGA [76] (obtained by using
QE), HF, TC, and BITC methods.

&control

prefix = ’prefix’

calculation = ’scf’

pseudo_dir = ’/home/user/QE/pseudo_potential/’

outdir = ’./’

verbosity = ’high’

disk_io = ’low’

/

&system

ibrav = 2

celldm(1) = 10.26

nat = 2

ntyp = 1

nbnd = 10

ecutwfc = 20.0

occupations = ’fixed’

/

&electrons

conv_thr = 1.0d-8

/

ATOMIC_SPECIES

Si 1.0 Si.upf

ATOMIC_POSITIONS {alat}

Si 0.00 0.00 0.00

Si 0.25 0.25 0.25
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K_POINTS {crystal}

19

0.0 0.0 0.0 0.03125

0.0 0.0 0.25 0.25

0.0 0.0 -0.5 0.125

0.0 0.25 0.25 0.1875

0.0 0.25 -0.5 0.75

0.0 0.25 -0.25 0.375

0.0 -0.5 -0.5 0.09375

0.25 -0.5 -0.25 0.1875

0.0 0.0 0.0 0.0

0.05 0.0 0.0 0.0

0.1 0.0 0.0 0.0

0.15 0.0 0.0 0.0

0.2 0.0 0.0 0.0

0.25 0.0 0.0 0.0

0.3 0.0 0.0 0.0

0.35 0.0 0.0 0.0

0.4 0.0 0.0 0.0

0.45 0.0 0.0 0.0

0.5 0.0 0.0 0.0

and perform SCF calculation with TC++, which gives the SCF and BAND
eigenvalues simultaneously. However, we do not recommend this way by the
following reasons: band eigenvalues are not checked for convergence (see en-
ergy tolerance in Table 2), and computational cost becomes expensive be-
cause the computation time is proportional to N2

k in the TC method. Note that
tc bandplot.dat is not dumped in fake-SCF calculation since calc mode =
SCF. If users would like to perform band calculation in this way, they should
read band eigenvalues from output.out.

4.2. homogeneous electron gas

TC++ also supports calculation of homogeneous electron gas. First, we per-
formed SCF calculation using QE with the following input file,

&control

prefix = ’prefix’

calculation = ’scf’

pseudo_dir = ’/home/user/QE/pseudo_potential/’

outdir = ’./’

verbosity = ’high’

disk_io = ’low’

/

&system

ibrav = 1

celldm(1) = 7.67663317071 ! Bohr
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nat = 1

ntyp = 1

nbnd = 20

ecutwfc = 20.0

occupations = ’smearing’

smearing = ’gauss’

degauss = 0.03 ! Ry

/

&electrons

conv_thr = 1.0d-8

/

ATOMIC_SPECIES

Si 1.0 Si.upf

ATOMIC_POSITIONS {alat}

Si 0.00 0.00 0.00

K_POINTS {automatic}

12 12 12 0 0 0

where the pseudopotential file, Si.upf, placed in pseudo dir is used because
calculation of homogeneous electron gas is not implemented in QE. Four valence
electrons in the simple-cubic lattice with this lattice constant correspond to the
rs parameter of 3 Bohr in electron gas. For a band-structure plot, we also
performed the band calculation using QE with the following input file,

&control

prefix = ’prefix’

calculation = ’bands’

pseudo_dir = ’/home/user/QE/pseudo_potential/’

outdir = ’./’

verbosity = ’high’

disk_io = ’low’

/

&system

ibrav = 1

celldm(1) = 7.67663317071 ! Bohr

nat = 1

ntyp = 1

nbnd = 20

ecutwfc = 20.0

occupations = ’smearing’

smearing = ’gauss’

degauss = 0.03 ! Ry

/

&electrons

conv_thr = 1.0d-8

/

ATOMIC_SPECIES
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Si 1.0 Si.upf

ATOMIC_POSITIONS {alat}

Si 0.00 0.00 0.00

K_POINTS {tpiba_b}

3

-0.5 -0.5 -0.5 20

0.0 0.0 0.0 20

0.5 0.0 0.0 0

Here, we copied the directory for SCF calculation and performed band calcula-
tion there. Namely, we performed band calculation in a different directory from
that for SCF calculation.

Next, we performed SCF calculation with FREE (free-electron mode) or HF
or TC using the following input file, input.in,

calc_method FREE # change here (HF, TC)

calc_mode SCF

pseudo_dir /home/user/QE/pseudo_potential

qe_save_dir /home/user/where_QE_SCFcalc_was_performed/prefix.save

smearing_mode gaussian

smearing_width 0.02 # in Ht.

is_heg true

where qe save dir and pseudo dir should be appropriately specified. Finally,
we performed the band calculation using the following input file, input.in,

calc_method FREE # change here (HF, TC)

calc_mode BAND

pseudo_dir /home/user/QE/pseudo_potential

qe_save_dir /home/user/where_QE_BANDcalc_was_performed/prefix.save

smearing_mode gaussian

smearing_width 0.02 # in Ht.

is_heg true

The calculated band structures are shown in Fig. 2. One notable feature is
that the HF band structure has a well-known singularity at the Fermi energy:
the density of states becomes zero at the Fermi energy with a logarithmic sin-
gularity. This is due to a lack of the screening effect of the electron-electron
interaction in the Hartree-Fock theory. As a result, the HF band structure is
quite dispersive near the Fermi energy. On the other hand, the TC band struc-
ture does not have this kind of unphysical behavior thanks to the Jastrow factor
that includes the screening effect. These are consistent with those reported in
[12]. Note that BITC should offer the same result as TC because left and right
one-electron orbitals are the same plane waves for homogeneous electron gas.

Users can use a different value for the lattice type, the atomic species, and the
lattice constant. The subsequent TC++ run only uses the number of electrons
and the periodic cell. Since TC++ can use crystal symmetries existing in the
QE input, high-symmetry structure is preferable for efficient computation.
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Figure 2: Band structures of homogeneous electron gas using calc method = FREE, HF,
and TC. The Brillouin zone for the simple cubic lattice is used: X= (π/a, 0, 0) and M=
(π/a, π/a, 0) where a is the lattice constant.

4.3. Other comments and tips for calculation

Computational time of the HF and (BI)TC methods isO(N2
kN

2
bandsNpw lnNpw),

and required memory size is O(NkNbandsNpw). Such a relatively low scaling
compared with other post-HF methods is one of the great advantages of the
(BI)TC method.

When the convergence of the TC calculation is difficult, it might be effective
to (i) increase the number of k-points, (ii) increase max num blocks david
(e.g., to 5), and (iii) increase the number of bands, and (iv) reducemixing beta
with mixes density matrix = true. In particular, (i) is the most effective in
many cases because the divergence of the interaction terms in the reciprocal
space can make a large error in the (BI)TC and HF calculation, while it is
partially alleviated by the divergence correction. This error can be regarded
as a sampling error of a rapidly changing function in the reciprocal space, and
thus is resolved by using a fine k-mesh. Using a fine k-mesh is also effective to
make the band structure smooth. (ii) and (iii) increase a subspace dimension
for diagonalization. For (iv), please note that computational time becomes
longer by around a factor of two when using mixes density matrix = true.
Because the TC method handles the non-Hermitian Hamiltonian, it seems that
achieving the convergence in calculation is more difficult that other methods.
This tendency is more conspicuous in BITC calculations.

Related to the above-mentioned convergence issue, it is often difficult to get
the smooth band dispersion. To get a smooth band dispersion, users should
not take a band k-point that is very close to (but different from) the SCF k-
points. This is because the interaction terms include the divergence such as
1/|k − q +G|2, where k, q,G are the band k-point, the SCF k-point, and the
reciprocal vector, respectively. This divergence is problematic when k ≃ q.
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For a large system, a large memory consumption can be problematic in the
TC calculation. Increasing the number of MPI processes can alleviate this issue,
by distributing large arrays to many MPI processes.

One of the important features of the TC method is that one can optimize
one-electron orbitals in the presence of the Jastrow factor, which can improve
VMC and DMC results where HF or DFT orbitals are usually used. From this
perspective, it might be important to investigate several types of the Jastrow
factors, e.g., for obtaining a highly accurate nodal structure of the many-body
wave function, which is a key for improving the accuracy of DMC. These are
important ongoing issues for a future release.

5. Summary

In this paper, we present our implementation of TC++, a free/libre open-
source software of the TC method for first-principles calculation of solids. We
describe our calculation algorithm in detail, including the way to handle the
divergence of the effective potentials in the reciprocal space. Our computational
code enables ones to easily perform first-principles calculation of solids based on
the wave-function theory. Some application results of TC++ are promising. We
believe that TC++ will make an important contribution for the development of
the wave-function theory in solids.
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Appendix A: Invariance of the diagonal element of the eigenvalue
matrix in the TC SCF equation

The SCF equation, Eq. (8), can be written as

ĥφi(r) =

N∑

j=1

ǫijφj(r), (147)

where the orthonormal condition 〈φi|φj〉 = δi,j is satisfied. We also write the

eigenvalue equation of ĥ as

ĥφ̃i(r) = ǫ̃iφ̃i(r), (148)
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where φ̃ and ǫ̃ are the eigenvector and the eigenvalue of ĥ, respectively. Note
that, φ̃ does not mean the Fourier transform of φ in this Appendix. Because
we get φ by the Gram–Schmidt orthonormalization of the eigenvectors φ̃, φj

can be represented as a linear combination of φ̃i (i ≤ j) and vice versa. In the
following proof, Vi is the subspace spanned by φ1, φ2, . . . , φi (or φ̃1, φ̃2, . . . , φ̃i).

It is obvious that f ∈ Vi ⇒ ĥf ∈ Vi since f can be expanded with
φ̃1, φ̃2, . . . , φ̃i. Therefore, ǫij = 〈φi|ĥ|φj〉 = 0 holds for i > j because ĥφj ∈ Vj ,
which is orthogonal to φi. By defining coefficients ci as

φi = ciφ̃i + f, (f ∈ Vi−1) (149)

the diagonal element of ǫ can be calculated as

ǫii =
〈φi|ĥ|φi〉
〈φi|φi〉

=
ciǫ̃i〈φi|φ̃i〉
ci〈φi|φ̃i〉

= ǫ̃i. (150)

Thus, the diagonal element of the eigenvalue matrix is invariant against the
Gram–Schmidt orthonormalization.

Appendix B: Fourier transform of (∇u)2

For the Jastrow function shown in Eq. (14), (∇u)2 is calculated as

(∇u)2(r) = A2

r2

(
1

C
e−r/C +

1

r
(e−r/C − 1)

)2

. (151)

Therefore, we get

˜(∇u)2(G) =

∫
dr (∇u)2e−iG·r (152)

=
4π

G
Im

[∫ ∞

0

dr (∇u)2reiGr

]
(153)

=
4πA2

G
Im

[ ∫ ∞

0

dr

(
1

C
e−r/C +

1

r
(e−r/C − 1)

)2
1

r
eiGr

]
(154)

=
4πA2

Cg
Im

[ ∫ ∞

0

dr

(
e−r +

1

r
(e−r − 1)

)2
1

r
eigr

]
(g = CG) (155)

=
4πA2

Cg
Im[F (g)]. (156)

Here, Im[F (g = 0)] = 0 because the integrand in F (g = 0) is real. Therefore,
instead of calculating F (g) directly, we first calculate F ′(g)(= dF/dg) then
integrate it again, to avoid divergence. For this purpose, we define

H(g;α) =

∫ ∞

0

dr

(
αe−αr +

1

r
(e−αr − 1)

)2

eigr (157)
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for α > 0, and we can see F ′(g) = iH(g;α = 1). Because limα→0 H(g;α) = 0,
we can get H(g;α) by

H(g;α) =

∫ α

0

dα̃
dH

dα̃
. (158)

This integrand can be calculated as follows:

dH

dα̃
= −2α̃

∫ ∞

0

dr
(
αre−2α̃r + e−2α̃r − e−α̃r

)
eigr (159)

= −2α̃
(

α̃

(−2α̃+ ig)2
− 1

−2α̃+ ig
+

1

−α̃+ ig

)
(160)

=
1

2
+

g2

2

1

(2α̃− ig)2
− 2ig

2α̃− ig
+

2ig

α̃− ig
. (161)

By integrating it with respect to α̃, we get

H(g;α) =

[
α̃

2
− g2

4

1

2α̃− ig
− ig ln(2α̃− ig) + 2ig ln(α̃− ig)

]α

0

(162)

=
α

2
− g2

4

1

2α− ig
+

i

4g
− ig ln(2α− ig) + 2ig ln(α− ig)− ig ln(−ig).

(163)

Therefore, we get

F ′(g) = iH(g;α = 1) (164)

=
1

4
g +

i

2− ig
− 1

4g
+ g ln(2− ig)− 2g ln(1 − ig) + g ln(−ig). (165)

By integrating F ′(g) (i.e.,
∫ g

0
dg̃ F ′(g̃)), we get

Im[F (g)] = Im

[(
1 +

g2

2

)
ln(2− ig)− (1 + g2) ln(1− ig) +

g2

2
ln(−ig)

]
, (166)

where we remove some real terms from F (g) that are irrelevant to Im[F (g)]. By
using Eq. (156) and

Im[ln(2− ig)] = − arctan
g

2
, Im[ln(1− ig)] = − arctan g, Im[ln(−ig)] = −π

2
,

(167)
we get Eq. (91).
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