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Abstract

Three semi-parametric estimators for ordered response models are compared: a
“semi-nonparametric” series estimator, an estimator based on a polynomial trans-
formation to normality, and a least squares estimator for a transformed dependent
variable. The empirical estimates are found to differ markedly across estimators in
a job satisfaction illustration presented, but much less so in the second illustration,
a model of willingness to pay for environmental protection. Monte Carlo evidence
comparing the three estimators is also presented.
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1 Introduction

This paper looks at semi-parametric alternatives to the standard fully para-
metric models for ordered responses. The standard Ordered Probit and Or-
dered Logit models require specific distributional assumptions for the under-
lying latent variable. This paper considers various semi-parametric estimators
that do not require a distributional assumption to be made. Lewbel (2000) has
proposed a very simple estimator that has desirable properties under weak as-
sumptions. However the estimator has been little used in practical applications
and there have also been no comparisons of the estimator with other semi-
parametric estimators (only with the standard fully parametric ones). The
second estimator considered is constructed using the “semi-nonparametric”
series estimator of Gallant and Nychka (1987). The third estimator examined
uses a polynomial transformation to normality and is related to the family of
distributions proposed by Ruud (1984).
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Most of the semi-parametric estimators available for discrete response models
require kernel smoothing, and hence bandwidth selection, together with iter-
ative or grid search estimation and some sort of trimming to enable conver-
gence. These kernel-based methods generally require a considerable amount
of intervention and judgement on the part of the researcher and the estimators
regularly experience acute convergence problems in the context of ordered re-
sponse models. Therefore for the comparisons in this paper, the focus is on
estimators that do not involve kernel smoothing. The comparison is also re-

stricted to the single latent variable framework with single index form and
fixed thresholds.

The next section presents a framework for cumulative probability models for
ordered responses. Section 3 presents the Ordered Probit model in the par-
ticular parameterization used. Sections 4-6 then describe the three semi-
parametric estimators given above. The Lewbel estimator is very fast, but
the other two semi-parametric estimators are very computer intensive. Com-
putational simplifications are described. Two illustrations of the techniques
based on real data are presented: a model for job satisfaction in Section 7
and a model for willingness to pay for environmental protection in Section 8.
Evidence from a Monte Carlo investigation of the three semi-parametric esti-
mators is presented in Section 9. Finally conclusions are given in Section 10.

2 Cumulative probability models for ordered responses

Consider a linear model for an underlying latent variable
y;(:Zi‘i‘xgﬁ‘i‘gi? i=1,...,N, (1)

where [ is a vector of unknown parameters, ¢|z, x ~ F, and where y*, ¢ and
£ have all been scaled so that the coefficient on z is equal to 1. This is
slightly different from the usual formulation, due to separating the variable
z, which plays a special role in the Lewbel estimator, and the normalization
on its coefficient. This type of normalization is fairly commonly used for
semi-parametric estimators of limited dependent variable models. It is also
useful in comparing the estimators, since the coefficient estimates are not
directly comparable, but their ratios are. The observed dependent variable y;
is discrete, taking one of the values {1,2,...,J}, and is related to y; by
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with the o; being additional parameters such that a; < ap < ... < ay_;.
Thus the range of y* is partitioned into J mutually exclusive and exhaustive
intervals, and the variable y indicates the interval into which a particular
observation falls.

Adopting the additional notation that ag = —oo and a; = 400, the model
can be written more compactly as

J
yizz‘jl—(ajfl <z+zf+e <aj), (3)
j=1
where Z(A) = 1 if A is true and = 0 if A is false. The probabilities of the
observed outcomes are given by

Prly; = j] = F(oy — 2z — 2;8) — F(aj 1 — zi — x30). (4)

The scale of y* is fixed by the unit coefficient on z, but not the origin. Identi-
fication can be achieved by assuming a zero intercept in 3 or by fixing one of
the a;. The former is used here.

If the distribution of ¢ is specified, then the model can be estimated consis-
tently by Maximum Likelihood. The log-likelihood is given by

N J
InL =3 > {Z(y: = j) n[F(a; — 2 — }B) — Flajo1 — 2z —xiB)]}. ()
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The above specification defines a class of cumulative probability models in
which a transformation of the cumulative probabilities is taken to be a linear
function of the explanatory variables, with only the intercept in this function
differing across the categories:

F~ {Prly; < jl} = aj — 2 — 2i3. (6)

3 The Ordered Probit model

By far the most commonly used models to date for the analysis of ordered
responses have been the Ordered Probit and Ordered Logit models, which
take F' to be standard Normal and Logistic respectively. In the current pa-
rameterization the Ordered Probit model assumes that &; ~ N(0,0%). The
cumulative probabilities are then given by

aj — 2z — xéﬁ)
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or equivalently in the more familiar parameterization as
Prly; < jl = ®(aj — Bgzi — ;87), (8)

where o = a;/0, f; = 1/0, 3* = /0, and ® is the cumulative distribution
function of a standard Normal. The original coefficient vector is given by

B=pB"/5s
4 Lewbel’s Least Squares estimator

Lewbel (2000) has recently proposed a semiparametric estimator for qual-
itative response models, including the ordered response case, that is root—
N consistent and asymptotically normal under weak conditions and is fairly
straightforward to implement. The weak conditions allow, for example, het-
eroskedasticity of unknown form. Implementation does not require iteration
or numerical searches. A simplified estimator, requiring only slightly stronger
conditions, involves only two ordinary least squares linear regressions and one
sort of the data.

The Lewbel estimator treats z as a ‘special regressor’ and requires that it
satisfy certain conditions. Identification requires that z have a continuous
distribution, that z have a sufficiently large support (the support of z needs to
contain that of —(2’'5+¢)), and that € have a distribution that does not depend
on z (although it is allowed to depend on z). Magnac and Maurin (2003)
discuss alternative restrictions. Note that the Lewbel estimator is not unique
in requiring a regressor with large support. This is also required, for example,
by the Manski (1985) and Horowitz (1992) Maximum Score estimators for the
binary response model.

Define cumulative indicator variables y;; = Z(y; > j) for j = 2,...,J. Then
define J
1 Y; — 1
Yi = J_ljzz:gyjz— T-1
Thus y.; is a scaled version of y; with values that range from 0 to 1. The Lewbel
estimator then requires construction of the variables

~yi—Z(>0)
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yji:—f<z|x) , 1=2,...,J

Construction of these transformed variables requires an estimate of the condi-
tional density of z given x. This is considered below. It is also desirable for



zero to be somewhere near the middle of the support for z, which can always
be achieved by subtracting the mean or median before construction of these
transformed variables.

The Lewbel estimator then involves a set of OLS linear regressions of the
estimates of these transformed variables on z. Define
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and let Aj, denote the k-th row of A. Then the Lewbel estimator of /3 is given
by

1N L
ﬁk:AkNszy“ ]{7:27,[{, (9)
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where 7, is §.; with f(z|z) replaced by a suitable estimate. So 3 is the vector
of slope coefficients from an OLS regression of ¢, on z;. Similarly the Lewbel
estimator of the thresholds is given by

_ 1 & - .
Qi1 = _AIN inij J=2,...,J (10)
i=1

So each a;_; is the estimated intercept from an OLS regression of ﬁji on ;.

The main effort in the estimator is the estimation of f(z|z) prior to the con-
struction of the transformed variables and in the estimation of suitable stan-
dard errors. Considering the latter first, the variance of B can be estimated
as the Huber/White sandwich estimator of the coefficient estimates from an
OLS regression of 7, +E (3 ;|z;) — E(3 |, z) on x; with the conditional expec-
tations replaced by nonparametric regressions. However, in the applications
presented below a bootstrap estimator will be used.

Turning to the estimation of f(z|x), one choice would be a kernel estimate of
the joint density of z and = divided by a kernel estimate of the density of x
(see for example Lewbel (2000) equation B3). The need for a first stage ker-
nel estimator can be avoided by using Lewbel’s suggested simplified “ordered
data” estimator of the reciprocal of the conditional density. (Bloch and Gast-
wirth (1968) and Lewbel and Schennach (2003) provide further discussion of
the estimator.) This assumes that we can write

/
Zi = I; + Wi,

where w; is continuously distributed with bounded support, has mean zero,
and is independent of z;. Denote the residuals from the OLS estimation of
this equation by @ and let the values of @ immediately preceding and following
©; after sorting the data in ascending order of @ be w; and w;", respectively.



Then i/N is an estimate of the distribution of w evaluated at @;, and the
reciprocal of the density can be estimated by

R N{m(@)]lwwi—wi
flalm) ~ fo@) ~ | dw T 2/N

This can be used in the expressions for the transformed gy variables given
above. When combined with this density estimator, the Lewbel estimator
is particularly straightforward to implement, although asymptotic efficiency
is sacrificed. This simplicity in turn makes it computationally practical to
construct bootstrap confidence intervals for the parameters.

The estimator is presented here for the ordered response model. The expo-
sition in Lewbel (2000) also covers binary and unordered multiple responses,
partially linear latent variable models and censored regression models. The
estimator can also be used to provide consistent estimates in the presence of
measurement error or endogenous regressors, providing suitable instruments
are available. The approach is extended to the panel data context by Honoré
and Lewbel (2002).

Despite the straightforward nature of the estimator, there have been relatively
few empirical applications, and those that there have been have focused largely
on binary response or endogenous selection models. An exception is Anton et
al. (2001), which estimates discrete duration models (related to the ordered
response models considered here). As far as I am aware there are no existing
papers that compare the Lewbel estimator with other semi-parametric estima-
tors, either in empirical studies or in simulation experiments. The few existing
studies compare the estimator only with the corresponding fully parametric
estimator.

5 Semi-nonparametric estimation

Another “semi-parametric” estimator of the ordered response model can be
constructed using the “semi-nonparametric” series estimator of Gallant and
Nychka (1987). The Gallant and Nychka “semi-nonparametric” estimator
of an unknown density approximates it using a Hermite form and can be
written as the product of a squared polynomial and a normal density, giving a
polynomial expansion with Gaussian leading term. (In fact the expansion can
be around any density with a moment-generating function, but the normal is
a natural choice in the current context, since it results in a model that nests
the Ordered Probit.)

To ensure that the density approximation is proper, the approximation is



specified as
2

o) = (Lnet) 000, )

where ¢(¢) is the standard normal density function and where

0 = / (iv;cak) o(e) de. (12)

This general specification of the density is invariant to multiplication of v =
(70,71, ---, Vi) by a scalar and a normalization is required, with vy = 1 being
a convenient choice. The required distribution function is therefore specified
as . ,
S (14 S met) ole) de
Fr(u) = = (13)

e o]

il <1 + %5’“)2 o(e) de

This defines a family of “semi-nonparametric” (SNP) distributions for increas-
ing values of K.

The unknown density can be approximated arbitrarily closely by this Her-
mite series, by increasing the choice of K, provided that it satisfies certain
smoothness conditions. The class of densities that can be approximated by
this form is very general, allowing any form of skewness, kurtosis, or higher
moments, although “violently oscillatory” density functions are ruled out. In
addition to the smoothness restriction, there is an upper bound on the tails of
the densities. (See Gallant and Nychka (1987) page 369, for a fuller discussion
of the class of densities.) Under these and other “mild” regularity conditions,
and providing K increases with the sample size, the model parameters are
estimated consistently (Gallant and Nychka, 1987) by maximizing the pseudo-
likelihood function that replaces the unknown distribution function F' in (4)
in the likelihood function by F in (13).

Semi-parametric identification also requires a location normalization. That
used by Gabler et al. (1993) in the binary response case to give the error term
a zero mean is rather cumbersome. However, the restriction can be on either
the error distribution or the systematic part of the model. Melenberg and
van Soest (1996) use an alternative normalization, setting the constant term
in their model equal to its probit estimate. This is far more convenient. The
equivalent used here in the ordered response model context is to set the first
threshold, a7, equal to its ordered probit estimate.

In the K = 1 model, the imposition of F(e) = 0 implies 73 = 0, so that the
model in this case reduces to the Ordered Probit model. The imposition of
the equivalent restriction used here has the same implication. An important
additional feature of the model in the general case is that the score for 7, is



zero at the Ordered Probit estimates. (This is equivalent to the result for
the binary probit case proved in Appendix B of Gabler et al. (1993).) This
implies that the model for K = 2 is also equivalent to the Ordered Probit
model. The model with K = 3 is therefore the first model in the series that
is a generalization of the Ordered Probit model.

In practice, inference is conducted conditionally on K, possibly for a range
of alternative values of K, with the final specification of the model chosen
by tests among them. Thus in reality the model is treated as parametric for
a given K, with the choice of K part of the model selection procedure. As
Pagan and Ullah (1999) point out, the orientation is non-parametric, but the
modus operandi is parametric. This latter characteristic is appealing, because
estimation can be conducted in a familiar Maximum Likelihood environment.

The approach can therefore be viewed as a series of polynomial densities and
corresponding pseudo-likelihood functions, with standard model selection pro-
cedures used to reduce the dimension of the parameter vector and improve
efficiency in finite samples. This can, for example, be on the basis of Wald or
Likelihood-ratio tests on the ~-vector, or using standard information criteria.

The polynomial form of (11) means that the cumulative probabilities given
by (13), required for the pseudo-likelihood function, can be derived using the
higher order truncated moments of a standard normal distribution. First, the
SNP density can be written as

12K

fr(e) = i Z et d(e), (14)

where 7} = Z?iak ViVk—i, With ar = max(0,k — K) and by = min(k, K). The
scaling factor to give a proper density is then given by

0 2K 2K K
0= [ Yo ieto(e)de =3t =1+ D A, (15)
e k=0 k=0 k=1

where pi; is the k-th moment of a standard normal, and the second equality
follows from the fact that px = 0 for £ odd.

Equation (13) can be written as

1 2K . u . 1 2K i}
Fielw) =5 Y i [ €*0(e)de = 5 - 7ilu(w)
0 k=0 0 k=0

—00
a linear combination of the truncated moments of a standard normal, where

u
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Computation of the likelihood contributions for the Maximum Likelihood iter-
ations can then be simplified (and the computational burden eased) by making
use of the recursion

Ii(u) = (k = DIe-a(u) — u* o (u), (16)

with Io(u) = ®(u) and I;(u) = —¢(u). Each truncated moment can be written
as a polynomial combination of the standard normal cumulative distribution
and density functions.

The formulation can be further simplified in the current context, where each
cumulative probability is a linear combination of truncated moments scaled
by the corresponding combination of complete moments. It can be shown
that the recursion need only involve the normal density function part of the
expressions for these truncated moments. Using the recursion in equation (16),
the truncated moments in F(u) can be shown to also be given by

Li(u) = pux® () — Ag(u)d(u),
where the Ag(u) are given by the recursion
Ap(u) = (k — 1) Ap_o(u) + ",
with Ag(u) = 0 and A;(u) = 1. Using this the cumulative probabilities in

(13) required for the pseudo-likelihood function can be written as

12K

Filn) = 5 S 5% (mb(a) — Ao}
— () - 5 | S skt o0 (17)

Thus the cumulative probabilities in the SNP framework have the standard
normal cumulative distribution function as leading term and differ from this
by the product of the standard normal density and a polynomial in u of order
(2K —1). The SNP estimator is then given by the maximization of the pseudo-
likelihood function got by replacing the unknown distribution function F'(u)
in (5) by Fx(u/o) as defined in (17).

6 An alternative polynomial generalization

Another possible way to relax the normality assumption in the Ordered Probit
model would be to use the larger parametric family of distributions proposed



by Ruud (1984). He nests the normal distribution within the parametric

o ot =+ (1), .

o
where W(u) is an M-th order power series

\I’(u) = Z;meum7 (19)

that is monotonically increasing in u, i.e., ¥'(u) > 0, for all real u, and nor-
malized so that the median is zero (¢ = 0) and 1y = 1. In the current
context the normalization o = 1 is also needed. The aim is for ¥(.) to closely
approximate the transformation of u to Normality. Melenberg and van Soest
(1996) use this specification with M = 3:

Gu) = ®(u + ou® + 1h3u’). (20)

In this case the monotonicity requirement is that 12 < 31)3. The model can
be estimated by Maximum Likelihood with the unknown F' replaced in the
likelihood function by G as specified in (20) and with maximization subject to
12 < 3¢p3. A family of distributions is generated for different orders M, with
monotonicity imposed on each distribution in the family.

However this approach to imposing monotonicity is rather inconvenient, par-
ticularly as M increases, and an alternative is adopted here, approximating
the distribution by

Fy(u) = ©(h(u)), (21)
with

h'(u) = (Z %uk> : (22)

This latter construct ensures monotonicity. Suitable normalizations are re-
quired. Setting the constant of integration to zero ensures a zero median for
the distribution and vy = 1 then gives scale identification.

To illustrate, for the case of M =1, I/(u) = (1 + )% and h(u) = u + yu? +
%’y%u? This corresponds to the specification used by Melenberg and van Soest

(1996) referred to above with the inequality constraint replaced by an equality.

In the general case, the derivative of h can be written as
2M
W(u) =)y, (23)
k=0
where

by,
Vi = Z YiVk—is

i:ak
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with a; = max(0,k — M) and by, = min(k, M). Thus

h(u) = % i ut (24)
=k +1

(The requirement of a zero median implies a zero constant of integration.)
The scale normalization used is 79 = 1. Thus the cumulative probabilities
required for the pseudo-likelihood function are given by

2% e
_ +
Fy(u) =@ <u+k§:1 I LU ) ) (25)

The polynomial-generalized ordered probit (PGOP) estimator is then given
by maximization of the pseudo-likelihood function that replaces the unknown
distribution function F'(u) in (5) by Fy(u/o) as defined in (25).

The semi-parametric estimators described in the previous three sections are
illustrated on two different datasets in the next two sections.

7 First illustration: job satisfaction

This illustration uses a model of job satisfaction (self-declared) based on that
specified in Clark and Oswald (1996) and using data from the 1991 wave
of the British Household Panel Survey. Working respondents provided job
satisfaction scores ranging from 1 (“not satisfied at all”) to 7 (“completely
satisfied”). Clark and Oswald examine the hypothesis that job satisfaction
depends on income relative to a “comparison” or reference level. Their main
findings are that job satisfaction levels are positively related to own earnings
and negatively related to “comparison” earnings. Other well-known features
of their results are the higher ceteris paribus job satisfaction levels of women
and the U-shaped age profile.

The model specification adopted for this illustration uses fewer explanatory
variables than included in the Clark-Oswald model. The log of the individual’s
earnings is taken as the variable z, whose coefficient is normalized to 1. The
x-variables include the log of “comparison” earnings, the log of hours, and
an indicator variable for males. A quadratic in age is also included as are
dummy variables for those not in good health, those with a second job, those
on temporary contracts, and those who are managers. The sample size is

3,895.

Results for this specification using the Ordered Probit estimator, the Lewbel
least squares estimator (LLS), the SNP estimator and PGOP estimator are

11



given in Table 1. Bootstrap standard errors are presented for the Lewbel esti-
mator. Means of the explanatory variables are given in the first column of the
table. For the SNP and PGOP estimators the choice of the values of K and
M respectively is treated as a model selection problem and standard selec-
tion procedures applied. The values of the log-likelihood and corresponding
Likelihood Ratio test statistics for different values of K and M are given in
Table 2.

These indicate a choice of K = 3 for the SNP estimator. The standard
ordered probit model is rejected against the X' = 3 model (and higher orders)
on the basis of likelihood-ratio tests. However the K' = 3 model is not rejected
against K = 4 (or higher orders). Selection of K on the basis of the Akaike
Information Criterion or other standard model selection criteria also indicates
choosing K = 3. SNP estimates for K = 3 are given in the third column of
Table 1.

A similar approach is taken to the selection of the order of the polynomial
for the PGOP estimator. The likelihood-ratio tests and other model selection
criteria indicate a choice of M = 1, meaning that the transformation h(u) is
a cubic in u. PGOP estimates for M = 1 are given in the fourth column of
Table 1.

Estimated coefficients in the standard parameterization of the Ordered Probit
model cannot be interpreted directly and are only identified up to a scale nor-
malization (as can be seen in Section 3 above). However, ratios of coefficients
can be usefully interpreted. There are two convenient ways of viewing these.
Assume that there is an underlying, but unobservable, continuous measure of
job satisfaction (or utility or welfare depending on one’s perspective) that is a
monotonic, but unknown, function of the variable ¥ in equation (1). Effects
on this underlying variable are of interest. Consider plotting “indifference
curves” between two factors that influence job satisfaction, i.e. combinations
of the two factors that give the same level of job satisfaction. The speci-
fication in (1) means that these will be straight lines. The slopes of these
(parallel) indifference curves between the two factors will be minus the ratio
of their coefficients in equation (1). Since the equation is normalized on z, an
estimated (-coefficient can be interpreted in terms of the slope of indifference
curves between z and the corresponding x-variable.

Ratios of coefficients are also informative about the impacts of explanatory
variables on the probabilities of observed outcomes (or cumulations thereof).
The partial derivatives of the probabilities of y with respect to x, the “marginal
effects”, are proportional to S with the factor of proportionality being an
evaluation of the density function (or a difference in densities). For example,
the partial derivative of Pr[y; = J]| with respect to x is 5.f(a -1 — 2z — x}5).
The scaling factor is the same for each element of 5 and also for the effect

12



Table 1
Job Satisfaction Model - Alternative Estimators

Mean op LLS SNP(3)  PGOP(1)
log(earnings) 6.66 1 1 1 1
log(‘comparison’)  6.66 -2.73 (0.98) -3.24 (1.49) -2.86 (0.40) -4.52 (2.97)
log(hours) 495 -1.66 (0.78) 0.20 (3.38) -1.22 (0.48) -2.07 (1.55)
Male 0.50 -1.56 (0.79)  0.56 (0.90) -1.25 (0.37) -2.36 (1.88)
Age/10 372 -1.81 (1.12) -0.51(2.28) -1.35 (0.75) -2.34 (2.12)
Age2/100 1519  0.33 (0.18) 0.03 (0.28) 0.26 (0.10)  0.47 (0.38)
Health 0.18 -2.28 (1.11) -1.27 (0.51) -1.85 (0.40) -3.55 (2.79)
Second job 0.10 -0.91 (0.66) 1.33 (1.53) -0.85 (0.44) -1.61 (1.52)
Temporary 0.06 -1.44 (0.90) 0.31 (1.00) -1.16 (0.58) -1.91 (1.74)
Manager 0.38  1.68 (0.86) 1.63 (1.03) 1.20 (0.33) 2.46 (1.98)
Log-likelihood -6210.14 -6204.58 -6204.36
L-R test of OP 11.13 11.56
[p-value] [.001] [.001]

Notes: (1) Standard errors in parentheses.

(2) Estimators: OP = Ordered Probit estimator, LLS = Lewbel least squares
estimator, SNP = Semi-nonparametric estimator, PGOP = Polynomial-generalized
Ordered Probit estimator.

of z. Hence an estimated [-coefficient can also be interpreted as the ratio of
the “marginal effect” of the corresponding x-variable to the “marginal effect”
of z.

The main focus in the Clark and Oswald study is on the effects of own and
“comparison” earnings and the relative magnitudes of their coefficients. If
their effects are equal in absolute value and of opposite sign, then only rel-
ative earnings influences job satisfaction. In the current context with the
equation normalized on own earnings, this corresponds to the hypothesis that
the [-coefficient on “comparison” earnings is equal to -1. Examining this es-
timated coefficient, the ordered probit model indicates that a 10% increase in
comparison earnings would need to be compensated by a 27% increase in own
earnings to give the same level of job satisfaction. This is similar in the SNP
model but rises to 32% in the Lewbel estimates and to 45% in polynomial-
generalized model. However the standard error rises greatly in the last case
and the effect is not significantly different from zero. The hypothesis that the
coefficient is equal to -1 is rejected with the SNP estimator, but accepted with
the other three estimators.
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Table 2
Job Satisfaction Model: Likelihood-Ratio Test Statistics,
SNP Estimator by K, PGOP Estimator by M

log- LR-test of LR-test of
Model likelihood OP model p-value previous p-value
OpP -6210.14
SNP estimator:

K =3 -6204.58 11.13 0.001 11.13 0.001
4 -6204.45 11.40 0.003 0.26 0.607
5 -6203.19 13.91 0.003 2.51 0.113
6 -6201.72 16.84 0.002 2.93 0.087
7 -6201.44 17.41 0.004 0.56 0.453
PGOP estimator:
M=1 -6204.36 11.56 0.001 11.56 0.001
2 -6203.51 13.27 0.001 1.71 0.191
3 -6203.39 13.50 0.004 0.23 0.633
4 -6202.11 16.07 0.003 2.57 0.109
) -6201.44 17.41 0.004 1.34 0.246
?1[()) LR tests of OP model have K — 2 degrees of freedom in SNP models and M in
PGOP models.

(2) LR tests of previous model all have 1 degree of freedom.
(3) Test of SNP(7) against SNP(3): x%(4) of 6.28, p = 0.179.
(4) Test of PGOP(5) against PGOP(l): x%(4) of 5.84, p = 0.211,

Comparing the Ordered Probit and Lewbel estimates, they show some marked
differences. While the coefficient on “comparison” earnings strengthens with
the Lewbel estimator, the coefficients on the other variables weaken. The
gender and age effects, for example, collapse. These often-quoted features of
the Clark-Oswald results are therefore not robust to the choice of estimator.
The SNP estimates are much more similar to the Ordered Probit ones, but
the t-ratios all strengthen. In contrast the PGOP estimates all increase in
absolute value, but so do the standard errors and the t-ratios of all coefficients
decline.

Another coefficient ratio of interest is that involving the two coefficients of the
quadratic in age. The minimum of the job satisfaction age profile is minus
half the ratio of coefficients. It is estimated at age 28 on the basis of the
ordered probit model, but slightly earlier at 25 with both the SNP and PGOP
models. However, standard errors of the ratios (calculated by the “delta”
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method) indicate that they are not precisely determined and these differences
are small relative to the standard errors. The Lewbel estimator in contrast
indicates a minimum considerably beyond the age of retirement, i.e., that job
satisfaction declines throughout working life. However, again the standard
error of the ratio is quite large.

Overall there are important differences among the results from the different
estimators in this illustration. Hausman tests can be conducted to compare
the estimated coefficient vectors from the different estimators. Test statistics
comparing the various estimators with the Ordered Probit (all y*(9)) are:
Lewbel LS: 30.23 (p-value = .0004), SNP: 28.50 (p-value = .001), PGOP: 1.38
(p-value = .998). The last of these parallels the greatly increased standard
errors for the PGOP estimator with this data. The null is strongly rejected
for both the Lewbel least squares estimator and the SNP estimator.

8 Second illustration: Willingness to pay for environmental pro-
tection

This section illustrates the same semi-parametric estimators with a model of
the willingness to pay for environmental protection in Germany on the data
used by Witzke and Urfei (2001) and based on a cut-down version of the
specification used by them. The data are taken from a survey on Environ-
mental Consciousness and Behaviour conducted by the Federal Environmental
Agency.

Respondents were asked “Would you be willing to pay higher taxes or manda-
tory fees in support of a better environmental protection, if it were guaranteed
that your payments would directly benefit environmental protection?” The
possible answers to the question were “no”, “it depends”, and “yes”. The
relative sample frequencies are 51%, 31%, and 18% respectively. This is then
modelled as an ordered response. The main focus of the Witzke and Urfei
paper is the regional dimension, but that aspect is ignored here.

For this illustration, the log of income is taken as the variable z whose coeffi-
cient is normalized to 1. The z-variables included are age, a dummy variable
for having completed at least high school, a dummy for female respondents
and two dummies indicating preferences for political parties. The first of these
is for the German Green party and the second indicates a preference for either
the social democrats (SPD) or the socialists (PDS). The sample size is 1,643.

Results for this specification using the Ordered Probit, Lewbel least squares,

SNP and PGOP estimators are given in Table 3. Standard errors are given
in parentheses. Bootstrap standard errors are presented for the Lewbel esti-
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Table 3
Willingness to Pay Model - Alternative Estimators

Means OP LLS SNP(3)  PGOP(1)
log(income) 7.97 1 1 1 1
Age/10 480  -0.19 (0.08) -0.25 (0.10) -0.19 (0.08) -0.19 (0.08)
High school 0.12  1.36 (0.44) 0.89 (1.47) 1.39 (0.44) 1.38 (0.44)
Green party 0.10  2.16 (0.56) 1.30 (0.92) 2.15 (0.55)  2.14 (0.55)
SPD / PDS 0.20 049 (0.25) 0.88 (0.51) 0.47 (0.24)  0.47 (0.24)
Female 0.54  -0.07 (0.21) -0.24 (0.49) -0.10 (0.21) -0.10 (0.21)
Log-likelihood -1600.32 -1599.20 -1599.19
L-R test of OP 2.25 2.26
[p-value] [.134] [.132]

Note: Standard errors in parentheses.

mator. The same model selection procedures for the choice of K for the SNP
estimator and M for the PGOP estimator are used here as in the previous
section.

In contrast with the first illustration, the Ordered Probit model is not rejected
here against any member of the SNP family for K’ > 3 or against any member
of the PGOP family for M > 1. Log-likelihood values and Likelihood Ratio
test statistics are given in Table 4. To illustrate the estimators, results are
presented in Table 3 for the SNP estimator with K = 3 and the PGOP
estimator with M = 1, alongside the Ordered Probit and Lewbel estimators.

If it is assumed that there is a continuous latent measure of willingness to pay
for environmental protection that is a monotonic, although unknown, function
of the variable ¥ in equation (1), an estimated S-coefficient can be interpreted
in terms of the slope of the indifference curves between the corresponding z-
variable and the log of income, just as in the previous section. The estimates of
the SNP and PGOP estimators are almost identical to those for the Ordered
Probit, as one would expect, since the likelihood differences are small and
the Ordered Probit model is not rejected against either SNP(3) or PGOP(1).
There is more difference between the Ordered Probit and Lewbel estimates,
but the differences are much smaller than for the illustration in the previous
section. The main differences are that the strong positive effects of having
completed high school and of being a Green party voter are cut in the Lewbel
estimates while their standard errors rise, rendering both effects insignificant.

Overall the differences between the estimators are much less marked than was
the case for the illustration presented in the previous section. Omnce again
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Table 4
Willingness to Pay Model: Likelihood-Ratio Test Statistics,
SNP Estimator by K, PGOP Estimator by M

log- LR-test of LR-test of
Model likelihood OP model p-value previous p-value
OpP -1600.32
SNP estimator:

K=3 -1599.20 2.25 0.134 2.25 0.134
4 -1599.16 2.32 0.313 0.08 0.781
5 -1598.96 2.73 0.436 0.40 0.526
6 -1598.63 3.37 0.497 0.65 0.421
7 -1598.63 3.38 0.641 0.01 0.918

PGOP estimator:

M=1 -1599.19 2.26 0.132 2.26 0.132
2 -1599.16 2.33 0.312 0.06 0.802
3 -1599.15 2.34 0.505 0.01 0.913
4 -1598.87 2.90 0.575 0.56 0.454
5 -1598.69 3.27 0.659 0.37 0.545

Notes:

(1) LR tests of OP model have K — 2 degrees of freedom in SNP models and M in
PGOP models.

(2) LR tests of previous model all have 1 degree of freedom.

(3) Test of SNP(7) against SNP(3): x%(4) of 0.57, p = 0.966.

(4) Test of PGOP(5) against PGOP(1): x?(4) of 0.50, p = 0.973.

Hausman tests can be conducted to compare the estimated coefficient vectors
from the different estimators. Test statistics comparing the various estimators
with the Ordered Probit (all x?(9)) are: Lewbel LS: 3.52 (p-value = .620), SNP:
0.70 (p-value = .983), PGOP: 0.64 (p-value = .986). The null hypothesis is
not rejected for any of the three estimators.

9 A Monte Carlo investigation

This section presents the evidence from a small scale Monte Carlo investiga-
tion of the finite sample performance of the three semi-parametric estimators
described in sections 4-6 (together with the fully parametric Ordered Probit
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Table 5
Monte Carlo Experiments

No. Experiment
a=2,e~ N(0,1)
a=4,e~ N(0,1)
a=2¢~N(0,0%),0=2
a=2,¢~N(0,0%),0=/3/31(3+x)
a=2,¢~N(0,0%),0=+/3/82(5+2+x)
a=2c~ (3 —1)/V2
a = 2, ¢ ~ Normal mixture
a =2, ¢ ~ Normal mixture, o = 1/3/31(3 + x)
a =2, ¢ ~ Normal mixture, o = 1/3/82(5 + z + )

—_

© o0 N O ot ks W N

estimator). The structure of the experiments is kept as simple as possible.
The latent variable is generated as

yi =95+ 2z + Ba; + €4,

with 8 = 1. The estimate of [ is the focus of attention in the investigation.
The variable z is generated as N (0, 1) and the variable = as a uniform random
variable over (—a,a), both fixed across replications. In the baseline exper-
iment, ¢ = 2. In all experiments ¢ is independently distributed with mean
zero. In the baseline experiment ¢ is generated as N(0,1).

The ordered response variable y is constructed to have three categories, with
thresholds for 4 at 4 and 6, i.e., a3 = —1, a3 = 1. In the baseline experiment
this gives approximately 30% in the top and bottom categories and 40% in the
middle category. A sample size of 1200 is used as representative of applica-
tions of ordered response models found in the literature. 500 replications are
performed in each experiment, which seems to be sufficient for the stability of
the tabulated statistics. The structure of the experiments conducted is shown
in Table 5.

The balance of the variances in Experiment 1 has been selected as a compro-
mise between the conditions required for the Lewbel estimator and features
of the data common in empirical applications. Generating z as an N(0,1)
random variable gives it an infinite theoretical support. (In the generated
data used the support of z is £3.6). However, the relative magnitudes of the
variances of z and (Sz + ¢) are also likely to be important for the Lewbel
estimator (see Lewbel, 2000). In Experiment 1, 0, = 0. = 1 and o, = 1.15.
This means that the standard deviation of z is roughly 65% of that of (Sx+¢).
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Table 6
Monte Carlo Results for Ordered Response Model Estimators

Exp. OP LLS SNP(3) PGOP(1)

no. Bias RMSE Bias RMSE Bias RMSE Bias RMSE
1 .0040 .0486 .0017 .0715 .0041 .0492 .0041  .0489
2 0052  .0476 -.1421 .1464 .0059  .0481  .0052  .0478
3 0054  .0949 -.1533 .1866  .0065  .0960  .0057  .0955
4 -.0030 .0477 -.0144 0688  .0766 .0941 .0673  .0849
5 0173 .0515 -.0147 .0743 .0120 .0483  .0059  .0454
6
7
8
9

-.0062 .0431 -.0227 .0744 -.0570 .0651  .0059  .0314
-.0175 .0458 .0127  .0700 -.0639 .0702 -.0006 .0319
-.0614 .0730 -.0255 .0793 -.1608 .1633 -.1698 .1729
-.0219 .0432 .0342 0713 -.0512 .0593 -.0019 .0345

However in this specification, 70% of the variation in y* is explained by the
explanatory variables and 43% of the explanatory power in the model comes
from the z variable. Both of these seem somewhat unrealistic in terms of the
applications of ordered response models found in the literature and the fit of
micro-econometric models in general. Aiming for desirable properties for the
Lewbel estimator suggests raising o, relative to o, and o., but this would
make both of the disadvantages just mentioned worse. Thus Experiment 1
can be regarded as a compromise.

Experiments 2 and 3 address these two features of the generated data by
raising o, and o. respectively. Experiment 2 increases a to 4 and thereby
shifts the balance between the variation in z and = to something more similar
to that found in empirical studies. In Experiment 3, 0. is doubled and as a
result the explanatory power of the model for y* is lowered to 37%, a more
realistic level in micro-level data.

The results from the experiments are given in Tables 6 and 7. The tables
present the mean bias and root mean square error (RMSE) for each of the
estimators of 3. Table 6 presents these for the Ordered Probit estimator, the
Lewbel estimator, the SNP estimator with K = 3, and the PGOP estimator
with M = 1. The corresponding results for SNP(5) and PGOP(3) are given
in Table 7.

Starting with the results for Experiment 1, all six estimators show only a

small mean bias. The RMSE for the Lewbel estimator is about 50% higher
than that for the other estimators. In Experiments 2 and 3, however, there
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Table 7
Monte Carlo Results for Ordered Response Model Estimators

Exp. SNP(5) PGOP(3)

no. Bias RMSE Bias RMSE
1 .0037  .0500 .0034  .0498
2 0051  .0487 .0055  .0486
3 0057 .0960 .0062  .0959
4 0663  .0853  .0667  .0860
5 0063  .0462 .0045  .0468
6
7
8
9

0051  .0349 .0060  .0261
-.0008 .0319 -.0008 .0309
-.1464 1493 -.1668  .1698
-.0031  .0325 -.0023 .0337

is a clear bias in the Lewbel estimator. Reducing the relative variance of the
special variable z (relative to that of either x or ¢) clearly damages the finite
sample performance of the Lewbel estimator.

For a given relative variance of z, the support also matters. In another ex-
periment (not reported in the table), z was generated as a N(0,1) truncated
at +2 and then scaled to give the same variance as in Experiment 1. (In the
generated data this produced a variable with support +2.35.) The results
for the Ordered Probit estimator were very similar to those for Experiment 1
(mean bias = .0032, RMSE = .0477). The performance of the Lewbel esti-
mator, however, deteriorates appreciably, giving a mean bias of -.1130 and a
RMSE of .1190.

The next two experiments introduce heteroskedasticity. In the case of Ex-
periment 4 this is with respect to x only. In Experiment 5 it is with respect
to both x and 2z and in such a way as to preserve the single index nature of
the model. In Experiment 4 a slight bias is found in the Lewbel estimator
(although it is still consistent in these circumstances), and a larger bias in the
SNP and PGOP estimators (which are not). Experiment 5 produces a similar
slight bias in the Ordered Probit estimator, but that for the Lewbel estima-
tor (no longer consistent because of the heteroskedasticity with respect to z)
is identical to that in Experiment 4 (where it is consistent). However, the
mean bias for the SNP and PGOP estimators falls considerably (presumably
because of the restoration of the single index feature of the model).

The next two experiments introduce a non-Normal distribution for . Experi-
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ment 6 uses a y*(1) distribution, standardized to zero mean and unit variance,
which is positively skewed. Experiment 7 generates € as a mixture of two nor-
mals. The first has y; = —0.5,0; = 0.25 and a probability of 0.75. The
second has ps = 1.5,09 = 0.9 and a probability of 0.25. The mixture has a
mean of zero and a variance of 1, but is positively skewed. In Experiment 6
the Ordered Probit estimator shows a surprisingly small bias, given that it
is based on the wrong distribution. The mean bias is greater in the Lewbel
estimator, despite it not making any distributional assumption. The PGOP
estimator performs well for M = 1 and M = 3, as does the SNP estimator
for K = 5. However the SNP estimator performs relatively poorly for K = 3.
The single additional parameter is typically not sufficient to capture the non-
normality, and, rather surprisingly, it performs worse than the simple Ordered
Probit estimator. In Experiment 7 the Lewbel estimator has a smaller mean
bias than the Ordered Probit estimator, but a larger RMSE. The PGOP esti-
mator again performs better than the SNP estimator when only a single extra
parameter is involved (K = 3 or M = 1). However both PGOP and SNP
outperform the Ordered Probit and Lewbel estimators when the specifications
with three extra parameters (K =5 or M = 3) are used.

Since the Ordered Probit model is likely to be less robust to the combination
of non-normality and heteroskedasticity, the final two experiments combine
the normal mixture distribution of Experiment 7 with the heteroskedasticity
in Experiments 4 and 5. In Experiment 8, where the model is no longer in
single index form, the bias in the SNP(3) and PGOP(1) estimators is consid-
erable and is diminished only slightly when the higher order polynomials are
used. The bias in the Lewbel estimator is smaller than that in the Ordered
Probit. When o depends also on z in Experiment 9, the bias in the Lewbel
estimator worsens, but since the single index form of the model is restored,
the performance of the SNP and PGOP estimators improves considerably.

One must be careful not to infer too much on the basis of this rather limited
set of Monte Carlo experiments, but a number of tentative conclusions seem in
order. First, in circumstances where the single-index form is valid, the higher
order SNP and PGOP estimators perform very well. Second, the SNP(5)
and PGOP(3) estimators perform very similarly (in terms of mean bias and
RMSE), but PGOP(1) dominates SNP(3) when ¢ is non-normal but the single-
index form is still valid. Third, the SNP and PGOP estimators perform poorly
in the presence of heteroskedasticity of a form that removes the single-index
nature of the model, particularly when this is combined with non-normality.
In these experiments both estimators fare worse than the Ordered Probit and
Lewbel estimators. Fourth, the Lewbel estimator comes into its own when
there is heteroskedasticity with respect to x, but not z, combined with non-
normality. Fifth, the Lewbel estimator fares poorly when the relative variance
of z is reduced. It also does not necessarily outperform the Ordered Probit
estimator in circumstances when it might be expected to (when it is consistent
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and the Ordered Probit estimator is not). In all experiments its RMSE exceeds
that of the Ordered Probit estimator.

10 Conclusions

This paper compares three semi-parametric estimators for ordered response
models (as well as the fully parametric Ordered Probit estimator). The results
differ markedly across estimators in the job satisfaction illustration presented
in Section 7, but differ much less in the willingness to pay illustration presented
in Section 8. The evidence from the Monte Carlo investigation in Section 9
suggests that the PGOP and SNP estimators outperform the Lewbel estimator
in RMSE terms, except when there is heteroskedasticity of a form that removes
the single index nature of the model.

Acknowledgements

I am grateful to David Belsley and two anonymous referees for helpful com-
ments, to Andrew Clark and Maureen Paul for help with the construction of
the dataset for the illustration in Section 7, and to Peter Witzke for providing
me with the data used in Section 8.

References

Anton, A. Alonso, A. Fernandez Sainz and J. Rodriguez-Poo (2001), “Semi-
parametric estimation of a duration model”, Oxford Bulletin of Economics
and Statistics, 63, 517-533.

Bloch, D.A. and J.L. Gastwirth (1968), “On a simple estimate of the recip-
rocal of the density function”, Annals of Mathematical Statistics, 39, 1083—
1085.

Clark, Andrew E. and Andrew J. Oswald (1996), “Satisfaction and compar-
ison income”, Journal of Public Economics, 61, 359-381.

Gabler, Siegfried, Francois Laisney and Michael Lechner (1993), “Seminon-
parametric Estimation of Binary-Choice Models with an Application to
Labor-Force Participation”, Journal of Business and Economic Statistics,
11, 61-80.

Gallant, A. Ronald and Douglas N. Nychka (1987), “Semi-Nonparametric
Maximum Likelihood Estimation”, Econometrica, 55, 363-390.

Honoré, Bo E. and Arthur Lewbel (2002), “Semiparametric binary choice
panel data models without strictly exogenous regressors”, Econometrica,

22



70, 2053-2063.

Horowitz, Joel L. (1992), “A smoothed maximum score estimator for the
binary response model”, Econometrica, 60, 505-531.

Lewbel, Arthur (2000), “Semiparametric qualitative response model estima-
tion with unknown heteroscedasticity or instrumental variables”, Journal of
Econometrics, 97, 145-177.

Lewbel, Arthur and Susanne M. Schennach (2003), “A simple ordered data
estimator for inverse density weighted expectations”, mimeo, Boston Col-
lege, February.

Magnac, Thierry and Eric Maurin (2003), “Identification and information in
monotone binary models”, mimeo, INRA, Paris-Jourdan, June.

Manski, Charles F. (1985), “Semiparametric analysis of discrete response:
Asymptotic properties of the maximum score estimator”, Journal of Econo-
metrics, 27, 313-333.

Melenberg, Bertrand and Arthur van Soest (1996), “Measuring the costs
of Children: Parametric and Semiparametric Estimators”, Statistica Neer-
landica, 50, 171-192.

Pagan, Adrian and Aman Ullah (1999), Nonparametric Econometrics, Cam-
bridge: Cambridge University Press.

Ruud, Paul A. (1984), “Tests of Specification in Econometrics”, Econometric
Reviews, 3, 211-242.

Witzke, H. Peter and Guido Urfei (2001), “Willingness to pay for environmen-
tal protection in Germany: Coping with the regional dimension”, Regional
Studies, 35, 207-214.

23



