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Abstract

We propose an efficient algorithm to construct k · p effective Hamiltonians, which is much faster than
the previously proposed algorithms. This algorithm is implemented in MagneticKP package. The package
applies to both single-valued (spinless) and double-valued (spinful) cases, and it works for both magnetic
and nonmagnetic systems. By interfacing with SpaceGroupIrep or MSGCorep packages, it can directly output
the k · p Hamiltonian around arbitrary momentum and expanded to arbitrary order in k.

Program summary
Program title: MagneticKP
Licensing provisions: GNU General Public Licence 3.0
Programming language: Mathematica
External routines/libraries used: SpaceGroupIrep (Optional), MSGCorep (Optional)
Developer’s repository link: https://github.com/zhangzeyingvv/MagneticKP
Nature of problem: Construct k · p Hamiltonian for arbitrary magnetic space group
Solution method: Linear algebra, iterative algorithm to solve common null space of operators

Keywords: k · p Hamiltonian, Magnetic space group, Null space, Mathematica

1. Introduction

k ·p modelling is widely used in the research of condensed matter physics. Such models describe the local
band structure around certain momentum K in the Brillouin zone and take the form of a Taylor expansion
in powers of k, with k being the derivation from K. The famous early examples include the Kohn-Luttinger
model and the Kane model for studying semiconductor materials [1, 2]. In the past twenty years, with the
development in two-dimensional materials and topological materials, k ·p modelling has become a standard
tool for studying their properties. In these materials, the physical responses are mostly determined by the
electronic states around a few band extremal or degeneracy points, so k ·p models are most suitable for their
description. For example, many exotic properties of graphene can be understood from its 2D Dirac model
obtained using k ·p method [3]. k ·p models have also been constructed to study other 2D semiconductors,
such as transition-metal dichalcogenides and monolayers of group-IV or group-V elements [4, 5, 6, 7], to
capture the band inversion topology such as in HgTe quantum wells [8], and to describe nodal states in
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topological semimetals, such as Weyl/Dirac points [9, 10, 11, 12], triple points [13, 14], and various nodal
loops/surfaces [15, 16, 17, 18, 19].

In practice, a k ·p model is usually constructed from symmetry constraint. The input information include
the symmetry group of at the expansion point K and the symmetry information of the target band states at
K. Depending on the needs, the output model is expanded to a specified cutoff power of k. At present, there
already exist a few packages, including kdotp-symmetry[20], Qsymm [21], kdotp-generator (based on kdotp-
symmetry) [22] and Model-Hamiltonian [23], which can construct k · p Hamiltonians. All these packages are
written in Python and use a similar algorithm, namely, the direct-product decomposition algorithm (DDA).
In the DDA approach, each symmetry constraint is transformed to a set of linear equations, and one solves
the null space of these equations by the standard linear algebra method. After going through all symmetry
constraints, one obtains a collection of null spaces. The output model Hamiltonian is obtained by calculating
the intersection of all the null spaces using the standard Zassenhaus algorithm [24], such that it satisfies all
the symmetry constraints.

In this work, we propose an improved algorithm, which has been implemented in our MagneticKP package
(written in Wolfram language). We term this algorithm as the iterative simplification algorithm (ISA). We
show that compared with the DDA, ISA reduces the time complexity of constructing k · p Hamiltonians.
The improvement increases with the symmetry group size, the model dimension, and the cutoff power in k.
The main difference lies in the method to obtain the intersection of a collection of null spaces. As mentioned
above, DDA uses the direct Gaussian elimination method, which is quite time consuming. Instead, ISA
adopts an iterative method, such that the problem size is reduced at each step in obtaining the common
null spaces of two operators. Besides the improvement in algorithm, the usage of Wolfram language in
the MagneticKP package also helps to enhance the speed, since its handling of analytic calculation is more
efficient than Python. The application and the validity of our algorithm and package have been demonstrated
in many of our previous works [25, 26, 27, 28].

This paper is organized as follows: In Sec. 2, we give a detailed description of ISA and compare it with
DDA. In Sec. 3, we introduce the capabilities of MagneticKP package, including the installation and running
of MagneticKP. In Sec. 4, we present a simple example. Finally, a conclusion is given in Sec. 5.

2. Algorithm

To construct a k · p Hamiltonian, we need to first specify the expansion point K and the basis states at
K. The form of the k · p Hamiltonian is constrained by the symmetry elements of the little co-group G at
K. Consider a symmetry Q ∈ G. Its constraint on the Hamiltonian H is given by

H(k) =
{
D(Q)H(R−1k)D−1(Q) if Q = {R|t}
D(Q)H∗(−R−1k)D−1(Q) if Q = {R|t}T

(1)

where the relation depends on whether Q involves the time reversal operation T , D(Q) is the matrix
(co)representation matrix of Q (not necessarily irreducible) in the basis states. The target result is a
Hamiltonian that satisfies symmetry constraints by all the Q’s in G and meanwhile includes all the allowed
terms. In the calculation, one does not need to go through all the Q’s. Only the generators of the magnetic
little co-group at K are needed.

2.1. Problem formulation
Now, we formulate the above problem into a form that can be handled numerically. Suppose we take N

basis states at K, and we demand a model expanded to P -th power in k. We may first decompose the k · p
Hamiltonian H as a sum

H(k) =
P∑

m=0
Hm(k), (2)
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where each Hm includes terms that of m-th power in k. According to (1), the symmetry transforms k in a
linear way, so each individual Hm would satisfy the symmetry constraint in (1). Therefore, we are allowed
to consider each Hm separately.

Note that H and Hm’s are N × N complex Hermitian matrices. It is known that N × N complex
Hermitian matrices form a vector space over R, which has a dimension of N2. We can choose N2 basis for
this vector space, and label them as Mµ with µ = 1, · · · , N2. For example, for N = 2, the four basis may
be chosen as the identity matrix and the three Pauli matrices; for N = 3, one may choose the identity and
the eight Gell-Mann matrices, and so on.

After choosing the basis Mµ, we can express the Hamiltonian Hm(k) in the following form

Hm(k) =
∑

`=1,..,L; µ=1,..,N2

c`µp`(k)Mµ. (3)

Here, p`(k) ∈ {kaxkbykcz|a+ b+ c = m; a, b, c ≥ 0} is a product of the k vector components with a total power
of m. There are totally L = 1

2 (m + 1)(m + 2) such products. We label these products by `, which runs
from 1 to L. The expansion coefficients c`µ ∈ R are what we want to find after imposing the symmetry
constraints.

First, consider the first line in (1), i.e., for the case when Q = {R|t} not involving T . Note that the D
matrix does not depend on k. Then the right hand of Eq. (1) (for Hm) can be expressed as

D(Q)Hm(R−1k)D−1(Q) =
∑

`,n=1,...,L;µ,ν=1,..,N2

cnµp`(k)F `n(Q)MνJ
ν
µ(Q). (4)

Here, F `n(Q) is an L × L constant matrix satisfying pn(R−1k) =
∑
` p`(k)F `n; and Jνµ(Q) is an N2 ×N2

matrix satisfying DMµD
−1 =

∑
νMνJ

ν
µ. Then, the symmetry condition in (1) can be re-written in the

following form
0 =Hm(k)−D(Q)Hm(R−1k)D−1(Q)

=
∑

`,n=1,...,L;µ,ν=1,..,N2

p`(k)Mν

[
δ`nδ

ν
µ − F `n(Q)Jνµ(Q)

]
cnµ

=b · S(Q) · c

(5)

where b ≡ (p1M1, p1M2 · · · , pLMN2) is a 1 × LN2 row vector, c ≡ (c11, · · · , cLN2)T is a LN2 × 1 column
vector, and

S(Q) ≡ δ`nδνµ − F `n(Q)Jνµ(Q) (6)
is an LN2 × LN2 matrix. Since b is a vector of linearly independent k-products, the condition in (5) is
equivalent to

S(Q) c = 0. (7)
Thus, c ∈ ker S(Q), so the condition reduces to finding the null space or the kernel of S(Q).

As for the second line in Eq. (1), i.e., for Q = {R|t}T , one can see that we only need to slightly modify
the definition of S(Q) as

S(Q) ≡ δ`nδνµ − F̃ `n(Q)J̃νµ(Q), (8)

where F̃ `n(Q) is defined from the relation pn(−R−1k) =
∑
` p`(k)F̃ `n; and J̃νµ(Q) satisfies DM∗µD−1 =∑

νMν J̃
ν
µ.

Typically, the group G has multiple generators Q1, Q2, · · · . Each generator Qi gives a S(Qi) for which we
solve its null space ker S(Qi). The final solution is their common subspace S =

⋂
i ker S(Qi). In practice,

we need to solve out a basis set {u1, · · · ,ur} for S, where r = dimS, such that the coefficient c`µ in Eq. (3)
is expressed as

c`µ =
r∑
i=1

ai[ui]`µ (9)

with r real coefficients ai serving as the model parameters for Hm.
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2.2. Iterative simplification algorithm
The direct way to obtain the common null space S is by the Gaussian elimination method. Here, we

propose an iterative numerical method. To this end, we need to first introduce a definition, a proposition
and a short proof.

Definition 1. S is a linear mapping from Cm to Cn. The matrix for S in the standard bases is denoted as
S, which is of size n×m. Let {α1, α2, · · · , αr} be any basis set for ker S, i.e., ker S = Span{α1, α2, ..., αr},
r = dim ker S. Then, we define a m× r matrix K(S) associated with S by

K(S) = (α1, α2, ..., αr).

When treating each column of K(S) as a vector in Cm, we can write

ker S = Span{K(S)}.

Proposition 1. Consider two linear mappings A : Cm → Cn and B : Cm → Cp. The matrices for A and
B in standard bases are A and B, which are of size n×m and p×m, respectively. Then, we have

ker A
⋂

ker B = Span
{
K(A) · K(B · K(A))

}
.

Proof: The intersection space of kerA and kerB is equal to the kernel of linear mapping restricted to the
space kerA, i.e. kerA ∩ kerB = ker(B|kerA). Now, take a set of bases of ker A : {α1, α2, ..., αr} and let
K(A) = (α1, α2, ..., αr) being a m × r matrix. The linear mapping B|kerA : kerA → Cn in the basis of
{α1, α2, ..., αr} is represented by the p × r matrix B · K(A). Then the r × ` matrix K(B · K(A)) gives the
basis set of kerA

⋂
kerB expressed in the basis of {α1, α2, ..., αr}, where ` = dim(kerA∩kerB). The multi-

plication of K(A) from the left converts them back to the standard bases, which generates the desired result.

As we have discussed in the last subsection, the target is to find a basis set for the common null subspace
S =

⋂s
i=1 ker S(Qi), where s is the number of generators of G. Based on the above proposition, we can

obtain it in the following iterative way. Let U1 = K(S(Q1)), and for 1 ≤ i ≤ s− 1,

Ui+1 = Ui · K(S(Qi+1) · Ui) (10)

Then the final matrix Us = (u1, · · · ,ur) contains the desired basis set for S.
The pseudo code for obtaining Us is shown in Algorithm 1.

Algorithm 1 Iterative calculation of Us
procedure U({S(Q1), ...,S(Qs)})
U ← K(S(Q1))
for S in {S(Q2), ...,S(Qs)} do

if U = ∅ then return ∅
U ← U · K(S · U)

return U

2.3. Comparison of ISA to DDA
DDA differs from ISA in the way to obtain the common null space basis set, i.e., the Us above. In DDA,

after constructing S(Qi) (i = 1, · · · , s), one needs to first solve the null space matrix K(S(Qi)) for each
i separately. Then, Us is obtained by combining all the K(S(Qi))’s into one big matrix and do Gaussian
elimination to find the common basis set [20]. Hence, it is a two-step process.

In comparison, in ISA, Us is obtained in an iterative way. The dimension of space, i.e., the size of matrix,
decreases in each iteration step, which greatly reduces the computational cost. The processes of the two
algorithms are illustrated in Fig. 1.
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Figure 1: Schematic comparison of the two algorithms. Upper panel: ISA. Lower panel: DDA.

Here, we give an estimation of the time complexity of the two algorithms. The complexity for calculating
the null space of a a × b (a ≥ b) matrix is approximately O(ab2) [29] (note that this is a very rough
estimate, because the method for NullSpace in Wolfram language is automatically chosen by "CofactorExpansion
", "DivisionFreeRowReduction" and "OneStepRowReduction", thus the complexity of NullSpace also depends on the
specific form of the matrix). The time complexity for finding Us in DDA is about O(s(LN2)3 + (

∑s
i=1 di)×

(LN2)2), where di = dim ker S(Qi). The first term is for calculating the null spaces for the s matrices
S(Qi), and the second term is for calculating their intersection. In comparison, for ISA, the time complexity
is approximately O((LN2)3 + LN2∑s

n=2(LN2 −
∑n
i=1 ri)2), where ri is the number of columns of Ui. In

practice, we find the first term dominates, so ISA complexity is roughly O((LN2)3), which is at least s times
faster than DDA.

To test the computational efficiency, we construct several k · p Hamiltonians using three different ways:
(1) ISA implemented in MagneticKP (written in Wolfram language), (2) DDA implemented in MagneticKP
(written in Wolfram language), and (3) DDA implemented in kdotp-symmetry (written in Python language).
The test results as shown in Table 1. One can see that ISA implemented in MagneticKP has the best
performance. The time cost difference between approaches (1) and (3) becomes more and more pronounced
with the cutoff power and basis size. One also notes that approach (2) is also much better than (3), which
demonstrates that for the current task involving analytic calculations, Wolfram language is more efficient
than Python.

3. Capability of MagneticKP

3.1. Installation
The steps of installing MagneticKP is exactly the same as installing MagneticTB [30]. One just needs to

unzip the "MagneticKP-main.zip" file and copy the MagneticKP directory to any directory in $Path. e.g.,
copy to FileNameJoin[{$UserBaseDirectory, "Applications"}]. Then, one can start to use the package after running
Needs["MagneticKP‘"]. The version of Mathematica should be ≥ v11.3.

3.2. Running
3.2.1. Core module

The core part of MagneticKP package is the function kpHam which computes the k · p Hamiltonian. The
format of this function is
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Table 1: Comparison of time costs for three different approaches. The column labeled "MSG" gives the magnetic space
group number. "corep" gives the Γ label of the co-representation (basis size), "dim" is the dimension of the co-representation,
"k-order" is the cutoff power of the k · p model. The three approaches are: (1) ISA implemented in MagneticKP, (2) DDA
implemented in MagneticKP, and (3) DDA implemented in kdotp-symmetry. The values are in unit of second. All tests are run
on intel i7-10870H CPU@2.20GHz with 32GB RAM.

MSG corep dim k-order ISA (MagneticKP) DDA (MagneticKP) DDA (kdotp-symmetry)
226.123 L4L4 4 2 0.43 0.59 5.76

4 1.18 3.20 137.99
6 3.30 12.12 > 2 hours
8 8.80 36.43 > 2 hours

218.82 R4R5 6 2 4.48 5.97 41.58
4 10.22 22.80 490.33
6 28.87 86.55 > 2 hours
8 87.87 282.83 > 2 hours

kpHam[korder, input, "Method"−>"IterativeSimplification" or "DirectProductDecomposition"]

Here, korder can be both an integer or a list of integers that specifies the cutoff power in k for the k · p
Hamiltonian to be calculated. When korder is a list such as {n,m}, the function will output two Hamiltonians
of the cutoff power of n andm, respectively. input has the format of an Association in Mathematica. It contains
the input information for constructing the Hamiltonian. There are three necessary inputs, the rotation part
of Q, the (co)representation matrix of Q, and whether Q is an unitary or an anti-unitary operator. The
format of input is
input = <|
"Unitary" −><|Q1 −> {D(Q1), R1k},...|>,
"Anitunitary " −><|Q2 −> {D(Q2), −R2k},...|>
|>

Notice that the role of Keys of input ["Unitary"] or input ["Anitunitary "] is to make the input clearer, MagneticKP
will respectively read the Values of input ["Unitary"] and input ["Anitunitary "] to do the calculation. Rk can be in
either Cartesian or primitive coordinates.

The default method in kpHam is ISA. Users can explicitly specify a method by putting "Method"−>"
IterativeSimplification" or "Method"−>"DirectProductDecomposition" in kpHam. After the above parameters are set
appropriately, one can run kpHam to obtain the k ·p Hamiltonian. The output of kpHam is also an Association .
The format of the output is [see Sec. 4 for a concrete example]
<|"ham" −> expression of k · p Hamiltonian, "korder" −> order of Hamiltonian,
"dim" −> dimension of Hamiltonian, "NumberOfParameters" −> number of parameters|>

3.2.2. IO module
The input to kpHam contains the matrix D(Qi). Here, we introduce how to get its expression. In general,

for Qi ∈ G, one can use the projective representation method to get the irreducible representation ∆(Qi).
The reality of ∆(Qi) can be determined by Herring’s rule [31] and D(Qi) can be easily constructed from
∆(Qi) and the reality of ∆(Qi) [32]. More direct method is to obtain D(Qi) from standard reference books
[33, 32, 34, 35], or Bilbao crystallographic server [36], or many software packages [37, 38, 39, 40, 41]. Here, we
provide a function interfaceRep to interface with packages SpaceGroupIrep [41] and MSGCorep [42]. MSGCorep
package is our home-made package and will be made public soon. The format of interfaceRep is
interfaceRep [MSGNO, k, reps, "CartesianCoordinates" −> True or False, "CalculateGenerators " −> True or False]

where MSGNO can be either space group number (one integer) or BNS magnetic space group number (a list
containing two integers). When MSGNO is an integer number (list), SpaceGroupIrep (MSGCorep) package
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must be loaded. k can be given in the form of the coordinate of K or the symbol of the K point (if it is a
high-symmetry point). reps is an integer or a list of integers, which represents the serial number of irreducible
(co)representations in showLGIrepTab(showMLGCorep). When reps is a list, MagneticKP will automatically cal-
culate the direct sum of (co)representations. "CartesianCoordinates" (default value is True) tells MagneticKP
whether to convert the operations into Cartesian coordinates. Finally, since SpaceGroupIrep (MSGCorep)
will show all the symmetry operations in the (magnetic) little group, to save the computing resources we
develop a greedy algorithm to find the generators of a group [43]. The pseudo code is shown in Algorithm 2.

Algorithm 2 Use greedy algorithm to find the generators of a group
procedure getGenerator(InputGroup)

Generator ← ∅
group ← {identity element}
for element in InputGroup do

temGenerator ← Append[Generator,element]
temgroup ← GenerateGroup[temGenerator]
if group 6= temgroup then Generator ← temGenerator;

group ← temgroup
if group = InputGroup then Break

return Generator

It should be mentioned that Ref. [22, 44] only generate models for high symmetry k points. In comparison,
in MagneticKP, with the help of SpaceGroupIrep (MSGCorep), it can work for arbitrary k point, for arbitrary
direct sums of more than two irreducible representations, for different types of coordinates etc. Hence, it is
also more general and more convenient than previous packages.

4. Example

We use the four-band nodal ring in TiB2 [25] as an example to show how to use MagneticKP. TiB2
is a nonmagnetic material with time-reversal symmetry and belongs to space group 191 (P6/mmm) (see
Fig. 2(a)). The four-band nodal ring appears around K (− 1

3 ,
2
3 , 0) point when spin-orbit coupling effect

is neglected. The generators of the little co-group at K can be chosen as {C+
3 |000}, {C ′′2 |000}, {σh|000}

and {IT |000}. Then Rk and the single-value representation matrices of the relevant band representations
(K5 ⊕K6) can be written as [32]:

C+
3 : (kx, ky, kz)→ (−kx2 −

√
3ky
2 ,

√
3kx
2 − ky

2 , kz), D(C+
3 ) = −Γ0,0

2 − 1
2 i
√

3Γ3,2

C ′′2 : (kx, ky, kz)→ (kx,−ky, kz), D(C ′′2 ) = Γ0,3

σh : (kx, ky, kz)→ (kx, ky,−kz), D(σh) = Γ3,0

IT : (kx, ky, kz)→ (kx, ky, kz), D(IT ) = Γ0,0

(11)

where Γi,j = σi ⊗ σj , σ0 is the 2 × 2 identity matrix and σi(i = 1, 2, 3) are the three Pauli matrices. With
these input information, one can run the following code to get the k · p Hamiltonian up to first order

1 Needs["MagneticKP‘"];
2 input=<|"Unitary" −> <|
3 C3 −> {−IdentityMatrix[4]/2 + I Sqrt[3] KroneckerProduct[PauliMatrix[3], PauliMatrix [2]]/2, {−kx/2 − (Sqrt[3] ky)/2, Sqrt

[3] kx/2 − ky/2, kz}},
4 C2 −> {KroneckerProduct[PauliMatrix[0], PauliMatrix [3]], {−kx, ky, −kz}},
5 σh −> {KroneckerProduct[PauliMatrix[3], PauliMatrix[0]], {kx, ky, −kz}}|>,
6 "Anitunitary " −> <|IT −> {IdentityMatrix[4], {kx, ky, kz}}|>|>;
7 MatrixForm[kpHam[1, input]["ham"]]

The output of the above script is:

7
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Figure 2: (a) Crystal structure of TiB2. (b) Band structure of the output of kpHam[2, input]. Here, we take the values
C0,1 = 0, C0,2 = 0.6, C2,1 = 0, C2,2 = 0.13, C2,3 = 0., C2,4 = 0.12, C2,5 = 0, C2,6 = 0, C2,7 = 0, C1,1 = 0.1, C1,2 = 0, C1,3 = 0.
The two red circles indicate the crossing points on the nodal ring.

Here, Ci,j is the j-th real parameter of the i-th k-order of the k · p Hamiltonian. On the kz = 0 plane,
the Hamiltonian is decoupled into two 2× 2 diagonal blocks, which has different mirror eigenvalues (+1 for
K5 and −1 for K6) and makes it possible to generate a nodal ring on the kz = 0 plane. To fully capture
the four-band nodal ring in TiB2 [25], one needs a 2nd order Hamiltonian, which can be easily obtained by
changing line 7 in the above script to
MatrixForm[kpHam[2, input]["ham"]]

The band structure of the 2nd order k · p Hamiltonian is shown in Fig. 2(b), which is consistent with the
result in Ref. [25].

A more direct way is to interface with MSGCorep. One needs to simply write
Needs["MSGCorep‘"]
input = interfaceRep[{191, 234}, "K", {5, 6}];
kpHam[2, input]

Here, the output of interfaceRep is:

This output additionally contains the labels of (co)representations, which would make the analysis more
convenient.

5. Conclusion

In conclusion, we have developed a package MagneticKP to generate k · p Hamiltonian at an arbitrary
momentum point. We develop the ISA approach, which is much faster than the algorithm used in previous
packages. By interfacing with SpaceGroupIrep (MSGCorep), MagneticKP can generate the k ·p Hamiltonians
for any (magnetic) space group. The package will be a useful tool for band structure modeling and analysis.
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