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Abstract. Automatic model search procedures aim at identifying the model that maximises a 

given fitness function, thereby regarding model selection as an optimisation problem. However, 

it is unrealistic to believe that the fittest model represents the best solution to the search 

problem. In fact, even if it is possible to score all of the candidate models, it hardly happens 

that there is an unequivocal answer to the question of which model best explains data. In this 

paper we propose an automatic model search procedure for the identification of an optimal set 

of good models. In a technological approach to model selection the identified models can co-

exist, whereas in a scientific modelling approach such models represent a starting point for 

further context -dependent analysis. Examples of the application of the proposed procedure to 

real data are given. 
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1. Introduction 

Model search procedures aim at identifying one model, out of a finite set M of 

candidate models, which best explains the data D. More precisely, following Cowell 

et al. (1999, p. 244), we could distinguish between technological modelling and 

scientific modelling. The technological modelling approach regards the model 

according to its “usefulness”, irrespective of whether it corresponds to any underlying 

reality. As a consequence, several models can co-exist and there is no reason to 

constrain a search procedure to identify a unique model. On the other hand, in the 

scientific modelling approach it is assumed that there exists a “true” model from 

which data are drawn so that model search procedures should be designed to identify 

such a unique model. 

Automatic model search procedures can be regarded as optimisation algorithms: 

the elements m of M are scored according to a fitness function f(m, D) which gives a 

measure of the goodness of fit of the model and has to be optimised. Typically, the 

dimensionality of M is so large that it is time-unfeasible to evaluate every m M∈ and 

only the models in a very small subset of M can be evaluated. As a consequence, the 

way such a subset is chosen is a critical aspect that plays a fundamental role in the 

efficiency and effectiveness of the procedure. Recently, a great effort has been 

devoted to the research of always more efficient and robust search algorithms often 

supported by the huge progress in the computational sector. Nevertheless, it is 

important to underline that model selection is not essentially a computing problem but 

it is strongly dependent from the context of analysis. Indeed, even if it is possible to 
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score all of the candidate models, it hardly happens that there is an unequivocal 

answer to the question of which model best explains data; see for instance Whittaker 

(1990, p. 241), Christensen (1997, p. 215), and Edwards (2000, p. 157). Our 

standpoint is that, both in the technological and in the scientific modelling approach, 

it is always useful that an automatic model search procedure identifies a set of good 

models (that is, a set of parsimonious models consistent with the data) possibly 

representing a starting point from which further context -dependent analysis can be 

developed.  

Log-linear graphical modelling (see Lauritzen, 1996) constitutes an important 

field in which it is required to tackle efficiently and effectively the model search 

problem. In this context, stepwise procedures have been proposed (see Whittaker, 

1990 and Edwards, 2000) and implemented, among others, in the statistical packages 

CoCo (Badsberg, 1995), MIM (Edwards, 2000), GraphFitI (Blauth and Pigeot, 2000). 

More recently, stochastic search and optimisation algorithms, such as genetic 

algorithms, which are usually computationally more expensive than stepwise 

procedures, but have better explorative and convergence properties, have attracted 

increasing attention; see Fouskakis and Draper (2002) for a review of the application 

of such techniques in statistics and Bargelt and Kruse (2002, p. 227), Exteberria et al. 

(1997), Larranaga et al (1999) and Poli and Roverato (1998) for applications to 

structural learning in graphical models.  

In this work we propose an automatic model search procedure, based on genetic 

algorithms, that identifies a set of good models satisfying a given optimality criterion. 

The cardinality of such a set is not specified a priori and we show empirically that, 

although the selected models can be ranked according to their fitness value, such a 
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ranking is independent of the ranking based on the distance from the true generating 

process . In other words, within the selected set the fitness function does not seem to 

be able to discriminate between models. As a consequence, to choose one model, out 

of the set of selected models, on the basis of the fitness function, is not justified. 

Further analysis on real datasets, coming from economical and socio-medical 

frameworks highlights the usefulness of the proposed search procedure. 

The paper is organized as follows. Sections 2 introduces briefly log-linear models 

and genetic algorithms, Section 3 describes the proposed evolutionary algorithm. The 

results from the analysis of simulated datasets are reported in Section 4, while the 

analyses of real dataset in financial and social environments are reported in Section 5.  

2. An outline on the technical framework 

In this section we briefly introduce graphical models for discrete data and genetic 

algorithms. We refer to Lauritzen (1996) for a comprehensive account of the 

graphical model theory and to Mitchell (1996) and Goldberg (1989) for a detailed 

description of genetic algorithms. 

2.1 Log-linear graphical models 

Let { }, ,...,V a b m= be a finite set of discrete random variables. In undirected 

graphical models each variable in V is associated with a vertex of an undirected graph 

),( EVG =  (Darroch et al., 1980). The edge set E V V⊆ × gives the conditional 

independence structure of V; specifically, each missing edge ( , )i j E∉ , with ,i j V∈ , 
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denotes the conditional independence of variables i and j given the remaining 

variables { }\ ,V i j . A graph is undirected if ( , )i j E∈  implies ( , )j i E∈ . A graph 

is said complete if for all ,i j V∈ with i j≠  it holds that ( , )i j E∈ . A subset A of V 

induces a subgraph ( , )A AG A E=  where 
AE V A A= ∩ × . The subset A V⊆ is called 

complete if GA is complete. The subset A V⊆ is a clique of G if it is maximally 

complete, i.e. A is complete, and if A B⊂ then B is not complete. For instance, the 

graph in Figure 1 has vertex set { }, , , ,V a b c d e= , edge set E={(a,b), (b,c), (b,d), 

(c,d), (c,e), (d,e)} and its cliques are {a, b}, {b, c, d} and {c, d, e}. 

 

 
Figure 1: Example of an undirected graph. 

An undirected graph is identified by the set of its cliques and, in the case where 

the random variables in V are all discrete, the model defined by an undirected graph G 

is the hierarchical log-linear model where the cliques of the graph correspond to the 

maximal terms in the model. 

The set M of all graphical models for |V| variables coincides with the set of all 

undirected graphs on |V| vertices. Note that the cardinality of M is 

| |
22
V 

 
   and it grows 

exponentially with the number of variables. In a related context, Chickering (1996) 



 

 6 

showed that the problem of identifying the graphical model with the highest score is 

NP-hard.  

2.2 Genetic Algorithms 

Genetic Algorithms (GA) are stochastic search and optimisation algorithms, 

modelled on the Darwinian principle of the Survival of the Fitness (Holland 1975). 

They have been widely used in different fields since they allow to deal with complex 

optimisation problems by exploring effectively the solution domain and converging in 

a path-independent way towards the optimal solution. 

A GA consists of a population of individuals (strings), where each individual 

represents the mathematical encoding of a candidate solution of the problem under 

investigation. Each individual is composed by a sequence of cells, which can assume 

binary or real values. The algorithm starts by randomly generating a population of 

individuals. Then, each individual is  iteratively considered and its goodness is 

evaluated with respect to a fitness criterion, which drives the evolutionary 

mechanism. After all the individuals have been processed and the corresponding 

fitness values are computed, the current population is evolved through operators 

inspired to biological mechanisms. Selection, crossover, mutation and elitism are the 

evolutionary operators that characterize the structure of the canonical genetic 

algorithm. Selection allows the transmission of the individuals with higher fitness 

values in an intermediate population, which then encounter crossover and mutation 

operators. Crossover consists in exchanging, with a fixed probability pc, genetic 

fragments of two mating strings randomly chosen in the intermediate population, 
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while mutation consists in altering the values of single cells of different individuals 

with a fixed probability pm. Different schemes for selection (proportional fitness-

based and rank-based are the most common) and crossover (e.g. single point, double-

point, uniform) can be chosen for the evolution of the population of candidate 

solutions (Goldberg 1989, Mitchell 1996). Elitism operator consists in inserting 

directly in the population of the next generation the best individuals from the current 

population. Therefore, selection, crossover, mutation and elitism determine the 

composition of the new population from the current one. The evolutionary mechanism 

is iteratively repeated until a stopping criterion is fulfilled. A widely used stopping 

criterion requires that the best individual does not change for a fixed number of 

generations. Then, the best individual of the last generation corresponds to the 

optimal solution of the problem under investigation. 

3. Model search procedure  

In this section we describe the procedure for the identification of an optimal set H 

of good models. The characterising feature of our selection method is the repeated use 

of a properly tuned GA. We start with H=Ø? and at every run of the GA an adequate 

model is identified and, if not previously selected, included in H. The optimality 

criterion satisfied by H derives from the convergence criterion of the overall 

procedure, hereafter described in details. 

The GA evolves populations of candidate solutions to the search problem. Each 

individual is a binary string determining the structure of an undirected graph G. Every 
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cell corresponds to one of the K= 
2
V 

 
 

 edges of the complete graph and cells with 

unitary value correspond to edges belonging to the graph. The goodness of fit of the 

corresponding model for each individual is evaluated in terms of the Akaike’s 

Information Criterion (AIC, Akaike, 1973, Badsberg 1995, p. 100). 

In the implementation of the GA several parameters have to be set a priori. These 

determine the rules for the generation of new candidate solutions to the search 

problem and an optimal balance between exploration  (the search for new individuals) 

and exploitation (the use and propagations of previously identified individuals) must 

be found. In other words, the system has to keep trying out new possibilities, so as to 

avoid premature convergence, but relevant past information has also to be transmitted 

in the next generation to guide the behaviour of the algorithm.  

In order to identify a set of good models, we set the parameters of the GA so as to 

have fast convergence to local optima. This is achieved by slightly enforcing the 

exploitation capabilities of the GA. Clearly, in this case it is fundamental to guarantee 

that an adequate degree of exploration is maintained. This is obtained by properly 

setting the overall stopping rule, which determines the number of times that the 

genetic algorithm is independently applied to different initial populations. 

The algorithm starts with the random generation of a population of individuals at 

time t=1. After the fitness value is computed in correspondence of each individual, 

the 5% of the best individuals are retained and directly inserted in the population of 

generation t+1 (elitism). Then, using a linear fitness ranking assignment mechanism 

and a stochastic universal sampling selection method (Baker, 1987), the individuals 

are selected to constitute the intermediate population, which will be processed 
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through the crossover and the mutation (pm= 0.7/K) operators in order to determine 

the population of the generation at t+1. The genetic algorithm stops when the best 

individual of the population does not change for ten consecutive generations.  

The crossover operator is the core mechanism of the genetic algorithm because it 

allows the transmission and recombination of relevant information across generations. 

Since several iterations of the GA are considered, it makes sense to improve the GA 

explorative capabilities by using two different operators. Here, we use both a standard 

uniform crossover operator (XEdge) and an ad hoc crossover operator based on the 

graphical structure of the model (XVertex). For any pair G1 and G2 of parents, XEdge 

randomly exchanges bits, i.e. edges. Edges have fixed independent probability E
cp  of 

being exchanged. XVertex consists in choosing randomly a subset A of V and then 

exchanging the subgraphs GA
1and GA

2 to form two offspring (Poli and Roverato, 

1998). Vertices have fixed independent probability V
cp  of belonging to A. We set 

E
cp  equal to 0.7, while to have significant comparison, V

cp is such that 

int( | |)
2

A
V c
c

p V
p

 ×
=  

 
/ K, where int(x) denotes the integer part of x. 

We randomly generate an initial population and, in turn, apply the GA -XEdge and 

GA-XVertex. These lead to the identification of two, possibly identical, models to be 

included in H. The procedure is iterated N/2 times. N is not set a priori. It has to be 

larger than a given constant T, but the procedure is iterated until no new solution is 

identified in the last R repetitions of the GA. This constraint guarantees that the 

identified solutions are the result of an adequate exploration of the search space 

because they are repeatedly identified in several runs of the GA with different initial 



 

 10 

starting points and with different crossover operators. Indeed, the convergence 

requirement is such that convergence is not attained if the number of different 

identified solutions increases along with the number of iterations of the GA.  

4. Simulations  

In this paragraph we present the application of the proposed procedure to 

simulated datasets. A set V of 10 binary variables is considered, so that the search 

space is made up of 245>1013.5 models. Previous analysis (see Poli and Roverato, 

1998) showed that model search is more challenging when the underlying graph is 

sparse; that is the number of edges is low. For this reason we consider a graph G* with 

13 edges and cliques {{aj}, {bceg}, {bf}, {ci}, {deg}, {dh}, {fj}} and ten datasets of size 

n, randomly generated from a multinomial distribution following the conditional 

independence structure encoded by G*. To avoid problems deriving from the use of 

sparse tables, we set n=20,000. 

The evolutionary procedure was applied to all datasets on populations of 150 

individuals by setting T=40 and R=10. In all cases convergence was reached for 

N=40 and, as a result of the simulations, we obtained the sets Hi for i=1,…,10. As 

reported in Table 1, the cardinality of the sets Hi varies from a minimum of 2 for H9 to 

a maximum of 7 for H7. Considering the ten datasets jointly, 36 models were 

identified, 23 of which obtained by both the GA -XVertex and the GA -XEdge.  
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Table 1: Number of models identified by the procedure for the ten datasets. 

 

 
DATASET 

|Hi |=Total 
Number of 

Models 
Identified  

Number of 
Models 

Identified by 
GA-XVertex 

Number of 
Models 

Identified by 
GA-XEdge 

1 3 2 3 
2 3 3 2 
3 3 2 3 
4 5 3 4 
5 2 1 2 
6 3 3 2 
7 7 4 6 
8 5 5 4 
9 2 2 2 

10 3 3 3 
TOTAL 36 28 31 

 

The number of edges in the selected models varies from a minimum value of 12 to 

a maximum of 23. All the selected models have turned out to be local optima, that is 

having better fitness value with respect to their neighbour models differing exactly by 

one edge.  Furthermore, all the selected models can be accepted on the basis of the 

generalised likelihood ratio test against the saturated model.    

Note that, the combined use of two different crossover operators clearly enhances 

the explorative capability of the procedure without making its convergence slower 

since, as shown in Table 2, GA -XVertex and GA -XEdge have comparable 

convergence time. 
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Table 2: Summary statistics for the number of generations over 200 simulations of 
both GA-XVertex and GA -XEdge. 

 

 Number of Generations 
 Minimum Mean Max Mode Median 

GA-XVertex 26 36.46 57 34 36 

GA-XEdge 20 36.38 66 34 35 
 

It is of interest, at this point, to analyse the properties of the sets  Hi. We first 

compare our procedure with a more traditional application of GA in model selection. 

For this reason we modified the parameters of the GA so as to make the convergence 

slower and identify, in a consistent way, a single model.  We obtained that the model 

so selected was the fittest in Hi  for all the 10 datasets. The sets Hi  are thus made up of 

one global optimal model, typically identifiable by means of more traditional GA 

procedures, and of a few suboptimal models. Such suboptimal models represent the 

novel contribution of the proposed procedure, and we show that they provide relevant 

information and that, in fact, there is no reason why, even in a scientific modelling 

approach, the fittest model Hi in should be preferred to the remaining models in Hi.  

For i=1,…,10, the set Hi is made up of Ji different models, and we denote them by 

the corresponding independence graph Gij, j=1,…, Ji. The models in Hi can be ranked 

according to their fitness value and we give rank 1 to the model with best fitness 

value. Furthermore, as a measure of Gij  from G* we consider the number of edges to 

be switched in Gij to obtain G*, and rank the models in Hi giving rank 1 to the model 

with graph closest to G*. In this way we associate to each model two values (given in 

Table 3) representing the relative goodness of the model with respect to the other 

models in Hi. The strength of the association between such ranking scores can be 
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regarded as an indicator of the usefulness of the fitness function in discriminating the 

models in Hi.  Conversely, the absence of interaction between the two scores denotes 

that, within Hi, the value of the fitness function is not a reliable measure of goodness 

of fit.  Since the Fisher’s exact test applied to Table 3 gives a p-value of 0.16 

supporting the hypothesis of independence of the two ranking scores, we can 

conclude that all the models in Hi should be considered on an equal footing. In a 

technological modelling approach the models in Hi can co-exist, whereas in a 

scientific modelling approach, context -dependent considerations should be used to 

choose one of the models in Hi. 

 

Table 3: Fitness function score vs Error score for the 36 selected models. 

  Fitness Score  

 Model 1 2 3 4 >= 5  

1 4 3 6 0  1 14 

2 1 4 1 1 1 8 

3 3 2 1 0  1 7 

4 1 1 0  0  0 2 

E
rr

or
 S

co
re

 

>=5 1 0  0  2 2 5 

   10 10 8 3 5 36 

 

The proposed automatic procedure has been implemented by using MATLAB and 

CoCo softwares: the procedure is written in MATLAB language. The MATLAB code 

calls CoCo (Badsberg, 1995) and exploits its efficient algorithms for the estimation of 

the log-linear models and the evaluation of the fitness function.  
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5. Applications to real data 

In this section we apply the proposed procedure to the analysis of two real 

datasets, collected from economical and socio-medical environment. 

5.1 A socio-medical problem 

We first apply our procedure to a dataset collected within a socio-medical context  

(Badsberg 1995, p. 14). The dataset1 has 1082 observations for 9 variables: 

a) Force ejection volume–lung function (<177, =177),  

b) cholesterol (<675, = 675),  

c) hypertension (yes, no), 

d) body mass index (normal 20.2-24.9, moderately obese 25.0-29.9, 

severe obese >30.0),  

e) smoking (yes , no), 

f) alcoholic consumption (rare, frequent), 

g) work (yes, no),  

h) gender (male, female),  

i) cohort-survey year (1967, 1984). 

The procedure converged for N=40 and led to the identification of 5 models, 

which correspond to local optima with respect to their neighbour models and can all 

be accepted on the basis of the generalized likelihood ratio against the complete 

model.  

                                                                 
1 The dataset can be downloaded from the website www.math.auc.dk/˜jhb/CoCo/Examples/datasets/ 
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The edges of the independence graphs corresponding to the five selected models 

are given in Table 4. The minimum number of edges is 21 and the maximum 23.  18 

edges (highlighted in Table 3) are common to all models; note that no one of the 

models is a subset of any of the others. From a comparison of the five models it turns 

out that, apart from edge (e,f) that belongs to four out of five graphs, all the 

differences involve variable c. This is graphically displayed in Figure 2 where the five 

independence graphs are jointly represented with dashed lines corresponding to edges 

that are not common to all graphs.  

In this example, the selection of a set of models allows to clarify that for this 

dataset inference concerning the association between variable c and the remaining 

variables requires special attention. Clearly, any automatic search procedure designed 

to select exactly one model would miss to evidentiate such a feature of the data and 

would therefore not be appropriate for this problem.  

In a scientific modelling approach only one model has to be chosen and, in 

absence of expert opinion to help in the selection strategy, a sensible choice could be 

to consider the unique model largest than the five selected models. Indeed, the five 

selected models are all submodels of such a largest model whose graph, in Figure 2, 

has just three edges more then the graph of model 3.  
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Table 4: Five selected model for the socio-medical dataset. 

Model 1 Model 2 Model 3 Model 4 Model 5 
 (a,c) (a,c)  (a,c) 

(a,d) (a,d) (a,d) (a,d) (a,d) 
(a,e) (a,e) (a,e) (a,e) (a,e) 
(a,f) (a,f) (a,f) (a,f) (a,f) 
(a,g) (a,g) (a,g) (a,g) (a,g) 
(a,h) (a,h) (a,h) (a,h) (a,h) 
(a,i) (a,i) (a,i) (a,i) (a,i) 
(b,c)  (b,c)  (b,c) 
(b,d) (b,d) (b,d) (b,d) (b,d) 
(b,h) (b,h) (b,h) (b,h) (b,h) 
(b,i) (b,i) (b,i) (b,i) (b,i) 
(c,d) (c,d) (c,d) (c,d) (c,d) 

   (c,e)  
  (c,f)   
 (c,g) (c,g)  (c,g) 

(c,h)    (c,h) 
(c,i) (c,i)  (c,i)  
(d,e) (d,e) (d,e) (d,e) (d,e) 
(e,f) (e,f) (e,f) (e,f)  
(e,h) (e,h) (e,h) (e,h) (e,h) 
(e,i) (e,i) (e,i) (e,i) (e,i) 
(f,h) (f,h) (f,h) (f,h) (f,h) 
(f,i) (f,i) (f,i) (f,i) (f,i) 

(g,h) (g,h) (g,h) (g,h) (g,h) 
(g,i) (g,i) (g,i) (g,i) (g,i) 
(h,i) (h,i) (h,i) (h,i) (h,i) 
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Figure 2: Joint representation of the independence graphs for the five selected models. 

5.2 A credit scoring problem 

Statistical credit scoring is a class of statistical method to determine the 

probability that a money borrower will repay on time the amount of credit she/he is 

granted. For a description of the problem see Hand and Henley (1997). In a Bayesian 

approach to inference, Tarantola, Giudici and Green (2000) fitted a graphical model 

to a set of 9 binary variables measured on 1000 borrowers: 

a) Gender (female, male),  

b) marital status (married-divorced-widowed, single),  

c) balance of current bank account (null-negative, positive),  

d) values of savings or stocks (= 500 DM, >500 DM),  

e) payments of previous credits (problematic, otherwise), 

f) credit amount (= 5000 DM, >500 DM), 

g) purpose of the credit (professional, otherwise), 

c 

d 

e f 

g 

h 

i 

a 

b 
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h) duration (= 24 months, >24 months),  

i) creditability (yes, no). 

See also Fahmeir and Hamerle (1984) and Fahrmeir and Tutz (1994) for previous 

analysis of these data2.  

In this case our procedure led consistently to the identification of one single 

model, i.e. |H|=1,  with cliques {{ab},{afg},{ah},{cdi},{cf},{dei},{egi},{ehi},{bi}}. This 

model is strongly supported by the data and consistent with previous analyses.  

It may seem that there is no real need to use our procedure for this problem 

because any adequately tuned GA, designed to select one single model, would have 

led to the same result. However, it is worth pointing out that the use of our procedure 

allows to exclude the existence of relevant suboptimal models and enforces our 

confidence on the goodness of the selected model.  

 

6. Discussion 

The availability of efficient computational resources and of modern search 

heuristic algorithms has made possible an increasingly more effective exploration of 

the search space. Here, we have shown that an automatic search procedure can be 

designed to retain wider information on the structure of the search space than just the 

optimal value, thereby allowing a more comprehensive understanding of the model 

selection problem. 

                                                                 
2 The dataset can be downloaded from the website www.stat.uni-
muenchen.de/Einrichtungen/Rechnerbetrieb/Data-sets/Kredit/kredit-e. 
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A related problem concerns the role of the fitness function. The identification of 

exactly one, fittest model, is based on the implicit assumption that there is a 

monotonically increasing functional relation between the fitness value of a model and 

the closeness of such model to the “true” generating process. As shown in Section 4, 

this assumption can be hardly justified. A procedure that selects several models, as the 

one proposed here, is clearly less affected by the lack of validity of such an 

assumption and therefore provides more robust answers. 
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