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Abstract

The purpose of analytical continuation is to establish a real frequency spectral representation of single-particle or
two-particle correlation function (such as Green’s function, self-energy function, and dynamical susceptibilities) from
noisy data generated in finite temperature quantum Monte Carlo simulations. It requires numerical solutions of a
family of Fredholm integral equations of the first kind, which is indeed a challenging task. In this paper, an open source
toolkit (dubbed ACFlow) for analytical continuation of quantum Monte Carlo data is presented. We at first give a short
introduction to the analytical continuation problem. Next, three primary analytical continuation algorithms, including
maximum entropy method, stochastic analytical continuation, and stochastic optimization method, as implemented in
this toolkit are reviewed. And then we elaborate major features, implementation details, and basic usage of this toolkit.
Finally, four representative examples are shown to demonstrate usefulness and flexibility of the ACFlow toolkit.
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1. Introduction

It is well-known that quantum Monte Carlo (QMC) method is a powerful and exact numerical approach, and
has been widely used in many research fields, such as nuclear physics [1], condense matter physics [2], and many-
body physics [3]. In this paper, we just focus on the finite temperature QMC algorithms, which are used to solve the
interacting lattice models or quantum impurity models [4]. Generally speaking, the simulated results of QMC methods
are some sorts of single-particle or two-particle correlation functions, which are usually defined on imaginary time
axis (τ ≡ −it) or Matsubara frequency axis (iωn). Therefore, they can’t be compared directly with the correspondingly
experimental results, including but not limited to the electronic density of states A(ω), optical conductivity σ(ω),
dynamical structure factor S (q, ω), and so on. It is necessary to convert the QMC simulated results from imaginary
time axis or Matsubara frequency axis to real axis (i.e. τ → ω or iωn → ω), which is the origin of the analytical
continuation problem.

Let’s concentrate on the following Fredholm integral equation of the first kind:

g(y) =

∫
K(y, x) f (x) dx. (1)

Here, K(y, x) is the known kernel function, f (x) is the model function, and g(y) denotes the raw data. Given f (x), it is
quite easy to get g(y) via numerical integration. However, given g(y), solving the Fredholm integral equation reversely
to get f (x) is not as easy as expected. There is no universal solution. Notice that the so-called analytical continuation
problem can be reformulated in terms of the Fredholm integral equation. Thus, its objective is to seek a reasonable f (x)
to satisfy the above equation. The QMC simulated data g(y) are noisy and the kernel function K(y, x) is ill conditioned,
which make analytical continuation of QMC simulated data a huge challenge. In order to solve this problem, peoples
have developed numerous methods in the past decades. These methods include the least square fitting method, singular
value decomposition [5, 6], Padé approximation [7–10], Tikhonov-Philips regularization method, maximum entropy
method [11, 12], stochastic analytical continuation [13, 14], stochastic optimization method [15, 16], sparse modelling
method [17], and machine learning method [18–20], etc. However, each method has its pros and cons. None of these
methods can override the others. The analytical continuation problem is still far away from being completely solved.

In recent years, quite a few analytical continuation codes have been released, including maxent (by Mark Jar-
rell) [12], maxent (in ALPSCore) [21], ΩMaxent [22], ana cont [23], SOM (in TRIQS) [24, 25], Stoch (in ALF) [26],
just to name a few. We note that the maximum entropy method has dominated this field for quite a long time. Thus
most of these codes only implement the maximum entropy method [12, 21–23]. It is rather difficult to crosscheck the
simulated results obtained by various analytical continuation methods. In addition, the features of the available codes
are quite limited and hard to examine new algorithms. In order to fill in this gap, we would like to present a new open
source toolkit, called ACFlow, for analytical continuation. This toolkit implements three primary analytical continua-
tion methods, including the maximum entropy method, stochastic analytical continuation, and stochastic optimization
method, within an united framework. It provides an easy-to-used library and application interface. Some diagnostic
and analytical tools are also available. With ACFlow, the users can easily setup and execute analytical continuation
calculations, and validate the obtained results. We believe that this toolkit will play a vital role in solving analytical
continuation problems.

The rest of this paper is organized as follows. In section 2, background of the analytical continuation problem
is introduced. In section 3, basic principles and key ingredients of the three analytical continuation methods as
implemented in the ACFlow toolkit are summarized. Section 4 gives a brief overview about ACFlow’s main features
and structures. Section 5 is the major part of this paper, it explains basic usage, input and output files of ACFlow. In
order to demonstrate usefulness of this toolkit, four typical examples are illustrated in section 6. Finally, section 7
serves as a short conclusion.

2. Problem

2.1. Finite temperature Green’s functions

Under the Wick’s rotation t → iτ, the time evolution operator in the Heisenberg picture eitH will be replaced by
e−τH . Such a transformation will increase efficiency of QMC random walking and suppress numerical oscillation
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(when t is large, the periodic oscillation of eitH is quite obvious). This is an important reason why most of the
finite temperature QMC algorithms are formulated in imaginary time axis. The outputs of finite temperature QMC
simulations are usually single-particle or two-particle correlation functions. For example, the single-particle Green’s
function G(τ) is defined as follows:

G(τ) = 〈Tτd(τ)d†(0)〉, (2)

where τ denotes imaginary time, Tτ denotes time-ordered operator, and d and d† are annihilation and creation opera-
tors, respectively. The Matsubara Green’s function G(iωn) can be measured by QMC simulations or constructed from
G(τ) via direct Fourier transformation:

G(iωn) =

∫ β

0
dτ e−iωnτG(τ), (3)

G(τ) =
1
β

∑
n

eiωnτG(iωn). (4)

Here, β means the inverse temperature (β ≡ 1/T ) and ωn is the Matsubara frequency. Note that ωn is equal to
(2n + 1)π/β for fermions and 2nπ/β for bosons (n is an integer).

2.2. Spectral density
Clearly, neither G(τ) nor G(iωn) can be observed experimentally. We have to extract dynamical response function,

i.e., the spectral density A(ω), from them. A(ω) is indeed an observable quantity. It is related to G(τ) via the following
Laplace transformation:

G(τ) =

∫ +∞

−∞

dω
e−τω

1 ± e−βω
A(ω), (5)

where +(-) in the denominator is for fermionic (bosonic) system. G(iωn) and A(ω) manifest similar relation:

G(iωn) =

∫ +∞

−∞

dω
A(ω)

iωn − ω
. (6)

It is obvious that Eq. (5) and Eq. (6) are indeed two special forms of the Fredholm integral equation of the first kind
[see Eq. (1)]. So, the central problem of analytical continuation is to search optimal A(ω) for given G(τ) or G(iωn).

Sometimes the spectral density A(ω) is called spectral function in the references. It is tied to the imaginary part of
real frequency Green’s function G(ω):

A(ω) = −
1
π

ImG(ω). (7)

From ImG(ω), ReG(ω) could be calculated via the Kramers-Kronig transformation:

ReG(ω) =
1
π
P

∫ ∞

−∞

dω′
ImG(ω′)
ω′ − ω

, (8)

where P means Cauchy principal value. Besides Eq. (5) and Eq. (6), A(ω) has to obey some additional constraints or
sum-rules. For fermionic systems, the spectral functions must be positive:

A(ω) ≥ 0. (9)

While for bosonic systems, the constraint becomes:

sign(ω)A(ω) ≥ 0. (10)

In addition, the spectral function A(ω) is always bounded,∫ +∞

−∞

dω A(ω) < ∞. (11)

It can be utilized to normalize the resulting spectral function.
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2.3. Kernel functions
Eq. (5) and Eq. (6) can be reformulated as follows:

G(τ) =

∫ +∞

−∞

dω K(τ, ω)A(ω), (12)

and

G(iωn) =

∫ +∞

−∞

dω K(ωn, ω)A(ω), (13)

where K(τ, ω) and K(ωn, ω) are the so-called kernel functions. Their definitions are as follows:

K(τ, ω) =
e−τω

1 ± e−βω
, (14)

and
K(ωn, ω) =

1
iωn − ω

, (15)

where +(-) in the denominator of Eq. (14) stands for fermions (bosons).
As mentioned above, the kernel function is quite strange. The values of K(τ, ω) could change by tens of orders

of magnitude. Especially, at large positive and negative frequencies, K(τ, ω) is exponentially small. It implies that
at large |ω| the features of A(ω) are sensitive to the fine structures of G(τ). However, the data of G(τ) provided by
QMC simulations are always fluctuant and noisy [27]. Tiny deviations in G(τ) from its expected values can lead to
enormous changes in A(ω). Thus, analytical continuation is often characterized as an ill-posed problem [12].

In principle, for incomplete and noise G(τ) or G(iωn), the number of spectral functions A(ω) that satisfy Eq. (12)
and Eq. (13) is infinite. So the question becomes which A(ω) should be chosen. Now there are two different strategies
to solve this problem. The first one is to choose the most likely A(ω). The second one is to evaluate the average of
all the candidate spectral functions. In next section, we will introduce three primary analytical continuation methods
that follow the two strategies and have been implemented in the ACFlow toolkit. For the sake of simplicity, we will
concentrate on analytical continuation of imaginary time Green’s functions in main text.

3. Methods

3.1. Maximum entropy method
Perhaps the maximum entropy method is the most frequently used approach for analytical continuation problems

in the last decades [11, 12] because of its high computational efficiency. Next, we will discuss the basic principle and
several variants of it.

3.1.1. Bayesian inference
Bayes’s theorem is the cornerstone of the maximum entropy method. Given two events a and b, Bayes’s theorem

says:
P[a|b]P[b] = P[b|a]P[a], (16)

where P[a] is the probability of event a, P[a|b] is the conditional probability of event a with given event b. In the
scenario of analytical continuation problem, Ḡ(τ) and A(ω) are treated as two events, where Ḡ(τ) denotes the measured
value of G(τ). So the best solution for A(ω) is of course the one that maximizes P[A|Ḡ], which is called the posterior
probability. According to the Bayes’s theorem, we get

P[A|Ḡ] =
P[Ḡ|A]P[A]

P[Ḡ]
, (17)

where P[Ḡ|A] is the likelihood function, P[A] is the prior probability, and P[Ḡ] is the evidence. Since the evidence
is a normalization constant depending on the prior probability and the likelihood function only, it is ignored in the
following discussions. Thus,

P[A|Ḡ] ∝ P[Ḡ|A]P[A]. (18)
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3.1.2. Posterior probability
In the maximum entropy method, the likelihood function P[Ḡ|A] is assumed to be in direct proportion to e−χ

2/2.
Here, χ2 is named as goodness-of-fit function. It measures the distance between Ḡ(τ) and reconstructed imaginary
time Green’s function G̃(τ):

χ2 =

L∑
i=1

[
Ḡi(τ) − G̃i(τ)

σi

]2

, (19)

G̃i =
∑

j

Ki jA j. (20)

Here, L is number of imaginary time points, σ denotes the error bar (standard deviation) of Ḡ(τ). Ki j and A j are
discrete kernel and spectral functions, respectively. On the other hand, the prior probability P[A] is supposed to be in
direct proportion to eαS , where α is a regulation parameter and S means entropy. Sometimes S is also known as the
Kullback-Leibler distance. Its formula is as follows:

S =

∫
dω

(
A(ω) − m(ω) − A(ω) log

[
A(ω)
m(ω)

])
, (21)

where m(ω) is the default model function.
According to the Bayes’s theorem, the posterior probability P[A|Ḡ] ∝ eQ and

Q = αS −
χ2

2
. (22)

3.1.3. Algorithms of maximum entropy method
Now the original analytical continuation problem becomes how to figure out the optimal A(ω) that maximizes Q.

In other words, we have to solve the following equation:

∂Q
∂A

∣∣∣∣∣
A=Â

= 0, (23)

where Â(ω) is the optimal A(ω). Eq. (23) can be easily solved by using standard Newton method. However, the
obtained Â(ω) is α-dependent. That is to say, for a given α, there is always a Â(ω) that satisfies Eq. (23). So, new
problem arises because we have to figure out a way to construct the final spectral function from these α-resolved Â(ω).
Now there exist four algorithms, namely “historic”, “classic”, “bryan”, and “χ2kink”. Next we will introduce them
one by one.

Historic algorithm. The historic algorithm is quite simple. The α parameter will be adjusted iteratively to meet
the following criterion:

χ2 = N, (24)

where N is the number of mesh points for spectral density A(ω).
Classic algorithm. The basic equation for the classic algorithm reads:

−2αS (Aα) = Tr
[

Λ(Aα)
αI + Λ(Aα)

]
, (25)

where I is an identity matrix. The elements of Λ matrix are calculated as follows:

Λi j =
√

Ai

∑
kl

Kki[C−1]klKl j

 √
A j, (26)

where C is the covariance matrix. Eq. (25) will be iteratively solved until the optimal α and Â(ω) are determined.
Bryan algorithm. In both historic and classic algorithms, the spectral function Â(ω) is always related to an optimal

α parameter. However, the spirit of the bryan algorithm [28] is completely different. It tries to generate a series of
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α parameters and yield the corresponding Aα(ω). Then the final spectral function A(ω) is obtained by evaluating the
following integration:

A(ω) =

∫
dα Aα(ω)P[α|Ḡ]. (27)

χ2kink algorithm. This algorithm was proposed by Bergeron and Tremblay [22] recently. The first step is to
generate a series of α parameters, and evaluate the corresponding spectral functions Aα(ω) and the goodness-of-
fit functions χ2[Aα]. Then we plot log10(χ2) as a function of log10(α). Usually this plot is split into three different
regions: (1) Default model region. In the limit of α→ ∞, χ2 goes to a constant high value. It means that the likelihood
function e−χ

2/2 has negligible weight, such that the prior probability eαS becomes dominant and minimizes Q[A]. At
that time, the calculated A(ω) resembles the default model function m(ω). (2) Noise-fitting region. In the limit of
α → 0, χ2 is relatively flat and approaches its global minimum. In this region, the minimization algorithm tends to
fit the noise in G(τ). (3) Information-fitting region. αS is comparable with χ2/2, so that χ2 is strongly dependent
on α. Bergeron et al. suggested that the optimal α parameter situates in the crossover between noise-fitting region
and information-fitting region [22]. So the second derivative of χ2 with respect to α is calculated, and the maximum
value in the resulting curve indicates the optimal value of α. Quite recently, Kaufmann and Held proposed a more
numerically stable and flexible approach to compute the optimal α [23]. They use the following empirical function to
fit dataset {log10(α), log10(χ2)}:

φ(x; a, b, c, d) = a +
b

1 + e−d(x−c) , (28)

where a, b, c, and d are fitting parameters. Then the optimal α is approximated by 10c− f /d, where f is a numerical
constant (Its favorite value lies in [2, 2.5]).

3.2. Stochastic analytical continuation

In principle, for given Green’s function G, there exists infinitely many spectral densities A(ω) that can be used
to reconstruct G via Eq. (12) and Eq. (13). The maximum entropy method tries to pick up the most likely spectral
function which maximizes P[A|Ḡ] (It actually maximizes Q) [11, 12]. Here, we would like to introduce an alternative
approach, namely the stochastic analytical continuation [13, 14, 29–34]. It is argued that the weights for all the
possible spectral densities are the same if they can give rise to the same χ2. At first, a sequence of spectral densities
will be generated by stochastic method. Then an unbiased thermal average of all possible spectra, Boltzmann weighted
according to goodness-of-fit function χ2, produces an average spectrum. Thus sometimes the method was named as
average spectrum method or stochastic sampling method in the references [35–38]. There are several variants for
the stochastic analytical continuation. Next we will introduce two representative algorithms as proposed by A. W.
Sandvik [13] and K. S. D. Beach [29], respectively.

3.2.1. Sandvik’s algorithm

Frequency (ω)

Am
pl

itu
de

 (γ
)

(ωi, γi)

Figure 1: Typical Monte Carlo field configurations for the stochastic analytical continuation (A. W. Sandvik’s algorithm) [13]. Here, the δ functions
reside at unrestricted frequencies {ωi}, but their amplitudes {γi} are equal and fixed. Note that different parameterizations are also possible [34].
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It was early on realized that a different way to achieve a smooth spectrum is to average over many solutions with
reasonable χ2 values [33]. Several years later, A. W. Sandvik introduced the stochastic analytical continuation in a
slightly different form [13]. He suggested that the spectral function A(ω) can be parameterized using N δ functions
(Please see Figure 1 for a schematic diagram):

A(ω) =

N∑
i=1

γiδ(ω − ωi), (29)

where γi and ωi denote the amplitude and position of the i-th δ function, respectively. Next, the Metropolis important
sampling algorithm is employed to sample the configuration space C = {ωi, γi}. In practice, there are two elementary
Monte Carlo updates. One is to change the amplitudes of a pair of δ functions under the constraint

∑
i γi = 1. Another

one is to shift position of a randomly chosen δ function. Of course, block or global updates can be implemented to
improve ergodicity and sampling efficiency [35, 36].

The transition probability of Monte Carlo updates reads:

p(C → C′) = exp
(
−

∆χ2

2Θ

)
, (30)

where the goodness-of-fit function χ2 can be evaluated by Eq. (19), Θ is a regulation parameter which is similar to
the α parameter appeared in the maximum entropy method. Well, the remaining problem is how to fix Θ. Sandvik
suggested to measure the following entropic term for a series of Θ:

S (Θ) = −

N∑
i=1

γi log(γi)K(0, ωi), (31)

where K is the kernel function as defined above [13]. Then make a plot of S with respect to log(Θ−1). Overall, when Θ

is large, S exhibits large fluctuations. When Θ is small, S will approach its global minimum steadily. A sharp drop in
S before the approach to a constant value has been observed, and there is a local maximum at some Θ = Θ̂ preceding
the drop. Thus, Sandvik postulated that Θ̂ was the optimum value at which to accumulate and average the spectral
function. Syljuåsen et al. [38] suggested that let Θ = 1. Fuchs et al. tried to fix Θ by using Bayesian inference. Such
that their approach was named as stochastic analytical inference [14]. Very recently, Shao and Sandvik et al. proposed
a smart method to determine the optimal value of Θ [30, 32]. Θ is adjusted so that

〈χ2(Θ)〉 ≈ χ2
min + c

√
2χ2

min, (32)

where c is a constant of order 1, χ2
min is the minimum value of χ2 at given Θ. Note that χ2

min can be obtained in a
simulated annealing process [39] to very low Θ.

3.2.2. Beach’s algorithm
K. S. D. Beach proposed another variant of stochastic analytical continuation in 2004 [29]. In his proposal, the

analytical continuation problem is mapped into a system of interacting classic fields at first. Then the classic field is
sampled using Monte Carlo method to obtain the final solution. He concluded that the maximum entropy method is
simply the mean field limit of the stochastic analytical continuation. Next, this algorithm will be explained concisely.

Classic fields. Recalled that the goodness-of-fit functional χ2[A] measures how closely the Green’s function
generated from A(ω) matches the raw input data. Its expression is rewritten as follows:

χ2[A] =

∫ β

0

1
σ(τ)2

∣∣∣∣∣∫ dω K(τ, ω)A(ω) − Ḡ(τ)
∣∣∣∣∣2 dτ. (33)

At first, a new variable x is introduced. The relation between x and ω is:

x = φ(ω) =

∫ ω

−∞

dω′ m(ω′), (34)
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Position (r)

Am
pl

itu
de

 (γ
)

(ri, γi)

Figure 2: Typical Monte Carlo field configurations for the stochastic analytical continuation (K. S. D. Beach’s algorithm) [29]. Note that the
amplitudes {γi} of all the δ functions are not identical. Both amplitudes {γi} and positions {ri} (0.0 < ri < 1.0) can be sampled by using Monte
Carlo method.

where m(ω) denotes the default model function. Clearly, the φ(ω) function defines a smooth mapping from R→ [0, 1].
Since ω = φ−1(x), a dimensionless classic field n(x) is created:

n(x) =
A(φ−1(x))
m(φ−1(x))

. (35)

It is easy to prove that both n(x) and A(ω) obey similar normalization condition:∫
dω A(ω) =

∫ 1

0
dx n(x) = 1. (36)

Next, in analogy with the goodness-of-fit functional χ2[A], the Hamiltonian for the system of classic field {n(x)} can
be defined as follows:

H[n(x)] =

∫ β

0

dτ
σ(τ)2

∣∣∣∣∣∣
∫ 1

0
dx K(τ, x)n(x) − Ḡ(τ)

∣∣∣∣∣∣ . (37)

Supposing α is an inverse temperature of the system, then the partition function Z is:

Z =

∫
Dn e−αH[n], (38)

where ∫
Dn =

∫ ∞

0

∏
x

dn(x)

 δ (∫ 1

0
dx n(x) − 1

)
. (39)

The thermally averaged value of the classic field is:

〈n(x)〉 =
1
Z

∫
Dn n(x)e−αH[n]. (40)

Finally, according to the definition of the classic field, the averaged spectral density 〈A(ω)〉 can be expressed as:

〈A(ω)〉 = 〈n(φ(ω))〉m(ω). (41)

So, by introducing the classic field {n(x)}, the analytical continuation problem is converted into a statistical sampling
of the classic field, which is easily solved by using Monte Carlo method.

Monte Carlo sampling. Next we clarify how to sample the classic field. Similar to Sandvik’s algorithm [13, 34],
n(x) is parameterized as a superposition of many δ functions (see Figure 2 for a schematic diagram):

nC(x) =
∑

i

γiδ(x − ri), (42)
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where γi and ri denote amplitude (weight) and position of the i-th δ function, respectively. And C means a configura-
tion space formed by a set of ri and γi,

C = {ri, γi}. (43)

Note that γi and ri satisfy the following constraints:

∀i, γi > 0,
∑

i

γi = 1, 0 ≤ ri ≤ 1. (44)

Supposed that there is a transition from C to C′ ({ri, γi} → {r′i , γ
′
i }):

ri → r′i = ri +
∑
λ∈Λ

δiλ∆rλ, (45)

γi → γ′i = γi +
∑
λ∈Λ

δiλ∆γλ, (46)

where Λ means a subset of the δ functions, then the Hamiltonian of the system is changed from HC to HC′ . According
to Eq. (37), HC, HC′ , and their difference ∆H can be calculated by:

HC =

∫ β

0
dτ hC(τ)2, (47)

HC′ =

∫ β

0
dτ [hC(τ) + ∆h(τ)]2 , (48)

∆H = HC′ − HC =

∫ β

0
dτ ∆h(τ)[2hC(τ) + ∆h(τ)]. (49)

Here,

h(τ) =
1

σ(τ)

[∫ 1

0
dx K(τ, x)n(x) − Ḡ(τ)

]
, (50)

and
∆h(τ) =

1
σ(τ)

∑
λ∈Λ

[
γ′λK(τ, r′λ) − γλK(τ, rλ)

]
. (51)

Finally, the transition probability from C to C′ reads

p(C → C′) = exp(−α∆H). (52)

Parallel tempering. The parallel tempering trick [40] is adopted to improve the Monte Carlo algorithm as described
above. It is possible to proceed multiple simulations simultaneously for a sequence of inverse temperature parameters
{α1, α2, · · · , αN}. The ratio for two adjacent α parameters is a constant: αp+1/αp = R. Note that the field configurations
in all simulations evolve in parallel but not independently. We can swap the field configurations between two adjacent
layers. Of course, the detailed balance is always preserved, and each simulation will eventually settle into thermal
equilibrium at given α. The transition probability of such a global Monte Carlo update is:

p(C → C′) = exp[(αp − αq)(Hp − Hq)], (53)

where p and q are layer indices, and p = q ± 1. Parallel tempering eliminates the need for an initial annealing
stage. Another advantage of parallel tempering is that it yields a complete temperature profile of all the important
thermodynamic variables (such as specific heat and internal energy), which can be used to estimate the critical α and
the final spectral function 〈A(ω)〉.

Critical inverse temperature. Clearly, 〈n(x)〉 strongly depends on the inverse temperature α. How to use these
α-dependent 〈n(x)〉 to construct the final spectral function? Beach suggested a novel method [29]. During parallel
tempering process, the internal energy of the system is also measured in addition to 〈n(x)〉:

U(αp) = 〈H[n]〉αp . (54)
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Let us plot log10[U(α)] as a function of log10(α). We find that log10[U(α)] drops quickly at first when log10(α)
increases, and then it approaches to a constant value slowly. The knee in log10[U(α)] function, occurring in the
vicinity of α = α∗ (the corresponding layer index p = p∗), signals a jump in specific heat (a thermodynamic phase
transition). Then the averaged spectral function is constructed by:

〈〈n(x)〉〉 =

∑N−1
p=p∗[U(αp) − U(αp+1)]〈n(x)〉αp

U(αp∗) − U(αN)
, (55)

where N is the total number of α, and αp∗ (≡ α∗) is the critical inverse temperature.
Likelihood function. Neither of the Sandvik’s and Beach’s algorithms needs extra entropic term to regulate the

spectral densities [13, 29]. All the stochastically generated spectra are treated on the same footing. Thus, the calculated
spectral function retains more subtle structures than that obtained by the maximum entropy method. Actually, in the
stochastic analytical continuation,

〈A〉 =

∫
DA P[A|Ḡ]A. (56)

The weight of the candidate spectral function A is given by the likelihood function P[A|Ḡ]. Eq. (30) and Eq. (52) can
be viewed as likelihood functions in the stochastic analytical continuation.

3.3. Stochastic optimization method

Position (c)

He
ig

ht
 (h

)

(ci, wi, hi)

Figure 3: Typical Monte Carlo field configurations for the stochastic optimization method [15]. The spectral function is parameterized by multiple
rectangle functions. Here, ci, wi, and hi denote the center, width, and height of the i-th rectangle, respectively.

A. O. Mishchenko et al. [15] proposed the stochastic optimization method. Though it looks like the stochastic
analytical continuation [13, 29], their differences are quite apparent. The stochastic optimization method does not
need any likelihood function or Boltzmann distribution to weight the candidate spectral functions. It generates a lot of
spectral functions through Monte Carlo samplings. For each candidate spectral function, the deviation D between the
reconstructed Green’s function G̃ and original Green’s function Ḡ is measured. Those spectral functions with small
deviations D are selected and averaged. Such that the desired spectral function is obtained.

Deviation function. In the stochastic optimization method, the deviation between reconstructed data G̃ and input
data Ḡ is described by:

D[A] =

M∑
m=1

|∆(m)|, (57)

where M is the number of input data, and ∆(m) is the deviation function,

∆(m) =
Ḡ(m) − G̃(m)

S (m)
. (58)
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Here, S (m) = |G(m)|d (where 0 ≤ d ≤ 1). Recently, Krivenko et al. suggested that it would be better to use the
goodness-of-fit functional χ2[A] to replace D[A] [24, 25].

Spectral density. The stochastic optimization method will try to accumulate the candidate spectral functions
that manifest small D[A]. Supposed the Monte Carlo simulations are repeated for L times. For the i-th Monte
Carlo simulation, the spectral density Ai(ω) and deviation D[Ai] are recorded. The minimum value of deviation is
min{D[Ai]}. Thus, the final spectral density reads:

A(ω) =
1

Lgood

L∑
i=1

θ(αgood min{D[Ai]} − D[Ai])Ai(ω). (59)

Here, θ(x) is the Heaviside step function, and αgood is a adjustable parameter. Lgood denotes the number of “good”
spectral functions:

Lgood =

L∑
i=1

θ(αgood min{D[Ai]} − D[Ai]). (60)

That is to say, only those spectral functions who satisfy the following condition will be selected:

D[Ai] ≤ αgood min{D[Ai]}. (61)

Clearly, the larger αgood is, the more spectral functions are included. It is usually set to 2.
Rectangle representation. Similar to the stochastic analytical continuation [13, 29], the stochastic optimization

method usually employs a few rectangle functions to parameterize the spectral function:

A(ω) =
∑

i

R{ci,wi,hi}(ω), (62)

where i is the index of rectangle function. The definition of rectangle function R{ci,wi,hi}(ω) reads:

R{ci,wi,hi}(ω) = hiθ[ω − (ci − wi/2)]θ[(ci + wi/2) − ω], (63)

where ci, wi, hi denote the center, width, and height of the i-th rectangle, respectively. Pay attention to that the area of
all rectangles must be normalized to 1: ∑

i

hiwi = 1. (64)

Monte Carlo sampling. The parameters of all rectangle functions create a configuration space:

C = {ci,wi, hi}. (65)

Then the Metropolis algorithm is utilized to sample this configuration space. Mishchenko et al. introduces seven
Monte Carlo updates [15, 24], including: (a) Insert a new rectangle, change width and height of another rectangle;
(b) Remove an existing rectangle, change width and height of another rectangle; (c) Shift position of any rectangles;
(d) Change widths of any two rectangles; (e) Change heights of any two rectangles; (f) Split a rectangle into two new
rectangles; (g) Merge two adjacent rectangles into a new rectangle. The transition probability of these Monte Carlo
updates is:

p(C → C′) =

(
D[AC]
D[AC′ ]

)1+d

(66)

As compared to the maximum entropy method [11, 12], the likelihood function, entropic term, and model function
are absent in the stochastic optimization method. As compared to the stochastic analytical continuation [13, 29], there
are no adjustable parameters, such as Θ in Sandvik’s algorithm and α in Beach’s algorithm. Thus, the simulated
results of the stochastic optimization method are less affected by artificial parameters.
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4. Overview

4.1. Major features

Now the ACFlow toolkit supports three analytical continuation methods as introduced above. It includes four
different analytical continuation solvers, namely MaxEnt, StochAC, StochSK, and StochOM. Just as their names
suggested, the MaxEnt solver implements the maximum entropy method [12]. The StochAC and StochSK solvers
implement the K. S. D. Beach’s algorithm [29] and A. W. Sandvik’s algorithm [13] of the stochastic analytical contin-
uation, respectively. The StochOM solver implements the stochastic optimization method [15]. The ACFlow toolkit
also provides a convenient library, which can be used to prepare and carry out analytical continuation calculations
flexibly. The major features of the ACFlow toolkit are summarized in Table 1.

Features MaxEnt StochAC StochSK StochOM

Matrix-valued Green’s function Y N N N
Imaginary time grid Y Y Y Y
Matsubara frequency grid Y Y Y Y
Linear mesh Y Y Y Y
Nonlinear mesh Y Y Y Y
Fermionic kernel Y Y Y Y
Bosonic kernel Y Y Y Y
Self-defined model function Y N N N
Constrained analytical continuation N Y Y Y
Regeneration of input data Y Y Y Y
Kramers-Kronig transformation Y Y Y Y
Parallel computing N Y Y Y
Parallel tempering N Y N N
Interactive mode Y Y Y Y
Script mode Y Y Y Y
Standard mode Y Y Y Y

Table 1: Major features of the ACFlow toolkit. MaxEnt, StochAC, StochSK, and StochOM are the four analytical continuation solvers as imple-
mented in this toolkit.

In Table 1, “Y” means yes while “N” means no. “Interactive mode”, “Script mode”, and “Standard model” are the
three running modes supported by the ACFlow toolkit. We will introduce them in next section. The MaxEnt solver
supports the “historic”, “classic”, “bryan”, and “chi2kink” algorithms to determine the α parameter. The StochAC

solver is only compatible with a flat model function, while the StochSK and StochOM solvers don’t rely on any default
model functions. The StochOM solver does not support analytical continuation of fermionic imaginary time Green’s
function for the moment.

4.2. Implementations

The ACFlow toolkit is developed with pure Julia language. Thanks to powerful type system and multiple dispatch
paradigm of the Julia language, the four different analytical continuation solvers are integrated into an united software
architecture. Redundant codes are greatly reduced. It is quite easy to implement new analytical continuation solver
or add new features to the existing solvers in the future. Distributed computing is a built-in feature of Julia. So, it is
straightforward to realize parallel calculations in the ACFlow toolkit. Now except for the MaxEnt solver, all the other
solvers are parallelized.

The source codes of the ACFlow toolkit are placed in the acflow/src folder. Their functions are summarized in
Table 2. The documentation of the ACFlow toolkit is written by using the Markdown language and Documenter.jl

package. The source codes are placed in the acflow/docs folder. The users can build documentation by themselves.
Please see section 5 for how to do that. Or they can read the latest documentation in the following website:

https://huangli712.github.io/projects/acflow/index.html
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Filename Description
ACFlow.jl Entry of the ACFlow module.
maxent.jl Maximum entropy method.
sac.jl Stochastic analytical continuation (K. S. D. Beach’s algorithm).
san.jl Stochastic analytical continuation (A. W. Sandvik’s algorithm).
som.jl Stochastic optimization method.
global.jl Numerical and physical constants.
types.jl Basic data structures and computational parameters.
base.jl Driver for analytical continuation simulation.
inout.jl Read input data and write calculated results.
config.jl Parse configuration file and extract computational parameters.
math.jl Root finding, numerical integration, interpolation, Einstein summation, and curve fitting.
util.jl Some utility functions.
mesh.jl Meshes for spectral density.
grid.jl Grids for input data.
model.jl Default model functions.
kernel.jl Kernel functions.

Table 2: List of source codes of the ACFlow toolkit.

Ten tests and four tutorials are also shipped with the ACFlow toolkit. Their source codes are placed in the acflow/test
folder. See acflow/test/test.md and acflow/test/tutor.md for more details. The code repository of the
ACFlow toolkit is:

https://github.com/huangli712/ACFlow

5. Getting started

In this section, we will discuss how to install and use the ACFlow toolkit.

5.1. Installation
It is an easy task to install the ACFlow toolkit. First, since it is written in pure Julia language, it is necessary

to install the Julia runtime environment at first. The newest version of Julia is always preferred (version > 1.60).
Since the core codes only rely on Julia’s built-in standard library, no the third-party packages are needed. Second,
just download source codes of the ACFlow toolkit from its github repository. It should be a compressed file, such as
acflow.zip or acflow.tar.gz. Please uncompress it in your favorite directory by using the following commands:

$ unzip acflow.zip

or

$ tar xvfz acflow.tar.gz

Third, the users have to declare a new environment variable ACFLOW HOME. Supposed that the root directory of the
ACFLow toolkit is /home/your home/acflow, then ACFLOW HOME should be setup as follows:

$ export ACFLOW_HOME=/home/your_home/acflow/src

Finally, in order to generate the documentation, the users should type the following commands in the terminal:

$ pwd

/home/your_home/acflow

$ cd docs

$ julia make.jl

After a few seconds, the documentation is built and saved in the acflow/docs/build directory if everything is OK.
The home page of the documentation is acflow/docs/build/index.html. We can open it with any web browsers.
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5.2. Run

The ACFlow toolkit is designed to be flexible and easy-to-use. It provides three running modes to facilitate
analytical continuation calculations, namely the interactive, script, and standard modes.

Interactive mode. With the ACFlow toolkit, the users can setup and carry out analytical continuation simulations
interactively in Julia’s REPL (Read-Eval-Print Loop) environment. For example,

julia> push!(LOAD_PATH, ENV["ACFLOW_HOME"])

julia> using ACFlow

julia> setup_args("ac.toml")

julia> read_param()

julia> mesh, Aout, Gout = solve(read_data())

Here, ac.toml is a configuration file, which contains essential computational parameters. The return values of the
solve() function (i.e., mesh, Aout, and Gout) are mesh at real axis ω, spectral density A(ω), and reproduced Green’s
function G̃, respectively. They can be further analyzed or visualized by the users.

Script mode. The core functionalities of the ACFlow toolkit are exposed to the users via a simple application
programming interface. So, the users can write Julia scripts easily by themselves to perform analytical continuation
simulations. A minimal Julia script (acrun.jl) is listed as follows:

#!/usr/bin/env julia

push!(LOAD_PATH, ENV["ACFLOW_HOME"])

using ACFlow

setup_args("ac.toml")

read_param()

mesh, Aout, Gout = solve(read_data())

Of course, this script can be extended to finish complex tasks. In section 6.1, a realistic example is provided to show
how to complete an analytical continuation of Matsubara self-energy function via the script mode.

Standard mode. In the standard mode, the users have to prepare the input data manually. In addition, a con-
figuration file must be provided. Supposed that the configuration file is ac.toml, then the analytical continuation
calculation is launched as follows:

$ /home/your_home/acflow/util/acrun.jl ac.toml

or

$ /home/your_home/acflow/util/Pacrun.jl ac.toml

Noted that the acrun.jl script runs sequentially, while the Pacrun.jl script supports parallel and distributed com-
puting. As we can conclude from the filename extension of configuration file (ac.toml), it adopts the TOML speci-
fication. The users may edit it with any text-based editors. Next we will introduce syntax and format of the input data
files and configuration files.

5.3. Input files

The input files for the ACFlow toolkit can be divided into two groups: data files and configuration files.
Data files. The input data should be store in CSV-like text files. For imaginary time Green’s function, the data

file should contain three columns. They represent τ, Ḡ(τ), and standard deviation of Ḡ(τ). For fermionic Matsubara
Green’s function, the data file should contain five columns. They represent ωn, ReG(iωn), ImG(iωn), standard devi-
ation of ReG(iωn), and standard deviation of ImG(iωn). For bosonic correlation function χ(iωn), the data file should
contain four columns. They represent ωn, Reχ(iωn), and standard deviation of Reχ(iωn).

Configuration files. The configuration file adopts the TOML format. It is used to setup the computational pa-
rameters. It consists of one or more blocks. Possible blocks (or sections) of the configuration file include [BASE],
[MaxEnt], [StochAC], [StochSK], and [StochOM]. The [BASE] block is mandatory, while the other blocks are
optional. A schematic configuration file (ac.toml) is listed as follows:
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[BASE]

finput = "giw.data"

solver = "StochOM"

...

[MaxEnt]

method = "chi2kink"

...

[StochAC]

nfine = 10000

...

[StochSK]

method = "chi2min"

...

[StochOM]

ntry = 100000

...

In the [BASE] block, the analytical continuation problem is defined. The solver used to solve the problem must be
assigned. The types of mesh, grid, default model function, and kernel function are also determined. The [MaxEnt],
[StochAC], [StochSK], and [StochOM] blocks are used to customize the corresponding analytical continuation
solvers further. In Table 3-Table 6, all the possible input parameters for these blocks are collected and summarized.
As for detailed explanations of these parameters, please refer to the user guide of the ACFlow toolkit. The uses can
find it in the acflow/docs directory.

[BASE] block
Parameter Type Default Description
finput string “green.data” Filename for input data.
solver string “MaxEnt” Solver for the analytical continuation problem.
ktype string “fermi” Type of kernel function.
mtype string “flat” Type of default model function.
grid string “ffreq” Grid for input data (imaginary axis).
mesh string “linear” Mesh for output data (real axis).
ngrid integer 10 Number of grid points.
nmesh integer 501 Number of mesh points.
wmax float 5.0 Right boundary (maximum value) of mesh.
wmin float -5.0 Left boundary (minimum value) of mesh.
beta float 10.0 Inverse temperature.
offdiag bool false Treat the off-diagonal part of matrix-valued function?
pmodel array N/A Additional parameters for customizing the default model.
pmesh array N/A Additional parameters for customizing the mesh.
exclude array N/A Restriction of energy range of the spectrum.

Table 3: Possible parameters for the [BASE] block.

5.4. Output files

Once the analytical continuation simulation is finished, the final spectral function A(ω) is outputted to Aout.data.
As is shown in Eq. (7), A(ω) is equivalent to the imaginary part of real frequency Green’s function ImG(ω). Then
the ACFlow toolkit will automatically calculate the corresponding real part ReG(ω) via the Kramers-Kronig trans-
formation [see Eq. (8)]. The full Green’s function at real axis G(ω) is stored in Gout.data. The spectral function
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[MaxEnt] block
Parameter Type Default Description
method string “chi2kink” How to determine the optimized α parameter?
nalph integer 12 Total number of the chosen α parameters.
alpha float 1e9 Starting value for the α parameter.
ratio float 10.0 Scaling factor for the α parameter.
blur float -1.0 Shall we preblur the kernel and spectrum?

Table 4: Possible input parameters for the [MaxEnt] block, which are used to setup the solver based on the maximum entropy method [11, 12].

[StochAC] block
Parameter Type Default Description
nfine integer 10000 Number of points of a very fine linear mesh.
ngamm integer 512 Number of δ functions.
nwarm integer 4000 Number of Monte Carlo thermalization steps.
nstep integer 4000000 Number of Monte Carlo sweeping steps.
ndump integer 40000 Intervals for monitoring Monte Carlo sweeps.
nalph integer 20 Total number of the chosen α parameters.
alpha float 1.0 Starting value for the α parameter.
ratio float 1.2 Scaling factor for the α parameter.

[StochSK] block
Parameter Type Default Description
method string “chi2min” How to determine the optimized Θ parameter?
nfine integer 100000 Number of points of a very fine linear mesh.
ngamm integer 1000 Number of δ functions.
nwarm integer 1000 Number of Monte Carlo thermalization steps.
nstep integer 20000 Number of Monte Carlo sweeping steps.
ndump integer 200 Intervals for monitoring Monte Carlo sweeps.
retry integer 10 How often to recalculate the goodness-of-fit function.
theta float 1e6 Starting value for the Θ parameter.
ratio float 0.9 Scaling factor for the Θ parameter.

Table 5: Possible input parameters for the [StochAC] and [StochSK] blocks, which are used to setup the two solvers based on the stochastic
analytical continuation (Beach’s and Sandvik’s algorithms) [13, 29].

is also used to reconstruct the imaginary time or Matsubara Green’s functions [G̃(τ) or G̃(iωn)], which is stored in
repr.data. Besides the three output files, the ACFlow toolkit will generate quite a few output files, which can be
used to analyze and diagnose the calculated results. All of the possible output files of the ACFlow toolkit are collected
and explained in Table 7.

6. Examples

In order to demonstrate usefulness of the ACFlow toolkit, four examples are illustrated in this section. These
examples cover typical application scenarios of the ACFlow toolkit, including analytical continuations of Matsubara
self-energy function, Matsubara Green’s function, imaginary time Green’s function, and current-current correlation
function within the script mode or standard mode. All of the necessary source codes and data files, which can be used
to reproduce the results as shown in this section, are placed in the /home/your home/acflow/test/T* folders.

6.1. Matsubara self-energy function
Now let us consider the following single-band Hubbard model on a Bethe lattice at first:

H = −t
∑
〈i j〉σ

c†iσc jσ − µ
∑

i

ni + U
∑

i

ni↑ni↓, (67)
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[StochOM] block
Parameter Type Default Description
ntry integer 2000 Number of attempts to figure out the solution.
nstep integer 1000 Number of Monte Carlo steps per try.
nbox integer 100 Number of boxes to construct the spectrum.
sbox float 0.005 Minimum area of the randomly generated rectangles.
wbox float 0.02 Minimum width of the randomly generated rectangles.
norm float -1.0 Is the norm calculated?

Table 6: Possible input parameters for the [StochOM] block, which are used to setup the solver based on the stochastic optimization method [15].

Filename Description
Aout.data Final spectral function A(ω).
Gout.data Full Green’s function at real axis G(ω).
repr.data Reproduced Green’s function G̃ at imaginary time or frequency axis.
model.data Default model function m(ω).
chi2.data log10(χ2) vs log10(α).
prob.data P[α|Ḡ] vs α for the MaxEnt solver (bryan algorithm).
Aout.data.alpha i α-resolved spectral function Aα(ω) for the StochAC solver.
hamil.data U(α) vs α for the StochAC solver.
goodness.dat log10(χ2) vs log10(Θ) for the StochSK solver.
stat.data Monte Carlo statistical information for stochastic sampling method.

Table 7: Possible output files of the ACFlow toolkit.

where t is the hopping parameter, µ is the chemical potential, U is the Coulomb interaction, n is the occupation
number, σ denotes the spin, i and j are site indices. This model is solved by using the dynamical mean-field theory
(dubbed DMFT) [41] with the hybridization expansion continuous-time quantum Monte Carlo solver (dubbed CT-
HYB) [3] as implemented in the iQIST package [42, 43]. The parameters used in the DMFT + CT-HYB calculation
are t = 0.5, U = 2.0, µ = 1.0, and β = 10.0. Once the DMFT self-consistent calculation is finished, the Matsubara
self-energy function Σ(iωn) is obtained. We are going to convert it to real frequency self-energy function Σ(ω). The
data of Matsubara self-energy function Σ(iωn) have been preprocessed and stored in siw.data. This file contains five
columns, which are used to record the Matsubara frequency ωn, ReΣ(iωn), ImΣ(iωn), error bar of ReΣ(iωn), error bar
of ImΣ(iωn), respectively. Only the first twenty Matsubara frequency points are kept, because the high-frequency data
are somewhat noisy.

The purpose of this example is to demonstrate usage of the MaxEnt solver and the script mode of the ACFlow
toolkit. Next we will explain the key steps in detail. As for the complete Julia script, please refer to sigma.jl and
gendata.jl in the /home/your home/acflow/test/T01/ folder.

First, we have to load the essential Julia packages. Both the DelimitedFiles and Printf packages belong to
Julia’s standard library. They are used to read input data and write calculated results, respectively.

#!/usr/bin/env julia

push!(LOAD_PATH , ENV["ACFLOW_HOME"])

using DelimitedFiles

using Printf

using ACFlow

welcome () # Print welcome message only

Next, the data of Matsubara self-energy function are read from siw.data. The Hartree term ΣH should be sub-
tracted from its real part:

Σ(iωn)→ Σ(iωn) − ΣH . (68)
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Note that ΣH is approximately equal to the asymptotic value of real part of Σ(iωn) when n goes to infinite.

# Deal with self -energy function

#

# Read self -energy function

dlm = readdlm("siw.data")

#

# Get grid

grid = dlm[:,1]

#

# Get self -energy function

Sinp = dlm[:,2] + im * dlm[:,3] # Value

Serr = dlm[:,4] + im * dlm[:,5] # Error bar

#

# Subtract hartree term

Sh = 1.0

@. Sinp = Sinp - Sh

Next, the computational parameters are encapsulated into two dictionaries. The dictionary B is for the [BASE]

block, while the dictionary S is for the MaxEnt solver. Then the setup param() function is called, so that these
parameters take effect. Here, the MatEnt solver [11, 12] is employed to tackle the analytical continuation problem.
But the other stochastic sampling solvers are also applicable. The default model function is gaussian. The mesh
for spectral density is non-uniform (A tangent mesh). The number of used α parameters is 15, and the optimal α
parameter is determined by the χ2kink algorithm [22].

# Setup parameters

#

# For [BASE] block

# See types.jl/_PBASE for default setup

B = Dict{String ,Any}(

"solver" => "MaxEnt", # Choose MaxEnt solver

"mtype" => "gauss", # Default model function

"mesh" => "tangent", # Mesh for spectral density

"ngrid" => 20, # Number of input points

"nmesh" => 801, # Number of output points

"wmax" => 8.0, # Right boundary of mesh

"wmin" => -8.0, # Left boundary of mesh

"beta" => 10.0, # Inverse temperature

)

#

# For [MaxEnt] block

# See types.jl/_PMaxEnt for default setup

S = Dict{String ,Any}(

"nalph" => 15, # Number of alpha

"alpha" => 1e12 , # Starting value of alpha

"blur" => -1.0, # Enable preblur or not

)

#

# Let the parameters take effect

setup_param(B, S)

It is quite easy to start the analytical continuation calculation. Just call the solve() function and pass the grid,
input data, and error bar data to it. The return values of this function call are real frequency mesh, spectral density,
and reconstructed Matsubara self-energy function.

# Call the solver

mesh , Aout , Sout = solve(grid , Sinp , Serr)
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Finally, the real frequency self-energy function must be supplemented with the Hartree term, and then the final
results are written into sigma.data.

# Calculate final self -energy function on real axis

#

# Add hartree term

@. Sout = Sout + Sh

#

# Write self -energy function to sigma.data

open("sigma.data", "w") do fout

for i in eachindex(mesh)

z = Sout[i]

@printf(fout , "%20.16f %20.16f %20.16f\n",

mesh[i], real(z), imag(z))

end

end

A B

C D

Figure 4: Analytical continuation of Matsubara self-energy function by using the maximum entropy method. (a) Real part of real frequency self-
energy function. (b) Imaginary part of real frequency self-energy function. (c) χ2 as a function of α. The vertical bar indicates the optimal α
parameter chosen by the χ2kink algorithm. (d) Reproduced and original data for imaginary part of the Matsubara self-energy functions.

The calculated results are displayed in Fig. 4. Fig. 4(a) and (b) show the real and imaginary parts of the real
frequency self-energy function, respectively. Near the Fermi level, ReΣ(ω) exhibits quasi-linear behavior, with which
the quasiparticle weight Z and effective mass of electron m∗ can be easily evaluated [41]. As for the imaginary part,
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ImΣ(0) is finite, which indicates that the electron-electron scattering is not trivial. Fig. 4(c) shows the α-dependent χ2.
The vertical bar in this figure indicates the optimal α is around 102.154. In Fig. 4(d), the reproduced and raw Matsubara
self-energy functions are compared. It is apparent that they are consistent with each other.

6.2. Matsubara Green’s function
The purpose of the second example is to treat the Matsubara Green’s function by using the StochOM solver.
At first, please consider the following spectral density with two gaussian peaks:

A(ω) = A1 exp
−(ω − ε1)2

2Γ2
1

 + A2 exp
−(ω − ε2)2

2Γ2
2

 , (69)

with A1 = 1.0, A2 = 0.3, ε1 = 0.5, ε2 = −2.5, Γ1 = 0.2, and Γ2 = 0.8. Then the Matsubara Green’s function G(iωn)
is evaluated by using Eq. (13) with β = 10.0. Random noises, generated by the formula 0.0001r1 exp(i2πr2) where r1
and r2 are pseudo random numbers in (0.0 < r1, r2 < 1.0), are added to G(iωn). The error bar of G(iωn) is fixed to
1e-4. The generated data for G(iωn) are written in giw.data.

Next, we are going to use the standard mode, such that a configure file (ac.toml) must be prepared. It is listed as
follows. Since the StochOM solver is chosen, the [BASE] and [StochOM] blocks must be present.

[BASE]

finput = "giw.data"

solver = "StochOM"

ktype = "fermi"

mtype = "flat"

grid = "ffreq"

mesh = "linear"

ngrid = 10

nmesh = 501

wmax = 5.0

wmin = -5.0

beta = 10.0

offdiag = false

[StochOM]

ntry = 100000

nstep = 1000

nbox = 100

sbox = 0.005

wbox = 0.02

norm = -1.0

Then we use the acrun.jl or Pacrun.jl script to perform analytical continuation simulation. The calculated
results are shown in Fig. 5. As is seen in Fig. 5(a), both the sharp peak around 0.5 eV and the broad peak around
-2.5 eV are correctly reproduced by the StochOM solver. In Fig. 5(b), the reconstructed Matsubara Green’s function
agrees quite well with the raw input data.

6.3. Imaginary time Green’s function
In this example, analytical continuation of imaginary time Green’s function will be tested. Note that this example

is borrowed from Reference [29] directly.
The exact spectral function reads:

A(ω) =

 1
W

|ω|
√
ω2−∆2

, if ∆ < |ω| < W/2.

0, otherwise.
(70)

Here, W denotes bandwidth, and ∆ is used to control size of the energy gap. Let W = 6 and 2∆ = 1. This spectrum
should exhibit flat shoulders, steep peaks, and sharp gap edges at the same time. Actually, it is a typical spectrum of a
BCS superconductor.
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A B

Figure 5: Analytical continuation of Matsubara Green’s function by using the stochastic optimization method. (a) Simulated and exact spectral
functions. (b) Reconstructed and synthetic Matsubara Green’s functions. Only the imaginary parts are presented in this figure.

First, the imaginary time Green’s function G(τ) is generated using Eq. (12). Then a normally-distributed random
noise is add to G(τ). Maximum amplitude of the noise is 1e-4. The error bar of G(τ) is fixed to 1e-3. The data are
written in gtau.data.

Next, we try to prepare the configure file (ac.toml). In this case, we would like to benchmark the StochAC solver,
so the solver parameter is set to “StochAC” and the grid parameter is set to “ftime”. Furthermore, the exclude

parameter is enabled to impose some a priori constraints to the spectrum. The full ac.toml is listed as follows:

[BASE]

finput = "giw.data"

solver = "MaxEnt"

ktype = "fermi"

mtype = "flat"

grid = "ffreq"

mesh = "linear"

ngrid = 10

nmesh = 501

wmax = 5.0

wmin = -5.0

beta = 10.0

offdiag = false

exclude = [[-5.0,-3.0], [-0.5,0.5], [3.0 ,5.0]]

[StochAC]

nfine = 10000

ngamm = 512

nwarm = 4000

nstep = 10000000

ndump = 40000

nalph = 40

alpha = 1.00

ratio = 1.20

We perform analytical continuation simulation by using the acrun.jl or Pacrun.jl script. In order to obtain
smooth spectral density, it is useful to increase number of δ functions (See ngamm parameter) and number of Monte
Carlo sampling steps (See nstep parameter).

Figure 6 shows the calculated results. In Fig. 6(a), the exact spectral function is compared with the simulated
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Figure 6: Analytical continuation of imaginary time Green’s function by using the stochastic analytical continuation (Beach’s algorithm). (a)
Simulated and exact spectral functions. (b) α-dependent spectral functions. (c) Internal energy U as a function of α. The vertical bar indicates the
optimal α parameter. (d) Simulated and exact imaginary time Green’s functions.

spectrum. Note that besides the StochAC solver, the other three solvers are also tested. Their results are also plotted
in this figure for a direct comparison. It is remarkable that the StochAC and StochSK solvers do a superior job of
modelling the spectrum. The major characteristics of the spectrum, including flat regions, steep peaks, and sharp gap
edges, are well captured by the two solvers. Especially, we have finished more tests without any constraints on the
spectral density. The gap in the spectrum can be reproduced as well. On the other hand, the spectra obtained by the
MaxEnt and StochOM solvers are much too smooth, and show extra shoulder peaks around ±2.0. Figure 6(b) shows
α-resolved spectral functions Aα(ω) for selected α parameters. Fluctuation in the flat regions of the calculated spectral
density grows when α increases. Figure 6(c) shows internal energy U as a function of α. From this figure, the critical
α is estimated, which is indicated by the vertical bar. Finally, the reproduced Green’s function G̃(τ) agrees quite well
with the raw input data, as is shown in Fig. 6(d).

6.4. Current-current correlation function

The previous three examples only involve fermionic correlators. How about bosonic correlation functions? In
this example, we will demonstrate how to perform analytical continuation simulation for a typical bosonic correlator,
the current-current correlation function Π(τ), to obtain the optical conductivity σ(ω). Note that this example is taken
from Reference [5] directly.
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The exact optical conductivity σ(ω) reads:

σ(ω) =

{
W1

1 + (ω/Γ1)2 +
W2

1 + [(ω − ε)/Γ2]2 +
W2

1 + [(ω + ε)/Γ2]2

}
1

1 + (ω/Γ3)6 , (71)

where W1 = 0.3, W2 = 0.2, Γ1 = 0.3, Γ2 = 1.2, Γ3 = 4.0, and ε = 3.0. The current-current correlation function Π(τ)
can be evaluated from σ(ω) by using the following equation:

Π(τ) =

∫ ∞

−∞

K(τ, ω)σ(ω) dω, (72)

where the kernel function K(τ, ω) is different from Eq. (14). It reads:

K(τ, ω) =
1
π

ωe−τω

1 − e−βω
. (73)

In this case, β is fixed to be 20.0.
At first, we use Eq. (71) ∼ Eq. (73) to prepare Π(τ). A normally-distributed random noise is add to Π(τ). Maximum

amplitude of the noise is 1e-4. The error bar of Π(τ) is fixed to 1e-4. The data of Π(τ) are written in chit.data.
Next, we conduct analytical continuation simulation as usual. The used configuration file is attached as follows.

Here, the StochSK solver is adopted, so the solver parameter is “StochSK” and the grid parameter is “btime”. And
the Shao-Sandvik algorithm [30] is applied to seek optimal Θ, so the method parameter is “chi2min”. The users can
further increase the values of nfine, ngamm, and nstep parameters to improve computational accuracy.

[BASE]

finput = "chit.data"

solver = "StochSK"

ktype = "bsymm"

mtype = "flat"

grid = "btime"

mesh = "linear"

ngrid = 501

nmesh = 801

wmax = 8.0

wmin = 0.0

beta = 20.0

offdiag = false

[StochSK]

method = "chi2min"

nfine = 40000

ngamm = 1000

nwarm = 1000

nstep = 1000000

ndump = 200

retry = 10

theta = 1e+6

ratio = 0.90

The calculated results are illustrated in Fig. 7. From Fig. 7(a), it is clear that the main features of optical conduc-
tivity are successfully captured by the StochSK solver. Both the sharp Drude peak at ω = 0 and a broad satellite peak
around ω = 3.0 are well reproduced. As is seen in Fig. 7(b), the reconstructed Π̃(τ) coincides with the original Π(τ).

7. Concluding remarks

In this paper, a full-fledged analytical continuation toolkit named ACFlow is presented. It implements several
primary analytical continuation methods, including the maximum entropy method, stochastic analytical continuation,
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Figure 7: Analytical continuation of current-current correlation function by using the stochastic analytical continuation (Sandvik’s algorithm). (a)
Simulated and exact optical conductivities σ(ω). (b) Simulated and exact current-current correlation functions Π(τ).

and stochastic optimization method. It provides quite a few validation and diagnostic tools. It can be used with
great flexibility for the analytical continuations of arbitrary fermionic and bosonic correlation functions generated by
finite-temperature quantum Monte Carlo simulations.

Note that analytical continuation problem is a hotspot in computational physics and many-body physics all the
time. Many efforts have been devoted to solve it in recent years. Noticeable achievements include maximum quantum
entropy method [44], Nevanlinna analytical continuation [45, 46], blocked-mode sampling and grid point sampling in
stochastic analytical continuation [35, 36], constrained stochastic analytical continuation [31, 34], machine learning
assisted analytical continuation [18, 19], and so on. We would like to incorporate these new progresses into the
ACFlow toolkit in the near future.
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