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Abstract. We propose in this paper efficient first/second-order time-stepping schemes for the
evolutional Navier-Stokes-Nernst-Planck-Poisson equations. The proposed schemes are constructed
using an auxiliary variable reformulation and sophisticated treatment of the terms coupling different
equations. By introducing a dynamic equation for the auxiliary variable and reformulating the
original equations into an equivalent system, we construct first- and second-order semi-implicit
linearized schemes for the underlying problem. The main advantages of the proposed method are:
(1) the schemes are unconditionally stable in the sense that a discrete energy keeps decay during
the time stepping; (2) the concentration components of the discrete solution preserve positivity and
mass conservation; (3) the delicate implementation shows that the proposed schemes can be very
efficiently realized, with computational complexity close to a semi-implicit scheme. Some numerical
examples are presented to demonstrate the accuracy and performance of the proposed method. As
far as the best we know, this is the first second-order method which satisfies all the above properties
for the Navier-Stokes-Nernst-Planck-Poisson equations.

1. Introduction and motivation

The Navier-Stokes-Nernst-Planck-Poisson (NSNPP) coupling system is a popular model for

describing the electro-hydrodynamic phenomenon, which is originated in bio-electronic application.

It is also known as the electro-fluid-dynamics, used to study the dynamics of electrically charged

fluids, the motions of ionized particles or molecules and their interactions with electric fields and

the surrounding fluid. In electro fluid dynamics, ions of different valences suspended in a fluid are

carried by the fluid flow and an electric potential, which results from both an applied potential

on the boundary and the distribution of charges carried by the ions. In addition, ionic diffusion is

driven by the concentration gradients of the ions themselves. In turn, fluid flow is forced by the

electrical field created by the ions. These situations arise frequently in a large number of physical,

biophysical, and industrial processes. For more details of the physical background issues of this

system, we refer the reader to [2, 24] and the references therein.

The mathematical property of the NSNPP system has been investigated in a number of papers.

Local existence of solutions in the whole space was obtained in [14]. Schmuck in [26] established

global existence and uniqueness of weak solutions in a bounded domain in two and three dimensions

for blocking boundary conditions on the ions and homogeneous Neumann boundary condition on the
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potential. Ryham [25] considered the homogeneous Dirichlet boundary conditions on the potential,

and gave the global existence of weak solutions in two dimensions for large initial data and in

three dimensions for small initial data and forces. Bothe [3] studied the Robin boundary conditions

for the electric potential, and showed the global existence and stability in two dimensions. Zhao

et al. [35] proved the local well-posedness for any initial data and global well-posedness for small

initial data in the critical Lebesgue spaces. Deng et al. [9] extended this result to Triebel-Lizorkin

space and Besov space with negative indices. Zhang [34] proved the global existence for the Cauchy

problem in two dimensions and established the L2 decay estimates of solutions by using the Fourier

splitting method. Constantin [7, 8, 22] investigated the global existence of smooth solutions for

different boundary conditions.

Numerical methods for the NSNPP system have also been subject of several works. Yang et

al. [32] proposed an artificial compressibility method and a finite difference/alternative direction

method. Tsai et al. [31] employed this method in capillary electrophoresis microchips, and tested

some injection systems with different configurations. Prohl and Schmuck [23] used finite element

method for spatial discretization and an implicit time discretization which preserves the non-

negativity of the ionic concentrations. They also considered a projection method without non-

negativity preserving. He and Sun [11] proposed some time stepping and finite element methods

for NSNPP, which preserves the positivity and/or some form of energy dissipation under certain

conditions and specific spatial discretization. The drawback of these methods is the need to solve

nonlinear equations at each time step. Liu and Xu [20] proposed numerical methods of different

orders by combining several finite difference schemes in time and a spectral method for the spa-

tial discretization. The proposed schemes result in several elliptic equations with time-dependent

coefficient to be solved at every time step. The positivity-preserving of the first-order scheme was

proved.

The scalar auxiliary variable approach, often called SAV [28, 29], has received much attention

recently. It has been proved to be a powerful tool to design unconditionally stable schemes for a

large class of problems [5, 6, 12, 15, 16, 18, 19, 33, 36]. The aim of this paper is to make use of

the auxiliary variable approach to construct highly efficient time-stepping schemes for the NSNPP

equations. Precisely, our idea is to find a suitable auxiliary variable to treat the nonlinear terms

involved in the equations, and employ a splitting strategy to decouple different unknowns in the

Navier-Stokes part. A function transform approach for Nernst-Plank-Poisson will be also employed

in the construction. We will show that the resulting scheme possesses the following properties:

- it is positivity preserving;

- it is mass conservative;

- it is unconditionally energy dissipative;

- it can be implemented in an efficient way: the computational complexity is equal to solving

several decoupled linear equations with constant coefficient at each time step.
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The spatial discretization will make use of a spectral-Galerkin method in [27], for which fast

solvers exist for elliptic equations with constant coefficients. We emphasize that the above attractive

properties remain held at the full discrete level.

The remainder of this paper is structured as follows. In Section 2, we first describe the NSNPP

system, and the reformulation based on auxiliary variable approach. In Section 3, we construct and

analyze first/second order, linear, decoupled, and unconditionally stable scheme for the reformulate

NSNPP equations. We describe in Section 4 the implementation details of the proposed schemes,

and show that the schemes can be efficiently implemented through solving a set of decoupled, linear

elliptic equations with constant coefficients. In Section 5, we present numerical examples to validate

our schemes. Some concluding remarks are given in Section 6.

2. Governing equations and reformulatation

2.1. Navier-Stokes-Nernst-Planck-Poisson equations. Let Ω ∈ R2 be a bounded Lipschitz

domain and T > 0. Given initial conditions u(x, 0), ci(x, 0) (i = 1, ...,m). We look for the velocity

field u(x, t), the pressure p(x, t), the mass concentration of ions ci(x, t) (i = 1, ...,m), and the elec-

trostatic potential Φ(x, t), satisfying the following Navier-Stokes-Nernst-Plank-Poisson equations

(NSNPP) in Ω× (0, T ]:

∂tu + (u · ∇)u− ν∆u +∇p = −
( m∑
i=1

zici
)
∇Φ, (2.1a)

∇ · u = 0, (2.1b)

∂tci = Di∇ · (∇ci + zici∇Φ)−∇ · (uci), i = 1, ...,m, (2.1c)

− ε∆Φ =
m∑
i=1

zici, (2.1d)

where zi ∈ R are the ionic valences, Di denote the positive constant diffusivities, ε > 0 is a small

positive dimensionless number representing the ratio of the squared Debye length to the physical

characteristic length, ν > 0 is the kinematic viscosity.

We consider the blocking boundary conditions, i.e., vanishing of all normal fluxes for the ionic

concentrations: (
uci −Di(∇ci + zici∇Φ)

)
· n
∣∣
∂Ω

= 0, i = 1, ...,m, (2.2)

where n is outer normal on the boundary of ∂Ω. The boundary condition on the velocity u and

the potential Φ is respectively

u
∣∣
∂Ω

= 0, (2.3)

and
∂Φ

∂n

∣∣∣
∂Ω

= 0. (2.4)

Under the conditions (2.3) and (2.4), noticing the identity ∇c = c∇ log c, it follows from (2.2):

ci
∂(log ci + ziΦ)

∂n

∣∣∣
∂Ω

= (
∂ci
∂n

+ zici
∂Φ

∂n
)
∣∣∣
∂Ω

=
∂ci
∂n

∣∣∣
∂Ω

= 0, i = 1, ...,m. (2.5)
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It is readily seen that in the governing equations (2.1a)-(2.1d), the pressure p and electrostatic

potential Φ are determined up to an arbitrary constant. In order to fix this constant, we impose

the following zero mean conditions: ∫
Ω
pdx = 0,

∫
Ω

Φdx = 0. (2.6)

We define two partial energy functionals Ens, Enpp:

Ens = Ens[u] :=
1

2

∫
Ω
|u|2dx,

Enpp = Enpp[{ci},Φ] :=

∫
Ω

[ m∑
i=1

ci(log ci − 1) +
1

2

( m∑
i=1

zici
)
Φ
]
dx.

The total energy functional is defined as the sum of these two partial functionals:

E = E[u, {ci},Φ] := Ens + Enpp. (2.8)

Using ∇ · u = 0 and the boundary conditions (2.3), (2.4), and (2.5), we have

dEns
dt

=

∫
Ω
∂tu · udx =

∫
Ω

[
− (u · ∇)u + ν∆u−∇p−

( m∑
i=1

zici
)
∇Φ
]
· udx

= −ν
∫

Ω
|∇u|2dx−

∫
Ω

( m∑
i=1

zici
)
∇Φ · udx. (2.9)

Taking the inner product of (2.1c) with log ci + ziΦ, summing up for i = 1, ...,m, and using (2.1d),

we obtain the following equality:

dEnpp
dt

=
m∑
i=1

∫
Ω
−Dici|∇(log ci + ziΦ)|2dx +

m∑
i=1

∫
Ω
−∇ · (uci)(log ci + ziΦ)dx. (2.10)

Furthermore, for the second term in the right hand side, we have

m∑
i=1

∫
Ω
−∇ · (uci)(log ci + ziΦ)dx =

m∑
i=1

∫
Ω

(uci) · ∇(log ci + ziΦ)dx

=
m∑
i=1

∫
Ω
u · ∇cidx +

∫
Ω

(
m∑
i=1

zici)u · ∇Φdx =

∫
Ω

(
m∑
i=1

zici)u · ∇Φdx.

(2.11)

Then, combining (2.9), (2.10), and (2.11) gives

dE

dt
=− ν

∫
Ω
|∇u|2dx−

m∑
i=1

∫
Ω
Dici|∇(log ci + ziΦ)|2dx. (2.12)

Lemma 2.1. The NSNPP problem (2.1)-(2.4) satisfies the following properties:

1) Mass conservation: ∫
Ω
ci(x, t)dx =

∫
Ω
ci(x, 0)dx, ∀t > 0. (2.13)

2) Positivity: If the initial condition ci(x, 0) > 0 a.e. x ∈ Ω, then ci(x, t) > 0 a.e. x ∈ Ω, t ∈
[0, T ].
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3) Energy dissipation:

dE

dt
≤ 0. (2.14)

Proof. The proof is simple, and can be found in the literature. We give a proof sketch here for the

convenience of the reader.

1) Integrating (2.1c) over Ω, and using (2.1b), we obtain immediately (2.13).

2) A proof of the positivity was given in [26].

3) (2.12) leads to the desired result (2.14). �

2.2. Auxiliary variable reformulation. Observing that
∫

Ω

∑m
i=1 ci(log ci − 1)dx is convex, so

there is a constant C0 > 0, such that Enpp[{ci},Φ] + C0 ≥ 1. We introduce the time-dependent

auxiliary variable (AV) as follows:

r(t) :=
√
Enpp[{ci},Φ] + C0. (2.15)

Then we have

dr

dt
=

1

2
√
Enpp + C0

dEnpp
dt

.

Insert (2.10) into the above equation, add the zero-valued item
∫

Ω u · ∇u · udx, and multiply by

the factor r(t)√
Enpp[{ci},Φ]+C0

, the governing equation for the auxiliary variable r(t) can be obtained

as follows:

dr(t)

dt
= − 1

2
√
Enpp + C0

[
r(t)√

Enpp[{ci},Φ] + C0

m∑
i=1

∫
Ω
Dici|∇µi|2dx−∫

Ω

( m∑
i=1

zici
)
∇Φ · udx−

∫
Ω

(u · ∇)u · udx
]
.

For the Nernst-Plank-Poisson part, in order to preserve the positivity of the concentrations ci, we

consider the variable transformation technique, which has already been used in a number of papers;

see [1, 4, 13, 21]:

ci = T (σi) := exp(σi), i = 1, ...,m, (2.16)

where {σi}mi=1 are the new unknown functions to be determined. Using this variable change, the

boundary conditions (2.5) are switched to

∂σi
∂n

∣∣∣
∂Ω

= 0, i = 1, ...,m. (2.17)
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With the auxiliary variable r and the additional unknown variables {σi}mi=1, we have the com-

plete set of equations as follows:

∂tu +
r(t)√

Enpp(t) + C0

(
(u · ∇)u +

( m∑
i=1

zici
)
∇Φ
)
− ν∆u +∇p = 0, (2.18a)

∇ · u = 0, (2.18b)

∂tσi = Di∆σi +Di

(
|∇σi|2 + zi(∇σi · ∇Φ + ∆Φ)

)
−∇ · (σiu), (2.18c)

ci = exp(σi), i = 1, ...,m, (2.18d)

− ε∆Φ̄ =
m∑
i=1

zici, (2.18e)

dr(t)

dt
= − 1

2
√
Enpp(t) + C0

[ r(t)√
Enpp(t) + C0

m∑
i=1

∫
Ω
Dici|∇(log ci + ziΦ)|2dx

−
∫

Ω

( m∑
i=1

zici
)
∇Φ · udx−

∫
Ω

(u · ∇)u · udx
]
, (2.18f)

Φ =
r(t)√

Enpp(t) + C0

Φ̄, (2.18g)

subject to the boundary conditions (2.3), (2.4), (2.17), and the initial conditions:

u(x, 0) = u0(x), (2.19)

r(0) =
√
Enpp[{ci(x, 0)}, Φ(x, 0)] + C0. (2.20)

Noticing that
∫

Ω(u · ∇)u · udx ≡ 0 and r(t)√
Enpp(t)+C0

≡ 1, it is not difficult to check that the

reformulated system (2.18) is strictly equivalent to the original system (2.1) at the continuous

level.

Taking the L2 inner products of equation (2.18a) with u, equation (2.18f) with 2r respectively,

then summing the resultants together, we obtain the following energy dissipation law:

d

dt

(∫
Ω

1

2
|u|2dx + r2

)
= −ν

∫
Ω
|∇u|2dx−

∣∣∣ r(t)√
Enpp(t) + C0

∣∣∣2 m∑
i=1

∫
Ω
Dici|∇µi|2dx ≤ 0.

Next we focus on the equivalent system (2.18) and construct numerical methods for this system.

3. Unconditionally stable time-stepping schemes

Let ∆t be the time step size, n ≥ 0 denotes the time step index, and (·)n denotes the variable

(·) at the time step n. Let

u0 = u(x, 0), c0
i = ci(x, 0), r0 = r(0). (3.1)

Φ0 and p0 are obtained by solving the equations (2.1d) and (2.1a) at t = 0 under the constraint

(2.6), which read respectively in their weak forms:

ε

∫
Ω
∇Φ0 · ∇qdx =

∫
Ω

( m∑
i=1

zic
0
i

)
qdx, ∀q ∈ H1(Ω). (3.2)
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∇p0 · ∇qdx =

∫
Ω

(
−
( m∑
i=1

zic
0
i

)
∇Φ0 − u0 · ∇u0

)
· ∇qdx, ∀q ∈ H1(Ω). (3.3)

3.1. Time stepping schemes. We now propose different schemes using first/second order BDF

for the equivalent system (2.18).

Scheme1: The first scheme is constructed by making use of BDF1 and some first order approx-

imations to different terms in (2.18a)-(2.18g): given the initial data (u0, p0,Φ0, {c0
i }, r0), compute

(un+1, pn+1,Φn+1, {cn+1
i }, rn+1) for n ≥ 0 successively by solving

σn+1
i − σni

∆t
−Di∆σ

n+1
i =

Di

[
|∇σni |2 + zi(∇σni · ∇Φn + ∆Φn)

]
−∇ · (σni un), with

∂σn+1
i

∂n

∣∣∣∣
∂Ω

= 0, (3.4a)

c̄n+1
i = exp(σn+1

i ), (3.4b)

λn+1
i

∫
Ω
c̄n+1
i −

∫
Ω
cni = 0, (3.4c)

cn+1
i = λn+1

i c̄n+1
i , i = 1, ...,m, (3.4d)

− ε∆Φ̄n+1 =
m∑
i=1

zic
n+1
i , with

∫
Ω

Φ̄n+1dx = 0,
∂Φ̄n+1

∂n

∣∣∣∣
∂Ω

= 0, (3.4e)

ũn+1 − un

∆t
+

rn+1√
Ēn+1
npp + C0

[
(un · ∇)un + (

m∑
i=1

zic
n+1
i )∇Φ̄n+1

]
−

ν∆ũn+1 +∇pn = 0, with ũn+1
∣∣
∂Ω

= 0, (3.4f)

∆ψn+1 =
1

∆t
∇ · ũn+1, with

∂ψn+1

∂n

∣∣∣∣
∂Ω

= 0,

un+1 = ũn+1 −∆t∇ψn+1, pn+1 = ψn+1 + pn, (3.4g)

rn+1 − rn

∆t
= − 1

2
√
Ēn+1
npp + C0

[
rn+1√

Ēn+1
npp + C0

∫
Ω

m∑
i=1

Di

(
cn+1
i |∇µ̄n+1

i |2dx

−
∫

Ω
(
m∑
i=1

zic
n+1
i )∇Φ̄n+1 · ũn+1dx−

∫
Ω

(un · ∇)un · ũn+1dx

]
, (3.4h)

Φn+1 =
rn+1√

Ēn+1
npp + C0

Φ̄n+1. (3.4i)

For simplification of presentation, we have used in the above scheme two additional notations µ̄n+1
i

and Ēn+1
npp :

µ̄n+1
i = log cn+1

i + ziΦ̄
n+1, i = 1, ...,m, (3.5)

Ēn+1
npp = Enpp[{cn+1

i }, Φ̄n+1]. (3.6)
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Scheme2: The same idea can be used to construct second order schemes. For ease of notation

we will use f∗,n+1 to mean 2fn − fn−1. We propose the following second order scheme:

3σn+1
i − 4σni + σn−1

i

2∆t
−Di∆σ

n+1
i = Di

[
|∇σ∗,n+1

i |2+

zi(∇σ∗,n+1
i · ∇Φ∗,n+1 + ∆Φ∗,n+1)

]
−∇ · (σ∗,n+1

i u∗,n+1), with
∂σn+1

i

∂n

∣∣∣∣
∂Ω

= 0, (3.7a)

c̄n+1
i = exp(σn+1

i ), (3.7b)

λn+1
i

∫
Ω
c̄n+1
i −

∫
Ω
cni = 0, (3.7c)

cn+1
i = λn+1

i c̄n+1
i , i = 1, ...,m, (3.7d)

− ε∆Φ̄n+1 =
m∑
i=1

zic
n+1
i with

(
Φ̄n+1, 1

)
= 0,

∂Φ̄n+1

∂n

∣∣∣∣
∂Ω

= 0, (3.7e)

3ũn+1 − 4un + un−1

2∆t
+

rn+1√
Ēn+1
npp + C0

[
u∗,n+1 · ∇u∗,n+1+(

m∑
i=1

zic
n+1
i )∇Φ̄n+1

]
−

ν∆ũn+1 +∇pn = 0, with ũn+1
∣∣
∂Ω

= 0, (3.7f)

∆ψn+1 =
3

2∆t
∇ · ũn+1 with

∂ψn+1

∂n

∣∣∣∣
∂Ω

= 0,

un+1 = ũn+1 − 2

3∆t
∇ψn+1, pn+1 = ψn+1 + pn − ν∇ · ũn+1 (3.7g)

3rn+1 − 4rn + rn−1

2∆t
= − 1

2
√
Ēn+1
npp + C0

[
rn+1√

Ēn+1
npp + C0

∫
Ω

m∑
i=1

Di

(
cn+1
i |∇µ̄n+1

i |2dx

−
∫

Ω
(
m∑
i=1

zic
n+1
i )∇Φ̄n+1 · ũn+1dx−

∫
Ω

(u∗,n+1 · ∇)u∗,n+1 · ũn+1dx

]
, (3.7h)

Φn+1 =
rn+1√

Ēn+1
npp + C0

Φ̄n+1. (3.7i)

Notice that the discretization of the Navier-Stokes equations, i.e., (3.7f)-(3.7g) in Scheme2

without the auxiliary variable r, is the so called rotational pressure correction method (RPC)

[10, 30]. For the Navier-Stokes equations alone, it has been proved in [17] that the time semi-

discretization using the RPC and auxiliary variable approach is unconditionally stable. However,

our analysis shows, as we will see in the next section, that the unconditional stability of the full

discrete scheme using spectral method for the spatial discretization necessitates modifying the RPC.

That is why we propose an alternative of second order scheme using a modification of RPC (termed

as MRPC hereafter) below.
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Scheme2b: Almost same as the scheme Scheme2, except of (3.7f)-(3.7g), which is modified

as

3ũn+1 − 4un + un−1

2∆t
+

rn+1√
Ēn+1
npp + C0

[
u∗,n+1 · ∇u∗,n+1+(

m∑
i=1

zic
n+1
i )∇Φ̄n+1

]
− ν∆ũn+1+∇(pn+ν∇ · ũn) = 0, with ũn+1

∣∣
∂Ω

= 0, (3.7f’)

∆ψn+1 =
3

2∆t
∇ · ũn+1 with

∂ψn+1

∂n

∣∣∣∣
∂Ω

= 0,

un+1 = ũn+1 − 2

3∆t
∇ψn+1, pn+1 = ψn+1 + pn + ν∇ · ũn − ν∇ · ũn+1. (3.7g’)

The motivation of this modification will be explained in Remark 3.1, and become more clear in the

stability analysis that follows.

Remark 3.1. Before analyzing the stability property, it is worth noting a number of points about

the above schemes, comparing with the existing schemes for the NSNPP system.

i) We will show below that the proposed schemes satisfy the following properties: (1) concen-

tration positivity preserving; (2) mass conservation; (3) unconditional stability; (4) resulting

in decoupled linear equations with constant coefficient to be solved at each time step. In

particular, to the best of our knowledge, the scheme (3.7) is the first in the literature de-

veloped for the NSNPP system, which is second order convergent and possesses all these

advantages.

ii) The schemes constructed in [20] led to some linear equations to be solved at each time step.

However these equations involve time-dependent coefficient, thus need re-computations of

the coefficient matrices every time step. Moreover there is a lack of stability analysis for

these schemes. A time-stepping scheme was also proposed in [11], but it is fully coupled

and nonlinear.

iii) The key to achieving the desirable properties in the schemes (3.4) and (3.7) lies in the intro-

duction of suitable auxiliary variables, which allow to decouple different unknown variables

and to eliminate the undesirable nonlinear terms in the proof of the stability.

iv) Compared to (3.7f)-(3.7g) in Scheme2, we have technically introduced the additional term

ν∇·ũn in (3.7f’)-(3.7g’) in Scheme2b. This term is helpful in establishing the unconditional

stability of the full discrete version of Scheme2b. However our numerical test (see Table 5.1

for example), shows that this additional term has essentially no impact on the stability and

convergence order. Therefore its presence in the scheme seems to be of a purely technical

nature.

3.2. Unconditional stability. In this subsection, we prove the unconditional stability of the

proposed schemes by analyzing the decay behavior of the discrete energy. For simplification of

notation, we will use ξn+1 to denote rn+1√
Ēn+1

npp +C0

. We start with proving the main properties of the

first order scheme in the following theorem.
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Theorem 3.1. Given {cni },Φn,un, pn, rn, σni = log cni . Suppose cni > 0 and
∫

Ω c
n
i dx =

∫
Ω c

0
i dx, i =

0, ...,m. Then the solution ({cn+1
i },un+1, pn+1, rn+1) of the discrete problem (3.4) satisfies the fol-

lowing properties:

i) Positivity preserving: cn+1
i > 0.

ii) Mass conserving:
∫

Ω c
n+1
i dx =

∫
Ω c

n
i dx, i = 1, ...,m.

iii) Energy dissipation:

En+1 − En ≤ 0, (3.9)

where

En+1 := ‖un+1‖2 + ∆t2‖∇pn+1‖2 + |rn+1|2.

iv) The quantities ‖un‖, |rn|, and |ξn| are bounded for all n ≥ 0.

Proof. We first prove the positivity preserving and mass conservation. By (3.4b), we have c̄n+1
i > 0.

Then it follows from (3.4c) and the positivity of the concentration at the previous step, i.e, cni > 0,

i = 1, . . . ,m:

λn+1
i =

∫
Ω c

n
i dx∫

Ω c̄
n+1
i dx

> 0, i = 1, . . . ,m.

Thus we derive from (3.4d) the positivity of the concentration:

cn+1
i = λn+1

i c̄n+1
i > 0, i = 1, . . . ,m.

The mass conservation ii) is given by∫
Ω
cn+1
i dx =

∫
Ω c

n
i dx∫

Ω c̄
n+1
i dx

∫
Ω
c̄n+1
i dx =

∫
Ω
cni dx, i = 1, . . . ,m.

Now we turn to prove the energy dissipation. Taking the L2 inner product of equation (3.4f) with

2∆tũn+1, by using the identify 2
(
ak+1, ak+1 − ak

)
= |ak+1|2 + |ak+1 − ak|2 − |ak|2, we get

‖ũn+1‖2 − ‖un‖2 + 2∆t
(
∇pn, ũn+1

)
+ 2∆tξn+1

(
un · ∇un + (

m∑
i=1

zic
n+1
i )∇Φ̄n+1, ũn+1

)
= −2∆tν‖∇ũn+1‖2 − ‖ũn+1 − un‖2. (3.10)

Furthermore, we deduce from (3.4g)∥∥un+1
∥∥2

+ ∆t2
∥∥∇pn+1

∥∥2
=
∥∥ũn+1

∥∥2
+ 2∆t

(
∇pn, ũn+1

)
+ ∆t2 ‖∇pn‖2 . (3.11)

Summing up (3.10) and (3.11), we obtain

‖un+1‖2 − ‖un‖2 + ∆t2
∥∥∇pn+1

∥∥2 −∆t2 ‖∇pn‖2

+ 2∆tξn+1
(
un · ∇un + (

m∑
i=1

zic
n+1
i )∇Φ̄n+1, ũn+1

)
= −2∆tν‖∇ũn+1‖2 − ‖ũn+1 − un‖2. (3.12)
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The last (undesirable) term in the left hand side can be cancelled by subtracting (3.12) from (3.4h)

multiplied by 2∆trn+1:

‖un+1‖2 − ‖un‖2 + ∆t2
∥∥∇pn+1

∥∥2 −∆t2 ‖∇pn‖2 + |rn+1|2 − |rn|2

= −2∆tν‖∇ũn+1‖2 − ‖ũn+1 − un‖2 −∆t|ξn+1|2
m∑
i=1

Di(c
n+1
i , |∇µ̄n+1

i |2)− |rn+1 − rn|2.

Then the energy dissipation law (3.9) follows from the fact that the right hand side of the above

equality is non-positive.

Finally the boundedness of ‖un‖, |rn|, and |ξn| follows directly from the boundedness of En, ∀n ≥ 0.

The proof is completed. �

The similar results for the second order scheme is given in the next theorem.

Theorem 3.2. Given {cki },Φk,uk, pk, rk, σki = log cki , k = n, n− 1. Suppose cki > 0 and
∫

Ω c
k
i dx =∫

Ω c
0
i dx, i = 0, ...,m; k = n, n−1. Then the solution ({cn+1

i }, ũn+1,un+1, pn+1, rn+1) of the discrete

problem (3.7), both Scheme2 and Scheme2b, satisfies the following properties:

i) Positivity preserving: cn+1
i > 0.

ii) Mass conserving:
∫

Ω c
n+1
i dx =

∫
Ω c

n
i dx, i = 1, ...,m.

iii) Energy dissipation:

En+1 − En ≤ 0, (3.13)

where in Scheme2,

En+1 :=
1

2
‖un+1‖2 +

1

2
‖2un+1 − un‖2 +

2

3
∆t2‖∇pn+1 + νωn+1‖2

+ν‖ωn+1‖2 +
1

2
|rn+1|2 +

1

2
|2rn+1 − rn|2 (3.14)

with {wn+1} being recursively defined by

ω0 = 0, ωn+1 = ωn +∇ · ũn+1; (3.15)

and in Scheme2b,

En+1 :=
1

2
‖un+1‖2 +

1

2
‖2un+1 − un‖2 +

2

3
∆t2‖∇(pn+1 + ν∇ · ũn+1)‖2

+
1

2
|rn+1|2 +

1

2
|2rn+1 − rn|2. (3.15’)

iv) The quantities ‖un‖, |rn|, and |ξn| are bounded for all n ≥ 0.

Proof. The positivity preserving i) and mass conservation ii) can be proved in the exactly same

way as in Theorem 3.1 for the first order scheme.

Next we demonstrate the discrete energy dissipation law iii). We first do it for Scheme2. Taking

the L2 inner product of equation (3.7f) with 2∆tũn+1, we obtain(
3ũn+1 − 4un + un−1, ũn+1

)
+ 2∆t

(
∇pn, ũn+1

)
+ 2∆tξn+1

(
un · ∇un + (

m∑
i=1

zic
n+1
i )∇Φ̄n+1, ũn+1

)
= −2∆tν‖∇ũn+1‖2.

(3.16)
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Applying the well-known identity

2(ak+1, 3ak+1 − 4ak + ak−1) = |ak+1|2 + |2ak+1 − ak|2

+ |ak+1 − 2ak + ak−1|2 − |ak|2 − |2ak − ak−1|2,

we have(
3ũn+1 − 4un + un−1, ũn+1

)
=
(
3
(
ũn+1 − un+1

)
+ 3un+1 − 4un + un−1, ũn+1

)
= 3

(
ũn+1 − un+1, ũn+1

)
+
(
3un+1 − 4un + un−1,un+1

)
+
(
3un+1 − 4un + un−1, ũn+1 − un+1

)
=

3

2

(∥∥ũn+1
∥∥2 −

∥∥un+1
∥∥2

+
∥∥ũn+1 − un+1

∥∥2
)

+
1

2

( ∥∥un+1
∥∥2

+
∥∥2un+1 − un

∥∥2 )
− 1

2

(
‖un‖2 +

∥∥2un − un−1
∥∥2 )

+
1

2

∥∥un+1 − 2un + un−1
∥∥2
. (3.17)

In the last equality, we have also used the fact(
3un+1 − 4un + un−1, ũn+1 − un+1

)
=
(
3un+1 − 4un + un−1,

2∆t

3
∇(pn+1 − pn)

)
=
(
∇ ·
(
3un+1 − 4un + un−1

)
,
2∆t

3
(pn+1 − pn)

)
= 0.

Furthermore, let Hn+1 := pn+1 + νωn+1 with wn+1 being given in (3.15), we have

pn+1 − pn + ν∇ · ũn+1 = Hn+1 −Hn,

and rewrite (3.7g) as √
3

2
un+1 +

√
2

3
∆t∇Hn+1 =

√
3

2
ũn+1 +

√
2

3
∆t∇Hn. (3.18)

Now, taking the inner product of (3.18) with itself on both sides and noticing that (∇Hn+1,un+1) =

(Hn+1,∇ · un+1) = 0, we obtain

3

2

∥∥un+1
∥∥2

+
2

3
∆t2

∥∥∇Hn+1
∥∥2

=
3

2

∥∥ũn+1
∥∥2

+
2

3
∆t2 ‖∇Hn‖2

+ 2∆t
(
∇pn, ũn+1

)
+ 2∆tν

(
∇ωn, ũn+1

)
.

(3.19)

On the other side, it follows from (3.15)

2∆tν
(
ũn+1,∇ωn

)
=− 2ν∆t

(
∇ · ũn+1, ωn

)
=− 2ν∆t

(
ωn+1 − ωn, ωn

)
=ν∆t

(
‖ωn‖2 −

∥∥ωn+1
∥∥2

+
∥∥ωn+1 − ωn

∥∥2
)

=ν∆t ‖ωn‖2 − ν∆t
∥∥ωn+1

∥∥2
+ ν∆t

∥∥∇ · ũn+1
∥∥2
. (3.20)

Using the identity

‖∇ × v‖2 + ‖∇ · v‖2 = ‖∇v‖2, ∀v ∈ H1
0(Ω),

we get

2∆tν
(
ũn+1,∇ωn

)
= ν∆t ‖ωn‖2 − ν∆t

∥∥ωn+1
∥∥2

+ ν∆t
∥∥∇ũn+1

∥∥2 − ν∆t
∥∥∇× ũn+1

∥∥2
. (3.21)
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Combining (3.19) and (3.21) yields

2∆t
(
∇pn, ũn+1

)
=

3

2

∥∥un+1
∥∥2 − 3

2

∥∥ũn+1
∥∥2

+
2

3
∆t2

∥∥∇Hn+1
∥∥2 − 2

3
∆t2 ‖∇Hn‖2

+ν∆t
∥∥ωn+1

∥∥2 − ν∆t ‖ωn‖2 − ν∆t
∥∥∇ũn+1

∥∥2
+ ν∆t

∥∥∇× ũn+1
∥∥2
. (3.22)

Finally, multiplying (4.2h) by 2∆trn+1
N , and using (3.16), (3.17), and (3.22), we obtain

1

2

( ∥∥un+1
∥∥2

+
∥∥2un+1 − un

∥∥2 )− 1

2

(
‖un‖2 −

∥∥2un − un−1
∥∥2 )

+
2

3
∆t2

∥∥∇Hn+1
∥∥2 − 2

3
∆t2 ‖∇Hn‖2

+ ν∆t
∥∥ωn+1

∥∥2 − ν∆t ‖ωn‖2 +
1

2
(|rn+1|2 + |2rn+1 − rn|2)− 1

2
(|rn|2 − |2rn − rn−1|2)

= −∆tν‖∇ũn+1‖2 −∆t|ξn+1|2
∫

Ω

m∑
i=1

Dic
n+1
i |∇µ̄n+1

i |2dx− 3

2

∥∥ũn+1 − un+1
∥∥2

− 1

2

∥∥un+1 − 2un + un−1
∥∥2 − ν∆t

∥∥∇× ũn+1
∥∥2 − 1

2
|rn+1 − 2rn + rn−1|2. (3.23)

This gives the energy dissipation law (3.13) and (3.14).

For Scheme2b, denote

p̄n := pn + ν∇ · ũn.

Taking the L2 inner product of equation (3.7f’) with 2∆tũn+1 gives the counterpart of (3.16):(
3ũn+1 − 4un + un−1, ũn+1

)
+ 2∆t

(
∇p̄n, ũn+1

)
+ 2∆tξn+1

(
un · ∇un +

( m∑
i=1

zic
n+1
i

)
∇Φ̄n+1, ũn+1

)
= −2∆tν‖∇ũn+1‖2.

(3.16’)

The equality (3.17) remains true for Scheme2b by using the fact(
3un+1 − 4un + un−1, ũn+1 − un+1

)
=
(
3un+1 − 4un + un−1,

2∆t

3
∇(p̄n+1 − p̄n)

)
=
(
∇ ·
(
3un+1 − 4un + un−1

)
,
2∆t

3
(p̄n+1 − p̄n)

)
= 0.

Equation (3.7g’) can be rewritten as√
3

2
un+1 +

√
2

3
∆t∇p̄n+1 =

√
3

2
ũn+1 +

√
2

3
∆t∇p̄n.

Now, taking the inner product of the above equality with itself and noticing that (∇p̄n+1,un+1) = 0,

we obtain

3

2

∥∥un+1
∥∥2

+
2

3
∆t2

∥∥∇p̄n+1
∥∥2

=
3

2

∥∥ũn+1
∥∥2

+
2

3
∆t2 ‖∇p̄n‖2 + 2∆t

(
∇p̄n, ũn+1

)
. (3.19’)

Finally, multiplying (3.7h) by 2∆trn+1, and using (3.16’), (3.17), and (3.19’), we get

1

2

( ∥∥un+1
∥∥2

+
∥∥2un+1 − un

∥∥2 )− 1

2

(
‖un‖2 +

∥∥2un − un−1
∥∥2 )

+
2

3
∆t2

∥∥∇p̄n+1
∥∥2

− 2

3
∆t2 ‖∇p̄n‖2 +

1

2
(|rn+1|2 + |2rn+1 − rn|2)− 1

2
(|rn|2 − |2rn − rn−1|2)

= −2∆tν‖∇ũn+1‖2 −∆t|ξn+1|2
∫

Ω

m∑
i=1

Dic
n+1
i |∇µ̄n+1

i |2dx− 3

2

∥∥ũn+1 − un+1
∥∥2

− 1

2

∥∥un+1 − 2un + un−1
∥∥2 − 1

2
|rn+1 − 2rn + rn−1|2. (3.24)
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The right sides of (3.23) and (3.24) are both non-positive, which directly leads to the energy

dissipation law (3.13).

The boundedness of ‖un‖, |rn|, and |ξn| follows directly from the boundedness of En, ∀n ≥ 0, as

shown in (3.13). The proof is completed. �

4. Full Discretization and Implementation

In this section, we consider a spectral method for the spatial discretization, and analyze the

stability of the full discrete problems.

4.1. Full Discretization. To fix the idea, we take Ω = (−1, 1)2. Let IPN (Ω) be the space of polyno-

mials of degree ≤ N with respect to each variable in Ω. We introduce the following approximation

spaces:

XN = IPN (Ω), XN = Xd
N ,

X0
N = H1

0 (Ω) ∩ IPN (Ω) =
{
v ∈ IPN (Ω) : v

∣∣
∂Ω

= 0
}
, X0

N = (X0
N )d,

MN =
{
v ∈ IPN (Ω) :

∫
Ω
vdx = 0

}
.

Let (·, ·)N denotes the discrete inner product using the N + 1-point Legendre-Gauss-Lobatto quad-

rature. Let ‖ · ‖0,N = (·, ·)1/2
N .

Scheme1-SM: The full discretization of the first-order scheme in time/spectral method in

space reads: with the solutions known at the previous time steps, find σn+1
i,N , cn+1

i,N ∈ XN , i =
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1, ...,m; Φ̄n+1
N ,Φn+1

N ∈MN ; ũn+1
N ∈ X0

N ; un+1
N ∈ XN ; ψn+1

N , pn+1
N ∈MN−2, such that

(σn+1
i,N − σni,N

∆t
, wN

)
N
−Di

(
∇σn+1

i,N ,∇wN
)
N

=
(
Di

[
|∇σni,N |2 + zi(∇σni,N · ∇Φn

N + ∆Φn
N )
]
−∇ · (σni unN ), wN

)
N
, ∀wN ∈ XN , (4.1a)

c̄n+1
i,N = exp(σn+1

i,N ), (4.1b)

λn+1
i,N

(
c̄n+1
i,N , 1

)
N
−
(
cni,N , 1

)
N

= 0, (4.1c)

cn+1
i,N = λn+1

i,N c̄n+1
i,N , i = 1, ...,m, (4.1d)

ε
(
∇Φ̄n+1

N ,∇qN
)
N

=
( m∑
i=1

zic
n+1
i,N , qN

)
N
, ∀qN ∈MN , (4.1e)

( ũn+1
N − unN

∆t
,vN

)
N

+
rn+1
N√

Ēn+1
npp,N + C0

(
(unN · ∇)unN + (

m∑
i=1

zic
n+1
i,N )∇Φ̄n+1

N ,vN

)
N

+ ν
(
∇ũn+1

N ,∇vN
)
N

+
(
∇pnN ,vN

)
N

= 0, ∀vN ∈ X0
N , (4.1f)(

∇ψn+1
N ,∇qN

)
N

=
1

∆t

(
ũn+1
N ,∇qN

)
N
, ∀qN ∈MN−2,

un+1
N = ũn+1

N −∆t∇ψn+1
N , pn+1

N = ψn+1
N + pnN , (4.1g)

rn+1
N − rnN

∆t
= − 1

2
√
Ēn+1
npp,N + C0

[
rn+1
N√

Ēn+1
npp,N + C0

m∑
i=1

Di

(
cn+1
i,N , |∇µ̄n+1

i,N |
2
)
N
−

(
(

m∑
i=1

zic
n+1
i,N )∇Φ̄n+1

N , ũn+1
N

)
N
−
(
(unN · ∇)unN , ũ

n+1
N

)
N

]
, (4.1h)

Φn+1
N =

rn+1
N√

Ēn+1
npp,N + C0

Φ̄n+1
N , (4.1i)

where µ̄n+1
i,N and Ēn+1

npp,N are defined by

µ̄n+1
i,N = log cn+1

i,N + ziΦ̄
n+1
N , i = 1, ...,m,

Ēn+1
npp,N = Enpp[{cn+1

i,N }, Φ̄
n+1
N ].

Scheme2-SM: The spectral method in space for the second-order semi-discrete problem (3.7)

reads: find σn+1
i,N , cn+1

i,N ∈ XN , i = 1, ...,m; Φ̄n+1
N ,Φn+1

N ∈ MN ; ũn+1
N ∈ X0

N ; un+1
N ∈ XN ; ψn+1

N ∈
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MN−2 and pn+1
N , such that

(3σn+1
i,N − 4σni,N + σn−1

i,N

2∆t
, wN

)
N
−Di

(
∇σn+1

i,N ,∇wN
)
N

=
(
Di

[
|∇σ∗,n+1

i,N |2+

zi(∇σ∗,n+1
i,N · ∇Φ∗,n+1

N + ∆Φ∗,n+1
N )

]
−∇ · (σ∗,n+1

i,N u∗,n+1
N ), wN

)
N
, ∀wN ∈ XN , (4.2a)

c̄n+1
i,N = exp(σn+1

i,N ), (4.2b)

λn+1
i,N

(
c̄n+1
i,N , 1

)
N
−
(
cni,N , 1

)
N

= 0, (4.2c)

cn+1
i,N = λn+1

i,N c̄n+1
i,N , i = 1, ...,m, (4.2d)

ε
(
∇Φ̄n+1

N ,∇qN
)
N

=
( m∑
i=1

zic
n+1
i,N , qN

)
N
, ∀qN ∈MN , (4.2e)

(3ũn+1
N − 4unN + un−1

N

2∆t
,vN

)
N

+ ν
(
∇ũn+1

N ,∇vN
)
N

+
(
∇pnN ,vN

)
N

+
rn+1
N√

Ēn+1
npp,N + C0

(
(u∗,n+1

N · ∇)u∗,n+1
N +

( m∑
i=1

zic
n+1
i,N

)
∇Φ̄n+1

N ,vN

)
N

= 0, ∀vN ∈ X0
N , (4.2f)

(
∇ψn+1

N ,∇qN
)
N

=
3

2∆t

(
ũn+1
N ,∇qN

)
N
, ∀qN ∈MN−2,

un+1
N = ũn+1

N − 2∆t

3
∇ψn+1

N , pn+1
N = ψn+1

N + pnN − νΠN−2∇ · ũn+1
N , (4.2g)

3rn+1
N − 4rnN + rn−1

N

2∆t
= − 1

2
√
Ēn+1
npp,N + C0

[
rn+1
N√

Ēn+1
npp,N + C0

m∑
i=1

Di

(
cn+1
i,N , |∇µ̄n+1

i,N |
2
)
N

−
(
(
m∑
i=1

zic
n+1
i,N )∇Φ̄n+1

N , ũn+1
N

)
N
−
(
(u∗,n+1

N · ∇)u∗,n+1
N , ũn+1

N

)
N

]
, (4.2h)

Φn+1
N =

rn+1
N√

Ēn+1
npp,N + C0

Φ̄n+1
N , (4.2i)

where ΠN−2 is the L2-projection operator onto MN−2.

Scheme2b-SM: same as Scheme2-SM with the exception of (4.2f) and (4.2g), which are

replaced by

(3ũn+1
N − 4unN + un−1

N

2∆t
,vN

)
N

+ ν
(
∇ũn+1

N ,∇vN
)
N

+
(
∇(pnN + ν∇ · ũnN ),vN

)
N

+
rn+1
N√

Ēn+1
npp,N + C0

(
(u∗,n+1

N · ∇)u∗,n+1
N +

( m∑
i=1

zic
n+1
i,N

)
∇Φ̄n+1

N ,vN

)
N

= 0, ∀vN ∈ X0
N , (4.2f’)

(
∇ψn+1

N ,∇qN
)
N

=
3

2∆t

(
ũn+1
N ,∇qN

)
N
, ∀qN ∈MN−2,

un+1
N = ũn+1

N − 2∆t

3
∇ψn+1

N , pn+1
N = ψn+1

N + pnN + ν∇ · ũnN − ν∇ · ũn+1
N . (4.2g’)

It is generally believed that the stability of the full discretization follows directly from the one of

the time semi-discretization once the spatial discretization is of Galerkin-type. However, as we are

going to see, while this is true for the first order scheme Scheme1-SM, the full discrete version of
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the second order schemes needs care. In fact we are unable to establish the stability for Scheme2-

SM. The unconditional stability of the schemes Scheme1-SM and Scheme2b-SM is given in the

following two theorems.

Theorem 4.1. Given {cni,N},Φn
N ,u

n
N , p

n
N , r

n
N . Suppose cni,N > 0, and (cni,N , 1)N = (c0

i,N , 1)N , i =

1, ...,m. Then the solution ({cn+1
i,N }, u

n+1
N , pn+1

N ,rn+1
N ) of Scheme1-SM satisfies the following prop-

erties:

i) Positivity preserving: cn+1
i,N > 0, i = 1, ...,m.

ii) Mass conserving: (cn+1
i,N , 1)N = (cni,N , 1)N , i = 1, ...,m.

iii) Energy dissipation:

En+1
N − EnN ≤ 0, (4.3)

where

En+1
N := ‖un+1

N ‖20,N + ∆t2‖∇pn+1
N ‖20,N + |rn+1

N |2.

iv) The quantities ‖unN‖0,N , |rnN |, and |ξnN | are bounded for all n ≥ 0.

Proof. Almost exactly as established in Theorem 4.1 for the time semi-discrete scheme (3.4), the

properties given in Theorem 4.1 can be likewise proved. We present here only the key step: eq.(4.1g)

gives

(un+1
N ,∇qn+1

N )N = 0, ∀qN ∈MN−2.

We then derive from the above and (4.1g) that∥∥un+1
N

∥∥2

0,N
+ ∆t2

∥∥∇pn+1
N

∥∥2

0,N
=
∥∥ũn+1

N

∥∥2

0,N
+ 2∆t

(
∇pnN , ũn+1

N

)
N

+ ∆t2 ‖∇pnN‖
2
0,N

which is the discrete version of (3.11). The other details are more or less the same as the semi-

discrete version, which are omitted. �

Theorem 4.2. Given {cki,N},Φk
N , ũ

k
N ,u

k
N , p

k
N , r

k
N , k = n, n− 1. Suppose cki,N > 0 and (cki,N , 1)N =

(c0
i,N , 1)N , i = 0, ...,m; k = n, n− 1. Then the solution ({cn+1

i,N }, ũ
n+1
N ,un+1

N , pn+1
N , rn+1

N ) of the full

discrete problem Scheme2b-SM satisfies the following properties:

i) Positivity preserving: cn+1
i,N > 0 in Ω.

ii) Mass conservation: (cn+1
i,N , 1)N = (cni,N , 1)N , i = 1, ...,m.

iii) Energy dissipation:

En+1
N − EnN ≤ 0, (4.4)

where

En+1
N :=

1

2
‖un+1

N ‖20,N +
1

2
‖2un+1

N − unN‖20,N +
2

3
∆t2‖∇(pn+1

N + ν∇ · ũn+1
N )‖20,N

+
1

2
|rn+1
N |2 +

1

2
|2rn+1

N − rnN |2.

iv) The quantities ‖unN‖0,N , |rnN |, and |ξnN | are bounded for all n ≥ 0.
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Proof. It follows from (4.2g’) that

(un+1
N ,∇qN )N = 0, ∀qN ∈MN−2.

We denote p̄nN := pnN + ν∇ · ũnN , n ≥ 2. Let p̄1
N = p1

N ∈MN−2 be the first step pressure solution of

Scheme1-SM, then we have from (4.2g’) that p̄nN ∈MN−2, n ≥ 1, and thus√
3

2
un+1
N +

√
2

3
∆t∇p̄n+1

N =

√
3

2
ũn+1
N +

√
2

3
∆t∇p̄nN .

Now, taking the discrete inner product of the above equality with itself on both sides, we obtain

3

2

∥∥un+1
N

∥∥2

0,N
+

2

3
∆t2

∥∥∇p̄n+1
N

∥∥2

0,N
=

3

2

∥∥ũn+1
N

∥∥2

0,N
+

2

3
∆t2 ‖∇p̄nN‖

2
0,N + 2∆t

(
∇p̄nN , ũn+1

N

)
N
.

This is the discrete analog of (3.19’). The remaining of the proof is similar to the semi-discrete case

Scheme2b. We omit the details. �

However we got stuck in proving the stability of Scheme2-SM. The obstacle comes from the

discrete counterpart of (3.20). Let

ωn+1
N = ωnN + ΠN−2∇ · ũn+1

N , n ≥ 0; ω0
N = 0. (4.5)

Then pnN + νωnN ∈MN−2. It follows from (4.2g):

(un+1
N ,∇qN )N = 0, ∀qN ∈MN−2,

and
3

2

∥∥un+1
N

∥∥2

0,N
+

2

3
∆t2

∥∥∇(pn+1
N + νωn+1

N )
∥∥2

0,N

=
3

2

∥∥ũn+1
N

∥∥2

0,N
+

2

3
∆t2 ‖∇((pnN + νωnN ))‖20,N + 2∆t

(
ũn+1
N ,∇pnN

)
+ 2∆tν(ũn+1

N ,∇ωnN )N .

(4.6)

Although we can use the discrete Stokes formula
(
ũn+1
N ,∇ωnN

)
N

= −
(
∇ · ũn+1

N , ωnN
)
N

to treat the

last term of (4.6). In order to get the discrete counterpart of (3.20), i.e.,

2∆tν
(
ũn+1
N ,∇ωnN

)
N

= ν∆t ‖wnN‖
2
N − ν∆t

∥∥wn+1
N

∥∥2

N
+ ν∆t

∥∥∇ · ũn+1
N

∥∥2

N
,

we would need the relationship

∇ · ũn+1
N = wn+1

N − wnN ,

which is not true according to (4.5).

4.2. Implementation. Implementation of the first-order scheme is essentially the same as that of

the second-order schemes, we only present the implementation of the second-order full discretization

Scheme2b-SM as follows.

Step 1: Solve the elliptic problem: Find σn+1
i,N ∈ XN such that

3

2∆t
(σn+1
i,N , vN )N +Di(∇σn+1

i,N ,∇vN )N = (g̃∗,n+1
i , vN )N ∀vN ∈ XN , i = 1, ...,m,

with g̃∗,n+1
i =

4σni,N − σ
n−1
i,N

2∆t
+ gi(σ

∗,n+1
i,N ,Φ∗,n+1

N ,u∗,n+1
N ). Then compute cn+1

i,N by

c̄n+1
i,N = exp(σn+1

i,N ), λn+1
i =

(cni,N , 1)N

(c̄n+1
i,N , 1)N

, cn+1
i,N = λn+1

i,N c̄n+1
i,N .
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Step 2: Find Φ̄n+1
N ∈MN such that

(∇Φ̄n+1
N ,∇qN )N = 1

ε (
∑m

i=1 zic
n+1
i,N , qN )N , ∀qN ∈MN .

Step 3: Find ũn+1
1,N , ũ

n+1
2,N ∈ X0

N such that

3

2∆t
(ũn+1

1,N ,vN )N + ν(∇ũn+1
1,N ,∇vN )N = (f̃

n+1
N ,vN )N , ∀vN ∈ X0

N ,

3

2∆t
(ũn+1

2,N ,vN )N + ν(∇ũn+1
2,N ,∇vN )N = −(wN ,vN )N , ∀vN ∈ X0

N ,

where

f̃
n+1
N =

1

2∆t
(4unN − un−1

N )−∇p̄nN ,

wn+1
N = u∗,n+1

N · ∇u∗,n+1
N + (

m∑
i=1

zic
n+1
i,N )∇Φ̄n+1

N .

Step 4: Compute ξn+1
N : once ũn+1

i,N (i = 1, 2) are known, we determine explicitly ξn+1
N from

(4.2h) as follows:

ξn+1
N =

2rnN −
1
2r
n−1
N + ∆t

2
√
Ēn+1

npp,N+C0

(wn+1
N , ũn+1

1,N )N

3
2

√
Ēn+1
npp,N + C0 + ∆t

2
√
Ēn+1

npp,N+C0

[
(
∑m

i=1Di(c
n+1
i,N , |µ̄n+1

i,N |2)N − (wN , ũ
n+1
2,N )N

] .
Then compute rn+1

N , Φn+1
N , and ũn+1

N by

rn+1
N = ξn+1

N

√
Ēn+1
npp,N + C0,

Φn+1
N = ξn+1

N Φ̄n+1
N ,

ũn+1
N = ũn+1

1,N + ξn+1
N ũn+1

2,N .

Step 5: Find ψn+1
N ∈MN−2 such that

(
∇ψn+1

N ,∇qN
)

=
3

2∆t

(
ũn+1
N ,∇qN

)
, ∀qN ∈MN−2.

Then update the velocity and pressure by

un+1
N = ũn+1

N − 2∆t

3
∇ψn+1

N ,

p̄n+1
N = ψn+1

N + p̄nN ,

pn+1
N = p̄n+1

N − ν∇ · ũn+1
N .

The above algorithm shows that the computational complexity of the proposed method is equal

to solving several decoupled linear elliptic equations with constant coefficient at each time step.

In the spatial discretization, we use the Legendre modal basis [27], for which fast solvers exist for

elliptic equations with constant coefficients in a rectangular domain.
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5. Numerical Results

In this section, we present several numerical examples to validate the proposed method. We

first present the numerical results for the equation with two species to examine the accuracy and

stability of the schemes. We will also investigate the convergence order, mass conservation, positivity

preserving, and energy dissipation. Then, we present an example with three species. In all our

calculations, we fix C0 = 100.

5.1. Case with two ions.

Example 1. We employ a manufactured analytic solution to the NSNPP equations to investigate

the temporal and spatial convergence rates of the developed schemes. Some suitable forcing terms

are added in the equations such that the problem (2.1) admits the following exact solution:

u = (πsin(2πy)sin2(πx) sin2 t,−π sin(2πx)sin2(πy) sin2 t)

p = sin(πx) sin(πy) sin2 t

c1 = 1.1 + cos(πx) cos(πy) sin2 t

c2 = 1.1− cos(πx) cos(πy) sin2 t

Φ =
1

π2
cos(πx) cos(πy) sin2 t.

Set the parameters z1 = 1, z2 = −1, D1 = D2 = 1, and ε = 1, ν = 0.1.

Firstly, we investigate the spatial convergence order by checking the error behavior of numerical

solutions with respect to the polynomial degree. In Figures 5.1 and 5.2, we present the errors as

a function of the polynomial degree N for two values of ∆t : 0.001 and 0.0001 at time T = 0.1

for Scheme1-SM and Scheme2-SM, respectively. The straight lines error curves in this semi-log

representations indicates the exponential convergence until the temporal error dominates.

In the temporal convergence tests, we fix the spatial polynomial degree N = 64, which is large

enough such that the spatial discretization error is negligible compared to the temporal error. We

present in Figure 5.3 (Scheme1-SM) and Figure 5.4 (Scheme2-SM) the L2–errors with respect

to ∆t in log-log scale. The expected convergence rate in time is clearly observed, as predicted by

the theoretical analysis.
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Figure 5.1. (Example 1) Errors in L2-norm as functions of N in semi-log scale for ∆t =
0.001, 0.0001 using the 1st-order scheme.

Figure 5.2. (Example 1) Errors in L2-norm as functions of N in semi-log scale for ∆t =
0.001, 0.0001 using the 2nd-order scheme.
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Figure 5.3. (Example 1) L2-errors as a function of ∆t in log-log scale for the first order scheme.

Figure 5.4. (Example 1) L2-errors as functions of ∆t in log-log scale for the second order scheme.
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Table 5.1. Velocity L2-error and pressure L2-error with respect to time step size
at T = 1, computed by Scheme2-SM and Scheme2b-SM, respectively.

∆t
L2 velocity error L2 pressure error

Scheme2-SM Scheme2b-SM Scheme2-SM Scheme2b-SM

10−1 1.26768E-02 1.26935E-02 5.33609E-02 5.33894E-02
10−2 9.92445E-05 9.90649E-05 2.58586E-04 2.57952E-04
10−3 9.92721E-07 9.92952E-07 2.34312E-06 2.34164E-06
10−4 9.93110E-09 9.93277E-09 2.31898E-08 2.31877E-08

An accuracy comparison between Scheme2-SM and Scheme2b-SM is given in Table 5.1. The

velocity L2-error and pressure L2-error listed in the table indicates that the two schemes are almost

equal in term of the accuracy. The error comparison for the other variables (not shown here) has

given similar results.

Example 2. Set z1 = 1, z2 = −1, D1 = D2 = 1, ε = 1, ν = 0.01, and N = 64. This example

has a purpose to verify the positivity preserving, mass conserving and stability property. We run

Scheme2b-SM with the initial conditions:

u(x, 0) = (πsin(2πy)sin2(πx),−π sin(2πx)sin2(πy))

c1(x, 0) = 1.1 + cos(πx) cos(πy)

c2(x, 0) = 1.1− cos(πx) cos(πy).

Figure 5.5 plots time evolution of the discrete masses
∫

Ω cidx, i = 1, 2 computed by using

Scheme2b-SM, which demonstrates the mass conservation property of the scheme. Figures 5.6 - 5.9

present the snapshots at t = 0, 0.1, 0.6, 1.0 of the variables c1, c2, and two components of the

velocity u1 and u2, respectively. It is observed from Figures 5.6 and 5.7 that the concentrations

{ci} preserve the positivity during the time evolution.

(a) (b)

Figure 5.5. (Example 2) Time evolution of the discrete mass
∫

Ω c1dx (a) and∫
Ω c2dx (b) computed with Scheme2b-SM.
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(a) c1 at t = 0 (b) c1 at t = 0.1 (c) c1 at t = 0.6 (d) c1 at t = 1

Figure 5.6. (Example 2) Snapshots of c1.

(a) c2 at t = 0 (b) c2 at t = 0.1 (c) c2 at t = 0.6 (d) c2 at t = 1

Figure 5.7. (Example 2) Snapshots of c2.

(a) u1 at t = 0 (b) u1 at t = 0.1 (c) u1 at t = 0.6 (d) u1 at t = 1

Figure 5.8. (Example 2) Snapshots of u1.

(a) u2 at t = 0 (b) u1 at t = 0.1 (c) u2 at t = 0.6 (d) u2 at t = 1

Figure 5.9. (Example 2) Snapshots of u2 .

5.2. Case with three ions.
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Example 3. Set z1 = 1, z2 = −1, z3 = 2, D1 = D2 = D3 = 1, ε = 0.5, ν = 0.1, we verify the

temporal convergence rates of the proposed schemes using the following fabricated exact solution:

u = (πsin(2πy)sin2(πx),−π sin(2πx)sin2(πy))e−t

p = sin(πx) sin(πy)e−t

c1 = cos(πx) cos(πy)e−t + 2e−t

c2 = −2 cos(πx) cos(πy)e−t + 6e−t

c3 = − cos(πx) cos(πy)e−t + 2e−t

Φ =
1

π2
cos(πx) cos(πy)e−t.

The source terms are obtained from the exact solution. Figures 5.10 and 5.11 present the L2 errors

of the ions, the electrostatic potential, the velocity, and the pressure as functions of the time

step size, computed from Scheme1-SM and Scheme2-SM respectively. As observed from the

figures, the convergence rates are respectively first order for Scheme1-SM and second order for

Scheme2-SM. This in a good agreement with the theoretical prediction.

Figure 5.10. (Example 3) L2 error versus ∆t in log-log scale using the first order
scheme with N = 64 at each spatial direction.
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Figure 5.11. (Example 3) L2 errors versus ∆t in log-log scale using Scheme2-SM
with N = 64 at each spatial direction.

6. Concluding Remarks

In this paper, we have developed efficient time-stepping schemes for the Navier-Stokes-Nernst-

Planck-Poisson equations. The proposed schemes are constructed based on an auxiliary variable

approach for the Navier-Stokes equations and a delicate treatment of the terms coupling the Navier-

Stokes equations and the Nernst-Planck-Poisson equations. By introducing a dynamic equation for

the auxiliary variable and reformulating the original equations into an equivalent system, we have

constructed first- and second-order semi-implicit linearized schemes for the underlying problem. A

rigorous analysis was carried out, showing that the overall schemes are unconditionally stable, and

preserve positivity and mass conservation of the ionic concentration solutions. The implementation

showed that it can be implemented in an efficient way: the computational complexity is equal to

solving several decoupled linear equations with constant coefficient at each time step. A number of

numerical examples were provided to confirm the theoretical claims. We emphasize that the above

attractive properties remain to be held at the full discrete level. As far as the best we know, this is

the first second-order method which satisfies all the above properties for the Navier-Stokes-Nernst-

Planck-Poisson equations at the discrete level.
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