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Abstract 

The performance of an ARCH model selection algorithm based on the standardized 

prediction error criterion (SPEC) is evaluated. The evaluation of the algorithm is performed 

by comparing different volatility forecasts in option pricing through the simulation of an 

options market. Traders employing the SPEC model selection algorithm use the model with 

the lowest sum of squared standardized one-step-ahead prediction errors for obtaining their 

volatility forecast. The cumulative profits of the participants in pricing one-day index straddle 

options always using variance forecasts obtained by GARCH, EGARCH and TARCH models 

are compared to those made by the participants using variance forecasts obtained by models 

suggested by the SPEC algorithm. The straddles are priced on the Standard and Poor 500 (S 

& P 500) index. It is concluded that traders, who base their selection of an ARCH model on 

the SPEC algorithm, achieve higher profits than those, who use only a single ARCH model. 

Moreover, the SPEC algorithm is compared with other criteria of model selection that 

measure the ability of the ARCH models to forecast the realized intra-day volatility. In this 

case too, the SPEC algorithm users achieve the highest returns. Thus, the SPEC model 

selection method appears to be a useful tool in selecting the appropriate model for estimating 

future volatility in pricing derivatives. 

 

 

Keywords: ARCH models, Forecast Volatility, Model selection, Predictability, 

Standardized Prediction Error Criterion, Option Pricing 
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1 .  I n t r o d u c t i o n  
 

ARCH models have widely been used in financial time series analysis and 
particularly in analyzing the risk of holding an asset, evaluating the price of an option, 
forecasting time varying confidence intervals and obtaining more efficient estimators under 
the existence of heteroscedasticity. In the recent literature, numerous parametric specifications 
of ARCH models have been considered for the description of the characteristics of financial 
markets. The richness of the family of parametric ARCH models certainly complicates the 
search for the true model, and leaves quite a bit of arbitrariness in the model selection stage. 
The problem of selecting the model that describes best the movement of the series under 
study is therefore of practical importance. 

Degiannakis and Xekalaki (1999) made a comparative study of the forecasting ability 
of ARCH models based on a standardized prediction error criterion (SPEC). According to 
their SPEC based model selection algorithm, the models with the lowest sum of squared 
standardized one-step-ahead prediction errors are the most appropriate to exploit future 
volatility. In this paper, inspired by Engle et al.’s (1993) approach to assess incremental 
profits for a set of competing forecasts of the variance for a given portfolio, we examine the 
usage of the SPEC model selection algorithm, in pricing contingent claims. The goal of the 
paper is to evaluate the SPEC algorithm for volatility model selection through the simulation 
of an options market. In particular, in section 2, the ARCH process is presented. Section 3 
provides a description of the SPEC model selection algorithm in the context of ARCH 
models, while section 4 presents Engle et al.’s (1993) data generated set-up of evaluating 
volatility forecasts. In sections 5 and 6, based on Engle et al.’s (1993) technique, the 
suggested model selection method is evaluated using daily return data for the S&P500 stock 
index over the period from June 26th, 1991 to October 18th, 2002. The use of a model 
selection method is a tedious procedure as it presupposes the estimation of a set of models. In 
order to examine whether there is any added value in using the suggested model selection 
algorithm instead of any other method of using only a single ARCH model in the study, the 
performance of the SPEC algorithm in investigated against a set of such methods for a range 
of ARCH models. The results of section 5 provide evidence that this is indeed the case since 
they indicate that the SPEC model selection algorithm offers a useful tool in providing 
information related to the appropriate model. In section 6, the algorithm is compared with 
other methods of model selection. In particular, model selection criteria that measure the 
accuracy of the models to predict the realized volatility are constructed. The SPEC method is 
then compared with those model selection methods. Clearly, the SPEC algorithm outperforms 
all of the other methods of model selection considered. Finally, in section 7 a brief discussion 
of the results is provided. 

 
2 .  T h e  A u t o r e g r e s s i v e  C o n d i t i o n a l  H e t e r o s c e d a s t i c i t y  ( A R C H )  

P r o c e s s  
 

Let  ty  refer to the univariate discrete time real-valued stochastic process to be 

predicted  (i.e. the rate of return of a particular stock or market portfolio from time 1t  to t ), 

where     ttttt yEIyE   11|  denotes the conditional mean given the information set 

available at time 1t , 1tI . The innovation process for the conditional mean,  t , is then 

given by ttt y    with zero unconditional mean, unconditional variance 

    22   tt EV  and   0stE  , st  . The conditional variance of the process is 

allowed to depend on 1tI  and is given by     22
11 ttttt EyV    . Since investors would 

know the information set 1tI  when they make their investment decisions at time 1t , the 

relevant expected return to the investors and volatility are t  and 2
t , respectively. 
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An ARCH process,  t , can be presented as: 

ttt z   , 

where 

    1,0~
...

 tt

dii

t zVzEfz , 

and 

 ,...,,...;,,...;, 212121
2

 ttttttt g  , 

(1) 

where  tz  is a sequence of independently and identically distributed random variables,   

 .f  is the density function of tz , t  is a time-varying, positive and measurable function of 

the information set at time 1t , t  is a vector of predetermined variables included in tI  and 

 .g  could be a linear or nonlinear functional form that has been considered in the ARCH 

literature. By definition, t  is serially uncorrelated with mean zero, but with a time varying 

conditional variance equal to 2
t . The conditional variance is a linear or nonlinear function of 

lagged values of t  and t  and predetermined variables included in 1tI ,  ,..., 21  tt  . The 

standard ARCH models assume that  .f  is the density function of the normal distribution. 

However, Bollerslev (1987) proposed using the student t distribution with an estimated 
kurtosis regulated by the degrees of freedom parameter. Nelson (1991) proposed using the 
generalized error distribution (Harvey (1981), Box and Tiao (1973)), which is also referred to 
as the exponential power distribution. Other distributions, that have been employed, include 
the generalized t distribution (Bollerslev et al. (1994)), the skewed Student t  distribution 
(Lambert and Laurent (2000, 2001)), the normal Poisson mixture distribution (Jorion (1988)), 
the normal lognormal mixture distribution (Hsieh (1989)) and a mixture of the distributions of 
normal variables (Cai (1994)) or student t  variables (Hamilton and Susmel (1994)). Since 
very few financial time series have a constant conditional mean of zero, an ARCH model can 

be presented in a regression form by letting t  be the innovation process in a linear 

regression: 

ttt xy   , 

where 

 2
1 ,0~| ttt fI   , 

and 

 ,...,,...;,,...;, 212121
2

 ttttttt g  , 

 

where tx  is a 1k  vector of endogenous and exogenous explanatory variables included in 

the information set 1tI  and   is a 1k  vector of unknown parameters. 

Engle (1982) introduced the original form of  .2
gt   as a linear function of the 

past q  squared innovations: 

 



q

i

itit aa
1

2
0

2  .  

For the conditional variance to be positive, the parameters must satisfy 00  , 0i , for 

qi ,...,1 . Bollerslev (1986) proposed the generalized ARCH, or GARCH(p,q), model, 

where the conditional variance is postulated to be a linear function of both the past q  squared 

innovations and the past p  conditional variances: 

   





 
p

j

jtj

q

i

itit baa
1

2

1

2
0

2  , (2) 



  4 

where 00  , 0i , for qi ,...,1 , and 0jb , for pj ,...,1 . Note that even though 

the innovation process for the conditional mean is serially uncorrelated, it is not independent 
through time. The innovations for the variance are denoted as: 

    ttttttt vEE  
222

1
2  .  

The innovation process  tv  is a martingale difference sequence in the sense that it cannot be 

predicted from its past. However, its range may depend upon the past, making it neither 
serially independent nor identically distributed. 

The unconditional distribution of t  has fatter tails than the time invariant 

distribution of tz . For example, for the ARCH process in (1) with density function  .f  

being that of the normal distribution and with the functional form of 2
t  denoted as in the 

ARCH(1) model, the kurtosis of t  is        2
1

2
1

224 3113  tt EE . This is always 

greater than 3, the kurtosis value of the normal distribution. 
The GARCH(p,q) model successfully captures several characteristics of financial 

time series, such as thick tailed returns and volatility clustering first noted by Mandelbrot 
(1963). On the other hand, the GARCH structure imposes important limitations. The variance 

only depends on the magnitude and not the sign of t , which is somewhat at odds with the 

empirical behaviour of stock market prices where a leverage effect may be present. The 
leverage effect, first noted by Black (1976), refers to the tendency for changes in stock returns 
to be negatively correlated with changes in returns volatility, i.e. volatility tends to rise in 

response to bad news,  0t , and to fall in response to good news,  0t .  

In order to capture the asymmetry exhibited by the data, a new class of models was 
introduced, the asymmetric ARCH models. The most popular model proposed to capture the 
asymmetric effects is Nelson’s (1991) exponential GARCH, or EGARCH(p,q), model:  

    



 









 






















p

j

jtj

q

i it

it

i

it

it

it

it

it bEaa
1

2

1
0

2 lnln 










 . (3) 

The parameter 1  allows for the asymmetric effect. If 01  , a positive surprise,  01 t , 

has the same effect on volatility as a negative surprise,  01 t . Here, the term surprise at 

time t  refers to the unexpected return, which is the rate of return from time 1t  to t  minus 

the relevant expected return to the investors, e.g., ttt y   . If 01 1   , a positive 

surprise increases volatility less than a negative surprise. If 11  , a positive surprise 

actually reduces volatility while a negative surprise increases volatility. For 01  , the 

leverage effect exists. Since (3) is an expression of 2ln t , the conditional variance, 2
t , is 

guaranteed to be positive. Thus, in contrast to the GARCH model, no restrictions need to be 
imposed on the model estimation. 

The threshold GARCH, or TARCH(p,q), model is another widely used asymmetric 
model: 

     





 
p

j

jtjtt

q

i

itit bDaa
1

2
1

2
1

1

2
0

2 0  , (4) 

 where   10 tD   if 0t , and   00 tD   otherwise. The model was introduced 

independently by Zakoian (1990) and Glosten et al. (1993). The TARCH model allows a 
response of volatility to news with different coefficients for good and bad news. Therefore, 

good news has an impact of 


q

i

ia
1

, while bad news has an impact of   


q

i

ia
1

. 
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Other popular asymmetric models are the asymmetric power ARCH, or APARCH, 
model introduced by Ding et al. (1993), the non-linear asymmetric GARCH, or NAGARCH, 
model introduced by Engle and Ng (1993) and the quadratic ARCH, or QGARCH, model, 
introduced by Sentana (1995). ARCH models go by such exotic names as AARCH, NARCH, 
PARCH, PNP-ARCH and STARCH among others. A wide range of proposed ARCH models 
is covered in surveys such as Bollerslev et al. (1992), Bollerslev et al. (1994), Bera and 
Higgins (1993), Gourieroux (1997) and Degiannakis and Xekalaki (2004). 
 

3 .  T h e  S t a n d a r d i z e d  P r e d i c t i o n  E r r o r  C r i t e r i o n  ( S P E C )  M o d e l  
S e l e c t i o n  M e t h o d  

 
Let us consider the set of M  candidate ARCH models of the form,  

     m

t

mm

tt xy   , 

where 
   m

tt

m

t z   ,1 , 

 1,0~,1 Nz
iid

t 
, 

and 
              ,...,,,...,,,..., 21

22
1

22
1

2 m

t

m

t

m

qt

m

t

m

pt

m

t

m

t g   , 

where the superscript m refers to model m, m=1, 2, …, M. Assume that, at each of a series of 
points in time, we are interested in looking for the most suitable of the M competing models 
for obtaining a volatility forecast. Degiannakis and Xekalaki (1999), in the context of 
comparatively evaluating the predictive ability of ARCH models considered using an 
algorithm based on a multi model variant of Xekalaki et al.’s (2003) two-model procedure 
that utilizes a standardized prediction error criterion (SPEC). According to the SPEC model 
selection algorithm, the model with the lowest sum of squared standardized one-step-ahead 
prediction errors is considered as having a better ability to predict the conditional variance of 
the dependent variable. Thus, at time k , selecting a strategy for the most appropriate model 

to forecast volatility at time 1k  ( ,...1,  TTk ) could naturally amount to selecting the 

model, which, at time k , has the lowest value of standardized one-step-ahead prediction 

errors,      






k

Tkt

m

tt

m

tt

k

Tkt

m

tr
1

2
1|

2
1|

1

2 ˆˆˆ  . Here, )(
1

)()(

1
ˆ'ˆ m

t

m

tt

m

tt
xy     is the one-step-ahead 

prediction error of model m, where )(
1

ˆ m

t  is the estimator of )(m  based on the information 

set that is available at time 1t  and )(2

1
ˆ m

tt   is the one-step-ahead conditional variance 

forecast of model m. The estimation steps comprising the SPEC model selection algorithm are 
summarized in Table 1.  

The rows of this table refer to candidate ARCH models, the columns refer to trading 
days, while its entries represent the sums of the squares of the T  most recent standardized 
one-step-ahead prediction errors of each of the M  models. Each trading day, the choice of 
the model to be used to predict the conditional variance for the next day is determined by the 
entry of the corresponding column of table 1 that has the minimum value. In particular, model 

im   will be chosen at time jTk   if it is the one that corresponds to the cell of column 

jT   that has the minimum value of  




jT

jt

i

tr
1

2ˆ . 
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Table 1 

The estimation steps required at time k  for each model m  by the SPEC model selection algorithm. At time k  

( ,...1,  TTk ), select the model m  with the minimum value for the sum of the squares of the T  most recent 

standardized one-step-ahead prediction errors,
     







k

Tkt

m

tt

m

tt

k

Tkt

m

tr
1

2
1|

2
1|

1

2 ˆˆˆ  .   

 Time 

Model ......1             jTkTkTk   

Mm

im

m

m









.

.

.

.

.

.
2

1

 

     

     

     

      ...ˆ...ˆˆ

.

.

.

.

.

.

.

.

.

.

.

.

...ˆ...ˆˆ

.

.

.

.

.

.

.

.

.

.

.

.

...ˆ...ˆˆ

...ˆ...ˆˆ

1

2
1

2

2

1

2

1

2
1

2

2

1

2

1

22
1

2

22

1

22

1

12
1

2

12

1

12









































jT

jt

M

t

T

t

M

t

T

t

M

t

jT

jt

i

t

T

t

i

t

T

t

i

t

jT

jt

t

T

t

t

T

t

t

jT

jt

t

T

t

t

T

t

t

rrr

rrr

rrr

rrr

 

 
 
 

4 .  E v a l u a t i o n  o f  V a r i a n c e  F o r e c a s t s  w i t h  S i m u l a t e d  O p t i o n  
P r i c e s  

 
As Engle et al. (1997 p.120) noted, “a natural criterion for choosing between any pair 

of competing methods to forecast the variance of the rate of return on an asset would be the 
expected incremental profit from replacing the lesser forecast with the better one’’. Engle et 
al. (1993) considered evaluating variance forecasts of the NYSE index using generated index 
option prices instead of actual ones, thus avoiding the perennial problems inherent in 
observed option prices. The wildcard delivery option on cash-settled options (the right of an 
option buyer to exercise up an option at the closing price for a period of time after the close of 
stock market), the existence of bid-ask spread and transaction costs, the non-synchronous 
coexistence of option and stock prices, are some of the difficulties that are induced in 
empirical studies by the use of the actual index-option prices. In particular, Engle et al. (1993) 
used a set of competing methods to generate alternative daily forecasts for the variance of the 
returns on the NYSE index and applied these forecasts to price one-day options on $1 shares 
of the NYSE index. The moving average variance, the ordinary least squares, the ARMA(1,1) 
in the squared residuals and the GARCH(1,1) models were applied for three sample lengths of 
i) 300 days, ii) 1000 days, and iii) 5000 days. The four models and the three sample lengths 
produce 12 variance forecasts predicting methods.  To these, Engle et al. (1993) added 3 more 
predicting methods by considering the average of all daily forecasts, the daily minimum and 
the daily maximum forecasts. As reported by Kane and Marks (1987), the average of 
conditionally independent forecasts converges rapidly to a perfect forecast, so that any failure 
of the average forecast might be indicative of departures from quality and conditional 



  7 

independence of the individual forecasts. As a check for the presence of bias, Engle et al. 
(1993) added the minimum and maximum of the daily forecasts. So, for example, in case of a 
significant downward bias, the maximum forecast will beat the minimum forecast and all of 
the individual forecasts that are more severe biased. 

The pricing of index options is based on the Black & Scholes option pricing formula 
(Black and Scholes (1973)). In particular, the forecast price of a call and a put option at time 

1t  given the information available at time t , with   days to maturity, denoted, 

respectively, by  
ttC |1  and  

ttP |1  are given by 

     21|1 dNKedNSC trf

ttt

 
  , 

     21|1 dNKedNSP trf

ttt  


 , 

where 

   
  







tt

ttt
t rf

K
S

d

|1

2

|1

1

2
1ln











 

 and    
ttdd |112  . 

 

Here, tS  is the market closing price of the stock (or portfolio) at time t  (used as a forecast for 

1tS ), trf  is the daily continuously compounded risk free interest rate and K  is the exercise 

(or strike) price at maturity day, while,  .N  and   tt |1  denote, respectively, the cumulative 

normal distribution function and the standard deviation of the rate of return during the life of 
the option, from 1t  until the maturity day, given the information available at time t . 

Each agent applies a variance-forecast method and trades one-day options on a $1 

share of the NYSE portfolio. The exercise price is taken to be  trfexp . Thus, for 1tS , 

1 ,  trfK exp , 
 

tttt |1
1

|1
ˆ    , 

 
tttt CC |1

1
|1    and 

 
tttt PP |1

1
|1   , the Black & Scholes 

option pricing formula reduces to: 

  1ˆ5.02 |1|1|1   tttttt NPC  .  

The way in which the simulated options market operates is the following: The daily 
differences in the variance forecasts of the various methods considered lead to different 
reservation prices for one-day options on the index considered. These, in turn, trigger option 
trading among fictitious agents, each using one of the forecast methods considered. A trader 
with a higher (or lower) variance forecast and, hence, with a higher (or lower) reservation 
price for the option would buy (or sell) a straddle on a $1 share of index considered from any 
of the remaining traders with lower (or higher) reservation prices for the option. A straddle 
option is the purchase (or sale) of both a call and a put option, of the underlying asset, with 
the same maturity day. The straddle trading is used because a straddle, that has its stock price 
equal to the exercise price, is Delta neutral. Delta is the change in the option price for a given 
change in the stock price: 
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The day t  payoff to agent i  from holding the straddle is: 

        ttttt yrry expexp,expexpmax  ,  

which is identical for each agent. A trade between two agents, i  and 
i , is executed at the 

average of the reservation prices of the two agents, that is, at the bid/ask prices. The 
transaction that is executed at the average of the bid and ask price, yields to agent i  a profit 
given by 
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In Engle et al. (1993), the GARCH(1,1) forecast method achieves the highest cumulative 
profits for the three sample lengths. Moreover, the GARCH(1,1) method for a rolling sample 
of 1000 observations yields the highest profit, dominating even the average of all  variance 
forecast methods. 
 
5 .  E v a l u a t i n g  t h e  S P E C  M o d e l  S e l e c t i o n  A l g o r i t h m  o n  S i m u l a t e d  
O p t i o n s  
 

Degiannakis and Xekalaki (2001b) applied a number of statistical evaluation criteria 
in order to examine the ability of the SPEC model selection algorithm to select the ARCH 
model that best predicts future volatility, for forecast horizons ranging from one day ahead to 
one hundred days ahead. Their results showed that the SPEC model selection procedure has a 
satisfactory performance in selecting that model that generates “better” volatility predictions. 
Moreover, Degiannakis and Xekalaki (2001a) made a comparative study among a set of 
ARCH model selection algorithms in order to examine which method yields the highest 
profits in straddle trading based on volatility forecasts using actual option price data. The 
results showed that the SPEC algorithm for 5T  achieved the highest rate of return.  

In the sequel, the performance of the SPEC algorithm as an ARCH model selection 
criterion is evaluated in the context of a simulated options market in order to avoid biases 
induced by the use of actual index-option prices. In particular, following Engle et al.’s (1993) 
approach, an economic criterion to evaluate the SPEC model selection algorithm is adopted: 
the profit from variance forecasts in pricing one-day index straddle options. A simulated 
market of option trading among 104 fictitious agents is created, whereby traders use variance 
forecasts obtained by the models of their choice to price a straddle on the S&P500 index for 
the next day. The performance of the SPEC algorithm is evaluated through comparing the 
different volatility forecasts. The comparison is performed on the basis of the cumulative 
profits of traders each of which always uses volatility forecasts obtained by the same 
GARCH, EGARCH or TARCH model on the one hand and cumulative profits by traders 
using volatility forecasts obtained by models suggested by the SPEC criterion on the other. 
So, traders can be thought of a having different “methods” or “strategies” for obtaining 
variance forecasts (amounting to the utilization of the forecasts of a model at each point in 
time) and can be classified into two categories: Those who choose to always use one and the 
same ARCH model and those who at each point in time choose to use the ARCH model 
suggested by the SPEC algorithm. The variance forecast methods that are compared are: 85 
selection “methods” (strategies), one for each of 85 ARCH models, each amounting to the 
utilization of the forecasts of the same model at any point in time, the SPEC model selection 
algorithm for 16 different sample sizes, the average, the minimum and the maximum of all 
daily forecasts methods.  

The data set consists of S&P500 stock index daily returns in the period from June 
26th, 1991 to October 18th, 2002, totally 2853 trading days. 

The conditional mean is considered as a th  order autoregressive process: 
 

tttt zy   , 
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Usually, the conditional mean is either the overall mean or a first order autoregressive 

process. Theoretically, the  1AR  process allows for the autocorrelation induced by 

discontinuous (or non-synchronous) trading in the stocks making up an index (Scholes and 
Williams (1977), Lo and MacKinlay (1988)). According to Campbell et al. (1997), “the non-
synchronous trading arises when time series, usually asset prices, are taken to be recorded at 
time intervals of one length when in fact they are recorded at time intervals of other, possible 
irregular lengths”. Higher orders of the autoregressive process are considered in order to 
investigate if they are adequate to produce more accurate predictions. 

The conditional variance is regarded as a GARCH( qp, ), an EGARCH( qp, ) and a 

TARCH( qp, ) function in the forms of (2), (3) and (4), respectively. Thus, the 

AR( )GARCH( qp, ), AR( )EGARCH( qp, ) and AR( )TARCH( qp, ) models are 

applied, for 4,...,0 , 2 ,1 ,0p  and 2 ,1q , yielding a total of 85 cases. Numerical 

maximization of the log-likelihood function, for the E-GARCH(2,2) model, frequently failed 
to converge. So the five E-GARCH models for 2 qp  were excluded. Maximum 

likelihood estimates of the parameters are obtained by numerical maximization of the log-
likelihood function using the Marquardt algorithm (Marquardt (1963)). The quasi-maximum 
likelihood estimator (QMLE) is used, as according to Bollerslev and Wooldridge (1992), it is 
generally consistent, has a limiting normal distribution and provides asymptotic standard 
errors that are valid under non-normality. The one step-ahead volatility forecasts of the 
models are: 
One-step-ahead forecast of the GARCH(p,q) model  
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One-step-ahead forecast of the EGARCH(p,q) model  

          



























 




 








p

j

jt

t

j

q

i it

itt

i

it

itt

i

t

tt baa
1

2
1

1 1

1

1

1
0

2
|1 lnexpˆ 








 .  

One-step-ahead forecast of the TARCH(p,q) model  
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The ARCH processes are estimated using a rolling sample of constant size equal to 

1000. Thus, the first one-step-ahead volatility prediction, 2
|1

ˆ
tt , is available at time 1000t . 

Samples of 500 and 2000 observations were also considered leading to similar findings, thus 
demonstrating that the results of the simulation study are not appreciably affected by the 
sample size. Tables with the results for rolling samples of 500 and 2000 observations, as well 
as the full versions of the tables that are presented in the paper for the rolling sample of 1000 
observations considered in this section can be found in Degiannakis and Xekalaki (2002).  

The SPEC model selection algorithm is applied for various values of T , and, in 

particular, for  80 55T . (Here,  cbaT   denotes c,,...,2,, bcbabaaT  ). 

Thus, based on the SPEC model selection algorithm, sixteen agents are assumed to take part 
in the simulated options market.  Each agent, who follows the SPEC algorithm, selects the 
ARCH model with the lowest sum of T  squared standardized one-step-ahead prediction 

errors,   
T

t ttz
1

2
1|ˆ , in order to forecast next day’s variance. As in Engle et al. (1993), three 

more daily forecasts are added: the average of all daily forecasts, the daily minimum and daily 
maximum forecasts. In the sequel, the resulting forecast methods will be referred to as the 
AVERAGE, the MINIMUM and the MAXIMUM method, respectively. 

Thus, the simulated options market that has been created is comprised by 104 
competitors. Each trader applies a trading strategy for the period ranging from October 4th 
1995 to October 18th, 2002 on the S&P500 index, totally 1773 trading days. For 1773 trading 
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days and 104 agents, the ith  agent’s daily profit per straddle is computed as: 
       




1773

1

103

1

, 1773103
t i

ii

t

i  .  

 
Table 2 

The annualized daily profits per competitor per straddle for trades that are at the average of 
the bid/ask prices. The methods with 35 highest and 5 lowest profits are presented. 

Rank Algorithm Profit t-Ratio Rank Algorithm Profit t-Ratio 

1 SPEC(T=5) 22.34% 6.76 21 SPEC(T=75) 12.02% 5.11 

2 SPEC(T=10) 20.09% 6.64 22 AR(4)EGARCH(1,2) 12.01% 4.82 

3 SPEC(T=15) 17.94% 6.53 23 AR(0)EGARCH(1,1) 11.32% 5.41 

4 SPEC(T=25) 16.58% 6.70 24 AR(1)TARCH(2,2) 11.04% 4.95 

5 SPEC(T=20) 16.56% 6.49 25 AR(0)TARCH(1,2) 10.88% 4.52 

6 AR(0)EGARCH(1,2) 14.44% 5.49 26 AR(2)TARCH(2,2) 10.74% 4.88 

7 SPEC(T=50) 14.42% 6.35 27 AR(2)EGARCH(1,1) 10.69% 5.31 

8 SPEC(T=40) 14.29% 5.91 28 AR(2)TARCH(1,2) 10.31% 4.17 

9 SPEC(T=30) 13.93% 5.78 29 AR(1)EGARCH(1,1) 10.24% 4.89 

10 SPEC(T=45) 13.85% 5.73 30 AR(3)TARCH(2,2) 10.05% 4.68 

11 SPEC(T=35) 13.80% 5.69 31 AR(4)TARCH(2,2) 9.41% 4.31 

12 SPEC(T=80) 13.49% 5.75 32 AVERAGE 9.28% 9.33 

13 SPEC(T=55) 13.10% 5.56 33 AR(3)EGARCH(1,1) 9.23% 4.72 

14 SPEC(T=70) 13.04% 5.48 34 AR(1)TARCH(1,2) 8.94% 3.53 

15 SPEC(T=60) 12.84% 5.43 35 AR(3)TARCH(1,2) 8.89% 3.77 

16 SPEC(T=65) 12.70% 5.39 100 AR(1)TARCH(0,1) -21.90% -6.94 

17 AR(0)TARCH(2,2) 12.61% 5.65 101 AR(2)TARCH(0,1) -22.00% -6.95 

18 AR(1)EGARCH(1,2) 12.54% 4.88 102 AR(3)TARCH(0,1) -22.24% -7.08 

19 AR(2)EGARCH(1,2) 12.44% 4.96 103 AR(4)TARCH(0,1) -22.25% -7.02 

20 AR(3)EGARCH(1,2) 12.12% 4.88 104 MINIMUM -37.99% -8.20 

 
Any method that yields superior profits relative to the AVERAGE method appears 

more suitable in predicting volatility for pricing contingent claims. Table 2 presents the 
profits per competitor per straddle and the corresponding t-ratios (ratio of average daily profit 
to its standard deviation divided by the square root of the trading days). The methods with the 
35 highest and 5 lowest profits are presented.  The agents based on the SPEC model selection 
algorithm clearly outperform the others. All the SPEC model selection based algorithms 
achieve returns higher than the AVERAGE method. The highest annualized daily returns are 
achieved by the SPEC(5) model selection algorithm, which is in accordance to Degiannakis 
and Xekalaki (2001a) results. 

Moreover, the agents that employ the SPEC model selection algorithm rank at the 
sixteenth of the twenty-two top positions. The MINIMUM forecast takes the last positions 
and the MAXIMUM forecast achieves negative and statistically significant returns, an 
indication that neither a downward nor an upward forecast bias, that could affect profits 
significantly, is present. It is interesting to note that the EGARCH(1,2) and the TARCH(2,2) 
model selection algorithms perform distinctly better that the remaining ARCH  models. The 
more flexible models, which account for the leverage effect and have a higher order of qp, , 

outperform the parsimonious models (i.e. GARCH(0,1), TARCH(0,1) and EGARCH(0,1)). 
Giot and Laurent (2003), Hansen and Lunde (2001) and Vilasuso (2002), among others, have 
found that more flexible models beat the forecasting ability of the parsimonious ones. Of 
course, as the number of candidate models increases, the probability of finding models with 
superior predictive ability will increase as well. Note that in our simulation study, 3 
conditional variance specifications and Degiannakis and Xekalaki (2004) have presented 31 
conditional variance specifications in the context of the ARCH framework. However, the 
investigation of the SPEC algorithm performance with a set of more flexible ARCH models, 
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which account for recent developments in the area of asset returns volatility, is suggested for 
further research. 

 
 

Table 3 

Ranks of the methods based on the SPEC model selection algorithm and of the AVERAGE method by dropping out the least profitable agent 
at a time. 

  Algorithm 

Number of 
traders  

SPEC 
(T=5) 

SPEC 
(T=10) 

SPEC 
(T=15) 

SPEC 
(T=20) 

SPEC 
(T=25) 

SPEC 
(T=30) 

SPEC 
(T=35) 

SPEC 
(T=40) 

SPEC 
(T=45) 

SPEC 
(T=50) 

SPEC 
(T=55) 

SPEC 
(T=60) 

SPEC 
(T=65) 

SPEC 
(T=70) 

SPEC 
(T=75) 

SPEC 
(T=80) 

AVERAGE 

104 1 2 3 5 4 9 11 8 10 6 12 15 17 14 22 13 31 

100 1 2 3 5 4 9 10 7 11 6 12 14 17 15 21 13 32 

90 1 2 3 5 4 9 10 7 11 8 12 14 17 16 21 13 36 

80 1 2 3 4 5 9 10 7 11 8 12 15 18 16 22 14 40 

70 1 2 3 5 4 8 10 7 11 9 13 14 17 16 22 15 41 

60 1 2 3 5 4 8 9 7 11 10 13 14 17 16 23 15 43 

50 1 2 3 5 4 7 9 8 12 10 14 13 15 17 24 18 43 

40 1 2 3 5 4 8 9 7 11 10 12 13 15 16 21 17 39 

30 1 2 4 5 3 9 8 7 11 10 13 12 14 17 21 19   

20 1 2 3 5 4 10 7 8 9 11 13 12 17 19  20   

10 1 2 3 5 4  7 9 10   8      

5 1 2 3 5 4             

3 1 2 3               

2 1 2                 

 
  

 
5.1 Ranking of Methods Dropping Out the Least Profitable Agent 
 An interesting question to investigate is whether the performance of the SPEC 
algorithm is unaffected by the models that are included in the simulation. This is examined in 
the sequel by repeatedly running the simulation, each time having dropped out the trader 
using the least profitable method and calculating the cumulative profits of the remaining 
participating agents. If the performance of the algorithm is not affected by the models 
considered, the profits of participants who trade options using the SPEC algorithm should 
occupy the top places of the ranking. The resulting ranks of the SPEC algorithm based 
methods and the AVERAGE method are summarized in Table 3. The first column shows the 
number of participants in each group and the rows present the ranking of the SPEC model 
selection methods and the AVERAGE method within each group. As there are 104 traders, 
103 groups are created, but, for space limitations, only 14 groups are presented. Although 
there are some slight changes in the rank, the traders based on the SPEC model selection 
algorithm keep the first places in the ranking. The SPEC(5) model selection algorithm 
achieves the highest returns in all the cases, thus indicating that the forecasting ability is not 
sensitive to the models that are used. On the other hand, the AVERAGE method deteriorates 
as the group becomes smaller. An expected feature as the sample becomes smaller by 
dropping out the least accurate forecasts. 
 
5.2 Exercise Price and Relative Profits 

Following Engle et al.’s (1993) approach, the sensitivity of agents’ profits to exercise 
price is examined. Table 4 shows the ranking and cumulative profits of the competitors 

trading one-day straddles with exercise prices equal to trf
e

5  and trf
e

3 . The call and put 
option prices are calculated as: 
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for 5,K   . The rank of the traders does not change significantly. So, the cumulative 

profits in the simulated market are not sensitive to the exercise price that is used. 
 

Table 4. The rank and annualised daily profits of the competitors trading one-day straddles with 
different exercise prices. 

Forecasts 
    trf

e
5

     trf
e

3
 

Forecasts 
    trf

e
5

     trf
e

3
 

Profit Rank Profit Rank Profit Rank Profit Rank 

SPEC(T=5) 22.46% 1 22.52% 1 SPEC(T=75) 11.88% 22 11.89% 22 

SPEC(T=10) 20.29% 2 20.34% 2 AR(4)EGARCH(1,2) 11.94% 21 11.95% 21 

SPEC(T=15) 17.84% 3 17.89% 3 AR(0)EGARCH(1,1) 11.15% 23 11.16% 23 

SPEC(T=25) 16.50% 4 16.53% 4 AR(1)TARCH(2,2) 11.03% 24 11.03% 24 

SPEC(T=20) 16.42% 5 16.46% 5 AR(0)TARCH(1,2) 10.80% 25 10.81% 25 

AR(0)EGARCH(1,2) 14.32% 7 14.33% 7 AR(2)TARCH(2,2) 10.79% 26 10.79% 26 

SPEC(T=50) 14.40% 6 14.41% 6 AR(2)EGARCH(1,1) 10.52% 27 10.52% 27 

SPEC(T=40) 14.21% 8 14.24% 8 AR(2)TARCH(1,2) 10.37% 28 10.37% 28 

SPEC(T=30) 13.81% 10 13.84% 9 AR(1)EGARCH(1,1) 10.07% 30 10.07% 30 

SPEC(T=45) 13.81% 9 13.83% 10 AR(3)TARCH(2,2) 10.14% 29 10.14% 29 

SPEC(T=35) 13.79% 11 13.82% 11 AR(4)TARCH(2,2) 9.50% 31 9.50% 31 

SPEC(T=80) 13.34% 13 13.35% 13 AVERAGE 9.46% 32 9.46% 32 

SPEC(T=55) 13.41% 12 13.43% 12 AR(3)EGARCH(1,1) 9.12% 33 9.12% 33 

SPEC(T=70) 12.89% 14 12.90% 14 AR(1)TARCH(1,2) 8.92% 35 8.93% 35 

SPEC(T=60) 12.83% 15 12.85% 15 AR(3)TARCH(1,2) 8.99% 34 8.98% 34 

SPEC(T=65) 12.55% 17 12.56% 17 AR(1)TARCH(0,1) -22.06% 100 -22.08% 100 

AR(0)TARCH(2,2) 12.69% 16 12.70% 16 AR(2)TARCH(0,1) -22.13% 101 -22.15% 101 

AR(1)EGARCH(1,2) 12.38% 18 12.39% 18 AR(3)TARCH(0,1) -22.38% 102 -22.40% 102 

AR(2)EGARCH(1,2) 12.32% 19 12.33% 19 AR(4)TARCH(0,1) -22.39% 103 -22.42% 103 

AR(3)EGARCH(1,2) 12.03% 20 12.04% 20 MINIMUM -38.14% 104 -38.24% 104 

 
 
6 .  C o m p a r i n g  M e t h o d s  o f  M o d e l  S e l e c t i o n  o n  S i m u l a t e d  O p t i o n s  
 

The selection of the appropriate model is one of the most challenging areas in 
statistical modeling. Usually, a researcher has to choose among a set of candidate models. 
Methods of model selection examine the ability of the models either to describe or to forecast 
the variable under investigation. The Akaike information criterion (Akaike (1973)) and the 
Schwarz Bayesian criterion (Schwarz (1978)) are model selection methods that are based on 
the maximized value of the log-likelihood function and evaluate the ability of the models to 
describe the data. In the case we are interesting in using a model for forecasting, the 
evaluation of the models would naturally be based on their ability to produce valuable 
forecasts. Loss functions, which measure either the distance between actual and predicted 
values or the benefit from the use of these forecasts, are used to evaluate the forecasting 
ability of the models. Poon and Granger (2003) reviewed a detailed record of volatility 
forecasting loss functions and relative references. 

In the sequel, the SPEC model selection algorithm is compared with other criteria of 
selection that measure the ability of the models to forecast volatility again on the basis of the 
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profits of the participants in a simulated options market. Denoting the realized at time 1t  by 
2

1ts , the following loss functions were considered: 

 1. Mean Square Error of Variance (MSEV): 
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 2. Mean Absolute Error of Variance (MAEV): 
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 3. Mean Square Error of Deviation (MSED): 
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 4. Mean Absolute Error of Deviation (MAED): 





 

T

t

ttt sT
1

1|1
1 ̂ .  

 5. Heteroscedasticity Adjusted Mean Squared Error of Variance (HAMSEV): 
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 6. Heteroscedasticity Adjusted Mean Absolute Error of Variance (HAMAEV): 
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 7. Heteroscedasticity Adjusted Mean Squared Error of Deviation (HAMSED): 
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 8. Heteroscedasticity Adjusted Mean Absolute Error of Deviation (HAMAED): 
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 9. Mean Logarithmic Error of Variance (MLEV): 
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 10. Gaussian Maximum Likelihood Error of Variance (GMLEV): 
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 11. Gaussian Maximum Likelihood Error of Deviation (GMLED): 

 
 




























T

t tt

t

tt

s
T

1 |1

1
|1

1

ˆ
ˆln


 ,  

where T  is the number of the one-step-ahead volatility forecasts. The first four loss functions 
have been widely used in applied studies. The heteroscedasticity adjusted functions were 
introduced by Andersen et al. (1999) and Bollerslev and Ghysels (1996), while mean 
logarithmic error function was utilized by Pagan and Schwert (1990). The GMLE function, 
which was presented in Bollerslev et al. (1994), measure the forecast error according to the 
likelihood function that is used in estimating the models. 

As the actual volatility is unobservable, the common way to determine the daily 
realized volatility is the squared daily returns, which is an unbiased but noisy volatility 
estimator. Andersen and Bollerslev (1998) introduced the use of the sum squared finely 
sampled high frequency data as an alternative volatility measure. For a detailed description of 
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the realized intra-day volatility, the interested reader is referred to Andersen et al. (2003) and 
Andersen et al. (2004). Based on Andersen et al. (1999), Andersen et al. (2001) and Kayahan 
et al. (2002), we compute the realized intra-day volatility of day t  as: 

      



 

1

1

2

,,1
2 lnln

m

j

tmjtmjt PPs ,  

where   tmP ,  denotes five-minute linearly interpolated prices of S&P500 at day t  with m  

observations per day. The intra-day quotation data are available from April 28th 1997 to 
October 18th 2002 and were provided by Olsen and Associates. 

Each loss function is computed for  801010  T . In order to compare the SPEC 

algorithm with the 11 loss functions, a simulated options market is created. Each agent selects 
the ARCH model with the lowest value of its the loss function in order to forecast next day’s 
variance. The simulated market is consisting of 99 traders: the 12 model selection algorithms 
for 8 different sample sizes (including the SPEC algorithm), the average, the minimum and 
the maximum of all daily forecasts methods. The comparison is carried out on the basis of the 
annualized daily profits of the participants.  

The resulting ranking of the criteria is summarized in Table 5 (Columns 1 and 2). For 
each model selection criterion, the highest annualized daily profits are given (column 3) along 
with the values of the corresponding t-ratios (column 4) defined as in Table 2 and the sample 
sizes (values of T) at which the maximum returns are attained (in parentheses in column 2). 
(The full table referring to the profits of the 99 traders can be found in Xekalaki and 
Degiannakis (2004)).  

The results in the table indicate that traders who are based on the SPEC algorithm 
achieve the highest returns, despite the use of the realized intra-day volatility by the loss 
functions. Moreover, the SPEC method appears more suitable in predicting volatility for 
pricing contingent claims, as it is the only model selection method that produces returns 
higher that the AVERAGE algorithm does. An interesting point is that, with the exception of 
HAMSEV, all the algorithms achieve their highest returns for 10T .  
 

Table 5 

The annualised daily profits per competitor per straddle for trades that are at 
the average of the bid/ask prices. 

Rank Model Selection Algorithm Profit t-Ratio 

1 SPEC(T=10) 16.42% 3.51 

2 AVERAGE 13.30% 4.67 

3 HAMSEV(T=10) 0.87% 0.21 

4 HAMAEV(T=10) 0.53% 0.13 

5 HAMSED(T=10) -0.29% -0.07 

6 HAMSEV(T=60) -0.96% -0.26 

7 MAX -1.18% -0.21 

8 GMLEV(T=10) -1.66% -0.40 

9 GMLED(T=10) -1.93% -0.47 

10 MLEV(T=10) -3.20% -0.77 

11 MSED(T=10) -4.01% -0.95 

12 MSEV(T=10) -4.28% -1.01 

13 MAED(T=10) -5.19% -1.23 

14 MAEV(T=10) -7.72% -1.82 

15 MIN -33.42% -6.12 
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7 .  D i s c u s s i o n  
 

Adopting Engle et al.’s (1993) approach to comparing several variance forecast 
methods using an economic value criterion, the performance of the SPEC model selection 
algorithm was examined. Simulating an options market, in order to avoid problems related to 
observed actual option prices, 104 traders were assumed to trade one-day straddles on $1 
shares of the S&P500 index, for the period from October 4th 1995 to October 18th, 2002 
(1773 trading days). Traders were also assumed to use variance forecast methods of their 
choice. The variance forecast methods considered were: 85 selection “methods” 
(strategies), one for each of 85 ARCH models, each amounting to the utilization of the 
forecasts of the same model at any point in time, the SPEC model selection algorithm 
for 16 different sample sizes, the average, the minimum and the maximum of all daily 
forecasts methods. Traders using SPEC algorithm based methods appear to achieve 
higher profits than traders using any of the 85 single ARCH model based methods 
considered in the simulation. Moreover, traders, who apply the SPEC model selection 

algorithm for sample sizes   555 2 T , appear to achieve the highest profits, a conclusion 

which is in agreement to Degiannakis and Xekalaki’s (2001a) findings in the case of real 
index-option prices. The ability of the SPEC model selection algorithm was also compared 
with loss functions that measure the ability of the models to forecast volatility. Even though, 
the other criteria (loss functions) used the realized intra-day volatility, the SPEC algorithm, 
for 10T , led to the highest profits. It appears, therefore, that the results support the 
conclusion that the increase in profits cannot be attributed to chance but to improved volatility 
prediction. Hence, the SPEC selection method offers a useful model selection tool in 
estimating future volatility, with applications in pricing derivatives. 
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