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Abstract

Obtaining high quality particle distribution representing clean geometry in pre-
processing is essential for the simulation accuracy of the particle-based methods.
In this paper, several level-set based techniques for cleaning up ‘dirty’ geometries
automatically and generating homogeneous particle distributions are presented.
First, a non-resolved structure identifying method based on level-set field is em-
ployed to detect the tiny fragments which make the geometry ‘dirty’ under a
given resolutions. Second, a re-distance algorithm is proposed to remove the
tiny fragments and reconstruct clean and smooth geometries. Third, a ‘static
confinement’ boundary condition is developed in the particle relaxation process.
By complementing the kernel support for the particles near the geometric sur-
face, the boundary condition achieves better body-fitted particle distribution on
the narrow region with high curvature. Several numerical examples include a
2D airfoil 30P30N, 3D SPHinXsys symbol, a skyscraper with a flagpole and an
inferior vena cava demonstrate that the present method not only cleans up the
‘dirty’ geometries efficiently, but also provides better body-fitted homogeneous
particle distribution for complex geometry.

Keywords: Particle methods, ‘dirty’ geometry cleaning, level-set, static
confinement, kernel support completing

1. Introduction

As a truly Lagrangian, mesh-free method, smoothed particle hydrodynamics
(SPH) has attracted tremendous attention due to its very nature of tracking
moving characteristics such as free surfaces, moving and deformable material
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interfaces. Typical applications include geophysical flow [1, 2, 3], bio-mechanics
[4, 5, 6, 7] and other industrial application [8, 9, 10]. Specifically, the SPH
method has been successfully implemented in the modeling of bird impact [11,
12], aircraft ditching [13], wave energy conversion process [14], ocean and coastal
engineering [15, 16, 17], high-velocity impact welding [18], and slurry & media
motion within stirred media detritor (SMD) [19], to name a few.

To eliminate the bottleneck for widespread industrial applications of SPH
method, one critical challenging task in pre-processing is to efficiently generate
body-fitted and isotropic particle distribution for arbitrarily complex geometry.
In many applications of the SPH method, the lattice-based and volumetric-mesh
converted particle distributions [20, 21] are still the most popular approaches
[10]. While the former is not body-fitted for complex geometry, the latter is
difficult to be isotropic. When SPH particles are used to model a fluid in the
Lagrangian framework, it seems that the initial particle distribution does not
need to be body-fitted or isotropic as, after the simulation starts, the parti-
cles always leave their initial position and form isotropic distribution due to
the self-adjust mechanism. Even this, since the particles are not initially set
in the ‘equilibrium’ position, the numerical noise introduced by particle reset-
tlement during the early stages of the flow evolution will strongly affect the
fluid evolution [22]. Furthermore, as the development of more challenging SPH
algorithms and complex applications in the field of bio-medicine[4], structural
mechanics[23], fluid-structure interaction [24, 25, 26], and SPH method in Eule-
rian framework [27, 28], in which the particle configuration is fixed through the
simulation, generating body-fitted and isotropic particle distribution for general
complex geometries are becoming more significant.

In order to achieve this goal, several different approaches have been proposed.
Particle packing algorithm [22] provide a ‘equilibrium’ initial distribution of fluid
particles with simple geometries where solid particles are prescribed for the
surface. The weighted Voronoi tessellation (WVT) algorithm [29] iterates the
particle distance under a repulsive force to achieve a quasi-isotropic uniform or
non-uniform particle distribution for arbitrary geometry. This method needs to
exert anti-symmetric forces from the ghost particles to prevent the penetration.
The Extended WVT algorithm [30, 31, 12] represents the geometry surface by
shell mesh elements in order to treat more complex boundaries. By introducing
level-set to describe the geometry while solving the target feature-size function,
Fu et al. [32] proposed a fluid relaxation method, which is able to generate
isotropic and body-fitted particle distribution for arbitrary 2D geometry . Ji
et al. [33, 34] extended the fluid relaxation method with a feature boundary
correction term to accelerate the particle generation process and to address the
issue of incomplete kernel support near the surface. By replacing the governing
equation with an original momentum equation in particle discrete form, Zhu et
al.[35] further simplified the relaxation method to a physics-driven relaxation
process with a simple level-set based bounding method.

While the relaxation-based methods are able to generate body-fitted and
isotropic particle distributions, when the local length scale or curvature of the
geometry does not variate too much (except singularities), they face a critical
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issue, similar to the mesh-based method [36], when the local length scales of the
body surface span a large range. One typical case is the problem of ‘dirty’ geom-
etry, which frequently occurs in industrial simulations and brings lots of extra
manual labor, but has been rarely discussed in the literature. ‘Dirty’ geometries
involve small structures or small flow paths with the characterized size which
can not be well resolved in the simulations [37], and often induce low-quality
mesh or particle distribution and eventually to numerical instability. Besides
erasing these small structures manually, another straightforward approach is
capturing such small features directly, which may increase the total number of
grid points or particles dramatically and leads to extremely small time-step sizes
[37]. One alternative way to circumvent this issue for the mesh-based method is
introduced an effective smearing technique by which the influence of small struc-
tures is smeared out with the immersed boundary method (IBM) [37]. While
this technique shows good performance in many cases, the overlap meshes and
heterogeneous coupling used in IBM are not always desirable, especially when
conservation properties are required. To the best knowledge of the authors, the
proper approach for handling the ‘dirty’ geometry problem is yet to be proposed
for particle methods.

Another issue of the particle relaxation method is the boundary condition
for body-fitting. As the particle relaxation takes place inside the geometry,
and there are no particles outside the surface to achieve force balance or full
kernel support, a boundary condition should be imposed for the particles near
the surface. A typical approach for this is the ghost particle method, in which
ghost particles are used to fill the outside space near the surface [38, 39, 40, 32].
While introducing ghost particles for simple surfaces is straightforward, it can
be quite a challenge for complex geometry. In addition, more particles also lead
to additional computational and memory cost, especially for three-dimensional
problems. Ji et al. [34] exploited a ‘feature boundary correction’ term to mimic
the fully kernel support for the boundary particles near the surface. This method
still requires a single layer of particles generated on the surface, which is not
trivial for complex three-dimensional geometries, and relaxing together with the
interior particles. Zhu et al. [35] introduced a simple and fast particle bounding
method without using ghost or surface particles. The bounding method directly
constrains the boundary particles according to their distances toward the surface
probed from the background level-set field. While being quite effective when
the surface curvature is moderate, it does not converge, typically presented by
particles with persistent and fast motion, to the balanced particle distribution
near sharp features of the surface.

In this paper, a level-set based pre-processing techniques for particle-based
applications are proposed to solve the above-mentioned problems. First, a non-
resolved structure identifying method based on level-set field is employed to find
out those tiny fragments which make the geometry becomes ‘dirty’ under a given
resolution. Second, a re-distance method is used to reconstruct the level-set field
by removing these ‘dirty’ geometries. The particle generation process for the
30P30N airfoil is employed to show the instability caused by ‘dirty’ geometry in
particle relaxation. This example also demonstrates that our method generates
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the isotropic body-fitted particle distribution for arbitrary complex geometries
by identifying and cleaning-up the non-resolvable small structures. At last, a
new level-set based method named ‘static confinement’ is developed to complete
the kernel function on the geometry surface during the physics-driven relaxation
process. With the ‘static confinement’ boundary condition, the geometries with
large curvature corners can be accurately captured.

The remainder of this paper is organized as follows. In Section 2, we briefly
summarize the previous particle-relaxation method for body-fitted particle gen-
eration and the narrow-band level-set technique. In Section 3, the algorithm for
identifying and cleaning-up the non-resolvable small structures are presented.
The method of ‘static confinement’ is developed in Section 4 to complete the
SPH kernel support during the particle relaxation process. Several typical appli-
cations are shown in Section 5 to validate the importance of the ‘dirty’ geometry
cleaning-up process and the self-cleaning ability of the present pre-processing
tool, respectively. Concluding remarks are given in Section 6. The source code
of the present method is available in our open-source SPHinXsys library [41, 42]
at https://www.sphinxsys.org.

2. Preliminary work

In this section, we briefly summarize the particle-relaxation method on gen-
erating body-fitted particle distributions for arbitrarily complex geometries and
more details are referred to Ref. [35].

2.1. level-set method and narrow-band technique

To represent the complex geometry, the level-set field φ(x, y, z, t) is utilized
by defining a signed distance function, so that the zero level-set contour

Γ = {(x, y, z) |φ (x, y, z, t) = 0} . (1)

represents the geometry surface, and the negative and positive level-set values
are for the inside and outside regions respectively. The normal direction N =
(nx, ny, nz)

T can be evaluated by

N =
∇φ
|∇φ|

. (2)

To discretize the level-set field, a Cartesian background mesh is used in the whole
computational domain and the level-set value φ of each mesh cell is defined by
the distance from the cell center to the geometry surface. Subsequently, the
level-set field can be constructed by parsing CAD data with proper in-house
function or parser provided by open source library, for example Simbody [43]
and Boost libraries.

A typical way to reduce the computational effort for level-set related oper-
ations is the narrow-band method [44, 45, 46], in which the computation effort
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Figure 1: level-set field with narrow band data storage: (a) ‘inner packages’(light blue cells)
and ‘core packages’(dark blue cells) around geometry surface, (b) structure of data-package
(yellow cells) and address-package (blue cells). The square brackets indicate a data sequence in
the ‘data package’. The curly brackets indicate the address sequence in the ‘address package’.
All the black indexes are belong to the same ‘data package’ and its ‘address package’, while
the red indexes are from its neighbor ‘data package’.

is restricted to the near-interface band. Here, the narrow-band technique simi-
lar to Refs. [45, 47] is used with memory-pool data package technique [47] for
further accelerating the level-set related operations.

Fig. 1 gives a detailed description of the narrow-band and data package
settings. Here, the narrow-band region near the geometry surface is further
divided into the core region and the inner region (the inner region contains the
core region) represented by mesh cells with a coarse cell spacing lc. Each mesh
cell in the narrow-band region has been subdivided into 4 × 4 (in 2D) data
grids with the fine cell spacing lf equals to a quarter of lc and named as data
package. For every data package, there is an overlapped address package with
one cell spacing lf over the data package in each direction for parallel operation
and to improve the memory efficiency. For the narrow-band region, the level-
set value is computed as the distance between the cells’ center to the geometry
surface. While for the remaining area named as ‘far field’ in our method, only
two fixed values −4lc and 4lc are assigned with their memory addresses to each
cell depending on whether the ‘far field’ cell is within the geometry or not.
That means, in the narrow-band method, there are two levels of mesh, one
covers the whole computational area with the coarse cell spacing lc, the other is
only employed in the narrow-band region with fine cell spacing lf . The detailed
implementation of our narrow-band and package techniques please refer to the
Algorithm 1.
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Algorithm 1: Algorithm for the construction of the level-set field with
narrow-band and package techniques (in 2D)

1 Setup parameters and initialize the computation;
2 Read and parse the polygon mesh of a specific geometry from CAD files;
3 Divide calculation domain by a coarse cell spacing lc into each Ci,j ;
4 Initialize the positive and negative far field cell Cp = 4lc and Cn = −4lc;
5 forall Ci,j do
6 Detect the distance Di,j of each coarse cell Ci,j to Γ0;
7 if Di,j <= lc then
8 Mark Ci,j as Core package and Inner package;
9 Divide Ci,j by a fine cell spacing lf into 4× 4 data cells dm,n;

10 Initialize Core package with φm,n and its address;

11 else if Ci,j |∃Ci+i0,j+j0 ∈ Core packages,∧(∀i0, j0 ∈ {−1, 0, 1}) then
12 Mark Ci,j as Inner package;
13 Divide Ci,j by a fine cell spacing lf into 4× 4 data cells dm,n;
14 Initialize Inner package with φm,n and its address;

15 else
16 Point the address of Ci,j to Cp or Cn depends on the sign of its

Di,j ;

17 Link the address of each Ci,j of all Inner packages;

18 end
19 forall Inner packages do
20 Initialize the normal direction of each dm,n by Eq.2;
21 Initialize the Ii,j of each dm,n by Eq.21;

22 end
23 Terminate the computation.

2.2. Physics-driven particle relaxation

Isotropic and body-fitted particle distribution can be obtained by implement-
ing a physics-driven relaxation process with a level-set based surface particle
bounding [35]. In the physics-driven relaxation process, the particle advection
is governed by

dv

dt
= Fp, (3)

where v is the advection velocity, Fp denotes the accelerations due to the repul-

sive pressure force and d(•)
dt = ∂(•)

∂t + v ·∇ (•) stands for the material derivative.
Following Refs. [35, 48, 49, 50], the pressure term in the right-hand-side of Eq.3
can be calculated as

Fp,a = −2p0Va
ma

∑
b

∇aWabVb, (4)

by applying a constant background pressure p0 [48]. Here, m is the particle
mass, V the particle volume and ∇aWab represents the gradient of the kernel

6



Figure 2: High-lift airfoil 30P30N with sharp trailing edge and a sharp slit at its second part.

function W (|rab|, h) with respect to particle a. Note that rab = ra − rb and h
represents the smoothing length. Following with the time-step size ∆t which is
constrained by the body force criterion,

∆t ≤ 0.25

√
h

|dv/dt|
, (5)

And the position updating method of particles as

rn+1 = rn + dr = rn +
1

2
Fnp∆t2. (6)

To take into account the lack of kernel support for near-surface particles, the
particle position is modified by a surface bounding

ra =

{
ra −

(
φa + 1

2∆x
)
Na φa ≥ − 1

2∆x

ra otherwise
, (7)

where ∆x denotes the particle spacing, and φa and Na are the level-set value
and the normal direction at the position of particle a, respectively. More details
are referred to Ref. [35].

3. ‘Dirty’ geometry cleaning

Here, we use a defective geometry of a high-lift airfoil 30P30N (shown in
Fig. 2) to illustrate the issue of ‘dirty’ geometry. The airfoil has a typical
sharp trailing edge and a small slit which is considered as a defect in its second
part. These parts are left unresolved even very high resolution is applied. As
shown in Fig. 3a, although the grid resolution used to generate lattice particle
distribution is high enough compared to the chord length of the airfoil (0.002
to 1), several mono-layer particles are generated at the end of the sharp trailing
edge with lattice distribution.

These mono-layer particles leads to unresolved singularity and can induce
numerical instability during the relaxation process as shown in Fig. 3b, and
failures of numerical simulations based on such particle distribution. Although
increasing the resolution to fit the sharp non-resolved geometry could address
this issue to some extent, excessive computational efforts are also inevitable. A
possible solution is to clean up these non-resolved parts, as their impact on the
simulation results under a given resolution very often is negligible.
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Figure 3: Unstable particle generation process caused by unsolved small structure. (a) Mono-
layer particles in trailing edge; (b) Unstable relaxation process.

3.1. Identify non-resolved small structures

Inspired by the scale separation method in Luo’s work[51], an approach to
finding the non-resolved structures of a geometry surface by detecting whether
the mesh cell across zero level-set or an auxiliary level is employed in this paper
(shown in Fig. 4). In order to distinguish different mesh cells, we call the mesh
cells cut through by geometry surface Γ0 the ‘0-cut-cells’, represented by ‘C0’.

C0 = {Ci,j |∃φi±1/2,j±1/2 · φi±1/2,j±1/2 < 0}, (8)

where Ci,j is a mesh cell indexed by [i, j] and φi±1/2,j±1/2 is the level-set value
at the corner of Ci,j , can be obtained by the following interpolation:

φi+1/2,j+1/2 =
1

4
(φi,j + φi+1,j + φi,j+1 + φi+1,j+1)

φi+1/2,j−1/2 =
1

4
(φi,j + φi+1,j + φi,j−1 + φi+1,j−1)

φi−1/2,j+1/2 =
1

4
(φi,j + φi−1,j + φi,j+1 + φi−1,j+1)

φi−1/2,j−1/2 =
1

4
(φi,j + φi−1,j + φi,j−1 + φi−1,j−1)

. (9)

Then the mesh cells cut through by positive auxiliary level Γ+ and negative
auxiliary level Γ− are named as the ‘positive-cut-cells’ and the ‘negative-cut-
cells’, respectively. Which yield

C+ε = {Ci,j |∃(φi±1/2,j±1/2 − ε) · (φi±1/2,j±1/2 − ε) < 0}, (10)

C−ε = {Ci,j |∃(φi±1/2,j±1/2 + ε) · (φi±1/2,j±1/2 + ε) < 0}, (11)

where ε is 0.75lf as in Ref. [52].
Different from Luo’s work [51], mesh cells which have the value of level-set

between 0 and −ε ( 0 > φ > −ε) as well as those level-set value between 0 and
+ε ( +ε > φ > 0) must be found out and marked as ‘gap-cut-cell’. This step
is necessary, and the detailed explanation is given in section 3.2. According to
the topological consistency, the mesh cells with a non-resolved geometry surface
are those from ‘C0’ and ‘Cg’ but have only positive or negative auxiliary cells
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x
0.82 0.83 0.84 0.85 0.86 0.87

0-cut-cell

negative-cut-cell
positive-cut-cell

gap-cut-cell
0-cut-cell & negative-cut-cell  (or 0-cut-cell & positive-cut-cell) 

0 level-set (φ = 0) 
negative auxiliary level (φ = - 0.75 × lf) 
positive auxiliary level (φ = 0.75 × lf) 

Γ-

Γ0

Γ+
A

Figure 4: Mark non-resolved small structure. The 0-cut-cell ‘A’ has a 11 cell-spacing distance
to nearest negative auxiliary level Γ−, which is already far beyond its searching region, a 5×5
mesh cells area centered on ‘A’. Note that the background mesh are connected by the center
of each cell.

as their neighbor cells. Note that the cut cell identifying operations only need
to be executed in ‘core packages’.

Cnon−re ={Ci,j |Ci,j ∈ (C0 ∪ Cg) ∧ (∀i0, j0 ∈ {−1, 0, 1},
Ci+i0,j+j0 /∈ (C+ε ∪ C−ε))}

(12)

For better understand, all the cut-cells marked by ‘C0’, ‘C+ε’, ‘C−ε’ and ‘Cg’
have a unified title ‘Interface ID’ in Algorithm 2.

3.2. level-set re-distance and reinitialize

To reconstruct the non-resolved geometry surface, one should modify the
level-set value of those identified mesh cells with non-resolved segments. In-
spired by the interface reconstruction method in Ref. [51], to facilitate the im-
plementation, the non-resolved cut-cells Cnon−re should be separated into two
types, Cnon+, which has no neighbors belonging to C+ε within one cell-spacing
distance from it:

Cnon+ = {Ci,j |Ci,j ∈ (C0 ∪Cg)∧ (∀i0, j0 ∈ {−1, 0, 1}, Ci+i0,j+j0 /∈ C+ε)}, (13)

and Cnon−, which has no neighbours belonging to C−ε within one cell-spacing
distance from it:

Cnon− = {Ci,j |Ci,j ∈ (C0∪Cg)∧ (∀i0, j0 ∈ {−1, 0, 1}, Ci+i0,j+j0 /∈ C−ε)}. (14)

According to Ref. [51], the level-set value of each re-distanced cut-cell in
Cnon+ and Cnon− is replaced by an estimated value of their distance to Γ+ and
Γ−, respectively. However, as the geometry is relatively too sharp under a given
resolution in many cases (Fig. 4), the Γ+ or Γ− is far from geometry boundary.
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Considering that a large normal distance from the re-distanced cut-cell to a
far-away auxiliary level is meaningless for resetting the level-set value, thus a
searching region of 5 × 5 mesh cells area (in 2D) centered on the considered
cut-cell is set by taking into account the computational efficiency. Meanwhile, a
maximum replacement distance Dlimit = 3× lf should also be given to prevent
there being no corresponding auxiliary level in the search range, where the 3×lf
stands for a half cell-spacing beyond the searching radius, which means there is
no auxiliary level in the searching region.

Then considering a cut cell ‘A’ in Cnon+, one can get a normal ray pointing
from the center of ‘A’ to the auxiliary level Γ+ with an intersection point. The
distance D between the cell center to the intersection point can be calculated
by

D =
√

(Dcell−i + φNx)2 + (Dcell−j + φNy)2, (15)

where the (Dcell−i, Dcell−j) are the cell distance in x and y direction between
the considered cut cell ‘A’ in Cnon+ and a cell ‘P ’ from auxiliary level C+ε in
the searching region respectively. (Nx, Ny) denotes the unit normal vector and
φ is the level-set value of cell ‘P ’. Then, the replaced level-set value for cut cell
‘A’ is:

φreplace = −min(Dmin, Dlimit), (16)

where Dmin is the minimum value from Eq.15. When there is no auxiliary level
in the searching region, D is considered infinite. Meanwhile, the replacement of
the level-set value for a cut cell ‘B’ in Cnon− can be obtained in the same way
by only substituting −φ for φ in Eq.15 and the negative sign times the right
side of Eq.16. Note that all the re-distance operations only need to be executed
in ‘core packages’.

Here is an additional explanation of why the ‘gap-cut-cell’ is marked in the
section 3.1. Considering some fairly sharp and narrow geometries, like the sharp
trailing edge in Fig.4, the interval in x direction between Γ0 and Γ+ or Γ− is
relatively large compared with the distance in the vertical direction between
two layers of Γ+ or Γ− in the sharp corner. Thus, the space between the new
geometry surface and the auxiliary level (Γ− or Γ+) may be greater than one
cell-spacing even replacing the level-set value of the non-resolved cut cell in the
corner by Dlimit. As shown in Fig. 4, the level-set value of the two cells in ‘Cg’
will not be changed during the re-distance process if they are not marked as
non-resolved cut cells. Even though their right neighbor cells are the endpoints
of the geometry surface, there is still a two-cell-spacing distance between Γ0 and
Γ−, which does not conform to the topological consistency.

Since the level-set values may not be smooth after the re-distance operation,
a re-initialization process is performed within the scope of ‘inner packages’ to
achieve a continuous distribution of φ by the following equation [53]

φτ + sgn(φ)(|∇φ| − 1) = 0, (17)

where τ is a pseudo time and sgn(φ) represents a sign function to maintain the
signed distance property of level-set function.
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Figure 5: Airfoil surface reconstructed under different resolution. A small slit is added on
the second part of the airfoil mimics a defect in the geometric model. (a) Original geometry
surface; (b) Reconstructed with resolution 0.001; (c) Reconstructed with resolution 0.002; (d)
Reconstructed with resolution 0.005.

Fig. 5 shows the reconstructed geometry surface under different resolu-
tions. A small slit is added to the second part of the high-lift airfoil 30P30N
to mimic a defect in the geometric model. Together with the original sharp
trailing edge (shown in Fig. 5a), these non-resolved geometry fragments under
a given resolution need to be reconstructed before particle or mesh generation.
At a relatively high resolution, the rear part of the small slit is not recognized as
the non-resolved segment since the width of this part is beyond a cell-spacing,
and there is a tiny slit left at the corner between the airfoil tail and the main
body as shown in Fig. 5b. However, the non-resolved sharp trailing edge is
reconstructed with a smoothed filleted corner which has a minimum size larger
or equal to two cell-spacing. With the decreasing of the resolution (from Fig.
5b to Fig. 5d), more portion of the trailing edge is identified as a non-resolved
segment and reconstructed. When the small slit is completely cleaned up at
the resolution of 0.002, no additional variation at this area of the geometric
surface presents. This can prove that the present reconstruction process will
automatically stop as the topological consistency is satisfied.

Figure 6 shows the lattice particle distribution at the trailing edge of the air-
foil after reconstructing the non-resolved geometric surface. It can be observed
that the single layer unresolved singular points (shown as grey dots in Fig. 6)
are vanished compared with Figure 3a. The two points on different layers at the
far left of those removed particles are also included, which is due to the cells in
‘Cg’ being recognized as unresolved fragments. The ‘dirty’ geometry clean-up
process is illustrated in Algorithm 2.
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0.8 0.82 0.84 0.86

Figure 6: Lattice particles generated after clean the non-resolved structure. The grey dots
represent those unresolved singular points but vanished after the clean process.

Algorithm 2: Algorithm for ‘dirty’ geometry clean-up

1 if Geometry needs to be clean then
2 for all Core packages do
3 Mark InterfaceID(m,n) of every dm,n;
4 Find out the cut-cells ∈ Cnon−re ;
5 Re-distance the φm,n for cut-cells ∈ Cnon+ and ∈ Cnon−

respectively according to Eq.15 and Eq.16;

6 end
7 for all Inner packages do
8 Reinitialize the φm,n of each dm,n by Eq.17;
9 Update the normal direction of each dm,n by Eq.2;

10 Update the Ii,j of each dm,n by Eq.21;

11 end

12 Terminate the simulation.

4. ‘Static confinement’ boundary condition

As mentioned in the introduction, the simple bounding method [35] con-
straints the particles within the geometry using level-set value and the normal
direction. But the particles near the geometry surface still have an incomplete
support domain during the physics-driven relaxation process. This will not lead
to a serious problem to those geometric surfaces with smooth shapes and small
curvature. As shown in Fig.7, without the complete kernel support, although
the relaxation process converges, the boundary particles have a smaller particle
spacing comparing with inner particles. This will cause a slight inconsistency
between particle distribution and particle volume. However, for those geome-
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Figure 7: Boundary particle distribution of a circle without ‘static confinement’ (a) and with
‘static confinement’ (b). Note that without ‘static confinement’ boundary condition, the
(yellow) particle at the outer layer exhibit smaller distances than inner (gray) particles.

tries with greater curvature and sharp features, the particle relaxation may not
converge with incomplete kernel support. It is clearly shown in a snapshot of
particle distribution in Fig. 8a, where a few particles at the very end of the airfoil
trailing edge are on the position where the particle relaxation does not converge,
but with persistent cycling motion. In order to address the above-mentioned is-
sue, here, we propose a method based on the level-set field to achieve full kernel
support, which is denoted as ‘static confinement’.

We first consider an ideal situation in which a considered near-surface par-
ticle a locates at a cell center, as illustrated in Fig. 9. As its kernel support
partially within the surface, and partially from the outside region, the particle
approximation of a derivative ∇fa can be obtained by

∇fa ≈
∑
b,φb<0

fb∇WabVb +
∑
c,φc>0

fc∇WacVc, (18)

where the second term of the right-hand-side provides the support outside of
the surface, c represent the cell centers of the level set mesh within the cut-off
radius from a and Vc are the volume outside of the surface in each mesh cell. If
this approximation is used for particle relaxation as Eq.3, one can obtain

Fp,a = −2p0Va
ma

 ∑
b,φb<0

∇WabVb +
∑
c,φc>0

∇WacVc

 . (19)

Note that, here, for the volume contribution of each cell near the surface to
the extra term introduced in Eq. 19, we simply divide the level-set meshes in
the support domain into three categories as shown in Fig. 9. The first type is
the cells inside both the geometry and cut-off region but not cross by geometry
surface(Γ0), which have no contribution to the kernel support. The second type
is the cells inside the cut-off region and cross by geometry surface(Γ0), which
have partial volume (the part outside geometry) to complete the kernel support.
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Figure 8: Particle distribution at trailing edge without static confinement (a) and with static
confinement (b) .
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Outside of geometry (φ>0 )

Inside of geometry (φ<0) Geometry surface (φ=0)

level-set back ground mesh

Figure 9: ‘Static confinement’ method for completing kernel of boundary particles. The red
circle line is the cut-off region of the red particle a near the geometry surface. The white
cells inside the geometry and the cut-off region have no contribution to complete the kernel
support for the particle a. The blue cells with a yellow star have the partial volume to
complete the kernel support for the particle a. The white cells with a yellow star have full
volume contributing to the kernel support for the particle a. Note that the particle a is just
located on the cell-center of the background level-set mesh.

The last type is the cells that are fully outside geometry but inside the cut-off
region, which have their volume contributed to replenishing the kernel support
completely. With the level-set method [54, 53], the volume fraction for the part
outside geometry corresponding to φ > 0 of each cell can be estimated by the
smoothed Heaviside function

H(φ, ε) =


0 φ < −ε
1
2 + φ

2ε + 1
2π sin(πφε ) −ε < φ < ε

1 φ > ε

. (20)

Then, the extra term in Eq. 20 can be rewritten as

Ii,j =
∑
c,φc>0

∇WacVc =
∑
c,φc>0

H(φc, ε)l
m
f ∇aWac, (21)

here the lmf , m is dimension, denotes the volume of each computational cell,
(i, j) denotes the cell index.

Note that Eq. 19 is only validate when the particles a locates on a mesh
center. For the particle-relaxation process, one need the value of the extra term
Ii,j when the particles locates at a general position. Also note that, this extra
term is only dependent on the position (i, j) and the surface location, which is
fixed during the relaxation process. Therefore, one can first simply compute the
values of Ii,j at all cell centers near the surface, and then obtained the value at
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Figure 10: Implementation of the ‘static confinement’ condition. The value of Ii,j for the
black inner particle can be interpolated from the four values (in yellow boxes) around it. The
negative threshold Tn = −(rc + lf ) and the positive threshold Tp = lf on both sides of Γ0

is set for improving the computational efficiency. Here rc is the cut-off radius and lf is the
cell-spacing as mentioned in Sec 2.1. Setting Tp as one cell-spacing beyond the geometry is
only for the interpolation when the boundary particle is in the cut cell which is crossed by Γ0.

an arbitrary particle position, with the standard bi- or tri-linear interpolation
during the relaxation process, (as shown in Fig. 10).

By imposing the ‘static confinement’ as the boundary condition for physics-
driven relaxation process, the distribution of the outer layer particles is signifi-
cantly improved as shown in Fig. 7b. By comparing Fig. 7a with Fig. 7b, it is
observed that the outer layer particles can get the same particle spacing as the
inner particles when the ‘static confinement’ is employed. Also, the particles
near very sharp features can obtain a better body-fitted distribution as shown in
Fig. 8b. The body-fitted particle generation workflow with ‘static confinement’
boundary condition is presented in Algorithm 3.

5. Numerical Examples

In this section, the convergence analysis of average kinetic energy is car-
ried out to verify that, without clean-up the non-resolved singular points, the
physics-driven simulation cannot achieve the steady-state and the convergence.
In addition, the particle distributions of several complex 3D geometries with
small structures are exhibited to show the ‘dirty’ geometry clean-up ability of
the present pre-processing tool, as well as to reveal the importance of a cleaned
geometry for industry applications.

In present work, all the simulations below are carried out on an Intel Core(TM)
CPU i9-9900 3.10GHZ Desktop computer with 64GB RAM and Windows 10
system.
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Algorithm 3: Algorithm for physics-driven relaxation particle gener-
ation with ‘static confinement’

1 Setup parameters and initialize the physics-driven relaxation;
2 Run Algorithm 1;
3 if Geometry needs to be clean then
4 Run Algorithm 2;
5 end
6 Generate a preconditioned lattice particle distribution;
7 while simulation termination condition is not satisfied do
8 Get Ii,j of each particle by trilinear interpolation;
9 Calculate the pressure force Fp according to Eq. (19);

10 Set the time-step ∆t according to Eq. (5);
11 Update particles position rn+1 according to Eq. (6);
12 Get level-set value φa and normal direction Na of each particle by

trilinear interpolation;
13 Constrain particles onto surface according to Eq. (7);
14 Update the particle-neighbor list and kernel values and gradient ;
15 Update the particle configuration ;

16 end
17 Terminate the simulation.

5.1. 2D airfoil 30P30N

As we mentioned in the previous section, the physics-driven process is not
numerically stable and can not achieve the convergent result if there is a non-
resolved singular structure present. In this section, we consider particle gen-
eration for an original 2D airfoil 30P30N to qualitatively and quantitatively
demonstrate the stability and convergence of the present method.

Fig. 11 shows the particle distribution at the trailing edge of the airfoil
obtained by the physics-driven relaxation process with and without clean-up
non-resolved structure under a normalized resolution of 0.001. As shown in Fig.
11a, there are still several singular particles at the end of the trailing edge that
can not reach a stable state during the physics-driven relaxation process, free
from the main body of the trailing edge and agglomerate together even with a
relatively high resolution. In contrast, the particles achieve quite good body-
fitted distribution on the trailing edge after cleaning up the non-resolved small
fragment as shown in Fig. 11b.

Fig. 12 illustrates the time history of the average kinetic energy during
the physics-driven relaxation process with and without clean-up of non-resolved
structure. To better explain the numerical unstable process, three different
normalized resolutions related to the airfoil chord are adopted in this test. The
three jittery curves in Fig. 12a show that the physics-driven relaxation process
is unstable and can not achieve the convergent result as the presence of a non-
resolved structure. As the resolution decreases, the instability becomes more and
more severe. In particular, the average kinetic energy curve can not even reach a
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(a)

(b)

Figure 11: Particle distribution on trailing edge of the airfoil under the normalized resolution
0.001: (a) Without clean-up non-resolved structure; (b) With clean-up non-resolved structure.

(a) (b)

Figure 12: Average particle kinetic energy during the physics-driven relaxation process: (a)
Without clean-up non-resolved structure; (b) With clean-up non-resolved structure.
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(a) (b)

(c) (d)

Figure 13: Schematic geometry and particles distributions under different spatial resolutions
for the 3D SPHinXsys symbol. (a) Original geometry surface; (b) Reconstructed with resolu-
tion 0.02; (c) Reconstructed with resolution 0.025; (d) Reconstructed with resolution 0.032

state of periodic oscillation when the resolution reduces to 0.005. A coarser grid
resolution would result in more trailing edge parts with thickness less than a
cell-spacing, thus generating more mono-layer singular particles. As mentioned
before, these mono-layer singular particles are the reason for instability and even
failure to converge. As a comparison in Fig. 12b, after the peak value in the
initial status, all the three average kinetic energy curves drop rapidly and tend
to be stable after 100 iterations with clean-up non-resolved structure.

5.2. SPHinXsys symbol with small structures

With the development of 3D scanning technology, many geometric models
can be obtained through 3D scanning. However, the scanning process may
generate some small structures that are free of the main body. These small
structures bring challenge for mesh or particle generation for computational as-
pects. In this part, we consider generating a particle model for the 3D symbol of
our SPHinXsys project with some small structures to validate the performance
of the present pre-processing tool for automatically identifying and cleaning up
the non-resolved small structures free from the main body under diverse spa-
tial resolutions. The schematic geometry of the SPHinXsys symbol with small
structures are shown in Fig. 13a. The size of 3D SPHinXsys symbol is about
4.4 × 4.4 × 0.4, together with four small structures of different sizes which are
free between the two leaves of the main structure.

Fig. 13 also shows the particle distributions for the SPHinXsys symbol
with different resolutions, which are 0.02, 0.025 and 0.032 with respect to x
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Table 1: Computational burden comparison among different resolutions of the skyscraper

Normalized
Resolution

Particles QTY
(million)

Level-set
Time (s)

Particle Generation
Time (s)

Iteration
Time (s)

0.08 0.271 13.10 0.10 145.98
0.05 1.559 54.08 0.53 900.38
0.03 4.873 145.28 1.70 2874.13

direction. It is clear that, with decreasing resolution, the free small structures
are cleaned-up accordingly. Meanwhile, the main body is completely preserved
and body-fitted particle distributions are obtained. In addition, the free small
structures that can be resolved at the corresponding resolution also produce
a body-fitting particle distribution. Note that no matter how the resolution
is modified, the main body of the geometric model is constant, implying the
consistent feature of a cleaning tool for ‘dirty’ geometry.

5.3. Skyscraper with a flagpole

In this part, a geometric model of a skyscraper with a flagpole is applied to
test the impact of capturing the small structure on the computational burden.
The whole computational domain of the skyscraper is about 6× 6× 21.6 and it
includes a two-section flagpole with different diameters. The numerical simula-
tions involving this kind of building structure are usually aiming at structural
strength testing and vibration amplitude detection. Thus the flagpoles do not
play a decisive influence in the simulation and can be removed.

Table 1 presents the computational burden comparison when different reso-
lutions are adopted to the numerical simulation of the skyscraper model. The
numerical process in this example is the physics-driven particle generation pro-
cess. The involved level-set operations are level-set initialization, ‘dirty’ geom-
etry cleaning-up, and level-set re-initialization. The ‘Particle Generation Time’
is the real-time of lattice distributed particle generation. While the ‘Iteration
Time’ is the real-time for 1000 iteration steps of the relaxation process. The
normalized resolutions related to x direction are set as 0.03, 0.05 and 0.08 re-
spectively in order to keep the geometric structure in three different states (Cor-
responding to Fig. 14b to Fig. 14d). From the table, it is clear that the com-
putational burden and calculation time will explosively increase only to capture
an insignificant small structure. Fig. 14 further illustrates the reconstructed
skyscraper features at different resolutions and their particle distributions. By
omitting different levels of flagpole structure, the number of particles in the
skyscraper model has been greatly reduced. At the same time, its main body is
still maintained.

5.4. Inferior vena cava

In this section, we consider an inferior vena cava where several branches
with different diameters are present to test the ability of the proposed method
to preserve the small structure on the main body under a given resolution.
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(a) (b) (c) (d)

Figure 14: The reconstructed geometry surface and particle distribution of a skyscraper under
different resolution : (a) Original geometry model, (b) Reconstructed at resolution of 0.03,
(c) Reconstructed at resolution of 0.05 and (d) Reconstructed at resolution of 0.08.
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The size of this inferior vena cava is around 180 × 465 × 33 and its schematic
geometry is shown in Fig. 15a Generally, this kind of tree structure has many
small branches with different diameters. For the force study of the main body,
these small branches will have no effect but increase the computational burden.
Therefore, those small branches, which cannot be resolved at a given resolution,
should be removed. While those resolved branches should be kept in the main
body at that resolution.

Fig. 15 shows the reconstructed inferior vena cava geometries under different
resolutions, i.e., 1.35, 1.0 and 0.55 with respect to x direction, and the corre-
sponding particle distribution. On the original geometry there are several small
branches with different diameters attached to the main vessel. As the resolution
decreases from 0.55 to 1.35 (from Fig. 15b to Fig. 15d), the small branches are
gradually cleaned up. However, the main blood vessels of the inferior vena cava
are still preserved and a body-fitted particle distribution is generated.

6. Concluding remarks

In this paper, we have developed the level-set based pre-processing tech-
niques for particle-based methods. Firstly, the ‘dirty’ geometry cleaning tech-
nique can automatically detect and remove the non-resolved small structures
of ‘dirty’ geometries at a given grid resolution. A number of numerical tests
are demonstrated to validate the ‘dirty’ geometry cleaning-up ability of our pre-
processing tool. The cleaning algorithm of our method can not only identify and
clean-up the non-resolved small structures but also automatically stop cleaning
at the main body which has topological consistency. In addition, a level-set
based ‘static confinement’ boundary condition is developed to complete the ker-
nel support in the physics-driven relaxation process. By calculating the missing
part of kernel support and storing it in the background level-set cell center, the
physics-driven relaxation process obtains the full kernel support for particles
close to the surface. This allows for better optimization of boundary particle
distribution, even for those with sharp geometries.
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Figure 15: Particle distributions under different resolutions for reconstructed small branches
of the inferior vena cava. (a) Original geometry; (b) Reconstructed with resolution 0.55; (c)
Reconstructed with resolution 1.0; (d) Reconstructed with resolution 1.35.
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