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Abstract

We propose a data-driven approach for constructing machine-learning interatomic potentials (MLIPs)

trained under a regularization with the aim of avoiding nonphysical heat flux. Specifically, we introduce a

regularization term for the heat flux into the cost function of MLIPs to be minimized. Since the treatment of

heat flux using MLIPs with regularization can be decomposed into elemental contributions or conducted in

frequency space, this approach is expected to be useful for investigating the origin of thermal conductivity

obtained from the Green-Kubo formula. However, the strength of regularization needs to be appropriately

set because it may reduce not only the nonphysical part but also the intrinsic heat flux one. To this end,

we investigated the conditions for constructing MLIPs that can reproduce the power spectra of heat flux

associated with the empirical interatomic potential of Ag2Se, which consists of pairwise functions and do

not contain a nonphysical heat flux. The appropriate strength could be estimated from the variation of

the magnitude of regularization term as well as root mean square errors for total potential energy, atomic

force, and virial stress with respect to the strengths, without reference spectrum data. As an application

example, we explored the differences in power spectra between superionic and nonsuperionic conducting

phases based on the heat flux regularization to MLIPs trained with the first-principles calculation data of

Ag2S. Furthermore, our results demonstrate that training with the regularization improves the robustness of

MLIPs as well as the reduction of the nonphysical heat flux.
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I. INTRODUCTION

The Green-Kubo (GK) method is an efficient tool for calculating thermal conductivity (TC) [1–

3] and can be applied to irregular systems, where the heat flux JQ sampled using a molecular

dynamics (MD) simulation is used:

κ =
1

3kBT 2Ω

∫ ∞

0
〈JQ(t) ·JQ(0)〉dt, (I.1)

where kB, T , and Ω are the Boltzmann constant, temperature, and volume of the supercell, re-

spectively. The GK method has recently been combined with machine-learning interatomic poten-

tials [4] (MLIPs) to estimate the TCs of various materials. [5–10] MLIPs, which are trained with

data obtained from first-principles molecular dynamics (FPMD) simulations, successfully repli-

cate the high accuracy of FPMD while maintaining the low computational cost associated with

conventional empirical interatomic potentials (EIPs).

However, a critical problem accompanies the analysis of the origin of TC using the GK method

with MLIPs. The MLIP is a many-body potential; thus, the total potential energy EMLIP is defined

as the sum of the individual atomic potential energies εMLIP
i ,

EMLIP =
Natom

∑
i

εMLIP
i , (I.2)

where Natom denotes the number of atoms in the system. The set {εMLIP
i } is indirectly determined

through the training of EMLIP. There are infinite sets of {εMLIP
i } that generate the same value of

EMLIP, i.e., εMLIP
i has a gauge (called an atomic gauge). [11] Thus, trained MLIPs with different

initial weight parameters are likely to give the same EMLIP, but the set {εMLIP
i } can be different for

each MLIP. According to Kim et al., [11] the value of JQ obtained from the interatomic potentials

defined by Eq. ( I.2) can be divided into Jnet
Q and J

nPhys
Q due to the atomic gauge:

JQ = Jnet
Q +J

nPhys
Q . (I.3)

Only the net heat flux Jnet
Q contributes to the TC. In contrast, it has been revealed that J

nPhys
Q has

no effect on the calculation of TC via Eq. ( I.1) because it is the total derivative with respect to

time. [11, 12] Accordingly, J
nPhys
Q is a nonphysical heat flux. The analysis based on the decomposi-

tion of JQ becomes meaningless because of the presence of J
nPhys
Q , whose values would be different

for each MLIP. On the other hand, the EIPs that consist of only pairwise functions can define the

atomic potential energy unambiguously, and it is therefore considered that the influence of J
nPhys
Q
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can be avoided. Previous studies with such pairwise EIPs succeeded in detailed analyses of the

TC by decomposing JQ into elemental/atomic components [13, 14] or in frequency space. [15–18]

The presence of J
nPhys
Q prevents the application of these useful analytical techniques to MLIPs.

We propose a solution to this problem with a data-driven approach, which provides a way

to prevent J
nPhys
Q from playing a role. Specifically, a regularization term associated with JQ is

introduced into the cost function C to be minimized during the training of MLIPs:

C =C0 + pJ|JQ|
2, (I.4)

where C0 denotes the cost function without the regularization. C0 includes the loss functions for

the total potential energy, atomic force, and virial stress in the training of MLIPs. [6, 19–22] The

regularization term brings JQ closer to 0 during training, thus reducing J
nPhys
Q . However, if the

regularization is too strong, Jnet
Q is also impaired, substantially reducing the accuracy of the MLIP.

Therefore, it is vital to adjust the coefficient pJ .

To verify the effectiveness of this approach to heat flux regularization, we used an EIP of

Ag2Se [23] consisting of pairwise functions. The EIP of Ag2Se is physically superior, being

able to describe the phase transitions between the liquid, superionic (α), and nonsuperionic (β )

phases. [23, 24] First, taking advantage of the low computational cost of EIPs, the heat flux auto-

correlation functions (HFACFs) 〈JQ(t) ·JQ(0)〉 for β - and α-Ag2Se and the corresponding power

spectra S(ω) based on the Wiener-Khintchine theorem were calculated and used as reference data.

In addition to S(ω) being affected by J
nPhys
Q , which helps to verify the effect of regularization, S(0)

matches the TC, and S(ω) for ω > 0 represents the frequency distribution of phonons. [25, 26]

Second, we investigated the condition of the coefficient pJ of the regularization term under which

the MLIPs trained with the EIP-MD data of β - and α-Ag2Se reproduced the reference power spec-

tra. Next, as an application, the results of the previous step were used to construct MLIPs trained

with FPMD data for the β and α phases of Ag2S. Finally, we analyzed the difference between the

power spectra of the two phases. Notwithstanding the difference in the dynamics of the Ag atoms,

the TCs of the two phases have been experimentally estimated as similar values of approximately

0.5 Wm-1K-1. [27, 28] An analysis of power spectra in frequency space would provide information

on the characteristic phonon distributions in the two phases. The results of the above-mentioned

procedures might facilitate the development of silver chalcogenides such as Ag2Se and Ag2S as

thermoelectric materials and thermoelectric diode devices.

In this study, we adopted the artificial neural network (ANN) potential [19, 29] as the MLIP.
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We recently proposed a computational framework for calculating TC by the GK method using

ANN potentials, reporting the possibility of estimating the TCs of β - and α-Ag2Se with high

accuracy. [30–32] In the present study, we further improved the framework by the heat flux regu-

larization.

In section II, we explain our computational methodologies, such as the construction of the ANN

potential, the formulas for the heat flux and the power spectrum, the creation of training data for

Ag2Se and Ag2S, the cost function, the regularization term, and the calculation of TC and the

power spectrum. In section III, we first discuss the estimation of the appropriate coefficient pJ of

the regularization term through the reproduction of power spectra from the EIP of Ag2Se. Second,

we apply this approach to Ag2S without reference data and mention the difference between the

power spectra of the β and α phases. We finally present our conclusions in section IV.

II. COMPUTATIONAL METHODS

A. ANN Potential

The ANN potentials considered in this study were constructed using the Aenet code, which is

a training code developed by Artrith et al. [29] The ANN potential constructed by the Aenet code

comprised feed forward neural networks (FFNNs) created for each atomic species, comprising

two hidden layers with ten nodes. The scaled hyperbolic tangent [29] was used as the activation

function of hidden layers. The total potential energy EANN is defined as the sum of the atomic

potential energies {εANN
i } output from FFNNs for all atoms in the system, [33] i.e., via Eq. ( I.2).

A numerical descriptor σi that characterizes the atomic structure around each atom was used

as the input for the ANN potential to obtain εANN
i . Among the various methods for creating such

descriptors, Artrith et al. proposed the Chebyshev descriptor that exploits the recursivity of the

Chebyshev polynomial. [34] The seventeen radial and five angular Chebyshev descriptors were

used with the cutoff radii of 8 Å and 5 Å, respectively.
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B. Green-Kubo method

1. Heat flux formula

The heat flux JQ in Eq. ( I.1) for the EIP of Ag2Se and the ANN potential is defined as [32]

JQ =
Natom

∑
i

(ti+ εi)vi +
Natom

∑
i

Wivi

−
2

∑
µ

hµ

Nµ

∑
i∈µ

vi , (II.1)

where ti, εi, vi, and Wi are the kinetic energy, potential energy, velocity, and virial tensor for

the ith atom, respectively. In addition, hµ and Nµ denote the partial enthalpy and the number

of atoms for the µth component in the system (µ ∈ {Ag, Se} for Ag2Se and µ ∈ {Ag, S} for

Ag2S), respectively. The formulas for εi and Wi for the EIP of Ag2Se are shown in Section I of

the Supplementary Materials (SM). Wi for the ANN potential with the Chebyshev descriptor is

defined as [31]

WANN
i = ∑

j 6=i

ri j ⊗
∂εANN

j

∂r ji

, (II.2)

where ri j ≡ r j − ri and ri denotes ith atomic coordinate. Note that the summation of Wi over

Natom coincides with the total virial tensor W defined by the virial theorem. The potential part of

the virial stress tensor Πpot is calculated by dividing W by the volume of the supercell Ω . The

third term on the right-hand side in Eq. ( II.1) is introduced to correct the difference in the particle

number flux between each component, [35] which is necessary in binary or other multiple system.

In the GK method, decomposing JQ into constituent parts enables us to estimate their respective

contributions to the TC. To elucidate the elemental contributions from components 1 and 2 denoted

as µ1 and µ2, respectively, JQ in Eq. ( II.1) is decomposed into Jµ1 and Jµ2. Incidentally, JQ can

be also divided into the kinetic (convective) and potential (conductive) parts denoted as JK and

JP, respectively. JK and JP consist of terms in Eq. ( II.1) containing ti and εi and containing Wi,

respectively.
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2. Power spectrum of heat flux

According to the Wiener-Khintchine theorem, the Fourier transformation of the time series of

the HFACF produces the power spectrum S(ω):

S(ω) =

∫ ∞

−∞
eiωt〈JQ(t) ·JQ(0)〉dt

= 2
∫ ∞

0
cos(ωt)〈JQ(t) ·JQ(0)〉dt. (II.3)

Furthermore, the elemental and kinetic/potential contributions of S(ω) can also be calculated us-

ing the decomposed heat fluxes mentioned in section II B 1: S(ω) = Sµ1-µ1(ω) + Sµ1-µ2(ω) +

Sµ2-µ1(ω)+Sµ2-µ2(ω) and S(ω) = SK-K(ω)+SK-P(ω)+SP-K(ω)+SP-P(ω).

C. Generation of Ag2Se training data by MD simulation with EIP

The MD simulations in this paper were executed using the QXMD [36] code. In this section, we

use the EIP proposed by Rino et al., [23] comprising three pairwise potential functions: repulsive,

dielectric dipole interaction, and Coulomb interaction terms (see Section I of the SM).

1. β -Ag2Se at 300 K

We generated the training data of β -Ag2Se at 300 K by performing MD simulations with the

EIP of Ag2Se. [23] The unit cell of β -Ag2Se reproduced by the EIP has an orthorhombic structure

consisting of four Ag2Se molecules with the following lattice parameters: a = 4.29 Å, b = 6.82

Å, and c = 8.25 Å. [24] Using the 8× 2× 2 unit cell structure consisting of 256 Ag and 128 Se

atoms under periodic boundary conditions, an MD simulation with the canonical ensemble [37]

(hereinafter called NV T -MD) was performed with 100,000 steps at 300 K. The time step ∆t was

set to 2.42 fs. A total of 1,000 MD steps were used as training data by extracting every 100 steps

from the 100,000 MD steps to remove similar structures. The atomic coordinates {r
βEIP
I,i }, atomic

velocities {v
βEIP
I,i }, total potential energy E

βEIP
I , atomic force {F

βEIP
I,i }, virial tensor WβEIP

I , and

supercell volume Ω
βEIP
I , were contained in the Ith MD step data.
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2. α-Ag2Se at 500 K

The data generated using the EIP of Ag2Se in our previous study [32] were used in this study.

Using the experimentally obtained number density for α-Ag2Se at 500 K (0.0461 Å-3), [38] we

prepared a system with 256 Ag and 128 Se atoms in a cubic supercell under periodic boundary

conditions. The length of one side of the supercell was 20.271 Å. For the configuration, an NV T -

MD simulation using the EIP of Ag2Se was performed with 100,000 steps at 500 K. The time step

∆t was set to 2.42 fs. A total of 1,000 MD steps were used as training data by extracting every 100

steps. The atomic coordinates {rαEIP
I,i }, atomic velocities {vαEIP

I,i }, total potential energy EαEIP
I ,

atomic force {FαEIP
I,i }, virial tensor WαEIP

I , and supercell volume Ω αEIP
I , were contained in the Ith

MD step data.

D. Generation of training data of Ag2S by FPMD simulation

1. β -Ag2S at 300 K

We created training data of β -Ag2S at 300 K by performing FPMD simulations. The electronic

states were calculated by the projector augmented wave method [39, 40] within the framework of

density functional theory (DFT). [41, 42] Projector functions were generated for the 4d, 5s, and

5p states of Ag and for the 3s, 3p, and 3d states of S. The Perdew-Burke-Ernzerhof generalized

gradient approximation [43] was employed for the exchange correlation energy. To correctly rep-

resent the electronic states in localized d orbitals of Ag, the DFT+U method [44] with the effective

parameter for the Coulomb interaction Ueff = 6.0 eV [45, 46] was used. The empirical correction

of the van der Waals interaction by the DFT-D approach [47] was employed. The plane wave

cutoff energies were 20 and 200 Ry for the electronic pseudo-wave function and pseudo-charge

density, respectively. The energy functional was minimized iteratively using a preconditioned

conjugate-gradient method [48]. The Γ point was used for Brillouin zone sampling.

The unit cell of β -Ag2S has a monoclinic structure consisting of four Ag2S groups with lattice

parameters: a = 4.231 Å, b = 6.930 Å, c = 9.526 Å, and β = 125.48◦. [49] Considering that the

structure is a slightly distorted bcc lattice of S atoms, 32 unit cells were arranged to construct an

atomic configuration close to cubic structure, containing 256 Ag and 128 S atoms. The lattice pa-

rameters of supercell were a = 19.548 Å, b = 19.052 Å, c = 19.548 Å, α = 90.871◦, β = 90.312◦,

and γ = 90.871◦. Using the configuration under periodic boundary conditions, an FPMD simu-
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lation with the isothermal and isobaric ensemble (hereinafter called NPT -FPMD) was performed

with 3,000 steps at 300 K and 0 GPa. The time step ∆t was set to 1.21 fs. A total of 1,000 MD

steps were used as training data by extracting every 3 steps. The Ith MD step data contained the

atomic coordinates {r
βFP
I,i }, atomic velocities {v

βFP
I,i }, total potential energy E

βFP
I , atomic force

{F
βFP
I,i }, virial tensor WβFP

I , and supercell volume Ω
βFP
I .

2. α-Ag2S at 600 K

We created training data of α-Ag2S at 600 K by performing FPMD simulations. The electronic

state calculation was performed with the same setting as that for β -Ag2S described in the previous

section II D 1. Using the experimental lattice constant of α-Ag2S, [50] we prepared a system with

256 Ag and 128 S atoms in a cubic supercell under periodic boundary conditions, where the length

of one side of the supercell was 19.496 Å.

With that configuration, an NPT -FPMD simulation was performed with 3,000 steps at 600 K

and 0 GPa. The time step ∆t was set to 1.21 fs. A total of 1,000 MD steps were used as training

data by extracting every 3 steps. The Ith MD step data contained the atomic coordinates {rαFP
I,i },

atomic velocities {vαFP
I,i }, total potential energy EαFP

I , atomic force {FαFP
I,i }, virial tensor WαFP

I ,

and supercell volume Ω αFP
I .

E. Training of ANN potential

1. Cost function

We define the following cost function C for training ANN potentials. It comprises three loss

functions associated with the total potential energy (first term), atomic force (second term), and
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virial (third term), and a regularization term associated with the heat flux (fourth term):

C =
pE

2
1
NI

NI

∑
I

(

EANN
I −ERef

I

Natom,I

)2

+
pF

2
1
NI

NI

∑
I

1
3Natom,I

Natom,I

∑
i

(

FANN
I,i −FRef

I,i

)2

+
pW

2
1
NI

NI

∑
I

1
6

6

∑
j

(

W ANN
I, j −W Ref

I, j

Natom,I

)2

+
pJ

2
1
NI

NI

∑
I

1
3Natom,I

(

J′Q,I

)2
, (II.4)

where NI denotes the number of training data and FANN
i is given by [31]

FANN
i =

Natom

∑
j

FANN
i j

= −
Natom

∑
j

[

∂εANN
i

∂r ji

+
∂εANN

j

∂r ji

]

. (II.5)

The pairwise force FANN
i j satisfies Newton’s third law. [51] The prime heat flux J′Q in the fourth

term of Eq. ( II.4) will be described in the next section II E 2. Because these terms differ in di-

mension and size, pE , pF , pW , and pJ are introduced as adjustable parameters. The symbols with

“Ref” denote training data, i.e., those labeled “βEIP”, “αEIP”, “βFP”, or “αFP” and explained in

sections II C and II D.

With each "Ref" data, we performed training on 80% of them and the remaining 20% were used

for testing. Hereafter, the former and latter are called the Train and Test data sets, respectively.

The Levenberg-Marquardt method [29] was adopted for the optimization process. Further details

of the training procedures undertaken to minimize the cost function are provided in Section II of

the SM, except for pJ , whose values are presented in section II E 2.

2. Regularization term of heat flux

The definition of J′Q in Eq. ( II.4) is different from that of JQ in Eq. ( II.1):

J′Q =
Natom

∑
i

WANN
i uRef

i , (II.6)

where uRef
i is a renormalized velocity of the ith atom calculated from the atomic velocities {vRef

i }

in the training data. If the ith atom belongs to the µth component, uRef
i is calculated by subtracting
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the average velocity of all atoms belonging to the µth component from vRef
i :

uRef
i = vRef

i −
1

Nµ

Nµ

∑
j∈µ

vRef
j . (II.7)

The reason for using the renormalized velocity is to play an alternative role to the third term

of Eq. ( II.1). Marcolongo et al. recently showed that replacing atomic velocities in the heat

flux formula with the renormalized velocities approximately corresponds to the introduction of

the correction embodied in the third term. [52] Since the calculation of enthalpy requires a huge

number of statistics and obtaining it from a small amount of training data causes an error in the

calculation of heat flux, their approach was employed in the regularization term. The reason for

considering only the potential part of the heat flux in Eq. ( II.6) was that its contribution to the

TC was dominant compared to that of the kinetic part in our previous studies regarding silver

chalcogenides. [30, 31]

The effect of the regularization term on training is controlled by the magnitude of its coefficient

pJ . In this study, in addition to p j = 0.0, we mainly set pJ = 10-4, 10-3, 10-2, or 10-1 to construct

ANN potentials and compare their results.

Furthermore, we defined the magnitude of the heat flux for regularization, ∆JQ, to evaluate the

value of the heat flux in training as: ∆JQ =
√

1
NI

∑
NI

I
1

3Natom,I

(

J′Q,I

)2 (eV·Å/ps).

F. Calculation of power spectrum of heat flux

In this study, the power spectra S(ω) for the following five potential models were computed:

0. EIP of Ag2Se for creating reference data of β - and α-Ag2Se.

1. ANN potentials trained with EIP-MD data of β -Ag2Se.

2. ANN potentials trained with EIP-MD data of α-Ag2Se.

3. ANN potentials trained with FPMD data of β -Ag2S.

4. ANN potentials trained with FPMD data of α-Ag2S.

Using the same initial atomic configuration, temperature, and time step as those for the training

data, an NV T -MD simulation was performed. Subsequently, a 1,000,000 MD-step simulation

with the microcanonical ensemble (hereinafter called NV E-MD) was performed for sampling JQ
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as defined in Eq. ( II.1). The power spectra S(ω) were finally computed using Eq. ( II.3) with an

upper limit of integration of 2 ps.

As described in section I, JQ for the ANN potential is considered to depend on its initial weight

parameters. Therefore, for statistical evaluation, five ANN potentials with different initial weight

parameters at each pJ were constructed. These potentials are denoted as ANN1-ANN5 hereafter.

The same initial values were used if the names of the potentials matched, even when the values of

pJ were different.

III. RESULTS AND DISCUSSION

A. The reference power spectrum data obtained with EIP of Ag2Se

The power spectra S(ω) of β - and α-Ag2Se calculated using the EIP are displayed in Fig. 1.

Although the obtained TCs are almost the same at ∼0.3 Wm-1K-1, the profiles are distinctly dif-

ferent. The power spectrum of the β phase is characterized by a peak near 7 meV. This peak is due

to the SAg-Ag(ω), as shown in Fig. S1 of the SM. The time variation of the corresponding HFACF

and the cumulative TC κ(t) defined in Eq. (III.1) are shown in Fig. S2 of the SM.

B. Results of ANN potentials trained with EIP-MD data

1. Power spectra of β -Ag2Se and how to estimate the appropriate pJ

The dependence of the β -Ag2Se power spectra on the regularization coefficient pJ is shown

in Fig. 2(a), where the results of five ANN potentials (ANN1-ANN5) with different initial weight

parameters are included. The corresponding HFACFs and κ(t) are shown in Figs. S3(a) and S3(c)

of the SM. With pJ = 0.0 (i.e., without the regularization), the values of the TCs are almost the

same (at ∼0.3 Wm-1K-1) for the five ANN potentials, whereas the spectra differ. The profiles from

0 to 5 meV indicate that the power spectrum S(ω) of each of the ANN potentials lies close to the

reference spectrum in this range; however, above 10 meV the match is poor. As mentioned in

section I, this occurs because J
nPhys
Q is different for each ANN potential. In contrast, with pJ =

10-4, 10-3, and 10-2, the power spectra show very similar profiles among all the ANN potentials,

although the peak heights at 7 meV for 10-4 and 10-3 were not identical. The results with pJ =

10-2 were in good agreement with the reference spectrum for all five ANN potentials. This result
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implies that J
nPhys
Q was successfully reduced by the heat flux regularization.

Training with a much stronger regularization (i.e., pJ = 10-1) not only renders the power spectra

incompatible with the reference spectrum (evidenced by the lower peak heights at 7 meV), but also

makes it difficult to perform long-term MD simulations. Three of the five ANN potentials were

unable to complete the 1,000,000-step NV E-MD simulations. Hence, the corresponding spectra

derived from ANN3-ANN5 are not depicted in Fig. 2(a). The root mean square errors (RMSEs)

for the total potential energy (∆E), atomic force (∆F), and virial stress from the contribution of the

potential energy (∆Πpot), averaged over the five ANN potentials, are illustrated in Figs. 3(a)-3(c),

as a function of pJ . The specific formulas for the RMSEs are provided in Section II C of the

SM. The RMSEs for the Train and Test data are almost identical, suggesting that no overfitting

occurs. In addition, the magnitude of the heat flux for regularization ∆JQ obtained from the training

is shown as a function of pJ for β -Ag2Se in Fig. 3(d). The averages and error bars (standard

deviations) of the RMSEs for pJ = 10-1 have much larger values compared to those for the other

values of pJ , indicating that the accuracies of the ANN potentials worsened drastically as pJ

approached 10-1. Conversely, ∆JQ was the smallest when pJ = 10-1. We hypothesize that the

effect of strong regularization on Jnet
Q , the net heat flux part, reduced the robustness of the ANN

potentials.

These results provide a foundation for finding the appropriate pJ without resorting to reference

data. ∆JQ decreases monotonically as pJ increases. This behavior was the opposite of trend

displayed by the RMSEs. The optimal value of pJ would achieve moderately low values for both

∆JQ and the RMSEs. Note that stronger regularization results in a greater difference between the

values of ∆JQ obtained for the Train and Test data. This result may also be used to estimate the

appropriate value of pJ because the difference between the values of ∆JQ for the Train and Test

data is expected to increase when excessive regularization is imposed.

We sought an optimal value of pJ for β -Ag2Se as follows. As ∆E for the regularization with

pJ = 10-2 is similar to that for pJ = 10-1 but relatively large compared to that of 10-3, the optimum

value for pJ is inferred to lie below 10-2. Therefore, we additionally trained ANN potentials with

pJ = 5×10-3. While ∆JQ shows very little change for pJ = 5×10-3 and 10-2, the values of ∆E, ∆F ,

and ∆Πpot are all smaller for pJ = 5×10-3 than for 10-2; they also display power spectra close to

the reference spectrum. In this way, we could determine an optimal value of pJ by assessing the

RMSEs and ∆JQ as functions of pJ , even if there are no reference data. Although the RMSEs with

pJ = 5×10-3 were not minimal, we confirmed that the ANN potentials almost completely repro-
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duced the atomic structure and ion dynamics, such as the radial distribution functions g(r) and the

mean squared displacements (MSDs) of the EIP of Ag2Se, as shown in Figs. S4(a) and S5(a) of

the SM.

2. Power spectra of α-Ag2Se

The power spectra of α-Ag2Se are shown in Fig. 2(b). The corresponding HFACFs and κ(t) are

shown in Figs. S3(b) and S3(d) of the SM. Qualitatively, the results are similar to those obtained

for β -Ag2Se as discussed in the previous section. With pJ = 0.0, the power spectra for different

ANN potentials were not consistent, as expected. All the spectra lay above the reference spec-

trum across the entire frequency range. Conversely, the training with pJ = 10-4 or 10-3 generated

improved spectra, in good agreement with the reference spectrum. With stronger regularization

with pJ = 10-2 and 10-1, NV E-MD simulations for 1,000,000 steps could be performed only with

three (ANN1-ANN3) and two (ANN4 and ANN5) out of five ANN potentials, respectively. With

reference to the RMSEs displayed in Figs. 3(e)-3(g), the accuracy of the ANN potentials became

considerably poor from pJ = 10-3 to 10-2. As shown in Fig. 3(h), the trend in ∆JQ as a function

of pJ runs counter to that of the RMSEs. ∆JQ for pJ = 10-2 shows a much larger deviation be-

tween the Train and Test data than for 10-3, indicating that the strength of its regularization was

excessive. The results discussed above imply that the optimal value for α-Ag2Se would be pJ =

10-3. The g(r) and MSDs obtained from the ANN potentials are comparable to those of the EIP of

Ag2Se as shown in Figs. S4(b) and S5(b).

3. Improvement of robustness of ANN potential by heat flux regularization

Tracking the variation in the heat flux value of ∆JQ during training reveals interesting behavior.

The variations in ∆E, ∆F , ∆Πpot, and ∆JQ during training of one ANN potential (ANN1) without

regularization for either β - or α-Ag2Se are illustrated in Fig. 4(a). Up to 10 epochs, for both

phases, the RMSEs rapidly decrease whereas, conversely, the values of ∆JQ increase. After 10

epochs, the values of ∆E and ∆Πpot tended to be slightly smaller but remain approximately con-

stant, whereas the values of ∆JQ display an increasing trend. The power spectra calculated using

the ANN potentials at the selected three training epochs for each phase of Ag2Se, i.e., 5, 10, and

50 epochs for the β phase and 4, 10, and 50 epochs for the α phase are presented in Fig. 4(b). The
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power spectra for the β and α phases at 5 and 4 epochs, respectively, were in good agreement with

the reference spectra, but the deviation from the reference spectra increased with epoch number for

both phases. The corresponding TC is almost unchanged (see the power spectra at S(0)). There-

fore, it is considered that the small or nonexistent values of J
nPhys
Q in the early epoch increased

for subsequent epochs. The increasing trend of ∆JQ seen in Fig. 4(a) would reflect the increase

in the value of J
nPhys
Q . In addition, the RMSEs are higher at the epochs that give the agreement

of the spectra with reference data. The robustness of the ANN potentials after 10 epochs, when

the RMSEs are almost at their lowest, is expected to deteriorate because their heat fluxes include

J
nPhys
Q .

The increase in J
nPhys
Q is ascribed to the fact that EANN, FANN

i , and WANN, that constitute the

loss functions, are all sums of atomic components (i.e., εANN
i , FANN

i j , and WANN
i , respectively)

and that there are no training constraints on these components. Because of the atomic gauge

of εANN
i , [11] there are infinite sets of {εANN

i }, {FANN
i j }, and {WANN

i } that produce the same

values of EANN, FANN
i , and WANN, respectively. During training, a set is sought for that will

reduce the loss functions as much as possible, but the forcibly selected atomic components may

have nonphysical values. It can be considered that either overfitting or underfitting of the atomic

components occurred. Furthermore, the heat flux is also composed of these atomic components

(see Eqs. ( II.1) and ( II.6)). FANN
i j , which contains the same derivatives of εANN

i as WANN
i , would

affect the heat flux indirectly through WANN
i (see Eqs. ( II.5) and ( II.2)). Such a heat flux including

nonphysical atomic components is considered to have a large J
nPhys
Q , which would be reflected in

∆JQ.

Therefore, it is expected that the heat flux regularization leads to converse behavior in the

RMSEs and ∆JQ. In addition, since the regularization plays a role in suppressing the overfitting

and underfitting of the atomic components, it improves the robustness of the ANN potentials. The

above discussion also suggests that it is insufficient to measure the robustness of ANN potentials by

the RMSEs alone. Minimizing the RMSEs does not necessarily mean constructing ANN potentials

with high robustness because either overfitting or underfitting of the atomic components may have

occurred. ∆JQ should be used as an indicator of the robustness, in addition to the RMSEs.
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C. Results of ANN potentials trained with FPMD data

The investigation using the EIP of Ag2Se discussed in the previous section III B indicated

the procedure for estimating an appropriate pJ without reference data using the variations of the

RMSEs and ∆JQ with respect to pJ . This section applies the same approach to Ag2S.

1. Power spectra of β - and α-Ag2S and the selection of appropriate pJ

The power spectra for the ANN potentials for β - and α-Ag2S are shown in Figs. 5(a) and 5(b),

respectively. The corresponding HFACFs and κ(t) are shown in Fig. S6 of the SM. With pJ = 0.0,

only one ANN potential can perform stable NV E-MD simulations for 1,000,000 steps for each

of β - and α-Ag2S. However, with pJ = 10-4 or 10-3, stable simulations could be performed with

almost all five ANN potentials. Only one ANN potential provided a failed simulation: ANN3 with

pJ = 10-4 for α phase was failed. The different ANN potentials displayed very similar spectral

profiles. These results show that heat flux regularization improved the robustness of the ANN

potentials. However, with a larger pJ = 10-2, only three (ANN2, ANN4, and ANN5) and zero out

of five ANN potentials provided stable MD simulations for β - and α-Ag2S, respectively.

The RMSEs (i.e., ∆E, ∆F , and ∆Πpot) of β - and α-Ag2S are shown in Figs. 6(a)-6(c) and 6(e)-

6(g), respectively. In addition, the values of the magnitude of the heat flux for the regularization

∆JQ for β and α phases are shown in Figs. 6(d) and 6(h), respectively. In both phases, the averages

and error bars of the RMSEs increased considerably as pJ increased from 10-3 to 10-2. The values

of ∆JQ for pJ = 10-3 were substantially smaller than those for pJ < 10-3. pJ = 10-3 was therefore

considered to be the most appropriate value for both phases. It was confirmed that the g(r) and the

MSDs obtained by the FPMD simulation and the ANN potentials trained with pJ = 10-3 coincided

fairly well, as shown in Figs. S7 and S8 of the SM.

We hypothesize that the one reason of the difficulty of successfully performing long MD sim-

ulations of ANN potentials with pJ = 0.0 for both β - and α-Ag2S is because of the large value

of ∆JQ. The magnitudes with pJ = 0.0 for both phases were much larger than those for the reg-

ularized trainings (i.e., pJ > 0.0), suggesting that the ANN potentials provided larger values of

J
nPhys
Q as well. Therefore, the ANN potentials trained without regularization are considered to

have undergone significant overfitting or underfitting of the atomic components (as explained in

section III B 3), making it difficult to predict accurate physical quantities; in particular, the atomic
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forces, thereby causing fatal computing errors to occur locally during MD simulations. Note that

another reason could be attributed to the low diversity of training data. Because the FPMD train-

ing data were generated by a shorter simulation than the EIP-MD data, the diversity of atomic

configurations included should be much lower. It was difficult to construct a robust ANN potential

that could perform long-term MD simulations using such a low diversity data. [53]

2. Power spectrum analysis for β and α phases

We compared power spectra of β - and α-Ag2S for the most appropriate value pJ = 10-3, as

shown in Fig. 5. The TCs of β - and α-Ag2S were 0.541 ± 0.030 and 0.516 ± 0.050 Wm-1K-1,

respectively. These values are in close agreement with each other and with the experimental val-

ues. [27, 28]

However, the profiles of S(ω) show different features. The peaks at 6 and 34 meV present in

the β -Ag2S spectrum were no longer visible in the spectrum of α-Ag2S, and the height of the

peak at 18 meV is lower in the latter spectrum. In contrast, α-Ag2S was found to have a heavier

tailed distribution up to 90 meV. The components of the power spectra defined in section II B 2

are displayed in Fig. 7. From the power spectra of the elemental contribution for β - and α-Ag2S

shown in Figs. 7(a) and 7(b), respectively, the peaks at 6, 18, and 34 meV and the long tail of the

spectra up to 90 meV are mainly attributed to SS-S(ω). Conversely, the profiles of SAg-Ag(ω) and

the cross terms (SAg-S(ω) and SS-Ag(ω)) did not display substantial variation between the β and

α phases. The peak at 3 meV resulted from SAg-Ag(ω) for both phases. From the power spectra

of the kinetic/potential parts shown in Figs. 7(c) and 7(d), the potential part (SP-P(ω)) dominates

the spectrum in both phases. The power spectrum describes the frequency distribution of phonons,

and the intensity of its peak corresponds to the contribution of individual phonons. [25, 26] In

addition, the phonon frequency analysis results for β -Ag2S at 300 K using the Boltzmann trans-

port equation [54] suggest that acoustic phonons predominantly contribute to the power spectrum

up to ∼5 meV, while optical phonons predominantly contribute to the spectrum above that fre-

quency. Considering these findings, our results for α-Ag2S suggest that instead of a decrease in

optical phonons corresponding to the peaks at 6, 18, and 34 meV, high-frequency optical phonons

with energies up to 90 meV appeared. The frequency ranges of the optical phonons due to the

interactions between S atoms were different for β and α phases. The heat flux regularization ap-

proach will allow us to access information about such phonon distributions that was previously
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unavailable in MLIPs.

IV. CONCLUSION

In this paper, we proposed a data-driven approach to reduce the nonphysical heat flux (i.e.,

J
nPhys
Q ) caused by the atomic gauge [11] by incorporating the regularization of the heat flux into

the training of MLIPs. Because adjusting the strength of regularization is the key to achieving this

reduction, we investigated the conditions for constructing MLIPs under which the power spectra

of the heat flux of β - and α-Ag2Se calculated by the EIP of Ag2Se could be reproduced. The

EIP was composed of only pairwise functions where J
nPhys
Q did not occur. The ANN potential was

adopted as the MLIP in this study.

The strength of the effects could be controlled by the coefficient pJ . We found that the optimal

value of pJ could be estimated without access to reference spectra by clarifying the correlation

of the RMSEs (i.e., ∆E, ∆F , and ∆Πpot) and the magnitude of the heat flux for regularization

(i.e., ∆JQ) with respect to pJ ; that value of pJ that minimizes both ∆JQ and the RMSEs should be

selected.

The heat flux regularization was applied to the ANN potentials trained with the FPMD data

of β - and α-Ag2S. From their power spectra, the frequency ranges of optical phonons associated

with due to the interactions between S atoms was found to be different in the two phases.

We also found that reducing J
nPhys
Q through the regularization improved the robustness of the

ANN potentials. This occurred because the regularization suppressed the overfitting and under-

fitting of the atomic components (i.e., εANN
i , FANN

i j , and WANN
i ). We identified ∆JQ as an useful

indicator for measuring the robustness, in addition to the RMSEs.

With ANN potentials trained with the heat flux regularization, in future, we plan to investigate

the composition dependence of the frequency distribution of phonons and the thermal conductiv-

ity of silver chalcogenide mixtures such as Ag2S1-xSex [28], using power spectrum analysis and

effective analytical techniques [13–18] based on the decomposition of heat flux.

Supplementary Material

See Supplemental Materials for detailed descriptions regarding the EIP of Ag2Se (Section I),

training of ANN potentials (Section II), and the definition of cumulative TC, κ(t) (Section III).
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In Fig. S1, we show the decomposed power spectra according to their elemental contributions

and kinetic/potential parts obtained by the EIP of Ag2Se and ANN potentials trained with the

appropriate regularization, for β - and α-Ag2Se. In Figs. S2, S3, S4, and S5, we show the HFACFs,

κ(t), g(r), and MSDs obtained by the EIP of Ag2Se and trained ANN potentials with the heat flux

regularization under each pJ for β - and α-Ag2Se. In Fig. S6, we show the HFACFs and κ(t)

obtained by trained ANN potentials with the regularization under each pJ , for β - and α-Ag2S. In

addition, the g(r) and the MSDs obtained by the FPMD simulation and the trained ANN potentials

are shown in Figs. S7 and S8.
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FIG. 1: Power spectra of heat flux S(ω) obtained by the empirical interatomic potential (EIP) of Ag2Se for

(a) β - and (b) α-Ag2Se.
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FIG. 2: S(ω) obtained by the EIP of Ag2Se (Reference, dark green) and trained ANN potentials with the

heat flux regularization under each pJ for (a) β - and (b) α-Ag2Se. ANN potentials (ANN1-ANN5) are

trained with five different initial weight parameters (identified by colors in the figures above).
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FIG. 3: Averaged root mean square errors (RMSEs) and corresponding standard deviations (error bars) of

the total potential energy (∆E), atomic force (∆F), and virial stress from the contribution of the potential

energy (∆Πpot) over the five trained ANN potentials for (a-c) β - and (e-g) α-Ag2Se. The values of the

magnitudes of heat flux for regularization (∆JQ) for (d) β - and (h) α-Ag2Se are also shown. Black circles

and red diamonds represent results obtained for the Train and Test data sets, respectively.
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FIG. 4: (a) The variation of ∆E , ∆F , ∆Πpot, and ∆JQ obtained during the training of an ANN potential for

β - (black) and α-Ag2Se (red). The ANN potentials correspond to ANN1 for both phases in Fig. 2. The

solid and dashed curves represent the RMSEs and ∆JQ for the Train and Test data sets, respectively. (b)

The corresponding S(ω) calculated using the ANN potentials at selected epochs marked with filled circles

in (a), along with the results of the EIP of Ag2Se (Reference). Epochs 4, 10, and 50 for β and 5, 10, and 50

for α phases were selected.
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FIG. 5: S(ω) obtained by the trained ANN potentials with heat flux regularization under each pJ for (a)

β - and (b) α-Ag2S. ANN potentials (ANN1-ANN5) are trained by five different initial weight parameters

(identified by colors in the figures above). The black arrows in the power spectra for pJ = 10-3 indicate the

peak positions of the β phase, which are discussed in section III C 2.
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FIG. 6: Averaged RMSEs and corresponding standard deviations (error bars) of ∆E , ∆F, and ∆Πpot over

the five trained ANN potentials for (a-c) β - and (e-g) α-Ag2S. The values of ∆JQ for (d) β - and (h) α-Ag2S

are also shown. Black circles and red diamonds represent results obtained for the Train and Test data sets,

respectively.
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FIG. 7: Decomposed S(ω) by (a-b) elemental contributions and (c-d) kinetic/potential parts obtained by the

ANN potentials trained with the appropriate regularization for β - and α-Ag2S. The former is expressly S

= SAg-Ag + SSe-Se + SAg-Se + SSe-Ag and the latter S = SP-P + SK-K + SP-K + SK-P. For both β - and α-Ag2S,

pJ = 10-3 is used for the regularization. For each decomposed S(ω), results obtained from the five ANN

potentials trained with different initial weight parameters are shown.
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I. EMPIRICAL INTERATOMIC POTENTIAL OF AG2SE AND DEFINITION OF ITS ATOMIC

POTENTIAL, FORCE, AND VIRIAL TENSOR

The empirical interatomic potential V EIP(r) for Ag2Se proposed by Rino et al. [1] is composed

of three pairwise functions: repulsive, dielectric dipole interaction, and Coulomb interaction terms

V EIP (r) =























0.2408
r11 + 0.2025

r
(Ag-Ag)

86.6614
r9 −

0.7088exp(−r/4.43)
r4 − 0.405

r
(Ag-Se)

220.1905
r7 −

5.67exp(−r/4.43)
r4 + 0.81

r
(Se-Se)

, (I.1)

where the interatomic distance r is measured in Å and the energies are given in units of e2/Å =

14.389 eV. In addition, the functional form is defined for each component pair, i.e., Ag-Ag, Ag-Se,

and Se-Se. For the empirical interatomic potential, atomic potential energy of the ith atom εEIP
i

can be written as

εEIP
i =

1
2 ∑

j 6=i

V EIP(ri j), (I.2)

where ri j = |ri j| = |r j − ri| denotes the interatomic distance between the ith and jth atoms. The

summation ∑
Natom
i εEIP

i is equal to total potential energy EEIP. Natom denotes the number of atoms

in the system. Atomic virial tensor for the empirical interatomic potential WEIP
i is given by

WEIP
i =−

1
2 ∑

j 6=i

ri j ⊗FEIP
i j , (I.3)

with FEIP
i j =

∂V EIP(ri j)
∂ri j

, and the summation ∑
Natom
j FEIP

i j is equal to atomic force FEIP
i . The sum of

WEIP
i corresponds to the total virial tensor WEIP.

WEIP =
Natom

∑
i

WEIP
i . (I.4)
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II. TRAINING OF ANN POTENTIALS IN THIS STUDY

A. Training with Data Generated from Empirical Interatomic Potential of Ag2Se

The total number of training data used for the cost function (Eq. (8) in the main text) reached

NI×(DEnergy+DForce+DVirial+DVelocity) = 1000×(1+3×384+6+3×384)= 2311000, where

NI is the number of MD steps, and DEnergy, DForce, DVirial, and DVelocity are the dimensions of

potential energy, atomic force, virial, and atomic velocity in one MD step data, respectively. Note

that how to generate these data was explained in section II C in the main text.

The number of epochs was set to 50 for all training with data generated by the empirical inter-

atomic potential (EIP) of Ag2Se, and pE = pF = 1.0 and pW = 10-5 during the training. Please

see section III B in the main text for the values of pJ in each training.

B. Training with FPMD Data

The total number of training data used for the cost function (Eq. (8) in the main text) reached

NI ×(DEnergy+DForce+DVirial+DVelocity) = 1000×(1+3×384+6+3×384) = 2311000. Note

that how to generate these data was explained in section II D in the main text.

For all training with FPMD data, we took two-step scheme to train ANN potential efficiently

by manipulating pE , pF , and pW . pF was set to 1.0 in both steps, while pE = 10-3 and pW = 10-6

in the first step and pE = 10-1 and pW = 10-1 in the second step. The number of epochs was set

to 20 for each step. Adjusting the coefficients of the cost function during training in this way for

efficiency has been actively carried out in previous studies [2–6]. In addition, the two-step scheme

adopted in this study above has been found to be capable of constructing highly accurate ANN

potentials trained with Ag2Se FPMD data [2]. Please see section III C in the main text for the

values of pJ in each training.

C. The formulas of root mean square errors

For total potential energy,

∆E =

√

√

√

√

1
NI

NI

∑
I

(

EANN
I −ERef

I

Natom,I

)2

.
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For atomic force,

∆F =

√

√

√

√

1
NI

NI

∑
I

1
3Natom,I

Natom,I

∑
i

(

FANN
I,i −FRef

I,i

)2
.

For virial stress from the contribution of the potential energy,

∆Πpot =

√

√

√

√

1
NI

NI

∑
I

1

6Ω Ref
I

6

∑
j

(

W ANN
I, j −W Ref

I, j

)2
.
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III. CUMULATIVE THERMAL CONDUCTIVITY

The cumulative thermal conductivity κ(t) is calculated by

κ(t) =
1

3kBT 2Ω

∫ t

0
〈JQ(t

′) ·JQ(0)〉dt ′, (III.1)

where kB, T , Ω , and JQ are Boltzmann constant, temperature, volume of supercell, and heat flux

in Eq. (5) of the main text, respectively. In this study, κ(t) were computed through Eq. ( III.1)

with the upper limit of integration of 2 ps. This is because κ(t) converged well at 2 ps, as shown

in Figs. S2, S3, and S6.
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IV. SUPPLEMENTARY FIGURES
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Figure S 1: Decomposed power spectra of heat flux S(ω) by (a-b) elemental contributions and (c-d) ki-

netic/potential parts obtained by the empirical interatomic potential (EIP) of Ag2Se (dashed curves) and

ANN potentials trained with regularization (solid curves) for β - and α-Ag2Se. The former is expressly S

= SAg-Ag + SSe-Se + SAg-Se + SSe-Ag and the latter S = SP-P + SK-K + SP-K + SK-P. For β - and α-Ag2Se, pJ =

5×10-3 and 10-3 are used for regularization, respectively. For each decomposed S(ω), results obtained from

the five ANN potentials trained with different initial weight parameters are shown.
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Figure S 2: (a-b) Autocorrelation functions of heat flux 〈JQ(t) · JQ(0)〉 (atomic unit) and (c-d) cumulative

thermal conductivities κ(t) defined in Eq. ( III.1) (Wm−1K−1) up to 2 ps obtained by the EIP of Ag2Se for

β - and α-Ag2Se.
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Figure S 3: (a-b) 〈JQ(t) · JQ(0)〉 (atomic unit) and (c-d) κ(t) (Wm-1K-1) obtained by the EIP of Ag2Se

(Reference, dark green) and trained ANN potentials with heat flux regularization under each pJ for β -

and α-Ag2Se. ANN potentials (ANN1-ANN5) are trained with five different initial weight parameters

(identified by colors in the figures above).
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Figure S 4: Partial radial distribution functions gα-β (r) for atomic pairings Ag-Ag, Ag-Se, and Se-Se calcu-

lated by MD simulations with the EIP of Ag2Se and ANN potentials with the regularization of each pJ for

(a) β - and (b) α-Ag2Se. For each pJ , the one giving the worst training accuracy for the atomic force was

used from the ANN potentials for which the power spectrum could be calculated.
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Figure S 5: Mean squared displacements (MSDs) (Å2) of Ag and Se atoms calculated by MD simulations

using the EIP of Ag2Se and ANN potentials with the regularization of each pJ for (a) β - and (b) α-Ag2Se.

For each pJ , the one giving the worst training accuracy for the atomic force was used from the ANN

potentials for which the power spectrum could be calculated.
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Figure S 6: (a-b) 〈JQ(t) · JQ(0)〉 (atomic unit) and (c-d) κ(t) (Wm-1K-1) obtained by the trained ANN

potentials with heat flux regularization under each pJ for β - and α-Ag2S. ANN potentials (ANN1-ANN5)

are trained with five different initial weight parameters (identified by colors in the figures above).
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simulations with ANN potentials with the regularization of each pJ for (a) β - and (b) α-Ag2S. For each pJ ,

the one giving the worst training accuracy for the atomic force was used from the ANN potentials for which

the power spectrum could be calculated.
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Figure S 8: MSDs (Å2) of Ag and S atoms calculated in the FPMD simulation and MD simulations using

the ANN potentials with the regularization of each pJ for (a) β - and (b) α-Ag2S. For each pJ , the one

giving the worst training accuracy for the atomic force was used from the ANN potentials for which the

power spectrum could be calculated.
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