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Abstract

An exact conditional approach is developed to test for certain forms of positive association
between two ordinal variables (e.g. positive quadrant dependence, total positivity of order 2).
The approach is based on the use of a test statistic measuring the goodness-of-(t of the model
formulated according to the type of positive association of interest. The nuisance parameters, cor-
responding to the marginal distributions of the two variables, are eliminated by conditioning the
inference on the observed margins. This, in turn, allows to remove the uncertainty on the conclu-
sion of the test, which typically arises in the unconditional context where the null distribution of
the test statistic depends on such parameters. Since the multivariate generalized hypergeometric
distribution, which results from conditioning, is normally intractable, Markov chain Monte Carlo
methods are used to obtain maximum likelihood estimates of the parameters of the constrained
model. The Pearson’s chi-squared statistics is used as a test statistic; a p-value for this statistic
is computed through simulation, when the data are sparse, or exploiting the asymptotic theory
based on the chi-bar squared distribution. The extension of the present approach to deal with
bivariate contingency tables, strati(ed according to one or more explanatory discrete variables,
is also outlined. Finally, three applications based on real data are presented.
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1. Introduction

A relevant problem in categorical data analysis is that the inference on the association
between two variables is aBected by the presence of the so-called nuisance parameters,
corresponding to the marginal distributions. This is due to the fact that the distribution
of the test statistic used to measure the discrepancy between the model incorporating
the hypothesis of interest and the saturated model typically depends on the marginal
distributions of the two variables, which are obviously unknown. Several strategies
have been proposed to cope with this problem; the most well-known strategy goes
back to the Fisher’s exact test (see Fisher, 1934, 1935; Agresti, 1992) and consists of
conditioning the inference on the observed margins which are suCcient statistics for
the nuisance parameters.

Obviously, the problem also exists when we want to test the hypothesis that a certain
type of positive association exists between the variables of interest, an important is-
sue that (nds applications in reliability theory, operational research, economics, (nance
and many other (elds; see, for example Douglas et al. (1991), Robertson et al. (1988),
Agresti and Coull (1998), Shaked and Shanthikumar (1994) and Dykstra et al. (1995).
This topic has been recently dealt with by Bartolucci et al. (2001) who proposed a
general framework for (tting and testing models incorporating several forms of posi-
tive association, such as positive quadrant dependence (PQD), introduced by Lehmann
(1966), and total positivity of order 2 (TP2), introduced by Karlin (1968). In partic-
ular, Bartolucci et al. (2001) showed that the deviance between the saturated model
and the model incorporating a certain notion of positive dependence and the deviance
between this model and that of independence have asymptotic chi-bar squared distri-
bution (a mixture of chi-squared distributions). However, the null distributions of such
statistics depend on the (unknown) marginal distributions of the two variables and this
confers uncertainty to the results of the testing procedure. To get rid of these nuisance
parameters, Bartolucci et al. (2001) also explored the conditional approach. However,
the distribution resulting from conditioning on the observed margins, known as mul-
tivariate generalized hypergeometric, is almost intractable whenever the frequencies
or the dimension of the table are moderately large; in fact, computing the probabil-
ity of observing a certain table requires enumerating all the possible tables with the
same margins. This strongly limits the applicability of the conditional approach and so
Bartolucci et al. (2001) suggested an approximation based on maximizing the product
multinomial likelihood, that derives from conditioning only on the row margin, under
the constraint that the marginal distribution of the column variable is equal to the
observed one.

In this paper we show how the conditional approach at issue may be exploited
also when the hypergeometric distribution is intractable. Basically, for estimating the
parameters of the model under the constraints due to a certain type of positive associ-
ation, we rely on the Monte Carlo maximum likelihood approach; see Geyer (1991),
and Geyer and Thompson (1992). Instead of maximizing the likelihood, which cannot
be computed exactly, we maximize an estimate of the likelihood ratio, with respect
to a (xed point of the parameter space, obtained by the joint use of the importance
sampling (Hammersley and Handscomb, 1964, p. 57–59) and the Metropolis–Hastings
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algorithm (Metropolis et al., 1953; Hastings, 1970); in practice, this strategy avoids
the enumeration of all the contingency tables with the given margins by using an ap-
propriate random subset of such tables. The estimated likelihood ratio is maximized
by means of the constrained Fisher-scoring algorithm used in Bartolucci et al. (2001).
As a discrepancy measure between nested models, we use the Pearson’s chi-squared
statistic that, in this context, proved to perform better than the likelihood ratio test and
to be easily implementable. A p-value for this statistic may be simply computed on the
basis of Monte Carlo simulations, when the observed table is sparse, or by exploiting
the asymptotic theory based on the chi-bar squared distribution.

The paper is organized as follows. In Section 2 we brieIy describe the class of
models of interest, while in Section 3 we illustrate the conditional approach and the
resulting hypergeometric distribution. The algorithm for (tting these models and the
connected inference are described in Sections 4–6; in the latter, in particular, we discuss
the case in which the data are strati(ed according to one or more explanatory categorical
variables. Finally, in Section 7, three applications involving real data sets are discussed.

2. Models of positive association

Let A and B be two categorical variables having, respectively, I and J categories;
let also pij be the joint probability of the ith category of A and the jth category of
B and p be the IJ -dimensional column vector with elements pij arranged by letting
the index j run faster than i. Douglas et al. (1991), in a study of concepts of positive
dependence, show that 16 diBerent types of log-odds ratios may be used to describe
the association between A and B. These log-odds ratios are identi(ed by a type for A
and a type for B that may be: local (l), continuation (c), reverse continuation (r) or
global (g). Some examples are given below, where the log-odds ratio referred to the
ijth cell of the contingency table (i = 1; : : : ; I − 1; j = 1; : : : ; J − 1) is denoted by �ij

(see also Agresti and Coull, 1998):

• Local: type l for both A and B

�ij = log
pijpi+1; j+1

pi;j+1pi+1; j
;

• Local–global: type l for A and g for B

�ij = log
(
∑

k6j pik)
(∑

k¿j pi+1; k

)
(∑

k¿j pik

)(∑
k6j pi+1; k

) ;

• Continuation: type c for both A and B

�ij = log
pij

(∑
h¿i;k¿j phk

)
(∑

k¿j pik

) (∑
h¿i phj

) ;
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• Global: type g for both A and B

�ij = log

(∑
h6i; k6j phk

)(∑
h¿i;k¿j phk

)
(∑

h6i; k¿j phk

)(∑
h¿i;k6j phk

) :

The most well-known log-odds ratios are those of type local, also because they are
the only ones that may be expressed through a log-linear parameterization. However,
the literature on ordinal categorical variables is more closely related to log-odds ratios
of type g or c. In particular, global log-odds ratios seem to be more appropriate for
dealing with ordered categorical variables of a general type and have been used in
the global cross-ratio models of Dale (1986). Continuation log-odds, instead, are more
appropriate when categories correspond to levels of achievement that may be entered
only if the previous level has also been achieved. For example, they have been used
for survival variables, for which categories correspond to successive time intervals (see
Dykstra et al., 1991).

DiBerent types of log-odds ratios determine diBerent notions of positive association.
Each of these notions may be expressed through the constraint �ij¿ 0 for all i and j.
For instance, TP2 and PQD may be expressed by using local and global log-odds,
respectively. Note that there is a hierarchy among these notions of positive dependence
in the sense that, for instance, TP2 implies that all the continuation log-odds ratios are
non-negative which, in turn, implies PQD (see Douglas et al., 1991, p. 197 for details).
Note also that, regardless of the type of log-odds ratios, independence between A and
B may be expressed through the constraint �ij = 0, for all i and j.

Following Bartolucci et al. (2001), all the log-odds ratios of a certain type may be
easily expressed making use of the matrix notation. Let � be the vector with elements
�ij arranged by letting the index j run faster than i; this vector may be simply expressed
as

�= K log (Mp);

where K is a matrix of contrasts and M a marginalization matrix. More precisely, let
Kh+1 = (−Ih Ih) and

Mh+1(l) =

(
Ih 0h;1

0h;1 Ih

)
; Mh+1(g) =

(
Th 0h;1

0h;1 T ′
h

)
;

Mh+1(c) =

(
Ih 0h;1

0h;1 T ′
h

)
; Mh+1(r) =

(
Th 0h;1

0h;1 Ih

)
;

where Th is a h×h lower triangular matrix of ones (notice that the sub-matrices which
are one on the top of the other in each Mh+1 have not the same number of columns);
then, we have

K = KI ⊗ KJ and M =MI (a) ⊗MJ (b);

with ⊗ denoting the Kronecker product, a the type of logit used for A and b that used
for B.
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As indicated above, the constraint of positive association may be expressed as �¿ 0.
However, in several circumstances, it may be interesting to use further linear equality
and/or inequality constraints on the log-odds ratios. Therefore, we deal with a general
class of models that may be expressed in the form C�= 0, D�¿ 0. Let, for instance,
C = (I 0) − (0 I); when local log-odds ratios are used, this model corresponds to
the linear-by-linear association model with equispaced scores (Goodman, 1979), while,
when global log-odds ratios are used, this is the Plackett (1965) model. Similarly we
can express the hypothesis that the (I −1)× (J −1) matrix of all the log-odds ratios is
symmetric, �ij = �ji; ∀i; j, which corresponds to the quasi-symmetric model introduced
by Caussinus (1966) or the hypothesis that all the upper diagonal entries of this matrix
are greater or equal to the corresponding lower diagonal entries (see also McCullagh,
2000).

3. The conditional approach

For an observed contingency table of dimension I × J , let xij be the frequency in
the ijth cell and x be the vector with elements xij, for i = 1; : : : ; I and j = 1; : : : ; J ,
arranged as in p. If we assume, as usual, that the (unconditional) distribution of x
is multinomial, the conditional distribution of x, given the row and column margins,
is multivariate generalized hypergeometric. Such a distribution, which belongs to the
exponential family, may be expressed as

�(y; �) =
m(y)exp(y′�)

c(�) ;

where y is the vector with the elements in x without those referred to the last row
and column of the contingency table and � is the vector of canonical parameters with
entries given by the log-odds ratios

�ij = log
pijpIJ

piJpIj
; i = 1; : : : ; I − 1; j = 1; : : : ; J − 1:

Moreover, m(y) = n!=
∑

ij xij! is the multinomial factor, with n being the sample size,
and c(�) is the normalizing constant given by the sum of m(y) exp(y′�) for all possible
tables y with the given margins ri =

∑
j xij and cj =

∑
i xij; hereafter, the set of these

tables will be denoted by Y. Note that we may simply express � as ( MK I ⊗ MK J )log(p),
where MK h = (Ih−1 − 1h−1), but, apart from trivial cases, we cannot compute exactly
c(�) and, consequently, the maximum likelihood estimate (MLE) of � under a certain
model. However, we can compute an approximate MLE by maximizing a suitable
estimate of the likelihood ratio

�(�; y) = log
�(y; �)
�(y; �̃)

;

for a (xed parameter vector �̃ appropriately chosen (Gelman and Meng, 1998). This
estimate is obtained through a Monte Carlo based technique known as importance
sampling (Hammersley and Handscomb, 1964, p. 57–59). First of all, we have that

�(�; y) = y′(�− �̃) − log{c(�)=c(�̃)};
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where, as it may be easily shown, the ratio c(�)=c(�̃) is equal to the expected value,
with respect to the measure �(y; �̃), of exp{y′(�− �̃)}. So, this ratio may be estimated
through (1=T )

∑T
t=1 ut , where ut = exp{y′

t(� − �̃)} and y1; : : : ; yT are T tables drawn
from the distribution �(y; �̃). To draw such tables, we can use the MCMC algorithm
developed by Diaconis and Sturmfels (1998), which is outlined in Appendix A.1.
Finally, �(�; y) may be estimated as

�̃(�; y) = y′(�− �̃) − log
1
T

T∑
t=1

ut ;

and maximized, under a certain model, using a constrained version of the Fisher-scoring
algorithm that will be described in Section 4. Such an algorithm makes use of the
expected value and the variance of y that may be again estimated on the basis of
MCMC samples. More precisely, the expected value of y may be expressed as

�(�) =
∑
y∈Y

y�(y; �̃) exp{�(y; �)}

and so estimated as

�̃(�) =
1
T

T∑
t=1

yt exp{�̃(yt ; �)} =
T∑

t=1

wtyt ;

where wt = ut=
∑

h uh; instead, the estimate of the expected value of x may be simply
expressed as �̃(�) = a + A�̃(�), with a and A appropriately chosen. Similarly, the
variance of y may be estimated as

Ṽ(�) =
T∑

t=1

wtyty′
t − �̃(�)�̃(�)′:

Finally, note that under independence, i.e. when � = 0, we may compute exactly the
probability of y and the corresponding moments. We have (see, for instance, Agresti,
1990)

�(y; 0) =

(∏
i ri!
) (∏

j cj!
)

n!
∏

ij xij!
;

whereas the expected value of yij is given by the expected frequency under indepen-
dence, i.e. ricj=n, and the covariance between yij and yhk is

rir′
hcjc′

k

n2(n − 1)
;

where r′
h is equal to (n − rh) if h = i and to rh otherwise and similarly for c′

k .

4. Parameter estimation

Dardanoni and Forcina (1998) described a general Fisher-scoring algorithm for the
maximum likelihood estimation under equality and inequality constraints (see also
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Bartolucci et al., 2001, Section 2.1). This algorithm may be also exploited in the
present context with slight adjustments to allow for the fact that we cannot compute
exactly, but only through simulation, the moments of the hypergeometric distribution.
More precisely, let H = {� : C� = 0;D�¿ 0} and suppose that we could compute
exactly �(y; �). Then, to maximize the likelihood under the constraint �∈H, the algo-
rithm at issue would solve, at step s+1, the following quadratic optimization problem

min
�∈H

(zs − �)′F(�s)(zs − �);

where zs = �s +F(�s)−1s(�s) and s(�) and F(�) are, respectively, the score vector and
the information matrix with respect to � which are given by

s(�) = J(�)′(y− �) and F(�) = J(�)′V(�)J(�); (1)

with J(�) denoting the Jacobian of the transformation from � to �, illustrated in Ap-
pendix A.2. In our context, even if we cannot compute exactly �(y; �) and its moments,
we can still use the above algorithm to maximize the likelihood ratio �̃(�; y), once a
suitable value of the parameter vector �̃ has been chosen: it is enough to replace �(�)
and V(�) in (1) with the respective estimates de(ned at the end of Section 3 and
obtained on the basis of a random sample of T contingency tables (30,000 in our ap-
plications) with the given margins. We experimented that a sensible strategy consists
in setting �̃ equal to the canonical parameter vector corresponding to the estimate of �
for the multinomial scheme under H and the further constraint that the marginal prob-
abilities are equal to the observed frequencies; this estimate, that will be denoted by
�̃, may be again computed through the constrained Fisher-scoring algorithm indicated
above (see Bartolucci et al., 2001, Section 3.1). We also use �̃ as the starting value
for � in the maximization algorithm.

A (nal point concerns the presence of frequencies equal to zero in the observed
table. We suggest to replace all such frequencies in the table with 10−6, whose eBect is
negligible on the (nal estimate, but using a larger value, say 0.25, when �̃ is computed.
In this way we limit the risk of having always null frequencies in the corresponding
cells of the tables generated under �(y; �̃).

5. Hypothesis testing

In the following we illustrate how we can test for a set of equality and inequal-
ity constraints on the parameters � on the basis of a goodness-of-(t statistic, as the
Pearson’s chi-squared or the likelihood ratio.

Let S denote the saturated model, H the model formulated as �∈H and H0 that
formulated as �∈H0 = {� :C�= 0;D�= 0}, namely by turning all the inequality con-
straints into equality constraints. Obviously, H0 is nested in H , which, in turn, is nested
in S. Then, let �̇, �̂ and M� be the MLE computed through the algorithm in Section 4
under the models S, H and H0, respectively, and �̇, �̂ and M� be the corresponding
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values of the canonical parameter vector. Following Dardanoni and Forcina (1998) and
Bartolucci et al. (2001), the likelihood ratio statistic between S and H0,

Q = 2 log
�(y; �̇)
�(y; M�)

;

may be expressed as the sum of

Q1 = 2 log
�(y; �̇)
�(y; �̂)

and Q2 = 2 log
�(y; �̂)
�(y; M�)

;

where Q1 provides a measure of the discrepancy between S and H , while Q2 provides
a measure of the discrepancy between H and H0. In our context we cannot compute
exactly the hypergeometric distribution and so it is natural to use, instead of Q1 and
Q2, the statistics Q̃1 = 2�̃(�̇; y) and Q̃2 = 2�̃(�̂; y), where the (rst is computed on the
basis of a sample of tables drawn under � = �̂, and the second is computed on the
basis of a sample of tables drawn under �= M�, respectively. However, we believe that,
for at least two reasons, it is preferable to use the Pearson’s chi-squared statistic, X 2,
for measuring the discrepancy between nested models. Firstly, Q̃1 is a function of the
estimate of � under the saturated model, �̇, which may not be computed explicitly
on the basis of the observed frequencies, but with a Fisher-scoring algorithm, with
consequent waste of time. Secondly, if �̇ and �̂ are far from each other, Q̃1 is seldom
a reliable estimate of Q1; the same may happen for Q̃2. This is a typical problem of the
importance sampling method that, intuitively, may be explained as follows. Suppose
that the elements of �̇ are much diBerent from the corresponding elements of �̂. Then
in an MCMC sample generated from �(y; �̂) to compute �̃(�̇; y), we will typically have
a few tables yt for which the statistic exp{y′

t(�̇− �̂)} is very large and many tables for
which this statistic is very small and so the resulting estimate will be inaccurate (for a
deeper discussion see Geyer, 1996, Section 14.7). In principle, this problem could be
overcome by sampling in correspondence of one or more values of � between �̇ and
�̂ (or between �̂ and M�); see, for instance, Gelman and Meng (1998). This solution,
however, is too computationally expensive to be taken into consideration in our context.

The Pearson’s chi-squared statistic between S and H0 may be expressed as

X 2 = (x− M�)′diag( M�)−1(x− M�);

where M� is the expected value of x when �= M� (see Section 3). As the likelihood ratio,
X 2 may be expressed as the sum of two components. The (rst one, given by

X 2
1 = (x− �̂)′diag(�̂)−1(x− �̂);

where �̂ denotes the expected value of x when � = �̂, is similar to Q1, being a mea-
sure of the discrepancy between S and H ; note, however, that X 2

1 does not depend
on �̇. The second one, given by X 2

2 = X 2 − X 2
1 corresponds to Q2 and measures the

discrepancy between H and H0. Clearly, the diBerence between X 2 and X 2
1 might be

negative. However, in our applications, we observed that the chance of this is very
small, especially, if a reasonable number of MCMC samples is used for the parameter
estimation.
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We can compute p-values for X 2
1 and X 2

2 on the basis of which we can decide to
reject H in favor of S, implying that the positive association of interest does not hold, or
H0 in favor of H , having in this way a directed test for independence which has more
power against a narrower set of alternatives. As usual these p-values are computed
under H0 that, in our context, normally corresponds to the independence model; see
Dardanoni and Forcina (1998) and Bartolucci et al. (2001). The only parameter vector
satisfying this model is � = 0 and, given the margins, this uniquely determines the
distributions of X 2

1 and X 2
2 . This is the major advantage of the conditional approach

with respect to the unconditional approach where such distributions vary according to
the nuisance parameters and this determines uncertainty on the interpretation of the
test (for a deeper discussion on the opportunity of conditioning see Agresti, 1992). In
this regard, we have to distinguish between small and large samples. In the (rst case
we have to rely on a standard Monte Carlo simulation which consists in generating
a certain number of tables, say 1000, under H0 and then compute the p-values for
X 2

1 and X 2
2 as the proportions of tables with values of the two statistics larger than

the observed table. When H0 corresponds to the independence model, we can use an
exact Monte Carlo algorithm to generate these tables, such as the one due to Darroch
and described by Diaconis and Sturmfels (1998, p. 372). In presence of large samples,
instead, we can rely on the asymptotic theory. Under H0, the asymptotic distribution of
X 2

1 is M%2(F−1
0 ;Ho) and that of X 2

2 is M%2(F−1
0 ;H), where M%2(�;C) denotes the chi-bar

squared distribution, that is the distribution of the squared norm of the projection of
a random vector with distribution N (0;�) onto C, F0 is the information matrix under
H0 and Co denotes the dual of the cone C; see, for instance, Shapiro (1988), and
Dardanoni and Forcina (1998). The survival function of M%2(�;C) is given by

Pr( M%2(�;C)¿ x) =
m∑

i=0

wi(�;C)Pr(%2
i ¿ x);

where %2
i denotes a chi-squared random variable with i degrees of freedom, wi(�;C),

i = 0; 1; : : : ; m, are weights depending on � and C, and m is the size of the squared
matrix �. The computation of the probability weights wi(�;C) is a diCcult numerical
problem unless m is less than 4; however, accurate estimates can be easily obtained by
Monte Carlo simulations (see Dardanoni and Forcina, 1998). Note that this asymptotic
theory was, actually, developed with reference to the likelihood ratio statistic. However
it can be used also for the Pearson’s chi-squared statistic since these two discrepancy
measures are asymptotically equivalent under the null hypothesis (see, for example
Shapiro, 1985).

A referee pointed out that, to get rid of the nuisance parameters by conditioning
on their observed values, these parameters should be asymptotically uncorrelated from
those of interest. This always happens when the parameterization is based on local
logits. Instead, when the parameterization is based on global logits, this happens only
under the null hypothesis of independence (for a proof see the appendix in Bartolucci
et al., 2001). However, even if independence does not hold, the asymptotic correlation
between the two sets of parameters (marginal global logits and global log-odds ratio)
is usually moderate. Consider, for example, a model in which the cell probabilities
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correspond to the relative frequencies of the table we used in Section 7.2. Although
this model is far from the independence one, as we have a strong association between
the row and column variables, all the elements of the asymptotic correlation matrix
between the two sets of parameters, computed on the basis of the expected information,
are less than 0.25 in absolute value.

6. Extension to multiway tables

The framework presented here may be easily extended to deal with bivariate tables
strati(ed according to one or more discrete explanatory variables. Assume, without
loss of generality, that there is only one of such variables, say C, with K categories.
Then, any strati(ed table corresponding to a level of C, say the kth, has multivariate
hypergeometric distribution with canonical parameter vector denoted by �k ; let also
�k be the vector of log-odds ratios for such a table. It is straightforward to see that
several interesting hypotheses may be again formulated through the linear constraints
C�=0 and D�¿ 0, where, in this case, � is the vector obtained by stacking one below
the other the vectors �k for all k. For instance, when C is binary, the constraint of
equal log-odds ratios (i.e. same association) may be formulated by letting C =(−I I),
whereas the constraint that all log-odds ratios in the second stratum are greater or
equal to the corresponding log-odds ratios in the (rst stratum may be formulated as
D=(−I I). To (t models of this type, we can still use the constrained Fisher-scoring
algorithm of Section 4. It is enough to replace s with the vector obtained by staking, one
below the other, the vectors sk and F with the diagonal matrix with blocks Fk , where
sk and Fk are, respectively, the score vector and the information matrix corresponding
to �k . Notice that, in this case, we have to generate MCMC tables independently for
each of the strata. Also the hypothesis testing approach outlined in Section 5 may be
exploited with minor adjustments.

7. Some applications

7.1. Classi=cation of employees by salary and experience

In a study about probability estimation in sparse contingency tables, SimonoB (1987)
reports the data presented in Table 1, taken from a survey conducted by the Department
of Energy. The sample consists of 147 nonsupervisory female employees having the
Bachelors (but not higher) degree, who were practicing mathematics or statistics in
1981. The sample is cross-classi(ed by monthly salary and years since degree. Note
that the table is quite sparse, with an average cell frequency equal to 2.70; moreover,
only 20% of the cells have a frequency larger or equal to 5 and 28% of the cells have
null frequency.

On these data we (tted two models of positive association, the (rst one based on
continuation log-odds ratios (cc) and the second one on local log-odds ratios (ll). The
values of the Pearson’s chi-squared statistic are shown in Table 2 together with the
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Table 1
Salary and years since degree for a sample of 147 female employees

Salary Years since degree

0–2 3–5 6–8 9–11 12–14 15–17 18–23 24–29 30+

950–1350 7 1 1 0 0 0 0 2 0
1351–1750 10 6 5 3 0 1 1 1 0
1751–2150 12 14 7 1 4 2 2 1 2
2151–2550 0 1 8 3 3 3 5 0 4
2551–2950 0 0 3 2 0 6 5 2 7
2951–3750 1 0 1 0 1 1 6 0 2

Table 2
Pearson’s chi-squared statistics for the model of positive association (X 2

1 ) and for the independence model
(X 2

2 )

Type of X 2
1 Monte Carlo Asym. X 2

2 Monte Carlo Asym.
log-odds ratios p-value p-Value p-value p-Value

cc 17.415 0.6240 0.6000 94.920 0.0000 0.0000
ll 68.542 0.0020 0.0007 43.792 0.0000 0.0000

corresponding asymptotic and simulated p-values; the latter should be more reliable
due to the sparseness of the data.

First of all note that the data conform to the notion of positive association expressed
through continuation log-odds ratios; in this case, in fact, the Pearson’s chi-squared
statistic between the saturated model and the model under this constraint is X 2

1 =17:415
with a corresponding simulated p-value of 0.6240. This implies that also PQD holds for
these data. Instead, TP2 has to be rejected since we have X 2

1 =68:542 with a simulated
p-value equal to 0.0020. Moreover, the independence model has to be rejected since
we have a p-value for X 2

2 less than 10−4, regardless of the type of positive association
considered. In summary, we can state that, as suspected by SimonoB (1987), a certain
degree of positive association exists between salary and years since degree, in the
sense that females with more years since degree have a better chance of getting higher
salaries. However, since the data show evidence against TP2, the association between
the two variables is not so strong as one may expect. This is a more precise conclusion
than SimonoB’s who simply recognized the existence of a positive association between
salary and years of experience, without specifying the strength of this association.

As a (nal remark, it can be noticed that the simulated p-values are always very close
to the asymptotic ones. The asymptotic theory seems, therefore, to provide a reasonable
approximation even for sparse tables. This is a considerable advantage in terms of
computing time. In this case, for instance, computing the asymptotic p-values took
approximately 4:5 min (on a Pentium III, 700 MHz), while computing the p-values
through simulation took 6 h.
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Table 3
Father (xi) and son (yj) occupational status for a sample of 3488 British males

y1 y2 y3 y4 y5 y6

x1 125 60 26 49 14 5
x2 47 65 66 123 23 21
x3 31 58 110 223 64 32
x4 50 114 185 715 258 189
x5 6 19 40 179 143 71
x6 3 14 32 141 91 106

7.2. Classi=cation of men by social class and social class of their fathers

Dardanoni and Forcina (1998) analyzed a data set, considered also by Goodman
(1991), in which 3488 British men are classi(ed according to their own and their fa-
ther’s occupational status (see Table 3). In particular, they found that, under the product
multinomial sampling schemes (i.e. conditioning only on the row margin), the diBer-
ence in the deviance between the saturated model and the model of positive association,
when log-odds ratios local in the row variable and global in the column variable are
used, is null and so the data conform exactly to this constrained model. Therefore, data
also conform exactly to less restrictive stochastic orderings such as PQD. They also
concluded in favor of the positive association model based on continuation log-odds
ratios in the column variable and local log-odds ratios in the row variable. Hence sons
coming from a better family have a better chance of success not only in general, but
also conditional to having already had a certain amount of success. However, due to
the presence of nuisance parameters, represented by the column margins, it is not pos-
sible to reach a de(nitive conclusion about TP2 as we can do by conditioning on both
row and column totals.

In fact, for the data at issue we have that the Pearson’s chi-squared statistic between
the saturated model and the model under TP2 is X 2

1 = 9:012, with a p-value equal to
0.1426. Therefore, TP2 should not be rejected; hence, we can state that sons coming
from a better family have a better chance of success also conditional on remaining
within any given subset of neighboring classes. Independence is instead a rather im-
plausible model in this context: a p-value less than 10−4 is obtained when testing
independence against the TP2 model.

For the data at issue we also consider some equality constraints on the log-odds
ratios. In particular, we are interested in two types of models, linear-by-linear with
equispaced score and quasi-symmetry, already illustrated in Section 2. The (rst model
does not seem to (t adequately; for instance, with local log-odds ratios the deviance
with respect to the saturated model is 104.15 with 24 degrees of freedom. Instead the
symmetry model (ts adequately for all types of log-odds ratios. For instance, with the
type local we have a deviance equal to 7.6671 with 10 degrees of freedom (p-value
0.6643). Now, if we add the constraint of positive association, the deviance increases
by 6.1083 with a p-value equal to 0.3105 which con(rms that TP2 may not be rejected.
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Table 4
Eye testing for a sample of 10,719 employees

Right eye grade Female left eye grade Male left eye grade

4 3 2 1 4 3 2 1

4 1520 266 124 66 821 112 85 35
3 234 1512 432 78 116 494 145 27
2 117 362 1772 205 72 151 583 87
1 36 82 179 492 43 34 106 331

Table 5
Pearson’s chi-squared statistic for the model of equal log-odds ratios (d.o.f. = 9)

Log-odds ratios X 2 p-value Log-odds ratios X 2 p-value

gg 35.268 0.0000 rr 14.664 0.1006
cc 33.395 0.0001 ll 28.951 0.0007

7.3. Classi=cation of employees by left eye grade and right eye grade

Table 4, based on case records of the eye-testing of employees in Royal Ordinance
factories in 1943–1946, has been analyzed by Stuart (1953). The 10,719 people in the
sample are cross-classi(ed according to gender and left and right eye grade.

First of all we (tted the model of equal log-odds ratios between the female and
male groups; using the notation in Section 6, this constraint may be simply expressed
as C�= 0, where C = (I9 − I9) and �= (�′

1 �
′
2)

′. The Pearson’s chi-squared statistic
between the saturated model and the model under this constraint is shown, for diBerent
type of log-odds ratio, in Table 5.

Note that the constraint at issue seems to hold only when reverse continuation (rr)
log-odds ratios are used. In fact, the deviance from the saturated model is equal to
X 2=14:664 with a p-value slightly greater than 0.1. So, we base the analysis of the data
at issue on log-odds ratios of this type. Note that, since the row and column categories
are in reverse order, using these log-odds ratios is natural since they correspond to
the continuation log-odds ratios when the categories are ordered in the usual way.
Moreover, we have that the lowest of these log-odds ratio is equal to 0.0533. So,
we have surely positive association between left and right eye grade. In summary
using reverse continuation odds ratios we reach the same conclusion that Stuart (1953)
reached using a modi(ed form of Kendall’s rank correlation coeCcient: there is positive
association between the right and the left eye grade in both female and male groups
and the strength of the association is the same in the two groups.
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Appendix A.

A.1. Sampling from the multivariate hypergeometric distribution

To sample contingency tables with (xed margins from �(y; �), we can use the
Metropolis–Hastings algorithm described below. Suppose we have drawn a table, say
yt . To obtain the next table, yt+1, we perform the following operations: (i) choose
randomly a pair of rows, i1 and i2, and a pair of columns, j1 and j2; (ii) modify the
entries (i1; j1), (i1; j2), (i2; j1) and (i2; j2) of the table (completed with the last row and
column) corresponding to yt according to the following rule:

+ −
− +

or
− +

+ −
with probability 1=2 each;

where + means “add 1” and − means “subtract 1”; let y? be the table so obtained
(proposed table); (iii) by the usual Metropolis procedure, let yt+1 = y? or yt+1 = yt
with probability , and 1 − ,, respectively, where

, = min
{

1;
�(y?; �)
�(yt ; �)

}
= min

{
1;

exp [(y?)′�]
exp (y′

t�)

}
:

Note that step (ii) may force negative entries; in this case, the table is discarded and
a new pair of rows and columns is chosen. As an initial state of the chain, y0, we
can use the observed table; also a burn-in period is necessary. The convergence of the
chain to its stationary distribution can be checked by plotting m(yt)exp(y′

t�) against t.
If the mixing is too slow, this can be improved by adding or subtracting c instead
of 1 from each of the four entries selected, where c is a random integer from 1 to
cmax. Clearly, increasing cmax reduces the overall acceptance rate of the algorithm and,
therefore, some preliminary simulations are required for a sensible choice.

A.2. Transformation from � to p and �

Given � and the row and column margins, we can compute the corresponding vector
of probabilities p, and consequently �, by solving the system

L log(Np) = �

through a Newton algorithm; in the expression above,

L=



KJ 0 0

0 KI 0

0 0 KI ⊗ KJ


 ; N =




1′
I ⊗MJ (b)

MI (a) ⊗ 1′
J

MI (a) ⊗MJ (b)


 ; �=



�B

�A

�;


 ;

where �A and �B are the vectors of the marginal logits of A and B, respectively, that is
�A=KI log[MI (a)r] and �B=KJ log[MJ (b)c], and r=(r1 · · · rI )′ and c=(c1 · · · cJ )′

are the vectors corresponding to the row and column margins. Moreover, once that from
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� we have obtained p, we can simply compute � as indicated in Section 2. The Jacobian
of the transformation from � to � may be expressed as

J(�) =
@�
@�′ = {QL diag(Mp)−1N diag(p)( MK I ⊗ MK J )′}−1;

where Q is obtained by removing the (rst I + J − 2 rows from an identity matrix of
order IJ − 1.
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