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Abstract

We present PYATB, a Python package designed for computing band structures and related properties of materials
using the ab initio tight-binding Hamiltonian. The Hamiltonian is directly obtained after conducting self-consistent
calculations with first-principles packages using numerical atomic orbital (NAO) bases, such as ABACUS. The pack-
age comprises three modules: Bands, Geometric, and Optical. In the Bands module, one can calculate essential prop-
erties of band structures, including the partial density of states (PDOS), fat bands, Fermi surfaces, and Weyl/Dirac
points. The band unfolding method is utilized to obtain the energy band spectra of a supercell by projecting the elec-
tronic structure of the supercell onto the Brillouin zone of the primitive cell. With the Geometric module, one can
compute the Berry phase and Berry curvature-related quantities, such as electric polarization, Wilson loops, Chern
numbers, and anomalous Hall conductivities. The Optical module offers a range of optical property calculations,
including optical conductivity and nonlinear optical responses, such as shift current and Berry curvature dipole.
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PROGRAM SUMMARY
Program Title: PYATB
CPC Library link to program files: (to be added by Technical Editor)
Developer’s repository link: https://github.com/pyatb/pyatb
Code Ocean capsule: (to be added by Technical Editor)
Licensing provisions: GPLv3
Programming language: C++, Python
Nature of problem: This program is to study the electronic structure, electronic polarization, band topological properties, topolog-
ical classification, linear and nonlinear optical response of solid crystal systems.
Solution method: Based on the tight binding method to solve the band structure, the Wilson loop is used to classify the topological
phases, and the optical response is calculated by Berry curvature and Berry connection.

1. Introduction

Electronic band structures are critical in determining the physical properties of solids, including their optical,
transport, and topological properties. For instance, in materials with nontrivial topological properties, such as topo-
logical insulators [1, 2, 3], topological crystalline insulators [4], Dirac [5, 6] and Weyl semimetals [7, 8, 9], and
nodal-line semimetals [10, 11, 12], calculations of the Berry curvature [13], Chern number [14], and Wannier charge
centers [15] are crucial for understanding these topological states. Moreover, recent studies have revealed that the
Berry connection and Berry curvature also play essential roles in various nonlinear optical effects [16, 17]. Kohn-
Sham density functional theory [18, 19] is a vital tool for calculating band structures and their associated properties.
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However, these calculations typically require a large number of k points, making them computationally demanding.
The tight-binding model offers an efficient approach to investigating electronic structures in materials. In plane wave-
based codes, the Maximally Localized Wannier Functions (MLWF) method [20] is used to construct the ab initio
tight-binding model, where the parameters are determined from first-principles calculations. The MLWF method
has been implemented in the Wannier90 [21] code, which provides interfaces with many widely used first-principles
software, such as Quantum-Espresso [22], VASP [23, 24], and ABINIT [25] etc. Several packages, including Wan-
nier90 [21], Z2pack [26], and WannierTools [27] use the MLWF based ab initio Hamiltonian as the postprocess to
calculate various properties of materials, such as the band structures, band geometric and topological properties, and
optical properties. However, obtaining high-quality WFs for large systems can be computationally demanding, and in
some cases, the symmetry of the WFs may not be preserved, [21] which could potentially lead to incorrect results for
properties that are sensitive to the symmetry of the system.

However, if the numerical atomic orbitals (NAO) are used as the basis set in the first-principles package, the ab
initio tight-binding Hamiltonian can be naturally generated after the self-consistent calculations, avoiding the process
to construct MLWF and can preserve the correct symmetries of the systems. In this paper, we present the PYATB
package, which is designed for computing band structures and related properties of materials using the ab initio tight-
binding Hamiltonian on the NAO bases. The package includes three modules that enable the computation of different
material properties. The Bands module calculates basic properties of band structures, including the fat bands, PDOS
and Fermi surface etc. Moreover, it can also detect the Dirac/Weyl points and nodal lines in topological semi-metals.
Additionally, the module includes a band-unfolding method that enables the calculation of energy band spectra for
large supercells. The Geometric module focuses on geometric and topological properties of the materials, while the
Optical module computes linear and nonlinear optical properties.

PYATB provides a user-friendly interface for carrying out calculations on specific functionalities through an Input
file. It can also be used as a Python module for customized function calculations by leveraging APIs, such as Berry
curvature, Berry connection, and velocity matrix, which enables deeper exploration and reduces the burden of soft-
ware development. Currently, PYATB has an interface with the first-principles package ABACUS [28], but it is
straightforward to construct the interface with other NAO-based first-principles softwares.

The rest of the paper is organized as follows. In Sec. 2, we introduce the capabilities, theory, and implementation
of the PYATB package. Section 3 covers the installation process of PYATB and how to run it. In Section 4, we provide
several examples that demonstrate the capabilities of PYATB. We summarize in Sec. 5.

2. Capabilities and method

In this sections, we provide a brief overview of the capabilities, and some basic theories and implementations of
these features in PYATB.

2.1. Capabilities

PYATB is a powerful tool for calculating and analyzing the electronic band structure of materials. It provides three
major modules: the Bands module, the Geometric module, and the Optical module. The capabilities of these
modules are summarized in Table 1.

The Bands module includes seven functions:

• Band structure: Allows users to calculate the energy bands and wave functions using three different k-point
modes: k-point, k-line, and k-mesh.

• Band unfolding: Calculates the spectra weight by unfolding the energy bands of a supercell into the Brillouin
zone (BZ) of the primitive cell.

• Fermi energy and Fermi surface: Calculates the Fermi energy at a given temperature and plots the Fermi
surface.

• Find node: Allows users to search for degenerate points of the energy bands in the BZ within a specified
energy window. This function can be used to find the Weyl/Dirac points in Weyl/Dirac semimetals.
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Table 1: Main capabilities of PYATB
Module Functions

Bands

band structure
band unfolding

fermi energy and fermi surface
find nodes

DOS and PDOS
fat band

spin texture

Geometric

Wilson loop
electric polarization

Berry curvature
anomalous Hall conductivity

Chern number
Chirality

Optical

JDOS
optical conductivity and dielectric function

shift current
Berry curvature dipole

• DOS and PDOS: Calculates the density of states (DOS) and partial density of states (PDOS) of particular or-
bitals.

• Fat band: Provides the contribution of each atomic orbital to the electronic wave functions at each k-point in
the BZ.

• Spin texture: Plots the spin polarization vector as a function of momentum in the BZ.

The Geometric module calculate the band geometry related properties, which offers six functions, including:

• Wilson loop: Enables users to calculate the Z2 number by tracking the Wannier centers [15] along the Wilson
loop.

• Electric polarization: Evaluates the electric polarization in various directions for non-centrosymmetric
materials based on the Berry phase theory.

• Berry curvature: Computes the Berry curvature in the BZ.

• Anomalous Hall conductivity: Calculates the anomalous Hall conductivity using Berry curvature.

• Chern number: Calculates the Chern number of a system for any given k-plane.

• Chirality: Examines the chirality of Weyl points by calculating the Berry curvature on a sphere around the
k point.

The Optical module includes four functions, which are listed below:

• JDOS: Calculates the joint density of states (JDOS), which characterizes both electronic states and optical
transitions.

• Optical conductivity and dielectric function: Calculates the frequency-dependent optical con-
ductivity and dielectric function.

• Shift current: Calculates the shift current conductivity tensor for the bulk photovoltaic effect.

• Berry curvature dipole: Calculates the Berry curvature dipole which leads to the nonlinear anomalous
Hall effects.
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2.2. Ab initio tight binding method on the NAO bases
PYATB is based on the ab initio tight binding model, where the parameters of the Hamiltonian are generated

directly from the self-consistent calculations using first-principles software based on NAO bases, such as ABACUS
[28]. Usually the NAO bases are non-orthogonal.

In a periodic system, the Kohn–Sham equation at a given k point can be written as,

Ĥ|Ψnk〉 = Enk|Ψnk〉 . (1)

Here Ψnk is the Bloch wave function of the n-th band, and can be expressed as a linear combination of atomic orbitals,

|Ψnk〉 =
1
√

N

∑
µ

Cnµ(k)
∑

R

eik·R|Rµ〉. (2)

In Eq. (2), |Rµ〉 ≡ φµ
(
r − τµ − R

)
is the µ-th atomic orbital, in the R-th unit cell, and τµ denotes the center position

of this orbital. The composite index µ = (α, i, ζ, l,m), where α is the element type, i is the index of the atom of each
element type, ζ is the multiplicity of the radial functions for the angular momentum l, and m is the magnetic quantum
number. The coefficient of the NAO is given by Cnµ(k). In many calculations, the cell periodic part of the Bloch wave
functions is used, which is given by,

|unk〉 =
1
√

N

∑
µ

Cnµ(k)
∑

R

eik·(R−r)
|Rµ〉. (3)

By substituting Eq. (2) into Eq. (1), the Kohn-Sham equation becomes a general eigenvalue problem in the NAO
bases,

H(k)Cn(k) = EnkS (k)Cn(k), (4)

where H(k), S (k) and Cn(k) are the Hamiltonian matrix, overlap matrix and eigenvectors of the n-th band, respectively.
To obtain the H(k) and S (k), we first calculate tight binding Hamiltonian in real space via first-principles softwares

based on NAOs , e.g., ABACUS [28],

Hνµ(R) = 〈0ν|Ĥ|Rµ〉 , (5)
S νµ(R) = 〈0ν|Rµ〉 . (6)

Once we have the Hνµ(R) and S νµ(R), we can obtain the Hamiltonian matrix and the overlap matrix at arbitrary k
points using the following relation,

Hνµ(k) =
∑

R

eik·RHνµ(R), (7)

S νµ(k) =
∑

R

eik·RS νµ(R). (8)

The band structure and Bloch wave functions can be calculated by solving the general eigenvalue problem in Eq. (4).
Note that Hνµ(R) and S νµ(R) can be generated using a relatively small set of coarse grid k points. This feature is
extremely useful when a large number of k points are needed to calculate the physical properties. Especially for
hybrid functionals, the expensive self-consistent calculations are only required to obtain H(R) at the coarse grid k
points. Once we have obtained H(R), we can efficiently calculate band structures and associated properties at much
denser k points at the exact same cost as that of LDA and GGA functionals.

In order to calculate the Berry phase and Berry curvature and optical responses, we also need to calculate the
dipole matrix between the NAOs,

rνµ(R) = 〈0ν|r|Rµ〉 . (9)

To calculate the dipole matrix, we first expand r in the spherical coordinate system,

r = r (sin θ cosϕ + sin θ sinϕ + cosϕ) , (10)
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then express it in terms of the real spherical harmonics,

r = r ×

√
4π
3

(
S 0

1 − S 1
1 − S −1

1

)
, (11)

where S l
m(θ, ϕ) is real spherical harmonics, l and m are the spherical harmonic degree and order, respectively. We

calculate rνµ(R) using Eq. (11) and utilizing the three-orbit double-center integral method [29]. The dipole matrix
AR
νµ(k) can then be obtained by Fourier transform,

AR
νµ(k) =

∑
R

eik·Rrνµ(R) . (12)

2.3. Fermi Energy at finite temperatures
The Fermi distribution function at finite temperature T is given by,

f (E, µ,T ) =
1

1 + e(E−µ)/(kBT ) . (13)

The Fermi energy µ at T can be obtained by solving the following equation,

Nelec = g
∫

BZ
dk

∑
n

f (Enk, µ,T ) , (14)

where Nelec is the total valence electrons in the unit cell, and g is the spin degeneracy. The integration is over the first
BZ. This integration equation is solved by Newton’s method. If the system is an insulator, µ is given by the valence
band maximum (VBM) .

2.4. PDOS and fat band
The distribution of electronic states at various energies is characterized by the density of states (DOS), while the

partial density of states (PDOS) is a useful tool for analyzing the contribution of individual atomic orbitals to the
DOS. The PDOS of the µ-th orbital can be calculated by projecting the Bloch wave functions onto the atomic orbital,

gµ(E) =
1

Nk

∑
k

∑
n

〈Ψnk|φµ(k)〈φ̃µ(k)|Ψnk〉δ(E − Enk) , (15)

where |φµ(k)〉 = 1
√

N

∑
R eik·R|Rµ〉, and 〈φ̃µ(k)|=

∑
ν S −1

µν (k)〈φν(k)| is the dual function of |φµ(k)〉. Using Eq. (2), the
PDOS is calculated as,

gµ(E) =
1

Nk

∑
k

∑
n

∑
ν

C∗nν(k)S νµ(k)Cnµ(k)δ(E − Enk). (16)

A fat band can provide information about the contributions of specific atomic orbitals or groups of orbitals to the
electronic bands of a material at given k points. The orbital weight is calculated by projecting the Bloch wave function
onto the selected atomic or group of atomic orbitals, which can be calculated in a similar way to that of PDOS, as
below:

Mµ(n,k) =
∑
ν

C∗nν(k)S νµ(k)Cnµ(k), (17)

where Mµ(n,k) is the contribution of atomic orbital µ to the energy band n at the k point.

2.5. Spin texture
Spin texture refers to the spatial distribution of electron spins in momentum space, which can be measured using

various techniques such as angle-resolved photoemission spectroscopy (ARPES) or scanning tunneling microscopy
(STM). In materials with spin-orbit coupling, the electron spins can be coupled to their momenta, resulting in non-
trivial spin textures that can give rise to interesting physical phenomena, such as the spin Hall effect, topological
insulators, and magnetic skyrmions. In PYATB, the spin texture is calculated as follows,

〈Ψnk|σ̂i|Ψnk〉 =
∑
µ,ν,s,s′

C∗n,µs(k)S µν,ss′ (k)σ̂i,ss′Cn,νs′ (k) , (18)

where σ̂i are the Pauli matrices, with i= x, y, z, and s=↑, ↓ is the spin index.
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2.6. Band unfolding
In first-principles calculations of imperfect crystals containing disorders, defects, dopants, or alloyed atoms, super-

cell approximations are often used. These systems can be considered as perturbations to the original crystal structure,
which break the translation symmetry of the original unit cell and introduce coupling between different k points in the
BZ. The band structure of the supercell is folded heavily in the first BZ, making it difficult to analyze and unsuitable
for comparison with angle-resolved photoemission spectroscopy (ARPES) experiments [30, 31]. The band unfolding
method is a powerful tool for analyzing the band structures of the supercell by projecting the Bloch wave functions
of the supercell onto the coupled k points in the original unit cell [32, 33, 34, 35]. The unfolded spectra can then be
directly compared with ARPES experiments.

PYATB implements the band unfolding method developed in Ref. [36]. Suppose, the relationships between lattice
vectors of the supercell, which denote as the large cell (LC), A and the projected cell (PC) a are given byA1

A1
A3

 =

m11 m12 m13
m21 m22 m23
m31 m32 m33


a1
a2
a3

 , mi j ∈ Z , (19)

or in short, A = M · a. We project the Bloch wave functions of the LC, which is represented by the NAO bases, to
the PW bases of the PC and therefore do not need to assume the crystal structures of PC. The spectral weight of the
energy band at kp can be calculated as,

A(kp, E) =
∑
N,g
|DN(kp, g))|2δ(EN − E) , (20)

where,
DN(kp, g) =

∑
µ,i

φµ(kp + g)S a,i(kp + g)CNµ,i(K) . (21)

In the above equation, CNµ,i(K) is the eigenvector of the N-th band of the LC, and

φµ(q) =
1
√

V

∫
dr φµ(r)e−iq·r , (22)

S α,i(q) = e−iq·τα,i . (23)

φµ(q), which is known as the form factor of the orbital, is determined solely by the shape of the orbital, whereas the
structure information is contained in S α,i(q). Equation (21) can be computed efficiently, as the number of φµ(q) is
restricted to the types of NAOs in the LC, and the number of g vectors is determined by the size of the PC, which is
typically very small. To calculate the unfolded band spectral, the energy cutoff for the g vectors can be significantly
lower than that used for self-consistent and band structure calculations.

2.7. Berry phase and Wilson loop
A Berry phase [37, 38] is a geometric phase that describes the accumulation of phases as a wave function evolves

along a closed loop in the external parameter space. In condensed matter physics, the parameter space is generally
taken to be the k-space. The Berry phase of the n-th band is given by,

φn =

∮
C

Ann(k) · dk , (24)

where Anm(k) is the multi-bands Berry connection, defined as,

Anm(k) = i 〈unk|∇k|umk〉 . (25)

The total Berry phase of a group of bands can be calculated as,

φ =

∮
C

Tr [A] · dk . (26)
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To calculate the Berry phase, we integrate the Berry connection on the discrete k-points, using the algorithm
developed in Ref. [39], which gives:

φ = −Im ln det
N−1∏
i=0

M(ki,ki+1) , (27)

where the overlap matrix M(ki,ki+1)
nm = 〈unki |umki+1〉. On the NAO base, the M(ki,ki+1)

nm matrix is calculated as follows,

〈unki |umki+1〉 =
∑
νµ

Cnν(ki)∗Cmµ(ki+1)
∑

R

ei(ki+∆k)·R〈0ν|e−i∆k·r|Rµ〉 (28)

where ∆k = ki+1 − ki. When ∆k is very small, we can use the approximation,

e−i∆k·r ≈ 1 − i∆k · r . (29)

To make a better approximation, we place the origin point at the midpoint between the centers of the two orbitals,
namely τν+τµ+R

2 . The overlap matrix is then calculated as,

〈0ν|e−i∆k·r|Rµ〉 = e−i∆k· τν+τµ+R
2 〈0ν|e−i∆k·

(
r− τν+τµ+R

2

)
|Rµ〉

= e−i∆k· τν+τµ+R
2 ×

[
S νµ(R)

(
1 + i∆k ·

τν + τµ + R
2

)
− i∆k · rνµ(R)

]
. (30)

The Wilson loop [40, 15] is implemented in a way similar to that of the Berry phase, i.e.,

Wn(kx) =
i

2π

∫ 2π

0
dky 〈un,kx,ky |∂ky |un,kx,ky〉 = −

1
2π

Im ln
N−1∏
i=0

M(ki,ki+1)
nn , (31)

where Wn(kx) is known as the Wannier charge centers (WCCs) [15]. The WCCs is obtained by a parallel-transport
construction using M(ki,ki+1)

nn . To achieve optimal alignment between the states of two k points, we construct the
“unitary part” of M to obtain Wn(kx) [41]. We perform the singular-value decomposition (SVD) on M = VΣW†,
where V and W are unitary, and Σ is approximately unitary. We define M̃ = VW†, which is a unitary matrix, and
Λ =

∏N−1
i=0 M̃(ki,ki+1), which is also unitary. The eigenvalues λn of Λ are all unimodular and the WCCs can be expressed

in terms of these eigenvalues λn [41, 42],

Wn(kx) = −
1

2π
Im ln λn . (32)

2.8. Berry curvature
Berry curvature [14, 13] plays an essential role in descirbing the topological properties of energy bands and the

dynamics of Bloch electron. The calculation of Berry curvature on NAO bases has been given in Ref. [43].
The multi-bands Berry curvature is defined as,

Ωnm,ab(k) = ∂aAnm,b(k) − ∂bAnm,a(k) = i〈∂aunk|∂bumk〉 − i〈∂bunk|∂aumk〉 , (33)

where ∂a = ∂/∂ka , a = x, y, z. Substituting Eq. (3) into Eq. (33), we have

i〈∂aunk|∂bumk〉 = i
∑
ν,µ

C∗nν(k)Cmµ(k)
∑
~R

eik·R〈0ν| − ra(Rb − rb)|Rµ〉

+ i
∑
ν,µ

(
∂aC∗nν(k)

)
S νµ(k)

(
∂bCmµ(k)

)
+

∑
ν,µ

(
∂aC∗nν(k)

)
Cmµ(k)

∑
R

eik·R〈0ν|rb − Rb|Rµ〉

−
∑
ν,µ

C∗nν(k)
(
∂bCmµ(k)

)∑
R

eik·R〈0ν|ra|Rµ〉 (34)
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Then, we can simplify Eq. (34) by inserting the identity matrix,

I =
∑

n

Cn(k)C†n(k)S (k) =
∑

n

S (k)Cn(k)C†n(k) . (35)

and introduce the relevant definitions,

Ānm,a(k) = C†n(k)AR
a (k)Cm(k) , (36)

Dnm,a(k) = C†n(k)S (k) (∂aCm(k)) , (37)

Eventually, after some algebraic operations, we obtain the Berry curvature under NAOs [43],

Ωnm,ab = Ω̄nm,ab + i
(
D†aDb − D†bDa

)
nm

+
(
D†aĀ†b + ĀbDa

)
nm
−

(
D†bĀ†a + ĀaDb

)
nm

, (38)

where
Ω̄nm,ab(k) = i

∑
ν,µ

C∗nν(k)Cmµ(k)
∑

R

eik·R〈0ν|rbRa − raRb|Rµ〉 . (39)

For both Ω̄nm,ab(k) and Ānm,a(k) matrices are directly obtainable from the tight binding model, while Dnm,a(k) matrix
is calculated by linear response theory,

Dnm,a(k) =
H̄nm,a(k) − EmkS̄ nm,a(k)

Emk − Enk
(n , m) . (40)

where

H̄nm,a(k) = C†n(k) (∂aH(k)) Cm(k) , (41)
S̄ nm,a(k) = C†n(k) (∂aS (k)) Cm(k) . (42)

The total Berry curvature is defined as,

Ωab(k) = Tr
[
Ωnm,ab(k)

]
=

∑
n

fn(k)Ωnn,ab(k) , (43)

where Tr denotes a trace over the occupied bands, and fn(k) is the Fermi occupation function. Note that the trace of a
multi-bands Berry curvature and of a non-Abelian Berry curvature is the same.

The Berry curvature can also be calculated by Kubo formula,

ΩKubo
ab (k) = −2 Im

occ∑
n

uocc∑
m

vnm,a(k)vmn,b(k)

(Emk − Enk)2 , (44)

where vnm,a(k) is the velocity matrix. The velocity matrix is a fundamental physical quantity in the optical response
of solid materials and is also closely linked to the Berry connection, which is given by,

vnm,a(k) = 〈Ψnk|v̂a|Ψmk〉 = (∂aEnk) δnm − i (Emk − Enk) Anm,a(k) , (45)

where the multi-bands Berry connection under the NAOs is in the form:

Anm,a(k) = iDnm,a(k) + Ā†nm,a(k) . (46)

After some derivation, we can obtain the expression for the velocity matrix on the NAO base as follows,

υnm,a(k) = H̄nm,a(k) − EnkS̄ nm,a(k) + i(Enk − Emk)Ānm,a(k) . (47)

This formula of velocity matrix can also be derived from v̂ ≡ ṙ = (i/~) [Ĥ, r] under non-orthogonal NAOs [44].
The Berry curvature of Eq. (44) has small difference to that of Eq. (43), which is due to the incompleteness of

the NAO base to the original Hilbert space. However, it has been shown that the correction terms are usually very
small even for the double-ζ plus polarization (DZP) basis set [43]. PYATB has implemented both formulations, and
the default method for computing the Berry curvature is Eq. (43).

The Chern number is a topological invariant used to classify topological materials. It is closely related to the
quantum Hall effect and the quantum anomalous Hall effect. The Chern number is obtained by integrating the Berry
curvature on any closed 2D manifold, i.e.,

C =
1

2π

∮
S

Ω · dS . (48)
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2.9. Optical conductivity and dielectric functions
JDOS determines the number of permissible optical transitions from the valence bands to the conduction bands at

a particular energy, and is intimately linked to the dielectric function and optical conductivity, which is given by

Djoint (ω) =
Vcell

~

∫
d3k

(2π)3

∑
n,m

fnmδ (ωmn − ω) . (49)

The optical properties of semiconductor materials are characterized by the dielectric function, optical conductivity,
and absorption coefficient, etc.

The Kubo-Greenwood formula, based on the independent-particle approximation, are used to calculate the optical
conductivity and dielectric function using the velocity matrix,

σab(ω) =
ie2~

NkVcell

∑
k

∑
n,m

(
fmn

ωmn

)
vnm,avmn,b

~ωmn − (~ω + iη)
, (50)

where Nk is the number of k points, and Vcell is the cell volume. fnm= fn − fm and ~ωnm=En − Em are differences
between Fermi occupation factors and band energies, respectively.

The imaginary part of the dielectric function is calculated from the following equation,

εab
i (ω) = −

e2π

ε0~NVcell

∑
k

∑
n,m

fnm
vnm,avmn,b

ω2
mn

δ (ωmn − ω) , (51)

and the real part of the dielectric function is obtained by the Kramer-Kronig transformation,

εab
r (ω) = δab +

2
π

P
∫ ∞

0
dω′

ω′εab
i (ω′)

ω′2 − ω2 , (52)

where P denotes the principal value of the integral. The absorption coefficient α(ω) can be calculated from dielectric
functions,

α(ω) =

√
2ω
c

(√
ε2

r + ε2
i − εr

) 1
2

. (53)

2.10. Shift current conductivity
The shift current is an intrinsic contribution to the bulk photovoltaic effect (BPVE) [45, 46]. It describes the

photocurrent generated by light illumination on homogeneous non-centrosymmetric crystals. The shift current is a
second-order optical response. It can be expressed as a DC current, generated by a monochromatic photoelectric field
E(t) = E(ω)eiωt + E(−ω)e−iωt, where

Ja = 2σabc(0;ω,−ω)Eb(ω)Ec(−ω). (54)

Here, a, b, c = x, y, z, and σabc(0;ω,−ω) is the shift current tensor,

σabc(0;ω,−ω) =
πe3

~2

∫
dk
8π3

∑
n,m

fnmIm
[
Iabc
mn + Iacb

mn

]
δ (ωmn − ω) , (55)

where Iabc
mn = rb

mnrc
nm;a, ra

nm is the inter-band dipole matrix, andrb
nm;a is the generalized derivative of the dipole matrix,

i.e.,

ra
nm = (1 − δnm)Anm,a, (56)

ra
nm;b = ∂bra

nm − i
(
Ann,b − Amm,b

)
ra

nm. (57)

The inter-band dipole matrix ra
nm can be obtained using Eq. (46). To calculate rb

nm;a, we substitute Eq. (56) into
Eq. (57), which gives us

ra
nm;b = i∂bDnm,a + ∂bĀ†nm,a − i

(
iDnn,b + Ā†nn,b − iDmm,b − Ā†mm,b

) (
iDnm,a + Ā†nm,a

)
. (58)
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Following the derivation of Ref. [47], the general matrix containing k takes the following form,

Ō = C†OC (59)

and using the identity
∂aC = CDa (60)

we have
∂aŌ = D†aŌ + ¯ODa + C†∂aOC (61)

We calculate ∂bDnm,a by applying the above equations to Eq. (40), and obtain the expression for ra
nm;b on the non-

orthogonal atomic orbitals as follows,

ra
nm;b =

i
Em − En

∑
l

D†nl,bH̄lm,a +
∑

l

H̄nl,aDlm,b + H̄nm,ab


−

iEm

Em − En

∑
l

D†nl,bS̄ lm,a +
∑

l

S̄ nl,aDlm,b + S̄ nm,ab


−

i (∂bEm) S̄ nm,a

Em − En

−
i
(
H̄nm,a − EmS̄ nm,a

)
(∂bEm − ∂bEn)

(Em − En)2

+

∑
l

D†nl,bĀlm,a +
∑

l

Ānl,aDlm,b + Ānm,ab

 (62)

where

H̄nm,ab = C†n (∂a∂bH) Cm (63)
S̄ nm,ab = C†n (∂a∂bS ) Cm (64)

Ānm,ab = C†n
(
∂bAR

a

)
Cm (65)

In the derivation of the above equation, we use the parallel transport gauge, Ann,a = iDnn,a + Ā†nn,a = 0, which implies
Dnn,a = iĀ†nn,a. This allows us to give the full expression of Dnm,a as follows,

Dnm,a = C†nS C(a)
m =


iĀ†nm,a n = m

H̄nm,a − EmS̄ nm,a

Em − En + iη
n , m, η→ 0

(66)

where η is introduced to avoid numerical problems that may arise due to nearly degenerate energy bands.

2.11. Berry curvature dipole
In a system with time-reversal symmetry, the Berry curvature is an odd function of k, i.e., Ωa(k) = −Ωa(−k). As a

result, the integration of the Berry curvature over the BZ is zero. However, if the system lacks a inversion symmetry, a
higher-order nonlinear AHC can arise [46, 48]. More specifically, j0a = χabcEb(ω)Ec(−ω) and j2ωa = χabcEb(ω)Ec(ω),
describe a rectified current and the second harmonic, respectively, whereas ω is the driving frequency. The coefficient
χabc is given by

χabc = −εadc
e3τ

2(1 + iωτ)
Dbd. (67)

where,

Dab =

∫
k

f0

(
∂Ωb

∂ka

)
(68)
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is called the Berry curvature dipole. In practice, it is more convenient to calculate Dab using the following for-
mula [48]:

Dab = −

∫
k

(
∂ f0
∂E

) (
∂E
∂ka

)
Ωb . (69)

The nonlinear AHC has many important applications, such as the Terahertz detection [49]. Further realization de-
mands a summation over all bands. At given temperature T , we have,

Dab(T ) =

∫
[dk]

∑
n

∂En

∂ka
Ωn,b

(
−
∂ f0
∂E

)
E=En

. (70)

However, this approach requires calculating the Berry curvature dipole at each temperature, which can be computa-
tionally demanding when a large number of temperatures are required. Alternatively, we can first calculate Dab(E) as
follows [50],

Dab(E) =

∫
[dk]

∑
n

∂En

∂ka
Ωn,bδ(En − E). (71)

Then the Berry curvature dipole at given temperature T and chemical potential µ, can be easily calculated as,

Dab(µ,T ) = −

∫
∂ f0(E, µ,T )

∂E
Dab(E)dE. (72)

3. Installation and running

In this section, we present a guide on how to install and utilize PYATB. PYATB is available on the public GitHub
repository at https://github.com/pyatb/pyatb. The main PYATB code is written in C++, and python extensions are
provided via pybind11. Matrix calculations are performed using the Eigen library in C++, which can be accelerated
by adding linear algebra libraries such as BLAS and LAPACK. To install PYATB, you need to specify the C++

compiler and linear algebra library in the setup.py file, and then follow the standard python software installation
process by running python setup.py install. After installation, the executable pyatb file will be added to your
python environment, and the pyatb module will be available for use.

Before running the PYATB program, four input files are required: HR, SR, rR, and Input. The first three files
contain the data of the tight-binding model, including Hνµ(R), S νµ(R), and rνµ,a(R), respectively. Some functionalities,
such as band unfolding, PDOS and fat band, the structure file and orbital files are also required. The Input file is
used to specify the material structure and setup parameters for each function. Currently, PYATB has an interface with
the first-principles package ABACUS. The HR, SR, and rR files can be automatically generated by performing self-
consistent calculations in ABACUS. It is straightforward to develop interfaces with other NAO-based first-principles
packages.

PYATB supports a mixed parallelism of MPI and OpenMP. After preparing the four input files, the program can
be run as follows (for example):

$ export OMP_NUM_THREADS=2

$ mpirun -np 6 pyatb

During the execution of the program, multiple output files will be created. All of these files are stored in the Out

folder. The running.log file keeps track of the current status of the program. The output files for each individual
function are stored in their respective folders. Moreover, some functions may generate images using matplotlib.

4. Examples

In this section, we provide examples of six different physical systems to illustrate the various capabilities of
PYATB. These examples include the nitrogen-vacancy (NV) center in diamond, Bi2Se3, MnSb2Te4, CsPbI3, WS2 and
Te. For each of these examples, we first generate the necessary input files, HR, SR, and rR, using ABACUS. The
ABACUS input files for each example is also provided in the PYATB examples/ directory.
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Figure 1: (a) Band structure of diamond in the primitive unit cell. (b) Unfolded band spectrum of the NV center in a supercell.

4.1. Band unfolding

The NV center is a point defect in diamond that plays a crucial role in emerging quantum technologies. In this
example, we showcase PYATB’s band unfolding function by calculating the spectral function of the NV center in
diamond. To construct the NV center, we replace two C atoms with a N atom and a vacancy in a supercell containing
2×2×2 8-atoms conventional diamond unit cells. Figure 1(a) shows the band structure of the diamond primitive cell,
while Fig.1(b) shows the unfolded band structure spectra obtained by the band unfolding method. As depicted in
Fig.1(b), impurity bands appear near the Γ point.

An example Input file for performing band unfolding calculations using PYATB is provided in Appendix A.1.
To do the band unfolding calculations, you also need the structure and NAO files.

4.2. Spin texture and Wilson loop

In this example, we demonstrate how to use PYATB to calculate the spin texture and Z2 number for Bi2Se3. The
Z2 number is a topological invariant that characterizes whether a band insulator with time-reversal symmetry would
possess topological properties. In three-dimensional (3D) systems, there are four independent Z2 numbers, consisting
of one strong topological index and three weak topological indices. These four Z2 numbers enable the classification of
3D time-reversed band insulators into strong topological insulators, weak topological insulators, and trivial insulators.
The Wilson loop method provides a visual means of computing the Z2 number.

Figure 2 depicts the spin texture of Bi2Se3 in the kx-ky plane for the highest occupied energy band, which is of
Rashba-type. Figure 3 shows the Wilson loops of Bi2Se3 of the six time-reversal invariant planes in the BZ, which
can be used to determine its topological indices (ν0, ν1ν2ν3). The results show that the red reference line intersects
the Wilson loop an odd number of times at the planes kx = 0, ky = 0, and kz = 0, indicating that the Z2 index is 1.
Conversely, for the planes kx = 0.5, ky = 0.5, and kz = 0.5, there is no intersection between the reference line and the
Wilson loop, indicating that the Z2 index is 0. Based on these results, we obtain the Z2 topological indices for Bi2Se3
as (1,000), confirming that it is a strong topological insulator.

An example Input file for calculating spin textures and Wilson loops using PYATB is provided in Appendix A.2.

4.3. Berry curvature, Chern number, Chirality

MnSb2Te4 is a magnetic topological insulator in the antiferromagnetic (AFM) state, but becomes a Weyl semimetal
in the ferromagnetic (FM) state [51, 52, 53]. We use the Weyl semimetal state of MnSb2Te4 to showcase the capabil-
ities of PYATB, including finding nodes, calculating Berry curvature, Chern number, and chirality functions.

The unit cell of MnSb2Te4, consist of septuple layers (SL), is shown in Fig. 4(a) with all spins in Mn atoms
aligned in parallel. Figure 4(b) depicts the band structures of MnSb2Te4 in the FM state. A band crossing point near
the Fermi energy is observed on the Γ−Z high symmetry line, which corresponds to a Weyl point. We utilized the find
nodes function, and find two band crossing points in the BZ near the Fermi energy. To confirm that they are indeed

12
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Figure 2: The figure shows the Rashba-type spin texture of the highest occupied energy band in Bi2Se3.

Figure 3: Wilson loops for six time-reversal invariant planes of Bi2Se3: (a) kx = 0, (b) ky = 0, (c) kz = 0, (d) kx = 0.5, (e) ky = 0.5, and (f) kz = 0.5.
The red reference line intersects the Wilson loop an odd number of times for the first three planes, indicating Z2 = 1, while there is no intersection
for the other three planes, indicating Z2 = 0.
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Figure 4: (a) Crystal structure of MnSb2Te4. (b) Band structure of MnSb2Te4 under FM magnetization. A Weyl point is observed near the Fermi
energy on the high symmetry line along Γ − Z. (c) Two Weyl points in the BZ, as well as the Berry curvature on the spheres surrounding them.
The green dots represent the Weyl points, whereas the red and blue arrows indicate the directions of Berry curvature. (d) The Chern number of the
kx − ky plane calculated at different kz.

Weyl points, we calculated the chirality of these two points, and the results are shown in Fig. 4(c). The green dots
in Fig. 4(c) represent a pair of Weyl points in the BZ, while the red and blue arrows indicate the direction of Berry
curvature on the spheres around the Weyl points. At the Weyl point with kz > 0, the Berry curvature points inward
(red arrows), and the integral over the sphere gives the Chern number (chirality) equal to -1. For the Weyl point with
kz < 0, the Berry curvature points outward (blue arrows), and the chirality equals +1. We further calculated the Chern
number of the kx − ky plane at kz and find that the Chern number is 1 between the two Weyl points, and changes
abruptly from 1 to 0 upon crossing the Weyl point, as shown in Fig. 4(d).

An example Input file for performing the above-mentioned calculations in PYATB is provided in Appendix A.3.

4.4. JDOS, dielectric function
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Figure 5: (a) Joint density of states and (b) absorption coefficient of CsPbI3. The inset figure in (a) depicts the crystal structure of CsPbI3.
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Figure 6: (a) The fat band structure of WS2 for the W-5d orbital. The size of the red circles represents the weight of the projection. (b) The yyy
component of the shift current in WS2. The inset shows the crystal structure of WS2.

In this example, we calculate the JDOS and optical absorption coefficient of CsPbI3 using PYATB. CsPbI3 is an
all-inorganic halide perovskite and is considered one of the most promising photovoltaic materials due to its excep-
tional optoelectronic properties, including a long carrier diffusion length and high photoluminescence (PL) quantum
yields [54, 55]. To compare the results, we employed both the Perdew-Burke-Ernzerhof (PBE)[56] functional and
the Heyd-Scuseria-Ernzerhof (HSE)[57, 58, 59] hybrid functional in the calculations. The peak position of JDOS in
Fig.5(a) obtained using HSE is shifted to the right relative to the PBE peak since PBE tends to underestimate the band
gap, while HSE yields more reasonable results. The optical absorption coefficient obtained from HSE also exhibits a
blue-shifted onset compared to the PBE one, as shown in Fig.5(b). Furthermore, the HSE spectrum exhibits a strong
absorption centered at ∼300 nm, consistent with previous theoretical predictions [60].

An example Input file for calculating the joint density of states (JDOS) and optical conductivity is provided in
Appendix A.4, and the absorption coefficient is calculated using Eq. (53).

4.5. Fat band and shift current

We demonstrate the capabilities of PYATB’s fat band and shift current functions using the WS2 monolayer as an
example. WS2 is a transition metal dichalcogenide that exhibits a range of intriguing optical properties, such as room
temperature photoluminescence and optical Stark effect [61, 62]. In Fig.6(a), we show the fat band structure of WS2,
highlighting the contribution from the W-5d orbital. The red circle sizes in the figure indicate the weight of the 5d
orbitals. Figure 6(b) illustrates the shift current conductivity of monolayer WS2. Since the system has D6h point group
symmetry, it has only one independent component σyyy. These results are in good agreement with those obtained in
Ref. [63].

The Input file for the fat band and shift current calculations is given in the Appendix A.5.

4.6. Berry curvature dipole

In this example, we showcase the calculation of the Berry curvature dipole of trigonal Te using PYATB. In systems
with time-reversal symmetry, a nonlinear anomalous Hall current exists due to a dipole moment induced by the
unbalanced distribution of Berry curvature in k-space caused by the breaking of inversion symmetry [46]. The Berry
curvature dipole has recently gained attention due to its intriguing topological nature and its potential for photo-electric
detections [64, 65].

To begin, we performed ab-initio calculations using the HSE functional implemented in ABACUS to generate the
HR, SR, and rR files. We then used PYATB to calculate the Berry curvature dipole of trigonal Te by integrating the
entire BZ with meshes of 100×100×100, 300×300×300, and 500×500×500 k points, respectively. When the Berry
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Figure 7: The Berry curvature dipole D//(E)(= 1
2 Dzz(E)) versus energy E measured from the VBM using different k point meshes.

curvature at a mesh point exceeds the threshold, we refine the mesh to a size of 20×20×20. The resulting Berry
curvature dipoles are shown in Fig.7. Our results suggest that an extremely dense k points mesh is required to achieve
convergence. Specifically, the results obtained with a 300-mesh size are in agreement with those previously reported
in the literature using the same k points mesh [50].

The relevant parameters for calculating the Berry curvature dipole in the Input file are provided in Appendix
A.6.

5. Summary

The PYATB package is a user-friendly software that allows for the calculation of a broad range of physical prop-
erties of materials, such as band structures, associated topological properties, and optical properties. Its most notable
advantage is that the ab initio tight-binding Hamiltonian can be naturally generated after the self-consistent calcu-
lations using NAO-based first-principles softwares, such as ABACUS, without the need to construct MLWF. This
feature simplifies the computational process and ensures the correct symmetry for the systems. We demonstrate the
capabilities of PYATB through a few illustrative examples. We hope that PYATB will become a convenient and
efficient toolkit for studying the electronic structural properties of materials.
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Appendix A. Example input files

Appendix A.1. Input file for NV center
BANDUNFOLDING # Specify the purpose of the calculation

{

# The STRU file includes the names of the NAO files.

stru_file STRU # The file name for the crystal structure.

ecut 400 # (eV), the cutoff energy for the plane wave basis of the PC.

band_range 10 250 # Unfold the 10-th to 250-th bands of the supercell.
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m_matrix -2 2 2, 2 -2 2, 2 2 -2 # m_ij, i,j = 1, 2, 3

kpoint_mode line

kpoint_num 5 # There are 5 high symmetry k points in the line

high_symmetry_kpoint

0.500000 0.000000 0.500000 300 # X, kx, ky, kz, number of k points between X and W

0.500000 0.250000 0.750000 300 # W

0.500000 0.500000 0.500000 300 # L

0.000000 0.000000 0.000000 300 # Gamma

0.500000 0.000000 0.500000 1 # X

}

Appendix A.2. Input file for Bi2Se3

SPIN_TEXTURE

{

nband 78 # Specify the calculated energy band index.

kpoint_mode direct # The k points are given in direct coordinates.

kpoint_num 140

kpoint_direct_coor

0.010000 0.000000 0.000000 # Direct coordinates of the k point

0.011187 0.003516 0.000000

0.011279 0.006687 0.000000

...

0.027084 -0.005339 0.000000

0.028631 -0.002678 0.000000

}

WILSON_LOOP

{

occ_band 78 # Number of occupied energy bands.

# To determine a plane of k-space requires an origin (k_start) and

# two vectors that are not parallel to each other (k_vect1, k_vect2).

k_start 0.0 0.0 0.5

k_vect1 1.0 0.0 0.0

k_vect2 0.0 0.5 0.0

nk1 101 # number of points of the uniform divide k_vect1.

nk2 101 # number of points of the uniform divide k_vect2.

}

Appendix A.3. Input file for MnSb2Te4

BAND_STRUCTURE

{

kpoint_mode line

kpoint_num 5

high_symmetry_kpoint

# Four numbers, the first three are special k-point coordinates

# and the fourth is the number of k-points between this

# special k-point and the next.

0 0 0 200 # Gamma

0 0 0.5 200 # Z

0.5 0 0.5 200 # F

0 0 0 200 # Gamma
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0.5 0 0 1 # L

}

FIND_NODES

{

# (eV), search for degenerate k-points with energies

# in the 9.870 to 10.070 eV range.

energy_range 9.870 10.070

# Set the search space of k points.

# Selecting a parallel hexahedron in k-space requires an

# origin (k_start) and three vectors (k_vect1, k_vect2, k_vect3)

# that are not parallel to each other. In this example, k_vect2

# and k_vect3 are zero vectors, so the chosen search space is

# k-line from (0.0, 0.0, -0.2) to (0.0, 0.0, 0.4).

k_start 0.0 0.0 -0.2

k_vect1 0.0 0.0 0.0

k_vect2 0.0 0.0 0.0

k_vect3 0.0 0.0 0.4

# To start, insert the initial_grid into the search space.

# Then, check each k-point for its band gap. If the band gap is less than

# the initial_threshold, refine the k-point using the adaptive_grid located nearby.

# After refinement, check the band gap of the refined k-point.

# If it is less than the adaptive_threshold, output the k-point as a result.

initial_grid 1 1 100

initial_threshold 0.01 # (eV)

adaptive_grid 1 1 20

adaptive_threshold 0.001 # (eV)

}

CHIRALITY

{

k_vect 0.0000 0.0000 -0.0538 # k coordinates, determine its chirality.

# unit is 1.0 / angstrom. Draw a spherical surface with the k-point as the

# center and a radius of 0.02.

radius 0.02

point_num 100 # The number of k-points uniformly distributed on the sphere.

}

BERRY_CURVATURE

{

kpoint_mode mp

# Selecting a parallel hexahedron in k-space requires an

# origin (k_start) and three vectors (k_vect1, k_vect2, k_vect3)

# that are not parallel to each other.

k_start 0 0 0

k_vect1 1 0 0

k_vect2 0 1 0

k_vect3 0 0 0.5

# Number of grid points for uniformly dividing 3D k-Space.

mp_grid 300 300 50

18



}

CHERN_NUMBER

{

occ_band 109 # Number of occupied energy bands.

integrate_mode Grid

integrate_grid 100 100 1

# When the Berry curvature of a k point is greater than the

# threshold (adaptive_grid_threshold), increase the density of k-points

# around the k point.

adaptive_grid 20 20 1

adaptive_grid_threshold 100

# To determine a plane of k-space requires an origin (k_start) and

# two vectors that are not parallel to each other (k_vect1, k_vect2).

k_start 0 0 0

k_vect1 1 0 0

k_vect2 0 1 0

}

Appendix A.4. Input file for CsPbI3

JDOS

{

occ_band 37 # Number of occupied energy bands.

omega 0.5 10 # (eV), hbar omega.

domega 0.01 # energy interval.

eta 0.2 # Gauss smearing parameters.

grid 30 30 30 # k-space grid points.

}

OPTICAL_CONDUCTIVITY # Calculate the optical conductivity as well as the dielectric functions

{

occ_band 37 # Number of occupied energy bands.

omega 0.5 10 # (eV), hbar omega.

domega 0.01 # energy interval.

eta 0.2 # Gauss smearing parameters.

grid 30 30 30 # k-space grid points.

}

Appendix A.5. Input file for WS2

FAT_BAND

{

band_range 10 30

stru_file STRU # The file name containing the crystal structure.

kpoint_mode line

kpoint_num 4

high_symmetry_kpoint

# Four numbers, the first three are special k-point coordinates

# and the fourth is the number of k-points between this

# special k-point and the next.

0.0000000000 0.0000000000 0.0000000000 20 # GAMMA

0.5000000000 0.0000000000 0.0000000000 10 # M
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0.3333333333 0.3333333333 0.0000000000 25 # K

0.0000000000 0.0000000000 0.0000000000 1 # GAMMA

}

SHIFT_CURRENT

{

occ_band 13 # Number of occupied energy bands.

omega 0 4 # (eV), hbar omega.

domega 0.01 # energy interval.

smearing_method 1 # Gaussian smearing

eta 0.1 # Gauss smearing parameter

grid 1000 1000 1 # k-space grid points

}

Appendix A.6. Input file for Te

BERRY_CURVATURE_DIPOLE

{

omega 9.474 10.074 # (eV) energy range.

domega 0.001 # energy interval.

integrate_mode Grid

integrate_grid 500 500 500

# When the Berry curvature of a k point is greater than the

# threshold (adaptive_grid_threshold), increase the density of k-points

# around the k point.

adaptive_grid 20 20 20

adaptive_grid_threshold 20000

}

References

[1] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan. A topological dirac insulator in a quantum spin hall phase.
Nature, 452(7190):970–974, 2008.

[2] Haijun Zhang, Chao-Xing Liu, Xiao-Liang Qi, Xi Dai, Zhong Fang, and Shou-Cheng Zhang. Topological insulators in bi2se3, bi2te3 and
sb2te3 with a single dirac cone on the surface. Nat. Phys., 5(6):438–442, 2009.

[3] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan. Observation of a large-gap
topological-insulator class with a single dirac cone on the surface. Nat. Phys., 5(6):398–402, 2009.

[4] Liang Fu. Topological crystalline insulators. Phys. Rev. Lett., 106:106802, Mar 2011.
[5] Zhijun Wang, Hongming Weng, Quansheng Wu, Xi Dai, and Zhong Fang. Three-dimensional dirac semimetal and quantum transport in

cd3as2. Phys. Rev. B, 88:125427, Sep 2013.
[6] Zhijun Wang, Yan Sun, Xing-Qiu Chen, Cesare Franchini, Gang Xu, Hongming Weng, Xi Dai, and Zhong Fang. Dirac semimetal and

topological phase transitions in A3bi (a = Na, k, rb). Phys. Rev. B, 85:195320, May 2012.
[7] Xiangang Wan, Ari M. Turner, Ashvin Vishwanath, and Sergey Y. Savrasov. Topological semimetal and fermi-arc surface states in the

electronic structure of pyrochlore iridates. Phys. Rev. B, 83:205101, May 2011.
[8] Hongming Weng, Chen Fang, Zhong Fang, B. Andrei Bernevig, and Xi Dai. Weyl semimetal phase in noncentrosymmetric transition-metal

monophosphides. Phys. Rev. X, 5:011029, Mar 2015.
[9] Alexey A. Soluyanov, Dominik Gresch, Zhijun Wang, QuanSheng Wu, Matthias Troyer, Xi Dai, and B. Andrei Bernevig. Type-ii weyl

semimetals. Nature, 527(7579):495–498, 2015.
[10] A. A. Burkov, M. D. Hook, and Leon Balents. Topological nodal semimetals. Phys. Rev. B, 84:235126, Dec 2011.
[11] Rui Yu, Hongming Weng, Zhong Fang, Xi Dai, and Xiao Hu. Topological node-line semimetal and dirac semimetal state in antiperovskite

cu3PdN. Phys. Rev. Lett., 115:036807, Jul 2015.
[12] Guang Bian, Tay-Rong Chang, Hao Zheng, Saavanth Velury, Su-Yang Xu, Titus Neupert, Ching-Kai Chiu, Shin-Ming Huang, Daniel S.

Sanchez, Ilya Belopolski, Nasser Alidoust, Peng-Jen Chen, Guoqing Chang, Arun Bansil, Horng-Tay Jeng, Hsin Lin, and M. Zahid Hasan.
Drumhead surface states and topological nodal-line fermions in tltase2. Phys. Rev. B, 93:121113, Mar 2016.

[13] Ming-Che Chang and Qian Niu. Berry curvature, orbital moment, and effective quantum theory of electrons in electromagnetic fields. J.
Phys. Condens. Matter, 20(19):193202, apr 2008.

[14] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. Quantized hall conductance in a two-dimensional periodic potential. Phys.
Rev. Lett., 49:405–408, Aug 1982.

20



[15] Alexey A. Soluyanov and David Vanderbilt. Computing topological invariants without inversion symmetry. Phys. Rev. B, 83:235401, Jun
2011.

[16] Takahiro Morimoto and Naoto Nagaosa. Topological nature of nonlinear optical effects in solids. Sci. Adv., 2(5):e1501524, 2016.
[17] Naoto Nagaosa and Takahiro Morimoto. Concept of quantum geometry in optoelectronic processes in solids: Application to solar cells. Adv.

Mater., 29(25):1603345, 2017.
[18] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864–B871, Nov 1964.
[19] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140:A1133–A1138, Nov 1965.
[20] Nicola Marzari, Arash A. Mostofi, Jonathan R. Yates, Ivo Souza, and David Vanderbilt. Maximally localized wannier functions: Theory and

applications. Rev. Mod. Phys., 84:1419–1475, Oct 2012.
[21] Arash A. Mostofi, Jonathan R. Yates, Young-Su Lee, Ivo Souza, David Vanderbilt, and Nicola Marzari. wannier90: A tool for obtaining

maximally-localised wannier functions. Comput Phys Commun, 178(9):685–699, 2008.
[22] et al. Paolo Giannozzi. Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys.

Condens. Matter, 21(39):395502, sep 2009.
[23] G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B,

54:11169–11186, Oct 1996.
[24] G. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set.

Comput. Mater. Sci., 6(1):15–50, 1996.
[25] Xavier Gonze, Bernard Amadon, Gabriel Antonius, Frédéric Arnardi, Lucas Baguet, Jean-Michel Beuken, Jordan Bieder, François Bottin,

Johann Bouchet, Eric Bousquet, Nils Brouwer, Fabien Bruneval, Guillaume Brunin, Théo Cavignac, Jean-Baptiste Charraud, Wei Chen,
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