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We develop a biased Monte Carlo algorithm to measure probabilities of rare
events in cluster-cluster aggregation for arbitrary collision kernels. Given a
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local moves. We show that the algorithm is ergodic by giving a protocol
that transforms an arbitrary trajectory to a standard trajectory using valid
Monte Carlo moves. The algorithm can sample rare events with probabilities
of the order of 1074 and lower. The algorithm’s effectiveness in sampling
low-probability events is established by showing that the numerical results
for the large deviation function of constant-kernel aggregation reproduce the
exact results. It is shown that the algorithm can obtain the large deviation
functions for other kernels, including gelling ones, as well as the instanton
trajectories for atypical times. The dependence of the autocorrelation times,
both temporal and configurational, on the different parameters of the algo-
rithm is also characterized.
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1. Introduction

The study of the cluster-cluster aggregation (CCA), in which particles, or
clusters coalesce on contact to form larger clusters has a long history dating
back to Smoluchowski in 1917 [1]. There are many physical phenomena in
which the dominant dynamic process is coalescence or aggregation. Examples
include blood coagulation [2], cloud formation [3, 4], aerosol dynamics [5],
dynamics of Saturn’s rings [6, 7], aggregation of particulate matter [8] and
rod-like phytoplanktons in oceans [9], protein aggregation [10, 11], coagu-
lation of soot particles [12, 13, 14], colloids [15], charged polymers [16, 17],
etc. In addition to direct application, CCA is also of interest as a nonequilib-
rium process obeying self-similar dynamics with exponents that are universal
and dependent only on generic details of the transport. These universal fea-
tures has seen CCA being applied in seemingly unrelated areas like Burgers
turbulence [18, 19, 20, 21|, Kolmogorov self-similar scaling [22, 23, 24|, gran-
ular systems [25, 26, 27|, hydrodynamics of run and tumble particles [28],
evolution of planetesimals [29], geophysical flows [30], etc.

The most common approach to study CCA is to model it using the mean
field Smoluchowski equation, an integro-differential equation for the rate of
change of the number of clusters of a given size or mass. The transport pro-
cess that brings clusters together is incorporated into the collision kernel that
describes the rate of collision between different masses. The most common
transport processes are diffusive and ballistic transport. The Smoluchowski
equation is exactly solvable for specific kernels, and a summary of results may
be found in the following reviews [31, 32, 33, 34]. In lower dimensions, spatial
fluctuations become important and may be studied using exact solution [35],
simulations [36], or the renormalization group method [37, 38]. Irrespective
of the approach, the primary focus has been on determining quantities that
depend on typical events like the mean mass distribution, or its moments,
like the mean number of particles, lower order moments of the mass distribu-
tion like number fluctuations, etc. To the best of our knowledge, there are no
known results for the probabilities of atypical, rare events of CCA, the focus
of this paper, where we propose an algorithm that can numerically determine
these low probabilities in a model (Marcus-Lushnikov model) [7, 26, 39] that
takes into account stochastic fluctuations but ignores spatial variations.

Rare events are those which occur at the tails of a probability distribution,
and have a low likelihood of occurrence. In a stochastic process, although rare
events occur infrequently, they often have a large impact. Examples include



cyclones, tsunamis, earthquakes [40], heat waves [41, 42|, financial black swan
events [43], neurological disorders [44] and pandemics like COVID-19. For
predicting their occurrence in order to plan for them, it is important to have
an estimate of the probability of occurrence as well as the atypical trajectories
that lead to rare events. Also, knowing the probabilities gives complete
information about the large fluctuations of a system around its most probable
states. The behaviour of the tails of the probability distributions describing
these large fluctuations are captured by the large deviation function [45]. The
large deviation function is the central focus of study of large deviation theory,
which has several physical applications. The large deviation function can be
interpreted as a nonequilibrium generalization of entropy, using which, it
can be proved that the scaled cumulant generating function associated with
the distribution can be interpreted as a nonequilibrium generalization of free
energy.

Numerically, many sophisticated techniques have been developed for study-
ing rare events, such as importance sampling [46, 47, 48] and splitting algo-
rithms. In importance sampling, the original probability distribution is bi-
ased so that the rare event occurs more frequently. The distribution is then
unbiased to obtain the true probability of the event. Different kinds of im-
portance sampling methods have been developed to sample rare events, such
as instanton based importance sampling [49] and adaptive importance sam-
pling [50]. In splitting algorithms, events close to the rare event of interest
are realized many times while other events are allowed with a certain proba-
bility, in the course of the simulation. Different types of splitting algorithms
include static and dynamic splitting, and adaptive splitting algorithms [51].
A review of the different numerical methods available for calculating proba-
bility of rare events may be found in Refs. [52, 53].

The study of rare events in aggregation is a challenging problem, because
the number of possible configurations after each collision increases rapidly,
which means that sampling these configurations would be a computationally
expensive task. Is it possible to develop an algorithm which would be able
to sample rare configurations robustly, and at the same time, be computa-
tionally efficient? Can we identify a large deviation rate function for the
probability distribution obtained from such an algorithm?

In this paper, we develop a Monte Carlo algorithm to measure proba-
bilities of rare events in CCA for arbitrary collision kernels. The algorithm
is based on importance sampling. The key contribution in this paper is to
identify local modifications to a trajectory consistent with the collision rules,



as well as the probabilities arising from collision rates and waiting times.
We show that the algorithm is ergodic by giving a protocol that transforms
any given trajectory to a standard trajectory using reversible moves. The
algorithm’s effectiveness in sampling low-probability events is established by
numerically reproducing the exact large deviation function for the constant-
kernel aggregation. Further, it is shown that the algorithm can obtain the
rate functions for gelling kernels, as well as the instanton trajectories for both
typical and atypical times. The dependence of the autocorrelation times,
both temporal and configurational, on the different parameters of the algo-
rithm is also characterized.

The remainder of the paper is organized as follows. In Sec. 2, the CCA
model is defined. In Sec. 3, the algorithm is described in detail. In Sec. 3.2,
we show that the algorithm is ergodic. In Sec. 3.3, the probability distribu-
tion obtained from the algorithm is benchmarked with the exact answer, for
constant kernel aggregation, where the rate of collision is independent of the
colliding masses. A large deviation principle for arbitrary kernels is also iden-
tified numerically under a certain scaling limit. Section 3.4 shows the typical
as well as the rare trajectories for three different kernels. In Section 3.5, the
behavior of autocorrelation functions for suitably defined parameters of the
algorithm is studied. Section 4 contains a discussion of the results.

2. Model

Consider a collection of particles which are labeled by their masses. Given
a configuration, the system evolves in time through mass-conserving binary
aggregation:
K(ij
A + A ﬂ Aiyj, (1)

where Ay denotes a particle of mass k, and the collision kernel K (i, j) is the
rate at which two particles of masses ¢ and j aggregate. In an infinitesimal
time dt, the probability of collision of two particles having masses ¢ and j
is given by K(i,j)dt. Since each aggregation event reduces the number of
particles, N(t), by 1, N(t) decreases monotonically with time. Initially, there
are N(0) = M particles with equal mass my. We set mo = 1, so that all
masses are measured in units of my.

We are interested in the probability distribution P(M, N, t), defined as
the probability of ¢ being the minimum time at which exactly N particles
are remaining, or equivalently the probability that the (M — N)™ collision



occurs at time ¢, given that there are M particles of mass 1 initially. Here,
we consider ¢ as the random variable with [ dtP(M,N,t) = 1. Also, we
would like to know what the most probable trajectory is for a given M, N, t.

When ¢ is the typical time for given M and N, then we expect that the
most probable trajectory is described by the Smoluchowski equation:

dN;(t 1 : .
A — 5 ZZK(mth)leNmQ(S(ml + mo —’l> —NiZK(Z,ml)NmN

dt
(2)
where N;(t) is the number of particles of mass ¢ at time ¢. This equation is
solvable for the typical trajectory for only few collision kernels: constant, sum
and product [31, 32, 33, 34]. We note that the Smoluchowski equation ignores
correlations among the particles, and also does not give any information
about atypical times, the focus of this paper.

mi1 Mm2 mi

3. Results

3.1. Monte Carlo Algorithm

We now describe a Monte Carlo algorithm to numerically determine
P(M, N,t) for any given aggregation kernel. This includes times which are
atypical for a given M, N, and hence are dominated by rare events. A tra-
jectory that contributes to P(M, N, t) consists of C' = M — N collisions. As
C' increases, the number of trajectories increases rapidly. Figure (1) shows
all the possible configurations for 6 collisions. Any path from the top row to
the bottom row along the directed edges constitutes a trajectory.

To compute P(M, N,t) for atypical times ¢, we use a method known as
importance sampling [54]. The simulations are performed at constant M
and N, and t is considered as the random variable. In addition to weights
arising from the aggregation kernel, each trajectory is weighted by e*!, where
w is a biasing parameter which can be positive or negative. Thus, the biased
distribution is

1
P,(M,N,t) = EP(M’ N, t)e", (3)

where Z is a normalizing factor. Positive w biases the system towards larger
times and negative w towards smaller times, resulting in robust sampling of
atypical trajectories. We first determine P(M, N,t) without bias, i.e., for
w = 0. Then, we obtain P, (M, N,t) for w # 0 and unbias the distribution
using Eq. (3), i.e., multiplying by e~*. To combine the data obtained from



Figure 1: All possible configurations and trajectories for 6 collisions. The configurations
after each collision are shown inside the bubbles. The bubbles at a certain level are
arranged from left to right according to the order relation described in text (see Sec. 3.2).
For the trajectory shown in blue, the red lines denote possible alternate paths that alter
only the 4-th configuration.



different choices of w, we proceed as follows. The base normalized distri-
bution is the unbiased distribution of P(M, N,t) obtained for w = 0. The
values of w are chosen such that between two successive choices of w, there
is some overlap in the sampled times. The biased distribution is glued on by
minimizing the error in the data for the overlapping times.

The probability distribution P(M, N,t) is a sum over the probabilities
of each trajectory with C' collisions. A trajectory is characterized both by
the sequence of collisions as well as the waiting times between consecutive
collisions. In the Monte Carlo algorithm, we introduce local modifications to
the trajectory by changing both of the above, as described below.

To characterize a trajectory, we introduce the following notation. We will
refer to the configuration after the i-th collision as the i-th configuration. Its
mass distribution, the number of particles of mass m, will be denoted by
N;(m). Note that it suffices to give either the sequence of collisions or the
configurations to specify the trajectory. The waiting time between the i-th
and the (i + 1)-th collisions, or equivalently the waiting time for the i-th
configuration, will be denoted by At;. Also, (m;, m;) will refer to the pair of
masses aggregating in the i-th collision.

At each micro-step, a configuration is chosen uniformly at random, say
the i-th configuration. With probability p, the waiting time, At;, associ-
ated with the i-th configuration, is modified, keeping all the configurations
fixed. With probability (1 — p), the i-th configuration is modified, keeping
all other configurations as well as all waiting times fixed. We will treat p as
a parameter of the algorithm.

We first describe the change in waiting times. Let the current waiting
time for the i-th configuration be denoted by At??. A new waiting time
At is drawn from an exponential distribution [55]

P(Atz) = RieiniAti, (4>
where R; is the total rate of collision of the ¢-th configuration. In terms of

the collision kernel,

M M

R = Z Z K (my,mg)Ci(my, ma), (5)

mi1=1mo>mg

where




is the combinatorial factor associated with the number of ways of choosing
particles of masses m; and msy. For ensuring detailed balance, we first note
that when the waiting times are changed the sequence of collisions remains
the same for both the old and new trajectories. Since the waiting times are
biased with weight e "¢, it is easy to see that detailed balance is satisfied if the
new waiting time A is accepted with a probability min[1, e@(A4 =26

Second, we describe the moves to modify the trajectory through changes
in the configurations. There are multiple ways of choosing a different pair
of successive collisions such that only the i-th configuration is changed. An
example of possible options is shown in Fig. 1. Consider the trajectory shown
in blue. To change the 4-th configuration, keeping other configurations fixed,
the paths that are marked in red are also allowed, but each with different
weights. We now formulate the general rules to obtain the set of collisions
which will preserve all configurations except the i-th configuration.

If 1 <i < C, then the i-th and (i 4+ 1)-th collisions have to be modified,
while if ¢ = C', only the C-th collision has to be modified. We first discuss
the case 1 < 7 < C'. For convenience of notation, let the pair of successive
collisions be denoted as (my, msy),(ms, my) respectively. The most obvious
way that the collisions can be modified is to reverse the sequence of colli-
sions such that the collision (mg,my) occurs first, and then (my, msy) occurs,
provided the masses m3 and my exist independent of the (mq, ms) collisions.
The collisions can also occur such that the product from the i*" collision, i.e.,
my + Mo, is one of the colliding masses of the next collision, say ms. This
possibility leads to the classification of the pair of collisions into three types.
A pair of collisions where m; + mg # mg or my can undergo only reversal of
the sequence of collisions. This type of collision will be denoted as a. A pair
of collisions where m + my = ms falls into two types, § and . All the three
types are described below. The rules pertaining to all three types are given
in Table 1.

Type a: my + mso # mg or my. Here the only possibility is to reverse the
sequence of collisions and thus there are only two pairs of collisions to choose
from.

Type 8 : mi; + ms = mg, and there is at least one particle of mass mg
in the (¢ — 1)-th configuration. In this case, there are 6 possible pairs of
collisions to choose from.

Type v: mi + mg = mg, but there are no particles of type ms in the
(1 — 1)-th configuration. Compared to type (3, the pair of reversed colli-
sions (ms, my), (my, my) would not occur. Thus, there are 5 possible pairs of
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Table 1: Given a pair of successive collisions (m1,mz) and (ms, my4), all allowed alternate
pairs of collisions that alter only the intermediate configuration ¢ are tabulated. If the
product of the first collision takes part in the second, we denote the product as ms without
loss of generality.

Type Description 1-th collision (7 + 1)-th collision
(m1,ma) (mg, my)
o mi+m m
! 2 7& 5 (mg,m4) (ml, mz)
(m1,mo) (mg, my)
(ms, m4) (mh mz)
mi + Mo = Mms,
3 ! 2 3 (ma, my) (my + my, ma)
+ my, M) (mq,my)
N;(m3) > 0 (m1
( 3) (m27 m4) (mQ + My, ml)
(ma + my,my) (Mg, my)
(mh m2) (m3, m4)
my + mg = mg, (ma,my) (mq + my, mo)
Y (mq + my, ma) (ma, my)
( (
( (

collisions to choose from.
Each of the possibilities in Table 1 occurs with weight,

W (my, ma; ms, my) =K (my, m2)Ci(mq, ma)R;_qe” %i-18%1

7

K (ms3, my)Ci(ms, my)Rie” Rt (M)
If i = C, i.e., the C-th configuration is chosen, then any two masses from the
(C' — 1)-th configuration may aggregate. For the final collision, the weight of
choosing a pair is

W(me,mp) = K(me, mp)Co_1(me, mp)Reo_ e~ Re-18te-1, (8)

From all the allowed possibilities, we choose a particular configuration
with probability proportional to its weight, thus making the choice rejection-
free. A Monte Carlo move consists of 2C' micro-steps.

The algorithm obeys detailed balance. Once the set of new configura-
tions is determined, based on the current configuration, the probability of
choosing a particular configuration is only proportional to its weight, and
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Figure 2: Comparison of P(M, N,t) for M = 240, N = 168, obtained for two different
initial conditions. Initial condition 1 corresponds to the initial trajectory consisting of
C = M — N random collisions. Initial condition 2 corresponds to the trajectory (1) ~i(i),
formed by the collision of a particle of mass 1 with a particle of mass M —i. The data are
for the constant kernel.

independent of the current configuration. Hence, the configurational moves
satisfy detailed balance trivially. The assignment of waiting times follows the
usual Metropolis rule and hence satisfies detailed balance.

The initial configuration is chosen by colliding a randomly chosen pair
of particles at each collision. The initial waiting times are drawn from the
exponential distribution Eq. (4). To confirm convergence, we check that
the results do not depend on the initial trajectory, by choosing other ini-
tial trajectories such as (1)7(i)!. As an example, in Fig. 2 we compare
P(M, N,t) for the constant kernel, obtained for the two initial conditions
discussed above. The data are indistinguishable from each other, confirming
equilibration.

3.2. Ergodicity of the Monte Carlo Algorithm

The Monte Carlo algorithm modifies trajectories using local moves which
are reversible and obey detailed balance. We now show that the algorithm is
ergodic, i.e., it allows all trajectories to be accessed. To do so, it is enough to
prove that an arbitrary trajectory, A, can transform to a standard trajectory,
S, through a given protocol. Then, to transform A to any given trajectory
B, we follow the protocol from A to S and reverse the moves from B to S.
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We choose the standard trajectory S to be one where after every colli-
sion, only one mass different from 1 is allowed at all times. That is, after
i collisions, the configuration is (1) ~"1(i4+1)!. In this trajectory, at each
collision, the largest mass collides with a particle of mass 1.

To describe the protocol of transforming an arbitrary trajectory to S,
it is convenient to introduce an ordering among configurations that have
undergone the same number of collisions. We will say that (1)M(2)"2... <
(1)Mi(2)N2 ... if Ny = N{,Ny = Nj,..., Nj_1 = N/_, N, < N}, , where k is
the smallest mass for which Ny, # N/. The configurations are then arranged
in increasing order, as shown in Fig. (1). In this representation, the standard
trajectory S is the rightmost trajectory.

Consider any arbitrary trajectory A. The following transformations are
applied till no more transformation is possible :

e The lower most edge is moved to the rightmost allowed node.

e For the bottom most configuration that can be modified such that the
trajectory moves rightward, we choose the rightmost path.

We give an example of the above protocol for a trajectory with 4 collisions.
Consider the leftmost trajectory shown in blue, in Fig. 3(a) where the config-
uration after 7 collisions is (1)~2/(2)!. The protocol transforms the trajec-
tory as follows. The lowest-most edge has two other valid choices as shown
in red in Fig. 3(a). We choose the rightmost of these to obtain the blue tra-
jectory in Fig. 3(b). The third configuration now can be moved rightwards
along the paths shown in red in Fig. 3(b). We choose the right-most config-
uration to obtain the blue trajectory in Fig. 3(c). The bottom-most edge is
now moved to the edge shown in red in Fig. 3(c) to obtain the blue trajectory
in Fig. 3(d). Finally, the second configuration is moved to the right along
the red path shown in Fig. 3(d) to obtain the standard trajectory shown in
blue in Fig. 3(e).

We now show that the protocol transforms an arbitrary trajectory A to
the standard trajectory S. Suppose, on application of the protocol, A is
transformed to S’. We will now show that S’ = S. Let the sequence of
collisions in S’ be denoted by (m;,m}), i.e., in the i-th collision, masses m;
and m) aggregates. We derive the constraints that two consecutive collisions
in S, [(mi,m}), (mi11,m}, ;)] should obey. A pair of collisions falls under
one of the three types, o, f and 7 as described in Sec. 3.1.

11



Figure 3: The transformation from the leftmost trajectory [blue path in (a)] where all
the configurations result from the collision (1, 1), to the rightmost trajectory, S, using the
protocol described in the text. The current path is depicted in blue, and the possible
transformations in the next collision, as prescribed by the protocol, are denoted in red.
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The argument is based on the following observation. Suppose, given a
configuration, we consider two possible collisions: (my,mg) or (mg,my). If
the trajectory due to (ms, my4) colliding is to the right of the trajectory due
to (mq, my) colliding, then based on the order relation, it is easy to see that
min(mq, me) < min(ms, my).

For collisions of the type «, there are two possibilities (see Table 1) for
the sequence of collision. The reversed sequence of collisions (1741, m;, ),
(m;, m}) would lead to a trajectory to the right of S” if min(m;q1, mi, ;) >
min(m;, m}). Since we cannot have a trajectory that is to the right of S,
we obtain the condition, based on the argument in the previous paragraph,
min(m;41, my, ;) < min(m;, m;).

Now consider collisions of types § and . The pair of collisions are
(m;,m) and (m; +m},m} ;). Suppose m; , > min(m,;, m;). Then the pair
of collisions (m/,, max(m;, m;)), (min(m;, m;), m;,, + max(m;, m})) creates
a trajectory to the right of S’ that is allowed by the protocol. But since S’
is the rightmost trajectory, there is a contradiction and hence

ML, = min(migr,ml, ) < min(m,, mf), (9)

that holds for all collision types «, 8 and ~.

The first collision is (1,1). To satisfy the condition in Eq. (9), it is clear
that at least one of the colliding masses in the second collision should be
1, as the minimum possible mass is 1. It follows that in order to satisfy
the condition in Eq. 9 for every sequence of consecutive collisions in the
trajectory, at least one of the colliding masses in all the subsequent collisions
should be 1.

Now consider the C-th collision. For the rightmost trajectory, the two
largest masses have to be collided. But we have already shown that one of
the masses should be 1, i.e., the second largest mass is 1. This implies that
the C-th configuration is 1¥~'C'. Using the property that mass 1 is used
in each step, it follows that the i-th configuration is 1"~%' which is the
standard configuration. This implies that S’ = S, and hence proves that the
algorithm is ergodic.

3.3. Large Deviation Function

To show the efficacy of the algorithm, we compare the numerical results
with the exact solution of the model of constant kernel where collision rates
are independent of the masses. The collision kernel K (my,ms) = .

13



3.3.1. FExact result for constant kernel
When the collision rates are independent of masses, P(M, N,t) can be
analytically computed. After ¢ collisions, M — i particles remain, and the
total rate of collision is given by
AM —i)(M —i—1)

R; = : . (10)

Using the exponential time distribution Eq.(4),
P(M, N, t) = / dAto/ dAtl/ dAtC,1 RoeiRoAtO
0 0 t=0
-1 (11)
Rle_RlAtQ . Rc_le_RcflAtcflé (Z Atz — t) .
i=0

The o-function constrains the sum of waiting times to the total time ¢. The
Laplace transform of P(M, N, s), defined as

P(M,N,s) = / dte=*'P(M, N, 1), (12)
0
is then
~ ol n
P(M,N,s) = L 13
01,89 =1 755 (13)
Doing the inverse Laplace transform, we obtain
c-1 c-1 c—1 1
P(M,N,t) = —Rit - 14
o= (TR ) e T gty 0
k=0 =0 j#4,7=0

We compare the results from the Monte Carlo simulations for the constant
kernel with the exact results. Plotting the unbiased P(M, N,t) (with w = 0)
as the reference, P(M, N,t) obtained from non-zero values of w are merged
with the reference distribution by appropriate normalization. In Fig. 4(a),
the results for P(M, N,t) from Monte Carlo simulations are compared with
the exact solution for a fixed & = N/M = 0.8 and M = 120, 160,240. It
is clear that the data are in good agreement with the exact results, thus
providing a benchmark for correctness. Also, we are able to measure very
low probabilities, of the order of 1072, and even lower, at times much larger
and much smaller than the typical time.

14
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Figure 4: (a) P(M, N,t) for the constant kernel for different M, keeping ® = N/M = 0.8
fixed are compared with the exact solution, Eq. (13). (b) The data in (a) for different M
collapse onto one curve when scaled as in Eq. (14), to give the rate function.

For large M, P(M, N, t) for different M, N, t collapse onto one curve when
scaled as in

N
—mPMLNJ%:Mf&gJMO, M,N,t7! = oo, (15)

as shown in Figure 4(b). We then identify M with the rate and f with the
large deviation function [45]. —In P has a minimum value of zero. We will
identify the corresponding value of time as the typical time, t;,, for M — N
collisions, i.e., f(®, M Aty,) = 0.

To show that the algorithm works for the full range of ®, we compare
the results from simulations of the constant kernel with the exact results for
® =0.3,0.5 in Fig. 5. Excellent agreement is seen.

We note that there is an upper bound for the value of the bias w. To
see this, we observe that P(M, N, t) in Eq. (13) is a sum over (C' + 1) terms,
each one of which decreases exponentially with ¢ as e~%¢. Thus, for large t,
the term with the smallest R; will dominate. Since the smallest rate is R¢,
we expect that

C—-2
R.
P(M,N.t)~Rc_e Rt || ———L ¢t 5 ~. 16
( ) 7) c-1€ j];IORj_RC—l’ 0.9 ( )
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Figure 5: (a) P(M, N,t) for the constant kernel for different M, and keeping ® = N/M =
0.3 fixed collapse onto one curve when scaled as in Eq. (15), to give the rate function.
(b) P(M, N,t) for the constant kernel for different M, and keeping ® = N/M = 0.5 fixed
collapse onto one curve when scaled as in Eq. (15), to give the rate function.

This implies that a bias w > %N(N + 1) cannot be applied since the biased
distribution P, (M, N,t) would diverge, making it not normalisable. For
small times, there is no such cutoff for the bias.

The large deviation functions of kernels other than the constant kernel can
also be obtained using the algorithm. Depending on the form of the collision
kernel K (mj,ms), a phenomenon known as gelation occurs in aggregating
systems, where there is a non-trivial fraction of the total mass, (1—®)M, and
the rest are masses which are much smaller than (1—®)M. In gelling kernels,
collisions between large masses are dominant. After gelation occurs, the
smaller masses are consumed by the large mass. For a collision kernel of the
form K (my,msq) =~ /\<m1m2>§, the criteria for gelation has been established
as 0 > % [56, 57|, where 8 = v + p. Figure 6 shows the rate function for the
collision kernels with 8 = 0,1,2. The algorithm is able to obtain the rate
function for small and large arguments, showing that a numerical analysis
similar to the constant kernel can be done for any arbitrary kernel.

In addition to obtaining the large deviation function for the well-known
constant, sum and product kernels, we also demonstrate the usefulness of
the algorithm by determining the large deviation function for a collision
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kernel for which the mean field Smoluchowski equation cannot be solved
for. Figure 7 shows the rate function for the Brownian kernel, K (mj, ms) =
(mq/ma)'/3 + (my/mq)'/3 4 2, which is widely used in aerosol physics [58].

3.4. Typical trajectories

In the algorithm for determining P(M, N,t), the initial condition was
fixed as N(0) = M, but the final time was varying. Now, we fix the final
time to be T, i.e., N(T) = N, and determine the most probable trajectory
under these conditions. We will refer to this trajectory as the instanton
trajectory.

To determine the instanton trajectory, we modify the algorithm as follows.
The rules to alter the configurations remain the same as before. The rules
for assignment of waiting times are modified as follows. A configuration
1 < i < C is chosen. Let the current waiting times associated with the
(¢ — 1)-th and i-th configurations be At _, and At;. These waiting times are
reassigned, keeping their sum fixed, thus ensuring that the total time taken
for C collisions to occur does not change. Let the new waiting times be At;
and At;. Then, At;_; is drawn from the distribution

P(Atz_l) = /\/’Ri_le_RFlAti*lRiB_RiAti, (17)
where A is the normalizing factor, and At; is fixed by
At; = Aty + At; — Aty . (18)
Integrating over At;_; from At;; =0 to At;_; = At;_, + At., we obtain

Ri 1 —Ri Ri(At,_,+At])
N= R R (19)
Ri—IRi(l . ef(lelfRz)(AtiflJrAti))

Hence, the final distribution is

(Rifl _ Ri>e_(Ri—l_Ri)Ati—l

P(Atiy) = 1 — e~ (Ri-1—R)(A_, +At)

(20)

To benchmark our simulations, we first ask how the typical trajectories
look like. The trajectory obtained for a given M and ®, without any con-
straints on the final time and in the absence of bias, is the typical trajectory.
We expect that this typical trajectory is described by the Smoluchowski equa-
tion (see Sec. 2). Summing over ¢ and dividing by M in Eq. (2), gives the
rate of decay of the fraction of particles, n(t) = N(t)/M with time.
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For the constant kernel K (my, ms) = A,

dn MAn?
- = i 21
dt 2 (21)
The solution of this equation, with the initial condition n(0) =1 is
1
constant kernel. (22)

n(t) = T

This solution describes a typical trajectory provided the number of parti-
cles are not of order 1, which is when the Smoluchowski equation breaks
down. For the sum kernel, K (my, ms) = 4(my +my) and the product kernel,
K(my,my) = Amyms, the solution for the Smoluchowski equation is easily

obtained, and are given by [31]

n(t) —e~"2", sum kernel, (23)

M
n(t) =1— %, product kernel. (24)

We note that these solutions are valid before gelation, where an infinite mass
forms in finite time. Given ® = N/M, the typical times ¢,,, for the different
kernels are obtained by equating n(7") in Egs. (22), (23) and (24) to ®. To
check that the simulations reproduce the typical trajectories, we set T" = t4,,,,
and then ask whether the numerically obtained instanton solution matches
with the solution to the Smoluchowski equation.

Figure 8 shows the numerically obtained instanton trajectories for the
constant, sum, and product kernels, for typical as well as atypical final times
T, for & = 0.8. For T' = t;,, the data are in excellent agreement with
the solution of the Smoluchowski equation for all the three kernels, thus
providing a check for the correctness of the implementation of the algorithm.
The algorithm is also able to obtain the instanton trajectories for atypical
trajectories for times which are both much smaller than as well as much
larger than the typical times. The exact answers for the atypical trajectories
of the constant kernel are [59]

MMp(t —t

n(t) = —ptan # T < tyyp, (25)
MNq(t —t

n(t) = g coth % T > tyy,, (26)
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Figure 8: Instanton trajectories for different final times T are shown for (a) constant
kernel and ® = 0.3, (b) sum kernel and ® = 0.5, and (c) product kernel and ® = 0.8.
The three times shown are for T = ¢4y, t1,,/10 and 4t;,,. The data for the typical times
are compared with the exact solution of the Smoluchowski equation [see Egs. (22), (23)
and (24)]. For the constant kernel, the data for atypical times are also compared with the
exact result [see Egs. (25), (26). The data are for M = 240.

where p, ty, ¢ and t; are determined from the boundary conditions n(0) = 1
and n(T) = ®. The simulation results are in excellent agreement with the
exact results for the instanton trajectories for atypical events, as shown in
Fig. 8.

We also check that the minimum of the large deviation rate function for
the constant, sum, and product kernels for & = 0.8, shown in Fig. 6, occurs
at the typical times as calculated by the Smoluchowski equation in Egs. (22),
(23), and (24).

3.5. Autocorrelation times

To characterize the algorithm, we determine the dependence of the au-
tocorrelation time on bias w, fraction & = N/M and the parameter p. We
recall that p is probability that in a given micro-step the sequence of colli-
sions is modified, while (1 — p) is the probability that the waiting times are
modified. The autocorrelation function, ACF(7), for a stationary variable
X is defined as

ACF(T)=i, T,dt[X(tJrT)—(X)][(X(t)—<X>)]a (27)
1" Jo

where T” is the total time over which X is measured, and 7 is the delay.
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The Monte Carlo algorithm involves introducing local modifications to
the trajectory by changing either the waiting time associated with a collision
or the sequence of collisions. To measure the autocorrelation in time as well
as in configuration space, we define

C
t = Z At;, (28)
=0

M
=) m’Ni(m), i=2,...,C. (29)
m=1

(); is a measure of the mass distribution after the ¢-th collision. We choose
the second moment of mass, as it is the lowest moment that changes when the
mass distribution is modified, the zeroth and first moments being constants.

The autocorrelation functions ACFy(7) and ACFy(7), corresponding to
t and @ decay exponentially with time, as shown in Fig. 9. To decide which
configuration we should use for the () autocorrelation, we compare the auto-
correlation functions for the C-th, C'/2-th, and C'/4-th collisions in Fig. 9 (b).
We find that the correlation time, determined by the slope of the curve on
the semi-log plot, is nearly the same for all the three data. For convenience,
we choose the C-th configuration, henceforth, to measure the autocorrelation
time 7, and will drop the subscript ¢ from the second moment () in Eq. (29).
We define autocorrelation times, 7; and 7¢ via

ACE(T) .
ACF0) ¢ i (30)
ACEQ(T)  —rjrg
ACF(0) ~e ! (31)

The autocorrelation times 7, and 7¢ are obtained by fitting these exponential
functions to the exponentially decaying regions of ACFy(7) and ACFg(T),
respectively. We now characterize the dependence of 7;, 7¢ on the fraction
of particles remaining, ®, bias w, and the parameter p. All the simulations
have been performed for the constant kernel.

Figure 8 shows the dependence of 7, and 7 on the bias, w for fixed
® = 0.8 and p = 0.5. For w > 0, 7; increases sharply with w and diverges
at the cutoff bias [see Fig. 10 (a)]. For w < 0, 7 increases much more
slowly. We find that 7; decreases with M, however, we cannot find a scaling
behaviour. For the unbiased case, w = 0, we find that 7; is independent of
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Figure 9: Autocorrelation functions for (a) total time ¢ and C = 60, and (b) Q;, for
1= C,C/2,C/4, where C = 24, with delay 7, for the constant kernel, for M = 120,w =
0,p = 0.5.

M. In contrast, we find that 7o shows at most a very weak dependence on
w. It increases with M, but the data for different M collapse onto one curve
when 7¢ is scaled by M? [see Fig. 10(b)].

The variation of 7, and 7 with the parameter p is shown in Fig. 11 for
fixed ® = 0.8 and w = 0. 7, diverges as p — 1. This is expected since,
in this limit, the probability of modifying waiting times tends to zero. We
also find that 7; is independent of M. 7¢, on the other hand, increases with
M. However, the data for different M collapse onto one curve when 7q is
scaled by M?. As expected, 7o diverges for small p because the probability
of updating configurations tends to zero in this limit.

We also checked the variation of 7; and 74 with the parameter p for non-
zero values of w. We again find that the data for 7o collapse when scaled by
M?. However, we do not find a scaling for ;.

The variation of 7, and 7 with ® is shown in Fig. 12 for fixed p = 0.5
and w = 0. 7; is order 1 and very weakly dependent on both ® as well as M.
For 7¢, like before, the data for different M collapse onto one curve when 7¢
is scaled by M?. We also find that 7¢ is larger for smaller ®.

From Figs. 10-12, we see that 7; remains small unless p — 1, or if the
positive bias is close to the cutoff bias. On the other hand, 7 is order of
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Figure 10: The variation of the autocorrelation times (a) 7; and (b)7g/M? with w for
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Figure 12: The variation of the autocorrelation times (a) 7+ and (b)Tg/M? with & for
different M. The data are for the constant kernel for p = 0.5 and w = 0.

M?/100 times larger than 7;. Choosing a value of p close to 1 will optimize the
implementation of the algorithm, keeping both autocorrelation times finite.

4. Summary and Conclusion

To summarize, we developed a biased Monte Carlo algorithm to compute
probabilities of rare events in irreversible cluster-cluster aggregation for an
arbitrary collision kernel. In particular, the algorithm measures P(M, N, t),
the probability of N particles remaining at time ¢ when there are M particles
initially, as well as the most probable trajectories for fixed M, N, and t. By
choosing appropriate biases, the algorithm can efficiently sample the tails of
the distribution with low computational effort. We prove that the algorithm
is ergodic by specifying a protocol that transforms any given trajectory to
a standard trajectory using valid Monte Carlo moves. The algorithm is
benchmarked against the exact solution for the constant kernel.

To characterize the algorithm, we define autocorrelation times 7, and 7q,
corresponding to the waiting times as well as the configurations. We find
that 7; is much smaller than 7¢ for almost the entire range of parameters.
From simulations for different M, we find that 7, is at most only weakly
dependent on M, while ¢ is proportional to M?. Based on the dependence
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of 7, and 7 on the bias w, the fraction of particles remaining ® = N/M,
and the parameter p which decides what fraction of the Monte Carlo moves
are changes to configurations, we conclude that it is best to choose a value
of p as close to 1 as possible.

Generalizing the numerical results for constant, sum, and product kernels,
we conclude that there exists a large deviation principle for arbitrary kernels,
where the total mass M is the rate. This provides hints for a more rigorous
treatment of the large deviation function for the problem of aggregation. In
a future publication, based on the insights gained from this paper, we will
provide a derivation of the large deviation function for some kernels.

Although this paper deals with binary aggregation, the algorithm that we
have developed can also be easily generalized to the numerical study of the
non-binary processes kA — (A, with suitably modified rates. Adding spatial
degrees of freedom, and transport, like diffusion, is a problem of interest.
However, generalizing the algorithm to such systems is a challenging prob-
lem. Adding a competing process such as fragmentation is another problem
of interest [6, 7, 60, 61].Competing processes like these can lead to phase
transitions and oscillations, at least in the mean field limit [62]. These are
promising areas for future study.

Author contributions: V. Subashri developed and implemented the algo-
rithm, and wrote the paper. R. Dandekar was involved in the development of
algorithm. R. Rajesh and O. Zaboronski conceived and directed this work,
and helped in writing the paper.
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