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Abstract

An adjusted least squares estimator is derived that yields a consistent estimate of the parameters
of an implicit quadratic measurement error model. In addition, a consistent estimator for the
measurement error noise variance is proposed. Important assumptions are: (1) all errors are
uncorrelated identically distributed and (2) the error distribution is normal. The estimators for
the quadratic measurement error model are used to estimate consistently conic sections and
ellipsoids. Simulation examples, comparing the adjusted least squares estimator with the ordinary
least squares method and the orthogonal regression method, are shown for the ellipsoid 7tting
problem.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A parameter estimation problem occurs when the relation among some observed
variables x1; : : : ; xn is described by a parameterized model. The parameters identify a
unique model in a given model class, and the problem is to choose a model from the
model class, given a set of observations {x(l)}m

l=1, where x(l) := [x(l)
1 · · · x(l)

n ]� is the lth
observed vector of variables. The model is selected according to certain performance
criteria, speci7ed later.
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We consider an implicit quadratic model, x�Ax+b�x+d=0, A symmetric, relating
the variables x := [x1 · · · xn]�. It describes a second order surface

S(A; b; d) := {x∈Rn: x�Ax + b�x + d = 0} (1)

in Rn. The model is called implicit because there is no di-erence between dependent
and independent variables. The parameters are the symmetric matrix A, the vector b,
and the scalar d and the model class is the set of all quadratic equations with an
n-dimensional variable.

If A=0 and b �= 0, then surface (1) is a hyperplane, and if A is positive de7nite and
4d¡b�A−1b, then (1) is an elliptic surface. The set S(A; b; d) might be disconnected.
Initially we will not make assumptions on the surface under estimation apart from the
requirement of being a non-empty set. Later on we will specialize the results for the
cases of conic section and ellipsoid estimation.

Without additional constraints imposed on the parameters, given a model in the
model class, the model parameters are not unique: any multiple of a set of parameters
de7nes the same model. This makes the quadratic model, parameterized by A, b, and
d non-identi7able. To resolve the problem, we impose a normalizing condition, e.g.,
the parameters are assumed to satisfy the constraint

‖A‖2
F + ‖b‖2 + d2 = 1: (2)

With this normalizing condition, the parameters are unique up to a sign.
The vector of variables x is observed with additive error e=[e1 · · · en]� and the error

is described stochastically. The true value Hx = [ Hx1 · · · Hxn]� of the measured variables
is assumed to satisfy the model for some unknown true values HA, Hb, and Hd of the
parameters. This assumption de7nes a true model in the model class. Models in which
the variables are measured with additive noise x = Hx + e are called measurement error
models. Thus the model considered in the paper is an implicit quadratic measurement
error model.

The quadratic model is linear in the parameters, so that the linear least squares
technique can be applied. This corresponds to estimation criterion:

min
A;b;d

m∑
l=1

(x(l)�Ax(l) + b�x(l) + d)2:

We will call the resulting estimator the ordinary least squares (OLS) estimator, in
order to distinguish it from the adjusted least squares estimator, introduced later.

Due to the normalizing condition imposed on the parameters, the OLS problem is
a quadratically constrained least squares problem and the necessary computation is to
7nd the smallest eigenvalue/eigenvector of a self-adjoint and positive de7nite linear
operator. The presence of measurement errors in all the covariates, however, makes
the OLS estimator biased, see, e.g., Carroll et al. (1995).

Another approach is the orthogonal regression estimation. Let dist(x; S) be the dis-
tance from the point x to the set S. The orthogonal regression estimator is de7ned as
a global solution of the following optimization problem:

min
A;b;d

m∑
l=1

dist(x(l); S(A; b; d))2:
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The non-linearity of the model with respect to the measurements, implies the incon-
sistency of this estimator as well, see the classical paper of Neyman and Scott (1948)
and the discussion in (Fuller, 1987, p.250).

We assume that the measurement errors e(1); : : : ; e(m) are centered, uncorrelated among
the measurement, and normally distributed, e(l) ∼ N(0; H�2I) for all l, with noise
variance H�2. We consider both cases, when H�2 is given, and when H�2 is unknown.
The stochastic description of the measurement errors can be viewed as a model
with parameter �2. Then the noise variance �2 is a nuisance parameter of the
model.

Using the noise model assumptions, we apply an adjustment procedure, see
Naidu (1990), that takes into account the quadratic structure of the model and cor-
rects the OLS estimate appropriately. The resulting estimator, called an adjusted least
squares (ALS) estimator, is consistent. Similar approach for consistent estimation is
used in a bilinear model, see Kukush et al. (2003).

A nice feature of the ALS estimator is that its computation also requires the small-
est eigenvector of a self-adjoint linear operator. This operator is obtained from the
self-adjoint and positive de7nite operator used in the computation of the OLS estima-
tor by applying the correction. If the measurement error variance H�2 is a priori known,
we give the correction operator in terms of H�2. If however, H�2 is unknown, then it has
to be estimated together with the model parameters. We propose a consistent procedure
to estimate the unknown measurement error variance.

We use the ALS estimator, derived for the quadratic model, to solve the conic 5tting
and the ellipsoid 5tting problems. In the ellipsoid 7tting case, we obtain consistent
estimators for the parameters Ae and c of the ellipsoid described by the quadratic
model (x − c)�Ae(x − c) = 1, with Ae positive de7nite.

We point out several papers in which the ellipsoid 7tting problem is considered.
Gander et al. (1994) consider algebraic and geometric 7tting methods for circles and
ellipses and note the inadequacy of the algebraic 7t on some speci7c examples. Later
on, the given examples are used as benchmarks for the algebraic 7tting methods.
Ellipsoid speci7c, as opposed to the more general conic 7tting method is 7rst pro-
posed in Fitzgibbon et al. (1999). The method incorporates the ellipticity constraint
into the normalizing condition and thus gives better results when an elliptic 7t is de-
sired. In Nievergelt (2001), a new algebraic 7tting method is proposed that does not
have as singularity the special case of a hyperplane 7tting; if the best 7tting manifold
is aMne the method coincides with the total least squares method. Geometric meth-
ods, minimizing the sum of absolute values of orthogonal deviations, are discussed in
Nyquist (1988).

A statistical point of view on the ellipsoid 7tting problem is taken in Kanatani
(1994), Cabrera and Meer (1996), and Zhang (1997). Kanatani proposed an unbiased
estimation method, called a renormalization procedure. He uses an adjustment similar to
the one in the present paper but his approach of estimating the unknown noise variance
is di-erent. Moreover, the noise variance estimate proposed in Kanatani (1994) is still
inconsistent; the bias is removed up to the 7rst order approximation. We note, however,
that in the context of the quadratic measurement error model, the notion of bias is
inappropriate, see the discussion in Section 5.
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Standard notation used in the paper is: R for the set of real numbers, Ee for the ex-
pectation of the random variable e, Op(1) for a sequence of stochastically bounded ran-
dom variables, N(0; V ) for the zero mean normal distribution in Euclidean space with
variance–covariance matrix V , �min(�) (�max(�)) for minimum (maximum) eigenvalue
of the self-adjoint linear operator �, ‖A‖F for the Frobenius norm of the matrix A,
and dist(x; y) is de7ned as ‖x − y‖, where the norm is understood from the context.
Throughout the paper S denotes the space of the n × n symmetric matrices. Speci7c
notation is introduced in the text.

Section 2 de7nes the quadratic measurement error model. Sections 3 and 4 present,
respectively, the OLS and the ALS estimators. In Section 5, we state the consistency of
the ALS estimator with known noise variance, and in Section 6, we consider the noise
variance estimation problem. The proofs of all results in Sections 5 and 6 are included
in the Appendix. Sections 7 and 8 consider two special cases of the quadratic model
estimation problem: conic section and ellipsoid 7tting. Section 9 shows simulation
examples for the ellipsoid 7tting problem. Conclusions are given in Section 10.

2. Quadratic measurement error model

Let HA∈S, Hb∈Rn, and Hd∈R be such that the set S( HA; Hb; Hd), de7ned in (1), is
non-empty and let the points Hx(1); : : : ; Hx(m), lie on the surface S( HA; Hb; Hd), i.e.,

Hx(l)� HA Hx(l) + Hb� Hx(l) + Hd = 0; for l = 1; : : : ; m: (3)

The points x(1); : : : ; x(m), are measurements of the points Hx(1); : : : ; Hx(m), respectively, i.e.,

x(l) = Hx(l) + e(l); for l = 1; : : : ; m; (4)

where e(1); : : : ; e(m) are the corresponding measurement errors. We make the following
assumptions:

(1) the measurement errors e(1); : : : ; e(m) form a sequence of independent identically
distributed random vectors, and

(2) the distribution of e(l), for all l = 1; : : : ; m, is normal N(0; H�2In).

Here H�2 ¿ 0 is the noise variance and In is the n × n identity matrix.
The matrix HA∈S is the true value of the parameter A, while Hb∈Rn, and Hd∈R1

are the true values of the parameters b and d, respectively. We assume that the true
values of the parameters satisfy the normalizing condition (2).

3. Ordinary least squares estimator

The elementary OLS cost function is

qols(A; b; d; x) := (x�Ax + b�x + d)2 for all A∈S; b∈Rn; d∈R:
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It measures the discrepancy of a single measurement point x from the surface S(A; b; d).
The OLS cost function/ is the sum of the elementary cost function for all data points,

Qols(A; b; d) :=
m∑

l=1

qols(A; b; d; x(l)); for all A∈S; b∈Rn; d∈R: (5)

The OLS estimator Âols, b̂ols, d̂ols is de7ned as the global minimum point of (5),
subject to the normalizing constraint (2).

We consider the parameter triple

� := (A; b; d) ∈V
as a vector in the Hilbert space V := S× Rn × R with inner product

〈(A1; b1; d1); (A2; b2; d2)〉 := trace(A�
1 A2) + b�

1 b2 + d1d2;

for all (A1; b1; d1) ∈V; (A2; b2; d2) ∈V:

With this notation, the optimization problem, we want to solve, is

min
�

Qols(�) s:t: 〈�; �〉 = 1: (6)

The cost function in (6) is a quadratic form of �,

Qols(�) = 〈�ols�; �〉;
where �ols is a self-adjoint linear operator on V. Therefore the global minimum point

�̂ols := (Âols; b̂ols; d̂ols) = arg min
〈�;�〉=1

Qols(�)

is a normalized eigenvector of �ols, corresponding to the minimum eigenvalue
�min(�ols). In order to 7nd the operator �ols : V → V, we calculate the derivative
Q′

ols = dQols=d�.
The derivative of qols(�; x) with respect to � is

q′
ols(�; x) = 2(x�Ax + b�x + d)(xx�; x; 1)

= 2〈(xx�; x; 1); �〉 (xx�; x; 1):

It de7nes a self-adjoint and positive semide7nite linear operator  ols(x) on V,

 ols(x)� := 〈(xx�; x; 1); �〉 (xx�; x; 1) for all �∈V:

Thus

�ols =
m∑

l=1

 ols(x(l)): (7)

Remark 1. The cost function Qols is quadratic in the parameters �, so that it has a
matrix representation. For A∈S, let vecs(A) denotes the nA := n(n+ 1)=2 dimensional
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vector of the elements in the upper triangular part of A taken column-wise. There exists
a matrix M ∈R(nA+n+1)×(nA+n+1) associated with the operator Qols, such that

Qols(�) =




vecs(A)

b

d




�

M




vecs(A)

b

d


 for all A∈S; b∈Rn; d∈R: (8)

Using the matrix representation (8), the whole derivation of the OLS estimator,
and subsequently the one of the ALS estimator, can be carried out in linear algebra
notation. We use the matrix representation approach in Markovsky et al. (2002), where
the computation of the estimators is treated. In this paper, we use the abstract operator
notion.

4. ALS estimator with known noise variance

The OLS estimator is readily computable but it is inconsistent. We propose an
adjustment procedure, that de7nes a consistent estimator. The proposed approach is
due to Kukush and Zwanzig (2002), and it is related to the method of corrected score
functions, (see Carroll et al., 1995, Section 6.5). The model (3) is quadratic and similar
adjustment for a bilinear model, arising in motion analysis, is proposed in Kukush
et al. (2002)

We de7ne the elementary ALS cost function qals(�; x) by

Eqals(�; Hx + e) = qols(�; Hx) for all �∈V and Hx∈Rn; (9)

where e is N(0; H�2In) distributed. The ALS cost function is the sum of the elementary
ALS cost functions for all data points

Qals(�) :=
m∑

l=1

qals(�; x(l)) for all �∈V:

The ALS estimator �̂als is de7ned as the global minimum point of the following
optimization problem:

min
�

Qals(�) s:t: 〈�; �〉 = 1: (10)

The solution of (10) is described in the following theorem.

Theorem 2. The ALS estimator �̂als is the normalized eigenvector of

�als :=
m∑

l=1

 als(x(l));

corresponding to �min(�als), where

 als(x)� = (g1(x)[A] + g2(x)[b] + g3(x)[d];

g4(x)[A] + g5(x)[b] + xd; g6(x)[A] + x�b + d); (11)
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the functions gs, s = 1; : : : ; 6 are de5ned by

[g1(x)[A]]pq =
n∑

i; j=1

aijfijpq(x) for all A∈S; (12)

[g2(x)[b]]pq =
n∑

i=1

bifipq(x) for all b∈Rn; (13)

g3(x)[d] = (xx� − H�2In)d for all d∈R; (14)

[g4(x)[A]]p =
n∑

i; j=1

aijfijp(x) for all A∈S; (15)

g5(x)[b] = (xx� − H�2In)b for all b∈Rn; (16)

g6(x)[A] = x�Ax − H�2 trace(A) for all A∈S; (17)

the functions fijpq in (12) are de5ned by

• if all i, j, p, q are di7erent, then fijpq(x) = xixjxpxq;
• if i = j = p, q �= i (with permutations), then fiiiq(x) = xqt3(xi);
• if i = j = p = q, then fiiii(x) = t4(xi);
• if i = j, p = q, i �= p, then fiipp(x) = t2(xi)t2(xp);
• if i = j and i, p, q are di7erent, then fiipq(x) = xpxqt2(xi);

the functions fijp in (13) and (15) are de5ned by

• if i = p = q, then fiii(x) = t3(xi);
• if i = p, p �= q (with permutations), then fiiq(x) = t2(xi)xq;
• if i; p; q are di7erent, then fipq(x) = xixpxq,

and the functions tk , k = 1; : : : ; 4 are de5ned by

t1(') = '; t2(') = '2 − H�2; t3(') = '3 − 3' H�2;

and t4(') = '4 − 6'2 H�2 + 3 H�4: (18)

Proof. Consider Eq. (9), which implicitly de7nes qals. It is the following deconvolution
problem:(

1
2( H�2

)n=2 ∫ ∞

−∞
· · ·
∫ ∞

−∞
qals(�; Hx + e)

n∏
i=1

exp
(

− e2
i

2 H�2

)
de1 · · · den = qols(�; Hx):

(19)

Since qols(�; Hx) is quadratic in �, Eq. (19) holds for all � in V, and the integral does
not depend on �, qals must be quadratic in � for all x. Thus

qals(�; x) = 〈 als(x)�; �〉 for all �∈V and x∈Rn×1;
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where  als(x) is a self-adjoint linear operator on V, such that

E als( Hx + e) =  ols( Hx) for all Hx∈Rn: (20)

Then Qals is also quadratic in �,

Qals(�) = 〈�als�; �〉 for all �∈V;

where �als :=
∑m

l=1  als(x(l)), and the ALS estimator �̂als is the normalized eigenvector
of �als, corresponding to �min(�als).

Now, we describe the operator  als(x) that solves (20). Solving a general deconvolu-
tion problem is not possible analytically. In our case, however, the normality assumption
for the noise makes the problem tractable. Looking at the right-hand-side of (20),

 ols(x)� = (x�Ax + x�b + d)(xx�; x; 1) where � = (A; b; d);

we see that the problem splits into six independent problems

E als( Hx + e) = hs(x)[�] for all Hx∈Rn and for s = 1; : : : ; 6; (21)

where hi(x)[�] are the summands in the expansion of  ols(x)�:

h1(x)[A] := xx�(x�Ax); h2(x)[b] := xx�(x�b); h3(x)[d] := xx�d;

h4(x)[A] := x(x�Ax); h5(x)[b] := xx�b; h6(x)[A] := x�Ax:

Let

g1 :S → S; g2 :Rn×1 → S; g3 :R → S;

g4 :S → Rn×1; g5 :Rn×1 → Rn×1; g6 :S → R;
be the solutions of (21), then the solution of (20) is given by (11).

Some of the functions gs can be found by inspection. For example, the solution of
the deconvolution equation for h3 is (14). Similarly, the solution of the deconvolution
equation for h6 is (17). Due to the symmetry, g2 = (g4)∗ and g3 = (g6)∗, where g∗

denotes the conjugate operator of g.
Next, we describe the other functions gs. Let A = [aij]. Then

[h1(x)[A]]pq =
n∑

i; j=1

aijxixjxpxq for all A∈S:

Therefore the solution of the corresponding deconvolution problem is (12), where fijpq

is a polynomial of the fourth order with the property

Efijpq( Hx + e) = Hxi Hxj Hxp Hxq: (22)

The polynomials tk :R → R, k = 1; : : : ; 4, de7ned in (18), have the property

Etk( H' + '̃) = H'k ; for k = 1; : : : ; 4; and for all H'∈R; and '̃ ∼ N(0; H�2):

Then the functions fijpq de7ned in the theorem have the desired property (22).
Similarly for

[h2(x)[b]]pq =
n∑

i=1

bixixpxq;
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the solution of the deconvolution problem (21) is (13), where fipq are de7ned in the
theorem. Finally,

[h4(x)[A]]p =
n∑

i; j=1

aijxixjxp;

and the solution of the deconvolution problem (21) is (13). Thus the adjusted operator
 als(x) in V is described thoroughly.

Remark 3. If the given data is noise free, i.e., H� = 0, then x(l) = Hx(l) for all l, and
the solution of the deconvolution equation (19) is qols. In this case, the ALS estimator
coincides with the OLS estimator.

5. Consistency of the ALS estimator

Let n� := dimV= n(n + 1)=2 + n + 1 = (n + 1)(n + 2)=2, and let

�1( H�ols=m)¿ �2( H�ols=m)¿ · · ·¿ �n�( H�ols=m) = 0

be the eigenvalues of H�ols=m, where H�ols is given in (7) with Hx(l). We need the
following assumptions:

(iii) There exists m0¿ 1 and *0 ¿ 0, such that

�n�−1( H�ols=m)¿ *0 for all m¿m0:

(iv) There exists a constant *1 ¿ 0 and a number +∈ [0; 1), such that

1
m

m∑
l=1

‖ Hx(l)‖66 *1m+ for all m¿ 1:

Assumption (iii) is a contrast condition, see the discussion in Kukush and Zwanzig
(2002). Similar condition is used in Kukush et al. (2003). Assumption (vi) is a re-
striction from above. If HA is positive de7nite and 4d¡b�A−1b, then S( HA; Hb; Hd) is an
elliptic surface, which is bounded, and (iv) holds with + = 0.

Let

dist(�1; �2) := ‖�1 − �2‖V
and

dist(�1; {±�2}) := min{dist(�1; �2); dist(�1;−�2)}:

Theorem 4 (Strong consistency). Assume that conditions (i)–(iv) hold. Then the ALS
estimator �̂als and the true value H� := ( HA; Hb; Hd) satisfy the following convergence
property:

dist(�̂als; {± H�}) → 0 as m → ∞; a:s:
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Corollary 5. Under the conditions (i)–(iv),

dist(�̂als; {± H�}) =
1

m(1−+)=2 Op(1); (23)

and for each ,¿ 0,

dist(�̂als; {± H�})m(1−+)=2−, → 0 as m → ∞; a:s: (24)

Corollary 5 shows that for unbounded sequence { Hx(l); l¿ 1}, there may be a loss
of order in the rate of convergence of the estimator. But if += 0, then the estimator is√
m-consistent, i.e.,

dist(�̂als; {± H�}) = Op(1)=
√
m: (25)

The statement of Theorem 4 is one of the main contributions of the paper. Adjust-
ment procedures, similar to the one described in Section 4, already appeared in the
literature; 7rst proposed in Kanatani (1994) and later developed in Cabrera and Meer
(1996) and Zhang (1997). In these papers, however, consistency of the ALS estimator
is not proven. Instead the notion of unbiasedness is used, i.e., E�̂als = H�. In the present
context, however, bias is not well de7ned for the reason that the expectation of the
ALS estimator does not exist.

Suppose we draw N realizations of the measurement errors and compute the ALS
estimates, for the corresponding data sets. Let �̂als; k be the estimate for the kth data
set. Then

1
N

N∑
k=1

‖�̂als; k‖ → ∞ as N → ∞:

In the context of a linear measurement error model, the fact that E�̂als does not exist
is stated in (Fuller, 1987, Exercise 13, p. 28). It is proven for a multivariate linear
measurement error model in the unpublished manuscript Cheng and Kukush (2001).

6. Consistent estimator in the case of unknown noise variance

Suppose we misspeci7ed the noise variance. The true value is H�2 and we construct
the operator ��2 := �als, regarding �2 to be the true value of that parameter. We study
the di-erence

E H�2 �2 ( Hx + e) − E�2 �2 ( Hx + e);

where E H�2 and E�2 denote the expectation with e ∼ N(0; H�2In) and e ∼ N(0; �2In),
respectively.

Consider the polynomials tk('), k = 2; 3; 4, given in (18). Assuming �2 to be the
true value of the noise variance, we have

t2(') = '2 − �2;

which can be written as

t2(') = '2 − H�2 + ( H�2 − �2);
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so that for ' = H' + '̃, with '̃ ∼ N(0; H�2)

E H�2 t2( H' + '̃) = E H�2 (( H' + '̃)2 − H�2 + ( H�2 − �2))

= H'2 + ( H�2 − �2) for all '∈R:
Next, for the polynomial t3, we have

t3(') = '3 − 3'�2

= '3 − 3' H�2 + 3'( H�2 − �2);

so that

E H�2 t3( H' + '̃) = E H�2 (( H' + '̃)3 − 3( H' + '̃) H�2 + 3( H' + '̃)( H�2 − �2))

= H'3 + 3 H'( H�2 − �2):

Finally for the polynomial t4, we have

t4(') = '4 − 6'2�2 + 3�4

= '4 − 6'2 H�2 + 3 H�4 + 6'2( H�2 − �2) − 3( H�4 − �4);

so that

E H�2 t4( H' + '̃) = H'4 + 6( H�2 − �2)E H�2 (' + '̃)2 − 3( H�4 − �4)

= H'4 + 6( H�2 − �2)( H'2 + H�2) − 3( H�4 − �4):

Thus

E H�2 tk( H' + '̃) = Hxki + ( H�2 − �2)zk( H'; H�2 − �2); for k = 2; 3; 4;

with

z2(x; H�2 − �2) := 1; z3(x; H�2 − �2) := 3x;

and

z4(x; H�2 − �2) := 6(x2 + H�2) − 3( H�2 + �2)

= 6x2 + 3( H�2 − �2):

For the polynomials fijp, de7ned in Section 4, we have

E H�2 fijp( Hx + e) = Hxi Hxj Hxp + ( H�2 − �2)zijp( Hx; H�2 − �2);

where zijp does not depend on H�2 − �2 or the dependence is linear, e.g., for i = j �= p,
we have

E H�2fiip( Hx + e) = (E H�2 t2( Hxi + ei)) Hxp

= ( Hxi)2 Hxp + ( H�2 − �2) Hxp;

then ziip = Hxp. Similarly, the polynomials zijpq( Hx; H�2 − �2) are de7ned by

E H�2fijpq( Hx + e) = Hxi Hxj Hxp Hxq + ( H�2 − �2)zijpq( Hx; H�2 − �2):
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For the operator  �2 (x), which is constructed starting from the value �2, we have

E H�2 �2 ( Hx + e) =  ols( Hx) + ( H�2 − �2)z( Hx; H�2 − �2);

where z= : (zA; zb; zd) is a certain self-adjoint operator on V, which either depends
linearly on H�2 − �2 or does not depend on H�2 − �2. For example zd does not depend
on H�2 − �2. Indeed

zd� = trace(A);

because for x = Hx + e,

E H�2 (g5(x; A) + x�b + d) = ( Hx�A Hx + x�b + d) + ( H�2 − �2) trace(A):

Now, for the sum over m observations, the operator Z( H�2 − �2) is de7ned by

Z( H�2 − �2) :=
m∑

l=1

z( Hx(l); H�2 − �2);

and then

E H�2��2 = H�ols + ( H�2 − �2)Z( H�2 − �2):

We need the following assumptions in order to estimate H�2:

(v) There exists a number 00 ∈ [1; n] and *2 ¿ 0, such that

1
m

m∑
l=1

( Hx(l)
00

)26 *2 for all m¿ 1:

We de7ne

Fm(1) :=
( H�ols + 1Z(1))

m
for 1∈R:

(vi) For each v¿ 0 and *∈ (0; v),

lim inf
m→∞ min

|1|∈[*2 ;v2]
|�min(Fm(1))|¿ 0:

We introduce the score function

Um(�2) := �min

(
��2

m

)
for 06 �2 ¡∞: (26)

Lemma 6. Assume that conditions (i)–(iii) and (vi) hold. Then with probability one

Um(0)¿ 0 and lim
�2→∞

Um(�2) = −∞:

We de7ne an estimator �̂2, as a random variable, such that

Um(�̂2) = 0; a:s: (27)

The function Um is continuous in �2 ∈ [0;∞), and by Lemma 6 there exists a solution
(may be not unique) of Eq. (27).
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The reason in de7nitions (26) and (27) is as follows. For large m,

Um( H�2) ≈ �min

( H�ols

m

)
= 0:

On the other hand, for large m and misspeci7ed noise variance �2 �= H�2,

Um(�2) ≈ �min

( H�ols + ( H�2 − �2)Z( H�2 − �2)
m

)
:

By condition (vi), Um(�2) is asymptotically separated from 0. Thus we expect that the
solution of (27) is close to H�2.

Now, we prove that the estimator �2 is bounded in m, a.s.

Lemma 7. Assume that conditions (i)–(v) hold. Then

sup
m¿1

�̂2
m ¡∞; a:s:

Lemma 8. Assume that conditions (i)–(vi) hold. Then

�̂2 → H�2; as m → ∞; a:s:;

where H�2 is the true value of the parameter �2.

(vii) There exists an *3, such that 1=m
∑m

l=1 ‖ Hx(l)‖26 *3, for all m¿ 1.

With unknown H�2, the ALS estimator �̂ is de7ned as a normalized vector satisfying
�̂�2 �̂ = 0.

Theorem 9. Let H�2 be unknown. Assume (i)–(iv), (vi), and (vii). Then

dist(�̂; {± H�}) → 0 as m → ∞; a:s:

7. Fitting conic sections

Now, we suppose that the true surface belongs to the class of surfaces

C(Ac; c) = {x∈Rn: (x − c)�Ac(x − c) = 1} (28)

for some true values HAc and Hc of the parameters Ac and c. Here Ac (“c” stands for
conic) is a non-singular symmetric n×n matrix, and c∈Rn is the center of the surface.
The equation de7ning C(Ac; c) can be written as

x�Acx − 2(Acc)�x + c�Acc − 1 = 0

or, with 5 := (‖Ac‖2
F + ‖2Acc‖2 + (c�Acc − 1)2)1=2,

x�(Ac=5)x − 2(Acc=5)�x + (c�Acc − 1)=5 = 0:

De7ne the new parameters

A :=
Ac

5
; b := −2

Acc
5

and d :=
c�Acc − 1

5
:

As de7ned, A, b, and d satisfy the normalizing condition (2).
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We can renew the original parameters Ac and c from A, b, and d, that satisfy (2)
by

c = − 1
2
A−1b; and Ac =

1
c�Ac − d

A: (29)

Note that 5 = c�Ac − d is non-zero.
Now suppose that we observe the points x1; : : : ; xm, given in (4). The true values

Hx1; : : : ; Hxm, satisfy

( Hx(l) − Hc)� HAc( Hx(l) − Hc) = 1 for l = 1; : : : ; m: (30)

We rewrite (30) in the form

Hx(l)� HA Hx(l) + 2 Hb� Hx(l) + Hd = 0 for l = 1; : : : ; m;

where

HA =
HAc

5
; Hb = −2

HA Hc
5

; Hd =
Hc� HA Hc − 1

5
;

and

5 =
√

|| HAc||2F + ||2 HAc Hc||2 + ( Hc� HAc Hc − 1)2:

Let the noise variance H�2 be unknown. Assume (i)–(vi). Then

dist(�̂; {± H�}) → 0 as m → ∞; a:s:; (31)

where �̂ := (Â; b̂; d̂) is the ALS estimator of the parameters HA, Hb, and Hd. The estimator
of the parameters HAc and Hc is

ĉ = − 1
2
Â−1 b̂ and Âc =

1

ĉ�Âĉ − d̂
Â: (32)

Under (i)–(vi), the estimators are well de7ned for m¿m0(!), a.s., and

‖Âc − HAc‖2
F + ‖ĉ − Hc‖2 → 0 as m → ∞; a:s:

Indeed from (31), we have, see the formulae in (29), that

ĉ = − 1
2
Â−1b̂ → − 1

2
HA−1 Hb = Hc as m → ∞; a:s:

And

Âc =
1

ĉ�Âĉ − d̂
Â → 1

Hc� HA Hc − Hd
HA = HAc:

It is important here that HAc is non-singular. If Â is singular, then the estimators Âc and
ĉ are not de7ned, and if Â is non-singular but b̂�(Â)−1b̂ = d̂, then Âc is not de7ned.
But that does not happen for m¿m0(!), a.s.
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8. Estimation of ellipsoid

We specialize the case described in Section 7 for elliptical surface. Let in (28)
Ac = Ae, where Ae (“e” stands for elliptic) is a positive de7nite matrix. Then C(Ac; c)
is an elliptical surface. The true value HAe of the parameter Ae is positive de7nite.

We can improve estimator (32) in this case. The problem is that Ac can be inde7nite.
We do the following additional step. Let

Âc =
n∑

i=1

�̂iv̂i v̂�
i

be the EVD of Âc, given in (32). Then we set

Âe :=
∑

i : �̂i¿0

�̂iv̂i v̂�
i :

The estimator Âe is positive semide7nite. Moreover as HAe is positive de7nite now,
we have

‖Âe − HAe‖F 6 ‖Âc − HAe‖F ;

and the estimator Âe is a strongly consistent estimator of HAe, i.e., Âe → HAe, as m → ∞,
a.s.

9. Simulation examples

In this section, we show simulation examples for the ellipsoid 7tting problem. The
aim is to illustrate the consistency results of the paper and to compare the ALS es-
timator with the OLS and the orthogonal regression estimators. All experiments are
carried out in the environment of MATLAB.

De7ne the (truncated) average relative errors of estimation by

HeA :=
1
N

N∑
k=1

min

(
‖Âe; k − HAe‖F

‖ HAe‖F
; 1

)
; Hec :=

1
N

N∑
k=1

min
(‖ĉk − Hc‖

‖ Hc‖ ; 1
)

;

and

He� :=
1
N

N∑
k=1

min
( |�̂k − H�|

H�
; 1
)

;

where Âe; k , ĉk , and �̂k are the estimates obtained on the kth repetition of the estimation
experiment. In each repetition, di-erent noise realization is used. The reason for using
the truncated average of the relative errors of estimation is that the expectation of the
relative errors does not exist, see the discussion in Section 5. We have selected the
truncation level to 100%.

In Fig. 1, we show asymptotic plots of HeA, Hec, and He� as a function of the sample size
m. The true data points Hx(l) are equidistantly spaced on the boundary of the ellipsoid
and the noise variance is H�2 = 0:36. In the experiment N = 1000 repetitions are used
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Fig. 1. Asymptotic plots of the average relative errors of estimation as a function of the sample size.
OLS—ordinary least squares, OR—orthogonal regression, ALS1—ALS estimator with known H�2, and
“ALS2”—ALS estimator with estimated noise variance.
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Fig. 2. Average relative error of estimation as a function of the noise standard deviation H�. OLS—ordinary
least squares, OR—orthogonal regression, ALS1—ALS estimator with known H�2, and “ALS2”—ALS esti-
mator with estimated noise variance.

for each value of m. The initial approximation for the computation of the orthogonal
regression estimator is the OLS estimate.

The OLS estimator is clearly biased and the error of the ALS estimator is√
m-consistent. Note that the ALS estimator with unknown true noise variance (ALS2)

performs consistently better than the ALS estimator with known true noise variance
(ALS1).

Fig. 2 shows the relative errors of estimation as a function of the noise standard
deviation. The setting of the experiment is as before. The noise standard deviation is
increased from 0.1 to 0.6 and the sample size is 7xed to m=100 data points. The initial
approximation for the computation of the orthogonal regression estimator is again the
OLS estimate.

The last experiment shows the performance of the estimators on a test example from
Gander et al. (1994). The example is used in Gander et al. (1994) to illustrate the
inadequacy of the algebraic 7tting method and to show the advantage of the orthogonal
regression method.

Given are data points only; even if they are generated with a true model, we do
not know it. For this reason the comparison is visual. Fig. 3, left, shows the data
points with the estimated ellipses superimposed on them. The dashed line represents
the OLS estimate, the dashed–dotted lines, the orthogonal regression estimates (when
initial approximation is the OLS estimate and the ALS estimate), and the solid line,
the ALS estimate. The data points are marked with circles (◦) and the centers of the
estimated ellipses are marked with crosses (×).

The orthogonal regression estimator is inUuenced by the initial approximation. Us-
ing the OLS estimate as initial approximation, the optimization algorithm (MATLAB’s
fminsearch function) converges to a local minimum. The resulting estimate is the
dashed–dotted ellipse closer to the OLS estimate. Using the ALS estimate as initial
approximation, the algorithm 7nds the global minimum point, which corresponds to
the dashed–dotted ellipse closer to the ALS estimate. Although the sample size is only
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Fig. 3. Test example from Gander et al. (1994). Dashed line—OLS estimate, dashed–dotted lines—orthogonal
regression estimates (with initial approximation, the OLS estimate and the ALS estimate), solid line—ALS
estimate, ◦—data points, ×—centers of the estimated ellipses.

m = 8 data points, the ALS estimator gives good estimate and is comparable with the
orthogonal regression estimate, corresponding to the global minimum point.

Fig. 3, right, shows the functions Um used for the estimation of the noise vari-
ances. From the given data, we compute an upper bound of the true noise standard
deviation

v :=

(
1
n

(
1
m

m∑
l=1

‖x(l)
c ‖2 − min

16l6m
‖x(l)

c ‖2

))1=2

where x(l)
c := x(l) − 1

m

m∑
k=1

x(k);

and use a bisection method, see Gill et al. (1999), to 7nd a zero of Um in the interval
�∈ [0; v]. For the example there is a unique zero in the interval [0; v], which corresponds
to the noise standard deviation estimate.

10. Conclusions

We have presented a consistent estimator for the parameters of an implicit quadratic
measurement error model. The method used is the adjustment procedure is due to
Kukush and Zwanzig (2002). We give conditions, under which the estimator is strongly
consistent. The adjustment needs the true noise variance. We show, however, a pro-
cedure to estimate the noise variance. This procedure de7nes a consistent estimator
of the model parameters with unknown noise variance. The quadratic model is used
for the conic section and ellipsoid 7tting problems. We give simulation results for the
ellipsoid estimation that illustrate the consistency of the ALS estimator.

The results are derived under the assumption that the measurement errors are nor-
mal. They can be generalized, however, for homogeneous errors described with one
parameter density function. A procedure, similar to the one presented in the paper,
can be derived for the estimation of the noise parameter. An open question is how
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the normalizing conditions for the parameters a-ects the eMciency of the estimator. In
particular, what is the optimal normalizing condition in terms of eMciency.
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Appendix.

Proofs of the statements

Proof of Theorem 4. Under assumption (iv),

1
m

m∑
l=1

fijpq( Hx(l) + e(l)) − 1
m

m∑
l=1

Efijpq( Hx(l) + e(l)) → 0 as m → ∞; a:s:

To show this, we will restrict our attention to the most unfavorable case i = j =p= q.
Then fiiii(x) = x4

i − 6x2
i H�2 + 3 H�4 and we have to show that

1
m

m∑
l=1

((x(l)
i )4 − 6(x(l)

i )2 H�2 + 3 H�4) − 1
m

m∑
l=1

( Hx(l)
i )4 → 0 as m → ∞; a:s: (33)

Now, x(l)
i = Hx(l)

i + e(l)
i . Then

(x(l)
i )4 − 6(x(l)

i )2 H�2 + 3 H�4 − ( Hx(l)
i )4

= 4( Hx(l)
i )3e(l)

i + 6( Hx(l)
i )2((e(l)

i )2 − H�2)

+ 4 Hx(l)
i (e(l)

i )3 − 12 Hx(l)
i e(l)

i + ((e(l)
i )4 − 6e(l)

i H�2 + 3 H�4): (34)

Here the most unfavorable summand is 4( Hx(l)
i )3e(l)

i . We consider

7m =
1
m

m∑
l=1

( Hx(l)
i )3e(l)

i :
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By the Rosenthal inequality, see Rosenthal (1970), we have that

E|7m|2+8 =
1

m2+8 E

∣∣∣∣∣
m∑

l=1

( Hx(l)
i )3e(l)

i

∣∣∣∣∣
2+8

6
1

m2+8

(
m∑

l=1

( Hx(l)
i )6

)(2+8)=2

C(8; H�);

for arbitrary 8¿ 0, where the constant C(8; H�) depends only on 8 and H�. Next, by
(iv) we have

E|7m|2+8 = const
1

m1+8=2

(
1
m

m∑
l=1

‖ Hx(l)‖6

)1+8=2

6 const
1

m(1+8=2)(1−+) :

We choose and 7x 8 large enough in order to have the inequality (1+8=2)(1−+)¿ 1.
Then

∑∞
m=1 E|7m|2+8 ¡∞, therefore by the Chebyshev inequality and the Borel–

Cantelli lemma, see Papoulis (1991), 7m → 0, as m → ∞, a.s. In a similar way
the other summands of (34) being averaged for l = 1; : : : ; m, tend to zero as m → ∞,
a.s., e.g., for

9m :=
1
m

m∑
l=1

( Hx(l)
i )2((e(l)

i )2 − H�2)

we have

E|9m|2+86 const
1

m1+8=2

(
1
m

m∑
l=1

‖ Hx(l)‖4

)1+8=2

6 const
1

m1+8=2

(
1
m

m∑
l=1

‖ Hx(l)‖6

)4=6(1+8=2)

6 const
1

m(1+8=2)(1−2+=3) for 8¿ 0;

and the inequality (1 + 8=2)(1 − 2+=3)¿ 1, which holds for large 8, implies 9m → 0,
as m → ∞, a.s. Thus (33) holds.

But Efijpq( Hx(l) + e(l)) = Hx(l)
i Hx(l)

j Hx(l)
p Hx(l)

q , therefore

1
m

m∑
l=1

fijpq( Hx(l) + e(l)) − 1
m

m∑
l=1

Hx(l)
i Hx(l)

j Hx(l)
p Hx(l)

q → 0 as m → ∞; a:s: (35)
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Similar convergence holds for fijp( Hx(l)). This implies that for

H�ols :=
m∑

l=1

 ols( Hx);

we have∣∣∣∣
∣∣∣∣ 1
m

�als − 1
m

H�ols

∣∣∣∣
∣∣∣∣→ 0; as m → ∞; a:s: (36)

Let

�1(�als=m)¿ �2(�als=m)¿ · · ·¿ �n�(�als=m)

be the eigenvalues of �als=m. Suppose that ‖�als=m − H�ols=m‖6 *, and *¡ *0, where
*0 comes from assumption (iii). Then∣∣�n�(�als=m) − �n�( H�ols=m)

∣∣6 ∣∣∣∣
∣∣∣∣ 1
m

�als − 1
m

H�ols

∣∣∣∣
∣∣∣∣6 *;

therefore |�n�(�als=m)|6 *. By making use of the perturbation theorems of eigenvectors,
as given in Wedin (1972) and Davis and Kahan (1970), we have for the corresponding
normalized eigenvectors �̂als and H� that

dist(�̂als; {± H�})6
*

�n�−1( H�ols=m) − �n�( H�als=m)

6
*

*0 − *
= : L(*); (37)

and lim*→0 L(*) = 0. This relation and convergence (36) prove the statement.

Proof of Corollary 5. The convergence of (35) was studied in the proof of Theorem 4.
Consider for the most unfavorable summands

7m :=
1
m

m∑
l=1

( Hx(l)
i )3 e(l)

i :

It was shown that for each 8¿ 0, there is a constant *8, that depends only on 8, for
which

E|7m|2+86
*8

m(2+8)(1−+)=2 : (38)

Therefore

|7m|2+8m(2+8)(1−+)=2 = Op(1);

and

7m =
1

m(1−+)=2 Op(1):

The other summands in (35), which have expectation zero, also satisfy this relation.
Then ∣∣∣∣

∣∣∣∣ 1
m

�als − 1
m

H�ols

∣∣∣∣
∣∣∣∣=

1
m(1−+)=2 Op(1);
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and from (37), we have

dist(�̂als; {± H�}) =
∣∣∣∣
∣∣∣∣ 1
m

�als − 1
m

H�ols

∣∣∣∣
∣∣∣∣Op(1)

=
1

m(1−+)=2 Op(1):

Now, we show (24). From (38), we have

E(m*|7m|2+8)6
*+

m(2+8)(1−+)=2−* ; for *¿ 0:

For large enough 8, we have

(2 + 8)(1 − +)=2 − *¿ 1;

and then by the Chebyshev inequality and the Borel–Cantelli lemma, see Papoulis
(1991),

m*|7m|2+8 → 0 as m → ∞; a:s:;

and

|7m|m*=(2+8) → 0 as m → ∞; a:s:;

when *¡ (2 + 8)(1 − +)=2 − 1. Fix 0¡,¡ (1 − +)=2. Then

*=(2 + 8) = (1 − +)=2 − 2=(2 + 8);

and

2=(2 + 8) = , for 8 = 2=, − 2:

Then

|7m|m(1−+)=2−, → 0 as m → ∞; a:s:;

and ∣∣∣∣
∣∣∣∣ 1
m

�als − 1
m

H�ols

∣∣∣∣
∣∣∣∣m(1−+)=2−, → 0 as m → ∞; a:s:

Then (37) implies statement (24).

Proof of Lemma 6. We have

��2 = �ols for �2 = 0;

therefore

Um(0) = �min

(
�ols

m

)
¿ 0:

(In practice, for noisy observations and for m¿n�, �ols is strictly positive de7nite
operator, thus Um(0)¿ 0.)
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Now introduce the unit vector h∈V,

h := (0; e1; 0);

where e1 ∈Rn×1 is e1 := [1 0 · · · 0]�. We have for the scalar product in V,〈
1
m

��2h; h
〉

=
〈

1
m

� H�2h; h
〉

+ H�2 − �2;

and 〈
1
m

��2h; h
〉

→ −∞ as �2 → ∞; a:s:

But

�min

(
1
m

��2

)
6
〈

1
m

��2h; h
〉

;

and this implies the second statement in Lemma 6.

Proof of Lemma 7. Let 00 be the constant from condition (v) and let h0 ∈V be the
unit vector

h0 = (0; e00 ; 0);

where e00 ∈Rn is e00 := [0 · · · 0 1 0 · · · 0]�, with 1 on the 00th position. From the
de7nition of �̂2, we have

06
〈

1
m

��̂2h0; h0

〉
=
〈

1
m

� H�2h0; h0

〉
+ H�2 − �̂2;

and, see (36),

�̂26 H�2 +
〈

1
m

H�ols h0; h0

〉
+ o(1) as m → ∞; a:s:

Then by condition (v),

�̂2 6 H�2 +
1
m

m∑
l=1

( Hx(l)
00

)2 + o(1)

6 H�2 + *2 + o(1):

Proof of Lemma 8. It can be shown that for each v¿ 0,

Em(v; !) := sup
06�26v2

∣∣∣∣
∣∣∣∣ 1
m

��2 (!) − Fm( H�2 − �2)
∣∣∣∣
∣∣∣∣→ 0 as m → ∞; a:s: (39)

We 7x !∈<, for which �̂2
m(!) is bounded in m, and for which the convergence (39)

holds for every v∈N. The sequence {�̂2
m(!); m¿ 1} belongs to the interval [0; v2].

Here v = v(!) ∈N, and we assume that v¿ H�. We have from (27) and (39) that

Em(v; !)¿ |�min(Fm( H�2 − �̂2))|: (40)
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Consider any convergent subsequence {�̂2
m(k)(!); k¿ 1}, say �̂2

m(k)(!) → �2
∞, as k →

∞. Suppose that �2
∞ �= H�2. Then for certain m1 = m1(!) and , = ,(!)¿ 0, we have

for all m(k)¿m1, that

|�min(Fm(k)( H�2 − �̂2))|¿ min
,26|1|6v2

|�min(Fm(k)(1))|: (41)

But from (40) and (41), we have for m(k)¿m1, that

min
,26|1|6v2

|�min(Fm(k)(1))|6Em(k)(v; !) → 0 as k → ∞:

This contradicts assumption (vi). Therefore �2
∞= H�2. Thus each convergent subsequence

of {�̂2
m(!); m¿ 1} converges to H�2, therefore �̂2

m(!) → H�2, as m → ∞. We 7xed !
from the set <0 of probability one, therefore �̂2

m → H�2, a.s.

Proof of Theorem 9. The proof is similar to the proof of Theorem 2 of Kukush et al.
(2003). Due to the quadratic structure of ��2 with respect to �2 and due to (vii), we
have for each v¿ 0,

sup
m¿1

sup
06�2

16v2 ; 06�2
26v2

|�2
1−�2

2|6,

∣∣∣∣
∣∣∣∣ 1
m

��2
1
− 1

m
��2

2

∣∣∣∣
∣∣∣∣→ 0 as , → ∞; a:s:

This means that the functions {��2 =m; �2 ∈ [0; v2]; m¿ 1} are equicontinuous, a.s.
Therefore, see Lemma 8, for v2(!) := supm¿1 �̂

2
m(!) we have∣∣∣∣

∣∣∣∣ 1
m

��̂2 − 1
m

H�ols

∣∣∣∣
∣∣∣∣6

∣∣∣∣
∣∣∣∣ 1
m

��̂2 − 1
m

� H�2

∣∣∣∣
∣∣∣∣+
∣∣∣∣
∣∣∣∣ 1
m

� H�2 − 1
m

H�ols

∣∣∣∣
∣∣∣∣

6 sup
m¿1

sup
06�26v2(!)

|�2− H�2|6|�̂2
m− H�2|

∣∣∣∣
∣∣∣∣ 1
m

��2 − 1
m

� H�2

∣∣∣∣
∣∣∣∣

+
∣∣∣∣
∣∣∣∣ 1
m

� H�2 − 1
m

H�ols

∣∣∣∣
∣∣∣∣→ 0 as m → ∞; a:s:

Then like in the proof of Theorem 4, we obtain that dist(�̂; {± H�}) → 0, as m → ∞,
a.s.
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