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Abstract

Calculating fusion reactivity involves a complex six-dimensional integral of the fusion cross section and ion velocity
distributions of two reactants. We demonstrate a simple Monte Carlo approach that efficiently computes this integral
for arbitrary ion velocity distributions with a time complexity of O(N), where N is the number of samples. This
approach generates random numbers that satisfy the reactant velocity distributions. In cases where these numbers
are not readily available, we propose using Gaussian random numbers with weighted factors. For cases where only
a small number of N samples are available, a O(N2) method can be used. We benchmarked this approach against
analytical results for drift bi-Maxwellian distributions and provided examples of drift ring beam and slowing down
distributions. Our results show that the error can be less than 1% with N ∼ 104 samples for our standard approach.
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1. Introduction

Fusion reactivity ⟨σv⟩ is the integral of fusion cross
section and the reactants’ velocity distribution functions

⟨σv⟩ =
∫ ∫

dv1dv2σ(|v1−v2|)|v1−v2| f1(v1) f2(v2), (1)

where f1 and f2 are the normalized velocity distribution
functions of two ions, i.e.,

∫
f j(v j)dv j = 1 with j = 1, 2,

and dv j = dvx jdvy jdvz j. Here, σ = σ(E) or σ = σ(v) is
the fusion cross section, with E being the energy in the
center-of-mass frame

E =
1
2

mrv2, v = |v| = |v1 − v2|, mr =
m1m2

m1 + m2
, (2)

where m1 and m2 are the mass of the two reactants, and
mr is the reduced mass of the system.

Equation (1) is not only important for calculating the
fusion yield in laboratory [1] or stellar [2] plasmas, but
it is also useful for obtaining spectrum information of
the distribution functions f1,2 from a diagnostic perspec-
tive [3]. However, calculating ⟨σv⟩ for arbitrary f1 and
f2 is difficult since it involves a six-dimensional (6D)
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velocity integral, which is usually computed numeri-
cally [4, 5]. Kolmes et al. [6] used a mix of quadra-
ture and Monte Carlo algorithm to study the fusion
yield of plasma with velocity-space anisotropy at con-
stant energy. Nath et al. [7] reduced the 6D integral
to a 3D integral for drift tri-Maxwellian distributions,
which is numerically tractable. Several analytical 1D in-
tegral results are summarized in Ref. [8], with the drift
bi-Maxwellian distribution being the most general one,
which can be reduced to Maxwellian, bi-Maxwellian,
and beam-Maxwellian cases.

Numerically integrating Eq.(1) for arbitrary ion ve-
locity distributions is generally considered to be com-
plicated in the literature (see e.g. [7]). Although a
fast orthogonal polynomial expansion method was pro-
posed in Ref. [5], it is limited to velocity distributions
that are independent of the azimuthal angle ϕ in spher-
ical coordinates and therefore not generally applicable.
Similarly, Ref. [9] used a similar approach for energy
spectra diagnostic of unscattered neutrons produced by
deuterium-deuterium and deuterium-tritium fusion re-
actions. While Monte Carlo high-dimensional integral
methods (see e.g. Ref. [4]) can be applied to arbitrary
ion velocity distributions, their computation efficiency,
i.e., computation speed and accuracy, highly depends on
the sampling method used.

In this work, we propose a simple and effective Monte
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Carlo approach for computing the 6D integral in Eq.(1).
Unlike general Monte Carlo integral methods such as
[4], our approach is specifically designed for this prob-
lem, which enables us to achieve maximum computa-
tion efficiency. Moreover, we found that the approaches
used in first-principle particle simulation codes [10, 11]
to calculate the fusion yield are valid for arbitrary ve-
locity distributions and can be used to calculate Eq.(1).
However, our approach is more flexible when we are
only interested in calculating the fusion reactivity inte-
gral in Eq.(1). The proposed Monte Carlo approach has
a time complexity of O(N), where N is the number of
samples. In this paper, we also compare three types of
this approach, which can be used for different situations.

Section 2 describes the approach used in this work.
In Section 3, we benchmark our results against analyti-
cal results for drift bi-Maxwellian distributions, and ap-
ply our approach to drift ring beam and slowing down
distributions. Finally, in Section 4, we summarize our
findings.

2. Monte-Carlo Approach

The fusion reaction rate per unit volume and per unit
time can be calculated as [1, 2]

R12 =
n1n2

1 + δ12
⟨σv⟩, (3)

where n1 and n2 are the number densities of the two
reactants, respectively, and δ12 is equal to 0 for different
reactants and 1 for the same reactants.

Eq.(3) implies a physical meaning, namely, that the
fusion reactivity ⟨σv⟩ represents the probability of a fu-
sion reaction occurring. Thus, we select one particle
from species 1 and one particle from species 2, and cal-
culate σ(|v1 − v2|)|v1 − v2| for these two particles. We
repeat this process N times, and as N approaches infin-
ity, the average value of each σ(|v1 − v2|)|v1 − v2| will
be the integral value of Eq.(1). This yields a simple
Monte-Carlo approach (Method 1, standard approach)
to compute Eq.(1):

• Step 1: Generate a random particle with velocity
v1 = (v1x, v1y, v1z) that satisfies the velocity distri-
bution f1(v1), and a random particle with velocity
v2 = (v2x, v2y, v2z) that satisfies the velocity distri-
bution f2(v2).

• Step 2: Calculate σ(|v1 − v2|)|v1 − v2| for these two
particles.

• Step 3: Repeat Steps 1 and 2 for N times.

• Step 4: Obtain the average value of each σ(|v1 −

v2|)|v1 − v2|, which is the integral value of Eq.(1).

This approach has a time complexity of O(N).
In some situations, such as when using experimen-

tal diagnostic data, the number of samples N may be
small. In these cases, we can use the following approach
(Method 2) to compute Eq.(1):

• Step 1: Generate N1 particles randomly with ve-
locities v1 = (v1x, v1y, v1z) that satisfy the velocity
distribution f1(v1), and N2 particles with velocities
v2 = (v2x, v2y, v2z) that satisfy the velocity distribu-
tion f2(v2).

• Step 2: Calculate σ(|v1 − v2|)|v1 − v2| for each pair
of particles, resulting in a total of N1 × N2 pairs.

• Step 3: Obtain the average value of each σ(|v1 −

v2|)|v1 − v2|, which is the integral value of Eq.(1).

Usually, N = N1 ≃ N2. This approach has a time cost
of O(N1N2) ≃ O(N2).

Both Method 1 and Method 2 require generating ran-
dom numbers that satisfy the reactant velocity distri-
butions. In cases where these numbers are not readily
available, we can modify Method 1 to obtain Method 3,
which uses weighted factors and the following equation

⟨σv⟩ =
∫ ∫

dv1dv2σ(|v1−v2|)|v1−v2|w(v1, v2) f1g(v1) f2g(v2).

(4)
Here, the weight function is defined as

w(v1, v2) =
f1(v1) f2(v2)

f1g(v1) f2g(v2)
.

We can compute Eq. (4) using Method 3, which in-
volves the following steps:

• Step 1: Generate a random particle with velocity
v1 = (v1x, v1y, v1z) that satisfies the velocity dis-
tribution f1g(v1), and another random particle with
velocity v2 = (v2x, v2y, v2z) that satisfies the veloc-
ity distribution f2g(v2).

• Step 2: Calculate σ(|v1 − v2|)|v1 − v2|w(v1, v2) for
these two particles.

• Step 3: Repeat Steps 1 and 2 for N times.

• Step 4: Obtain the average value of each σ(|v1 −

v2|)|v1 − v2|w(v1, v2), which is the integral value of
Eq. (1).
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Method 1, O(N) Method 2, O(N^2) Method 3, O(N)

Step 1 Initialize (vt1x,vt1y,vt1z,vd1x,vd1y,vd1z,vt2x,vt2y,vt2z,vd2x,vd2y,vd2z,mr,N)

Step 2
generate N 
particles of 

1 and 2

% generate N random numbers with the velocity distributions of 
f1 and f2
v1x=vt1x*randn(N,1)+vd1x; % randn -> exp(-x^2/2)
v1y=vt1y*randn(N,1)+vd1y;
v1z=vt1z*randn(N,1)+vd1z;
v2x=vt2x*randn(N,1)+vd2x;
v2y=vt2y*randn(N,1)+vd2y;
v2z=vt2z*randn(N,1)+vd2z;

% generate N random numbers with Gaussian velocity distributions f1g 
and f2g for f1 and f2
vt=sqrt(vt1x^2/6+vt1y^2/6+vt1z^2/3+vt2x^2/6+vt2y^2/6+vt2z^2/3+vd
1x^2+vd1y^2+vd1z^2+vd2x^2+vd2y^2+vd2z^2); % choose a vt
v1x=vt*randn(N,1); % randn -> exp(-x^2/2)
v1y=vt*randn(N,1);
v1z=vt*randn(N,1);
v2x=vt*randn(N,1);
v2y=vt*randn(N,1);
v2z=vt*randn(N,1);
% weight of Monte-Carlo integral, f1*f2/(f1g*f2g)
wgt=vt^6/(vt1x*vt1y*vt1z*vt2x*vt2y*vt2z)*exp(-(v1x-vd1x).^2/ (2*vt1x^2) 
-(v1y-vd1y).^2/(2*vt1y^2) -(v1z-vd1z).^2/ (2*vt1z^2) -(v2x-vd2x).^2/ 
(2*vt2x^2) -(v2y-vd2y).^2/ (2*vt2y^2) -(v2z-vd2z).^2/ (2*vt2z^2)
+(v1x.^2+v1y.^2+v1z.^2+v2x.^2+v2y.^2+v2z.^2）/(2*vt^2));

Step 3
obtain 

v=|v1-v2|

v=sqrt((v1x-
v2x).^2+(v1y-
v2y).^2+(v1z-v2z).^2);
wgt=1+0.*v;

for i=1:N  % v=zeros(N*N,1)
for j=1:N

v((i-1)*N+j)=sqrt((v1x(i)-v2x(j)).^2
+(v1y(i)-v2y(j)).^2+(v1z(i)-v2z(j)).^2);
end
end
wgt=1+0.*v;

v=sqrt((v1x-v2x).^2+(v1y-v2y).^2+(v1z-v2z).^2);

Step 4
obtain 

<sigma*v>

EkeV=0.5*mr*v.^2/(qe*1e3); % J -> keV
sgm=fsgmdt(EkeV); % DT fusion cross section

sgmv=mean(sgm.*v.*wgt); % take average to obtain the final <sigma*v>

Figure 1: Sample code demonstrating three Monte-Carlo methods for computing the 6D fusion reactivity integral for drift tri-Maxwellian velocity
distributions.

Method 3 is actually an important sampling Monte
Carlo approach[4]. A good choice of f1g and f2g can
reduce the requirement of N. In this work, we use
Gaussian distributions for f1g and f2g. The time cost
of Method 3 is also O(N).

Figure 1 provides sample code programs to demon-
strate the above three Monte Carlo methods used to
calculate the 6D fusion reactivity integral for drift tri-
Maxwellian velocity distributions given by

f j(v j) =
(

1
2π

)3/2( 1
vtx jvty jvtz j

)
exp
[
−

(vx j−vdx j)2

2v2
tx j

−
(vy j−vdy j)2

2v2
ty j
−

(vz j−vdz j)2

2v2
tz j

]
. (5)

Here, vtx j, vty j, and vtz j are the thermal velocities in each
direction, and vdx j, vdy j, and vdz j are the drift velocities
in each direction, with j = 1, 2. These three simple
codes can quickly compute all the results in Nath et al
[7], with Method 1 being the most effective (see Sec. 3).

3. Benchmarks and Applications

To demonstrate the methods presented in Section 2,
we compare the results with analytical solutions for drift
bi-Maxwellian distributions[8]. Additionally, we com-
pare the three methods for drift ring beam[12, 13] and
slowing down[13] distributions and use the D-T fusion
reaction cross-section data from Ref.[14].

3.1. Drift bi-Maxwellian distribution

The distribution functions are given by

f j(v j) =
1

T 1/2
∥ j T⊥ j

( m j

2πkB

)3/2
·

exp
[
−

m jv2
⊥ j

2kBT⊥ j
−

m j(v∥ j − vd j)2

2kBT∥ j

]
, (6)

where j = 1, 2, and kB is the Boltzmann constant. Here,∫
f j(v j)dv j = 1, v2

⊥ j = v2
x j + v2

y j, and v∥ j = vz j. The
drift tri-Maxwellian distribution Eq.(5) reduces to the
drift bi-Maxwellian distribution Eq.(6) by taking vtx j =

vty j =
√

kBT⊥ j/m j, vtz j =
√

kBT∥ j/m j, and vdx j = vdy j =

0 in Eq.(5). With this drift bi-Maxwellian distribution,
the 6D integral Eq.(1) reduces to a 1D integral[8], which
is a function of only Tr, Rt, and Ed, where

Tr =
(2T⊥r + T∥r)

3
, Rt =

T⊥r

T∥r
, Ed = kBTd =

mrv2
d

2
,

where vd = vdz2 − vdz1. Additionally, we have

T∥r =
m1T∥2 + m2T∥1

m1 + m2
, T⊥r =

m1T⊥2 + m2T⊥1

m1 + m2
.

Figure 2 shows the benchmark results of the 6D
Monte-Carlo approach to the analytical 1D integral[8]
for drift bi-Maxwellian distributions, which exhibit
good agreement with Rt = 2, Ed = 20keV and N1 =

3
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Figure 2: Comparison between the results obtained using the 6D Monte-Carlo approach and the analytical 1D integral method[8] for drift bi-
Maxwellian distributions.
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values of N.
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104. To obtain the error of each method, the results are
repeated three times for each case. The total compu-
tation time of each method is also the computer time
taken. We observe that the total computer cost for
computing the 6D Monte-Carlo results in Fig.2 using
Method 1 for 20 points of Tr with N = 104 and repeat
3 times is 0.11 seconds, with an error less than 1%. To
achieve a similar level of accuracy, Methods 2 and 3 re-
quire around 50 times more computation time. Method
2 requires the smallest value of N among these three
methods.

Figure 3 compares the computation time and error
with different values of N, using 6D Monte-Carlo ap-
proach Method 1 for drift bi-Maxwellian distributions.
We find that N = 105 is sufficient for these parameters
(Rt = 0.5, Ed = 20keV). The computation time is not
accurately proportional to O(N) due to the fact that for
high values of N, the vector program scheme can save
some computation costs.

To make an accurate comparison of the performance
of the three methods, it is necessary to use the same
level of computational precision. However, since pre-
cision is influenced by many parameters and is difficult
to control, this work can only provide a rough compari-
son. When the same level of computational precision is
achieved, Method 1 requires a smaller number of sam-
ples, N1 < N2

2 , compared to Method 2. This is because
Method 1 has a more accurate sampling of the distribu-
tion function than Method 2, while the calculation of the
reactivity sum is similar. On the other hand, Method 3
requires a larger number of samples, N3 > N1, com-
pared to Method 1, which is understandable because
Method 1 has a much simpler integral weight σ(|v1 −

v2|)|v1 − v2| than the weight σ(|v1 − v2|)|v1 − v2|w(v1, v2)
in Method 3.

3.2. Drift ring beam distribution

The drift ring beam distribution, which includes both
parallel and perpendicular drifts as well as temperature
anisotropy, is given by[12]

f j(v j) = fz j · f⊥ j =
1
√
πvtz j

exp
[
−

(vz j−vdz j)2

v2
tz j

]
·

1
πA jv2

t⊥ j
exp
[
−

(
√

(vx j−vdx j)2+(vy j−vdy j)2−vdr j)2

v2
t⊥ j

]
,(7)

where A j = exp(−
v2

dr j

v2
t⊥ j

) +
√
π( vdr j

vt⊥ j
)erfc(− vdr j

vt⊥ j
), and∫

f j(v j)dv j = 1, for j = 1, 2. The error function
erfc(−x) = 1 + erf(x), and erf(x) = 2

√
π

∫ x
0 e−t2

dt. The
1D analytical form of Eq.(1) for this distribution is not

yet available. Note also that there exists a
√

2 differ-
ence between the definition of thermal velocity vt here
and Eq.(5).

Appendix A provides instructions on how to gen-
erate random numbers with this distribution. Figure 4
compares the drift ring beam using the three methods
in Section 2. Once again, we observe that Method 1 is
the most efficient among them, and Methods 2 requires
smallest N.

3.3. Slowing down distribution

The isotropic slowing down distribution is given by
[13]

f j(v j) =
3

4π ln[1 + v3
b j/v

3
c j]

H(vb j − v)

v3 + v3
c j

, (8)

where
∫

f j(v j)dv j = 1 for j = 1, 2, and H(x) is the
Heaviside function, defined as H(x < 0) = 0, H(x >
0) = 1, and H(0) = 1/2. The 1D analytical form of
Eq.(1) for this distribution is not yet available.

Instructions for generating random numbers with this
distribution are provided in Appendix A. Figure 5
compares the slowing down distribution using the three
methods described in Sec.2. Once again, we see that
Method 1 is the most effective. For Method 3, we
also compared two types of random numbers: Gaus-
sian f1g,2g, and uniform f1g,2g in vx j,y j,z j ∈ [−vb j, vb j] for
j = 1, 2. Both methods yielded similar results, indicat-
ing the robustness of this approach.

4. Summary and Discussion

We have developed a simple Monte-Carlo approach
to compute the 6D fusion reactivity integral Eq.(1) for
arbitrary ion velocity distributions. We compared three
types of this approach for several typical distributions,
such as drift bi-Maxwellian, drift ring beam, and slow-
ing down distributions. Our results show that this ap-
proach is both robust and effective.

The second method is suitable for situations when N
is small, with a time cost of O(N2). The first method
is found to be the most effective one among them, with
a time cost of O(N). However, it still requires a rou-
tine to generate the corresponding random numbers of
the given distributions, as in the second method. The
third method uses a weight function to remove the re-
quirement of generating corresponding random num-
bers, with a time cost of O(N). For these three meth-
ods, the typical requirement for N1,2,3 is N1 ≃ 104−105,
N2 ≃ 5

√
N1 ≃ 103, and N3 ≃ 50N1 ≃ 106 − 107.
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Figure 4: Comparison of three Monte-Carlo methods for drift ring beam distributions, where vd j = [vd jx, vd jy, vd jz, vd jr].
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Overall, our Monte-Carlo approach provides a prac-
tical and efficient tool for computing the fusion reac-
tivity integral. Although the basic ideas behind our
Monte Carlo approach for computing the fusion reac-
tivity integral may not be new, the approach presented
in this work is still noteworthy for its simplicity and ef-
ficiency. Similar Monte Carlo pairwise treatments have
been used in particle simulation codes, such as those
in Refs. [10, 11], to calculate the fusion yield for ar-
bitrary velocity distributions. Furthermore, the Fokker-
Planck binary collision model for plasma particle simu-
lation [15] can also be retrospectively related to this ap-
proach. However, our approach, as demonstrated with
three methods, is more flexible and applicable to a wider
range of situations where only the fusion reactivity in-
tegral, Eq.(1), needs to be calculated. Thus, we believe
that our approach is valuable and worth summarizing
to the community. In future work, further optimization
of the algorithms and exploring new applications of this
approach in related fields can be pursued. The com-
putation source codes used in this work are avaiable at
https://github.com/hsxie/fusionreactivity.
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zhi TAN, Ke LI and Feng WANG are acknowledged.

Appendix A. Random numbers for drift ring beam
and slowing down distributions

To generate a velocity v with distribution f (v) from a
uniform u ∈ [0, 1) random number using a monotonic
function transformation v = v(u), we use the relation

v(u + ∆u) = v + ∆v,∆u = f (v)∆v, (A.1)

which can be written as

f (v)dv = du. (A.2)

Solving for u gives

u = u(v) =
∫

f (v′)dv′. (A.3)

We can then calculate the transformation v = v(u) from
the inverse function of u = u(v).

To model the distributions of drift ring beams, we use
the product of two distributions: f (v) = fz(vz)· f⊥(vx, vy),
where fz(vz) can be generated using a standard Gaussian
random number function. The distribution f⊥(vx, vy) is
given by

f⊥ =
1
πAv2

t⊥
exp
[
−

(
√

(vx − vdx)2 + (vy − vdy)2 − vdr)2

v2
t⊥

]
,

where v⊥ =
√

(vx − vdx)2 + (vy − vdy)2 ∈ [0,∞) and ϕ
is the angle between the x-axis and the velocity vec-
tor v⊥ in the xy-plane. The quantity A is defined as
A = exp(−v2

dr/v
2
t⊥) +

√
π(vdr/vt⊥)erfc(−vdr/vt⊥), and∫

f j(v j)dv j = 1. In the (v⊥, ϕ) space, we have f (v⊥, ϕ) =
f (v⊥) f (ϕ), where

f (v⊥) = 2v⊥
Av2

t⊥
exp
[
−

(v⊥−vdr)2

v2
t⊥

]
, 0 ≤ v⊥ < ∞

f (ϕ) = 1
2π , 0 ≤ ϕ < 2π. (A.4)

The coefficients are normalized such that∫ ∞
0 f (v⊥)dv⊥ = 1 and

∫ 2π
0 f (ϕ)dϕ = 1. To gener-

ate ϕ, we use a uniform random number u ∈ [0, 1) and
set ϕ = 2πu.

The relationship between v⊥ and the uniform random
number u is given by the following equation

u =
∫

f (v⊥)dv⊥ = 1
A

{√
π vdr

vt⊥

[
erf
(

vdr
vt⊥

)
− erf

(
vdr−v⊥

vt⊥

)]
+ exp

(
−

v2
dr

v2
t⊥

)
− exp

(
−

(v⊥−vdr)2

v2
t⊥

)}
, (A.5)

which satisfies the requirements u(0) = 0 and u(∞) = 1.
In the case of a usual Maxwellian/Gaussian distribution
with vdr = 0 and A = 1, we have

u = − exp(−v2
⊥/v

2
t⊥) + 1,

so that

v⊥ = vt⊥

√
− ln(1 − u),

which is one of the standard ways to generate a Gaus-
sian random distribution. When vdr , 0, we can ob-
tain the inverse function v⊥(u) = u−1(v⊥) numerically
using 1D interpolation, since u(v⊥) is known and mono-
tonically increasing. Then, we can obtain the velocity
components (vx, vy) using the following equations:

vx = v⊥ cos ϕ + vdx, vy = v⊥ sin ϕ + vdy.

Note that ϕ and v⊥ should use independent random num-
bers u.

Similarly, for the slowing-down distribution in
(v, ϕ, θ) space, we have

f (v) = f (v) f (θ) f (ϕ), f (θ) = 1
π
, f (ϕ) = 1

2π ,

f (v) = 3v2

ln[1+v3
b/v

3
c ]

H(vb−v)
v3+v3

c
, (A.6)

which means 0 ≤ θ < π and 0 ≤ ϕ < 2π are uniformly
distributed. We have

u =
∫

f (v)dv = ln[1 + v3/v3
c]/ ln[1 + v3

b/v
3
c],

with v ∈ [0, vb), u ∈ [0, 1), i.e.,

v = vc

{
exp
[
u ln(1 + v3

b/v
3
c)
]
− 1
}1/3
.
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After generating random numbers of (v, θ, ϕ), we can
obtain (vx, vy, vz) via

vx = v sin θ cos ϕ, vy = v sin θ sin ϕ, vz = v cos θ.

For arbitrary distributions, generating random num-
bers is not always straightforward. However, there are
numerical libraries available, such as UNURAN [16].
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