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Hidden hybrid Markov/semi-Markov chains

Yann Guédon

Unité Mixte de Recherche CIRAD/CNRS/INRA /IRD/Université Montpellier IT
Botanique et Bioinformatique de l’Architecture des Plantes, TA 40/PS2,
34398 Montpellier Cedex 5, France

Abstract

Models that combine Markovian states with implicit geometric state occupancy
distributions and semi-Markovian states with explicit state occupancy distributions,
are investigated. This type of model retains the flexibility of hidden semi-Markov
chains for the modeling of short or medium size homogeneous zones along sequences
but also enables the modeling of long zones with Markovian states. The forward-
backward algorithm, which in particular enables to implement efficiently the E-step
of the EM algorithm, and the Viterbi algorithm for the restoration of the most
likely state sequence are derived. It is also shown that macro-states, i.e. series-
parallel networks of states with common observation distribution, are not a valid
alternative to semi-Markovian states but may be useful at a more macroscopic level
to combine Markovian states with semi-Markovian states. This statistical modeling
approach is illustrated by the analysis of branching and flowering patterns in plants.

Key words: Forward-backward algorithm; Hidden Markov chain; Hidden
semi-Markov chain; Macro-state; Plant structure analysis; Smoothing algorithm;
Viterbi algorithm.

1 Introduction

One drawback of hidden semi-Markov chains is the time complexity of the main
algorithms (forward-backward and Viterbi) which is quadratic in the worst case in
terms of sequence length instead of linear for simple hidden Markov chains (Guédon,
2003). This may limit the potential application of this type of model for the analysis
of sequences including long homogeneous zones (for instance some intronic zones in
DNA sequences). In some cases, it was also noted that the lengths of some zones of
interest in different biological applications are approximately geometrically distrib-
uted. This is the case for intronic zones in the human genome (Burge and Karlin,
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1997) and non-coding zones in bacterial genomes (Lukashin and Borodovsky, 1998).
In this paper, we show that the lengths of some branching/axillary flowering zones
are also geometrically distributed. For these two reasons, it is interesting to develop
efficient computational methods for hidden hybrid Markov/semi-Markov chains, i.e.
models where some states are semi-Markovian (with an explicit state occupancy dis-
tribution) while the others are simply Markovian (with an implicit geometric state
occupancy distribution). It should be noted that hidden semi-Markov chains as de-
fined in Guédon (2003) can be seen as hidden hybrid Markov/semi-Markov chains
since the absorbing states are by nature Markovian. In this paper, the Markov-
ian nature of states is no longer restricted to absorbing states since nonabsorbing
Markovian states can now be defined. In the context of the application to gene find-
ing, as illustrated by systems such as Genie (Kulp et al., 1996), GENSCAN (Burge
and Karlin, 1997) and GeneMark.hmm (Lukashin and Borodovsky, 1998), the in-
corporation of non-absorbing Markovian states is critical since the distributions of
the lengths of the longest homogeneous zones are approximately geometric.

For combining Markovian states with semi-Markovian states in hidden Markov mod-
els, one can either consider a semi-Markovian framework where the occupancy distri-
butions of some non-absorbing states are constrained to be geometric or a Markov-
ian framework where some states are replaced by series-parallel networks of states
with common observation distribution; see Cook and Russell (1986) and Durbin
et al. (1998). This latter approach is similar to the ‘method of stages’ well-known
in queueing system theory (Kleinrock, 1975). The occupancy distributions of the
macro-states defined in this way are built from the implicit geometric occupancy
distributions of the elementary Markovian states. These geometric distributions are
combined by convolution in the case of states in series, while they are combined by
mixture in the case of (series of ) states in parallel. A key property of this macro-state
approach is that the conditional independence assumptions within the process are
preserved with respect to hidden Markov chains. Hence, the hidden Markov chain
algorithms for parameter estimation, and for computing most likely state sequences
still apply. In this paper, we show that macro-states are not a valid alternative to
semi-Markovian states but may be useful at a more macroscopic level to combine
Markovian states with semi-Markovian states.

Burge (1997) proposed adaptations of the forward-backward algorithm and the
Viterbi algorithm for a specific class of hidden hybrid Markov/semi-Markov chains
where Markovian and semi-Markovian states alternated. The proposed algorithms
entailed notably to consider three successive states in the recursions and relied fairly
heavily on the specific structure of the model considered. We propose in this paper
a general solution for the main algorithms of hidden hybrid Markov/semi-Markov
chains. The main technical outcome of this work is that algorithms for hidden hybrid
Markov /semi-Markov chains are basically the juxtaposition of the basic algorithms
for hidden Markov chains (Devijver, 1985; Rabiner, 1989; Ephraim and Merhav,
2002) and hidden-semi Markov chains (Guédon, 2003) with simple connections in
the case of transitions from a Markovian state to a semi-Markovian state or vice
versa. As a consequence, the forward-backward an Viterbi algorithms for hidden hy-
brid Markov/semi-Markov chains keep the time complexity of the forward-backward



and Viterbi algorithms for simple hidden Markov chains in the case of Markovian
states.

The remainder of this paper is organized as follows. Discrete hidden hybrid Markov /semi-
Markov chains are formally defined in Section 2. Marco-states are discussed as a pos-
sible alternative to semi-Markovian states in Section 3. The estimation of a hidden
hybrid Markov /semi-Markov chain from discrete sequences based on the application

of the EM algorithm and the associated forward-backward algorithm is presented in
Section 4. The Viterbi algorithm for the restoration of the most likely state sequence

is presented in Section 5. The resulting data analysis methodology is illustrated in
Section 6 by the reanalysis of branching and flowering patterns on apricot tree
growth units originally analyzed by a hidden semi-Markov chain. Section 7 consists

of concluding remarks.

2 Discrete hidden hybrid Markov/semi-Markov chain definition

Let {S;} be a hybrid Markov /semi-Markov chain with finite state space {0, ..., J — 1};
see Kulkarni (1995) for a general reference about Markov and semi-Markov models.
This J-state hybrid Markov/semi-Markov chain is defined by the following parame-
ters:

e initial probabilities m; = P (Sy = j) with >, 7; = 1,

e transition probabilities

- semi-Markovian state j: for each k # j,pjx = P (Sis1 = k|Si1 # J, S = j) with
2k Pjie = 1 and pj; = 0,

- Markovian state j: pjr = P (Sir1 = k[S: = j) with > pjr = 1.

It should be noted that absorbing states are Markovian by definition.

An explicit occupancy (or sojourn time) distribution is attached to each semi-
Markovian state

d](u) :P(St+u+1 %j,StJru,v:j,UZO,...,U—2’8t+1 :j,St#j), U:L...,Mj,

where M; denotes the upper bound to the time spent in state j. Hence, we assume
that the state occupancy distributions are concentrated on finite sets of time points.
For the particular case of the last visited state, we need to introduce the survivor
function of the sojourn time in state j, D; (u) = 3,5, d; (v).

If the process starts out at ¢ = 0 in a given semi-Markovian state j, the following
relation is verified



P(St#jastfv:jﬂjz17"'7t):dj(t)7rj‘ (1)

Relation (1) means that the process enters a ‘new’ state at time 0.

For a nonabsorbing Markovian state j, we have

P(St+1 = k’StJrl 757'; Sy = j) = 1_—]3”;
73

and the implicit state occupancy distribution is the ‘1-shifted’ geometric distribution
with parameter 1 — p;;

dj(u) = (1=p) Pl ', wu=1,2,...

Hybrid Markov/semi-Markov chains can be seen as a sub-class of semi-Markov chains
where the occupancy distributions of some nonabsorbing states are constrained to
be geometric distributions. For a nonabsorbing state, it is possible to adopt a semi-
Markovian parameterization of a Markovian state (Burge 1997). We did not adopt
this solution since it cannot be transposed to absorbing states. Furthermore, we will
show in Sections 4.1 and 5 that the parameterization chosen leads to simple algorith-
mic solutions both for the forward-backward algorithm and the Viterbi algorithm.

A discrete hidden hybrid Markov/semi-Markov chain can be viewed as a pair of
stochastic processes {S:, X;} where the discrete output process {X;} is related to
the state process {S;}, which is a finite-state hybrid Markov/semi-Markov chain,
by a probabilistic function or mapping denoted by f (hence X; = f (S;)). Since the
mapping f is such that f(j) = f (k) may be satisfied for some different j, k, that
is a given output may be observed in different states, the state process {S;} is not
observable directly but only indirectly through the output process {X;}.



(a) First topology

(b) Second topology

Fig. 1. Nonparametric macro-states: the transition probabilities within the
macro-states are parameterized in a semi-Markovian manner.

The output process {X;} is related to the hybrid Markov/semi-Markov chain {S;}
by the observation (or emission or state dependent) probabilities

b; (y) = P(Xy =y|S, = j) with D> b; (y) = 1.

The definition of the observation probabilities expresses the assumption that the out-
put process at time ¢ depends only on the underlying hybrid Markov/semi-Markov
chain at time ¢. Note that X, is considered univariate for convenience: the extension
to the multivariate case is straightforward since, in this latter case, the elementary
observed variables at time ¢ are assumed to be conditionally independent given the



state S; = s;.

Some notations need to be introduced for the remainder of this paper. The observed
sequence of length 7, Xo = x¢,..., X;_1 = x,_1 will be abbreviated X(Tl = 936’1
(this convention transposes to the state sequence S§ ' = s7~'). In the estimation
framework, 6 designates the vector of all parameters.

3 Hidden Markov chains with macro-states

To compare hidden Markov chains with macro-states with hidden semi-Markov
chains, it is interesting to consider both nonparametric and parametric definitions
of macro-states.

Nonparametric macro-states:

Consider a macro-state made of a series of M, states with no self-transition. This
type of macro-state can model any occupancy distribution supported by [1, M| and
hence can be compared to a semi-Markovian state. The two topologies presented
in Fig. 1 can be proposed (a single preceding macro-state and a single subsequent
macro-state are assumed to simplify matters and the transition probabilities within
the macro-states are parameterized in a semi-Markovian manner to help the com-
parison). In the two cases, 2 (J — 2)+ M, —1 independent transition probabilities are
attached to each macro-state (instead of J — 2 independent transition probabilities
and M; — 1 independent occupancy probabilities for a semi-Markovian state with a
nonparametric occupancy distribution). The redundancy in the parameters lies in
the duplication of the exit transitions in the first and last states due to the specific
situation of staying one time step in a given macro-state which cannot be handled
in a similar way as the situation of staying more than one time step. The use of this
type of macro-state suffers from a major drawback:

e The complexity in space (both for the forward-backward and the Viterbi algo-
rithms) is O((X; M;)7) instead of O(J7) for a hidden semi-Markov chain; see
Section 4.1 and Guédon (2003). This drastically limits the application of this
type of macro-state model to short homogeneous zones.

Other drawbacks are:

e Tying constraints should be imposed between transitions from state 1 and state
M; (to state 1 of a given macro-state k # j).

e The regularization of macro-state occupancy distributions leads to impose some
complex tying constraints across parameters and is far more difficult to manage
than in the case of semi-Markovian states; see the proposal of different methods
for the regularization of the occupancy distributions of semi-Markovian states in
Guédon (2003).

e The redimensioning of a macro-state between two iterations of the estimation



procedure cannot be handled simply while the size of the support of the explicit
occupancy distribution in the case of a semi-Markovian state may be reduced
simply if the tail probability (beyond a given value) tends towards zero. This is
further penalizing since the initial number of elementary states of a macro-state
cannot be underestimated and should be overestimated.

It should also be noted that the naive implementation of a macro-state model entail
managing a large (3°; M; x 3=; M;) but sparse transition probability matrix. Hence,
specific implementations of the forward-backward and the Viterbi algorithms should
be designed.

)
1
1
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Fig. 2. Parametric macro-state topology.

Moreover, there is no gain in time complexity when using a hidden Markov chain with
macro-states compared to the equivalent hidden semi-Markov chain. For instance,
the elementary step of both a forward or a backward recursion for a given time step
and a given state requires 2 (J — 1) + 1 4+ 2(M; — 2) operations in the case of a
macro-state instead of J — 1 + M; operations in the case of a semi-Markovian state
with generally J < M;.

Parametric macro-states:

Let us define the negative binomial distribution with parameters d, r and p, NB(d, r, p),
where d (d > 1) is a shift parameter that defines the minimum sojourn time in state
J, 7 is a real number (r > 0) and 0 < p <1

u—d+r—1\ , .,
dj(u)—< 1 )pq d u=d,d+1,... (2)



‘Parametric’ macro-states can be illustrated by the example depicted in Fig. 2 (Gué-
don, 1992). The macro-state occupancy distribution is defined by two free parameters
p and g corresponding respectively to the exit probability and to the next-state tran-
sition probability. To simplify matters, we consider a single subsequent macro-state.
Let {Uy;k =1,...,r} be a sequence of r mutually independent random variables
representing state occupancies with common geometric distribution NB(1, 1,p + ¢)
and N be the random variable representing the number of U, summed where N is
independent of the Uy. The distribution of U; + - - - + U, is the n-fold convolution of
NB(1,1,p + q) and thus is NB(n,n,p + ¢). Since the number of states is bounded,
the distribution of N is NB(1,1,p/ (p+¢)) truncated at N = r in the sense that
the survivor function is concentrated at r

Cp+qg\p+g
r—1
P(N_r)z(i>
p+q

The resulting macro-state occupancy distribution is the compound (Feller, 1968) or
stopped-sum distribution (Johnson et al., 1993)

If p = 0, the macro-state occupancy distribution is the negative binomial distribution
NB(r,r,q)

-1 .
P(U:u):<:f_1>qr(1_Q>u Y U:T,T+1,...

This case corresponds to a series of r states with the shortcoming that, the minimum
time spent in the macro-state is r.
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Fig. 3. Parametric macro-state occupancy distributions for different (p, q) values
with p+¢ = 0.2.

Let gy, (s) be the common generating function of the Uy and gy (s) the generating
function of N. If r — 400, the generating function of the random sum U = U; +
-+ 4 Uy is the compound function (Feller, 1968)

gu (8)=gn (gu,, (s))

i) [ RN

_ ps
1-(1-p—q)s—gs

_ bs

1-(1-p)s

Hence, the macro-state occupancy distribution is the geometric distribution NB(1, 1, p).
In practical cases, if the distribution of N is close to a geometric distribution (which
means that the weight of the truncation is low), the resulting compound distribution

is also close to a geometric distribution.



Probability
(=]
(=2}

L

o
'S
L

Ol%A—A—A:
0

0.8 1 s
| |
—a—(0.15, 0.05)
_ —o—(0.1,0.1)
—e—(0.05, 0.15)
—o—(0.02, 0.18)
: . (0.01,0.19)
* —a—(0.005,0.195)
0.2 /\
T‘\A"\' 4\\.
1 2 3 4 5

Number of states

Fig. 4. Distribution of the number of visited states in a parametric macro-state for
different (p, ¢) values with p+ ¢ = 0.2.

The possible shapes of the macro-state occupancies can be illustrated using the fam-
ily defined by » = 5 and p + ¢ = 0.2 and represented in Fig. 3 for selected pairs
of (p,q) values. The macro-state occupancy distribution for (p,q) = (0.15,0.05) is
strikingly close to the geometric distribution NB(1,1,0.15) since the sum distrib-
ution is strikingly close to the geometric distribution NB(1,1,0.75) (Fig. 4) while
the macro-state occupancy distribution for (p,q) = (0,0.2) is the negative binomial
distribution NB(5, 5, 0.2). The shapes of some of the intermediate distributions seem
quite inappropriate for the modeling of zone lengths (Fig. 3). For a fixed number
of states r of a macro-state, both the shape and the dispersion are far more con-
strained than in the case of the explicit occupancy distribution of a semi-Markovian
state. These parametric macro-states suffer from a lack of flexibility compared to
semi-Markovian states.

4 Estimation of an hidden hybrid Markov/semi-Markov chain

Since macro-states are not a valid alternative to semi-Markovian states, it is nec-
essary to develop efficient algorithms for parameter estimation of hidden hybrid
Markov /semi-Markov chains.

With reference to hidden semi-Markov chains (Guédon, 2003), the adaptation of the
EM algorithm is straightforward. Recall that hidden hybrid Markov/semi-Markov
chains can be seen as a sub-class of hidden semi-Markov chains. Hence, the statement
of the estimation problem is unchanged.

Let us consider the complete data where both the outputs zf ' and the states
5571 of the underlying semi-Markov chain are observed. In the specification of

the complete data, the state sequence is completed up to the exit from the state

10



occupied at time 7 — 1, which is assumed to be a semi-Markovian state. If the last
visited state is Markovian, it is only necessary to consider the state sequence up to
time 7 — 1. Let 8% denote the current value of 6 at iteration k. In the hidden semi-
Markov chain case, the conditional expectation of the complete-data log-likelihood
is given by

QO™ = E {log f (S5, X5 740) |Xg " = a5 56}

This conditional expectation can be rewritten as a sum of terms, each term depend-
ing on a given subset of parameters

J—1
QUOIO™) = Qx ({73320 169) + 3@y ({pis 2 16™)
=0

+Z()Qd ({d; ()} 16W) I (pj; = 0) + 2}@17 ({6 ()} 0.

The reestimation of the initial probabilities, the state occupancy distributions and

the observation probabilities remain unchanged in the case of hidden hybrid Markov /semi-
Markov chain but it is necessary to consider the two alternative definitions of the
terms attached to the transition probabilities. For the transition probabilities at-
tached to a semi-Markovian state i, we obtain

T—2
Qp ({pi} 0 10%) = 33" P (Seer = 4, S = i|XG " =25 ;6% ) logpyy,  (3)

j#it=0

and for the transition probabilities attached to a Markovian state i, we obtain

T—2

Qs (1P} 0 10%) = S0P (Seer = 4, S = il XT " =25 ;6% ) log iy (4)

j t=0
4.1  Forward-backward algorithm

The forward-backward algorithm that implements the E-step of the EM algorithm
basically computes the smoothed probabilities L, (t) = P (St = jIX{ = x8_1> as
a function of the index parameter ¢t. Hence, in the vocabulary of state-space models,
the forward-backward algorithm is a smoothing algorithm. The time complexity of
the forward-backward algorithm is O(J7(J + 7)) in the worst case for hidden semi-
Markov chains and O(.J?7) for hidden Markov chains (and the space complexity is

11



O(JT) in both cases). Our objective is to ensure that the forward-backward algo-
rithm for hidden hybrid Markov/semi-Markov chains retains the time complexity of
the forward-backward algorithm for hidden Markov chains in the case of Markovian
states.

The proposed forward-backward algorithm is basically a combination of the forward-
backward algorithm proposed by Guédon (2003) for hidden semi-Markov chains and
the forward-backward algorithm proposed by Devijver (1985) for hidden Markov
chains. These two ‘parent’ forward-backward algorithms share the property of being
immune to numerical underflow problems. The algorithm described below directly
inherits this property.

For a semi-Markovian state j, the forward recursion is given by (Guédon, 2003),

t=0,...,7T—2:

Fy () =P (Spu1 # 5, S = j1X§ = a})
_ b

= ](\,ft) [Z {UH%} dj (u) Y piiFi (t — )

u=1 (v=1 1#£]

+{ﬁ%}dj(t+1m], (5)

v=1

where N, = P (Xt = a:t]Xéfl = xffl) is a normalizing factor.

The censoring at time 7 — 1 of the sojourn time in the last visited state distinguishes
the case t =7 —1

u=1 \v=1 1#£]
-1
b (Tr1-0)
D.
{200 0

For a Markovian state j, the forward recursion initialized for ¢ = 0 by

F;(0) =P (So = j|Xo = o)

is given by (Devijver, 1985),

12



Lt —1) (7)

In the vocabulary of state-space models, this forward algorithm for hidden Markov
chains is a filtering algorithm.

The normalizing factor /V; is obtained directly during the forward recursion as fol-
lows:

Ni=P (X =z| X = af)
=3P (S =4, X = m|X§ =af).
J

For a semi-Markovian state j, Guédon (2003) proposed for the computation of the
normalizing factor,

+{ﬁ%}pj(t+1m]. (8)

Transposing the decomposition (11) of the smoothed probabilities in the backward
recursion, we propose here the following alternative solution in order to save compu-
tation time (this change entails storing the quantities P (S; = j| X{ = zf) for each
semi-Markovian state j; see the appendix)

P (Sy=7,Xo =x0) =bj(x) 7

13



P(St:j,Xt:xt|Xé =2l 1)
=P (Xy = 2|5 = j) {P (St:j7st—1 # jIXot =g 1)
—P(St#jast—lzﬂXé t=ap >+P(St 1 =J1Xgt = 6_1)}

7, {sz-jﬂ (t—1) — Fy(t = 1) + P (S = j1X5 7 = :ca—l)} NG

i#]

WhereP(St L=l XE =l )—P(St 1 =5, X1 =2 | X2 =) 2)/Nt 1. In
this way, the computation of the normalizing factors do not depend of the maximum
times spent in the different states. Hence, the computation of the normalizing factors
in (9) is of ‘Markovian’ complexity instead of ‘semi-Markovian’ complexity as in (8).

For a Markovian state j

P (Sy = j,Xo = x0) = bj (x0) 7},

P (S =j, X, = m|X§ = af ') = by ( pr (t—1) (10)

The combination of the forward recursion for hidden semi-Markov chains and the
forward recursion for hidden Markov chains relies on the following fact.

Fact 1 For a semi-Markovian state i # j

P (i1 =, 8 = i X§ = )
=P (Spi1 = j|Si1 # 4,0 = 1) P (Sper # 1,5, = i| X§ = )
:pz'jFi (t%

and for a Markovian state 1

P (St+1 = j, St = Z|Xé = xé) :P(St+1 = j|St = Z) P (St = Z|Xé = xé)
=i (t) -

Note that state j may be Markovian or semi-Markovian.

14



The quantity p;;F; (t —u) in (5) and (6) - respectively the quantity p;;F; (t — 1)
in (9) - should be replaced by py;F; (t — u) - respectively py;F; (t — 1) - if state i
is Markovian and, conversely, the quantity p;;E; (t — 1) in (7) and (10) should be
replaced by p;; F; (t — 1) if state ¢ is semi-Markovian. The resulting forward algorithm
computes in parallel F; (t) = P (Si1 #j, St = j| X§ = ) for semi-Markovian
states and F} (t) = P (S, = j| X} = xb) for Markovian states. Note that Fj (1 — 1) =
Ei(r—1) = P(S,o1=j| X§ ' = xg_l). As usual, the likelihood of the observed
sequence is directly computed as a byproduct of the forward recursion since

P (X5 =a56) = :U:P (X = X7 = o736) = :H:Nt'

In practice, the log-likelihood of the observed sequence given by log P (Xg = ppt 9) =

7o log N; is computed. This is useful both to monitor the convergence of the EM
algorithm or as a (similarity) measure to affect an unknown sequence to a class
represented by a previously estimated model in the context of pattern recognition
applications.

The backward recursion is initialized for t = 7 — 1 by

Li(r=1) =P (S =jIXg 7 =af ) = F(r = 1) = Fj (7 - 1),
where state j may be indifferently Markovian or semi-Markovian.

For a semi-Markovian state j, the backward recursion relies on the following decom-
position of the smoothed probability L; (t) (Guédon, 2003):

Li(t)=P (S =jlxgt = a57")
=P (Se1 # 4,8 = JIX5 7 = a7 ) + P (S = JIXG T =77
-P (St+1 =5,8 #j1X5 = x8_1>
=L (t)+ L;(t+1) - P (St+1 =S #j1X5 7 = $671> : (11)
The backward recursion is based on the quantities L1; (),

t=7—2,...,0:

15



. — T727tL1k (t + U) {U1 bk (*It-&-u—v) }
0= gézj [ = F(t+u) 1)1;[[) Neyu—v di ()
H 2= o= 10| o] F 00
v=0 T—1—v
= {ZGk (t+ 1)pjk} F; (1),
k#j
where
Gr(t+1) = P (XtT+1 =2 1S =k, S # /f)

P (XtTHl = ai 1| X6 = )
The third term in (11) is given by,

t=7—2,...,0:

St+1 = 7,5 # J| X~ t= 1'5_1)
lf 2 tLl t+u) {ul—fbj (mﬁ_u_v)}d' (u)
J

) v=0 Nt+u—v
T—2— tb I,T ;
{ L )}Dj (r=1-0] Zosri 1)
’T 1-v i#£j
(t+1) szj
1]

For a Markovian state j, the backward recursion is given by (Devijver, 1985),

t=7—2,...,0:

P(St—j]XT V=g~ 1)
Ly (t+1)bg (z411) D
{ L) g

Fyy (t+1) Ny

Gk t—i-l pjk}ﬁ (t),

where

16
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P (XzeT+_11 = ItT+_11|St+1 = k?)
P (Xt:ll = 33t+11’Xt = 950) .

Gr(t+1)=

Fact 2 For a semi-Markovian state k # j

P (Spo1 =k, Sy = jIX7 7" = af ")
P (X;—ll = 21 |Sip1 =k, S # k)
P (Xt+1 = a7 | X§ = 330)
=Gy (t+1) P (S =k, S, = j|XE = 2f) ,

P (Si1 =k, S = j|X§ = )

and for a Markovian state k

(Sevs =k, S = jIXG" = a7 ")
(XtTH =271 S = k?)
(Xl;-ll =27 |X§ = 336)
=Gy (t+1) P (S =k, S, = j|X§ = 2f) .

P
P Lyt t
P (St+1 =k, S =7l X, = %)

where the computation of P (Sy1 =k, Sy = j| Xt =12k) depends on the nature of
state j (either Markovian or semi-Markovian); see Fact 1.

Hence, Gy (t 4 1) in (12) should be replaced by Gy, (t + 1) if state k is Markovian
and, conversely, Gy (t+ 1) in (13) should be replaced by Gy (t+ 1) if state k is
semi-Markovian. An implementation of this forward-backward algorithm is proposed
in the appendix in pseudo-code form where common computations between semi-
Markovian states and Markovian states are highlighted.

4.2 Parameter reestimation

The reestimation of the initial probabilities, the state occupancy distributions and
the observation probabilities (M-step of the EM algorithm) remains unchanged with
reference to the hidden semi-Markov chain case described in Guédon (2003). The
reestimation formulas for the transition probabilities are directly deduced from the
maximizations of (3) and (4).

For a semi-Markovian state i, we have the following reestimation formula for the
transition probabilities
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(k+1) tT:_o2P (St+1 =7,5 = i]Xg*1 — zgfl;g(k))

Y 2p (Sm 24,5, =i|XJ = ap ! 9<k>)
Y Gt Y py B ()

14
Sy L1 (t) ’ (14)
while for a Markovian state ¢, we have
(k+1) Yo P (St+1 =4,8 =iX; = xg—l;g(k))
’ STa P (S =ilXG = ap 500
_ X Gt )Pk () -

=y Li (t)

The quantity G (¢ + 1) in (14) should be replaced by G, (t + 1) if state j is Markov-
ian and, conversely, the quantity G, (¢t + 1) in (15) should be replaced by G; (t + 1)
if state j is semi-Markovian.

5 Viterbi algorithm

The manner in which the forward recursion for hidden semi-Markov chains and
the forward recursion for hidden Markov chains are combined in the case of hybrid
models directly transposes to the Viterbi algorithm.

For a semi-Markovian state j, the Viterbi recursion is given by (Guédon, 2003),

a;(t)= max P (StH #3,8 =781 =8 Xt = mé)

8055 St—1

=0; (z;) max | max uﬁbj (T4—0) ¢ d; (U)I?ax{pz'j@i (t—uw},
s {0 0 |

{110 e} 0407 5)

The censoring at time 7 — 1 of the sojourn time in the last visited state distinguishes
the caset =17 —1
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a; (1 —1)
= max P (S, =787 =s%X] " =a7 ")

805025 St—2

1<u<r-—1

(T ee-vo} 0y 007 a7

=b; (z,_1)max | max | [[b; (z;-1-0) p Dy () max {pjje; (1 — 1 —w)}]|,
e {0} 20

For a Markovian state j, the Viterbi recursion initialized for ¢ = 0 by

a; (0)=P(Sy = j,Xo = x0)
bj (wo) 7,

is given by (Rabiner, 1989),

7777

), <xt>miax{pijai <t— 1)} (18)

The likelihood of the optimal state sequence associated with the observed sequence
zf ! is max; {a; (7 — 1)} (it should be noted that a; (1 — 1) = &; (7 — 1)).

Fact 3 For a semi-Markovian state © # j

max P (Stﬂ 4,8 =1,55 " =sh X} = xé)

5050

=P (Si1 =71 #1,5 = z) “max P (St+1 £i,8 =1i,55 =5 Xt = xé)

.....

= pia (t),
and for a Markovian state i

5, ax P (St+1 =5,8=i,5 ' =sh Xl = x[))

.....

:P(StH =j|S: = z) “max. P (St =i, S =8t XL = mg)

-----

Note that state j may be Markovian or semi-Markovian.
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The quantity p;jo; (t —u) in (16) and (17) should be replaced by p;;a; (t —u) if
state i is Markovian and, conversely, the quantity p;;@; (¢t — 1) in (18) should be
replaced by p;jc (t — 1) if state ¢ is semi-Markovian. The resulting Viterbi algorithm
computes in parallel o (t) = maxy, s, , P (St # J, St = 5,85 = sh1, X{ = 2})
for semi-Markovian states and a; (t) = maxg, 5, P (S = j, S§ ' = sh!, X{ = 2})
for Markovian states. Note that a; (7 — 1) = &; (7 — 1) = max,,,. 5. , P (S:—1 =7,
S;7? = sy Xg ! = 336’1). The Viterbi recursion is the equivalent in terms of
dynamic programming of the forward recursion (summation in (5) (6) (7) replaced
by maximization in (16) (17) (18)). Therefore, the proposals made for an efficient
implementation of the forward recursion in the appendix directly transpose to the
Viterbi algorithm.

000000000002020011112111110. . ......... 11111111, ..
0000000000000002122121212........... 12243322. ..
Basal part: transient phases Stationary phase

1st variable: O: latent bud, 1: one-year-delayed short shoot, 2: one-year-delayed long shoot.

2nd variable: number of flowers.

Fig. 5. Growth unit of cultivar ‘Lambertin’ where the nature of the axillary
production and the number of associated flowers were recorded for each successive
node (drawing by Yves Caraglio).

If the objective is to retrieve the optimal state sequence, the recursion described
above should be complemented by a backtracking procedure. In the case of semi-
Markovian states, the backtracking procedure operates by jumps on the basis of
two backpointers, the first giving the optimal preceding state and the second the
optimal preceding time of transition from this preceding state, while, in the case of
Markovian states, the backtracking procedure operates step by step on the basis of
a single backpointer giving the optimal preceding state.
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6 Application to the analysis of branching and flowering patterns

The use of hybrid models is illustrated by the reanalysis of a sample of sequences
originally analyzed by a hidden semi-Markov chain (Guédon et al., 2001; Guédon,
2003). A sample of 48 growth units (portion of a leafy axis established between
two resting phases) of apricot tree (Prunus armeniaca, Rosaceae), cultivar ‘Lam-
bertin’, grafted on rootstock ‘Manicot’ was described node by node from the base
to the top. The type of axillary production - chosen among latent bud (0), one-year-
delayed short shoot (1), one-year-delayed long shoot (2) and immediate shoot (3)
- and the number of associated flowers (0, 1, 2, 3 flowers or more) were recorded
for each node (Fig. 5). The branching and the flowering variables correspond to
events that do not occur simultaneously in plant development and were thus mea-
sured at two different dates (beginning of the growth period for the flowering and
end of the growth period for the branching). These are nevertheless assumed to be
closely related since the flowers are always borne by the offspring shoots in positions
corresponding to prophylls (the two first foliar organs of an offspring shoot).

NB(1, 2.09, 0.6) NB(1, 033, 0.25)
04 08
N )
02 \ 0.4
\
N A
0 H— [
0 5 10 0 10 20
_________ 0.2 e o
! | =TT T T Tl [ . |
1 non-flowered ¥~ ~4& immediate :
: unbranched 1y 4' shoot 1
WY e TTATNC '
‘1
I} 0.14 ey
[ s 1 [
! S0 rea2 1os9
4 i
NB(2, 23.1, 0.84) NB(1,7.67, 0.31) ,' /’ ) NB(1, 2.06, 0.18)
02 0.06 I' /,’ K 0.08
™ 0.02 0.8 0.15 - 0.12 /
./ \ [ 1 Jd ' IR
i 1 0.04
!I !
1
........ 1 0
1
1
1

non-flowered
unbranched

0.34 0.13

Fig. 6. Estimated hidden hybrid Markov/semi-Markov chain.

The estimated hybrid model is represented in Fig. 6: only the transitions with prob-
abilities exceeding 0.03 are represented. The dotted edges correspond to the less
probable transitions (the convention is not the same for Markovian states and semi-
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Markovian states) while the dotted vertices correspond to the less probable states.
The underlying hybrid Markov/semi-Markov chain is composed of two transient
states followed by a five-state recurrent class mainly structured on the basis of the
flowering variable. An interpretation is associated with each state, summarizing the
combination of the estimated observation probabilities. The first transient state cor-
responds to the initial transient phases for both variables while the second transient
state corresponds to the end of the transient phase for the flowering variable; see
Guédon et al. (2001) and Guédon (2003). The two less probable states in the re-
current class are the direct expression of biological hypotheses and were a priori
defined in the specification stage by appropriate constraints on model parameters:
the ‘resting’ state (unbranched, non-flowered) corresponds to zones of slowdown in
the growth of the parent shoot. The immediate branching state corresponds to a rare
event in this context and immediate branching follows very different rules compared

to one-year-delayed branching and these two types of branching should not therefore
be mixed in a given state.

State 4 State 5

0.18 - 0.12

0.16 ] ol }T

0.14 13 TR
2 0.12 -F 3\0.08*%
E 0.1 . = .
3 0 ?:’ NB(1, 1, 0.141) £ 00615 NB(1, 1, 0.098)
e 0087 5 -o-NB(1, 0.848,0.124)| & ~8-NB(1, 0.924, 0.093)
&~ 0.06 - ~ 3

0.04 -

0.02 -

0 ;
0 10 20 30 40 0 10 20 30 40 50 60
Sojourn time Sojourn time

Fig. 7. Comparison of state occupancy distributions between the hidden hybrid
Markov /semi-Markov chain and the hidden semi-Markov chain.

In the originally estimated hidden semi-Markov chain, it could be seen that the state
occupancy distributions estimated for states 4 (‘1 flower’) and 5 (‘2 flowers’) were
very close to ‘1-shifted’ geometric distributions NB(1, 1, p): NB(1, 0.848, 0.124)
and NB(1, 0.924, 0.094) respectively, i.e. ‘1-shifted’ negative binomial distributions
(see the definition (2)) with parameter close to 1. Moreover, state 5 and state 4 (in
this order) were the two most represented states with a total weight of 55% on the
basis of the means of the counting distributions (number of occurrences of a given
state per sequence) related to the sequence length distribution. Hence, we chose to
estimate an hybrid model where states 4 and 5 were Markovian.

The convergence of the EM algorithm required 19 iterations for the hidden semi-
Markov chain and 20 iterations for the hybrid model. The convergence of the EM
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algorithm is monitored upon the increase over iterations of the log-likelihood of
the observed sequences which is directly obtained as a byproduct of the forward
recursion; see Section 4.1. The implicit geometric state occupancy distributions are
very close to the explicit state occupancy distributions estimated for the hidden
semi-Markov chain; see Fig. 7. A detailed comparison of the other parameters showed
that they are almost identical in the estimated hidden semi-Markov chain and in
the estimated hybrid model. Therefore, the log-likelihoods of the sequences for the
two models are also almost identical (2log L = —7745.7 for the hidden semi-Markov
chain and 2log L = —7745.1 for the hybrid model). As a consequence, the most
likely state sequences computed with the Viterbi algorithm for the two estimated
models are strikingly similar (3 differences for a cumulated sequence length of 2881).

(a) macro-state topology NB(1, 10, 0.53) (b) macro-state occupancy distribution
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Fig. 8. Example of a macro-state built from a Markovian state and
semi-Markovian states with the associated macro-state occupancy distribution.

A validation methodology relying on the fit of different types of characteristic distri-
butions computed from model parameters to their empirical equivalents extracted
from data is illustrated by diverse examples, including this apricot tree example, in
Guédon et al. (2001) and Guédon (2003). It should be noted that the algorithms
for computing characteristic distributions of hidden semi-Markov chains (Guédon,
1999) - for instance interval and counting distributions for the different possible out-
puts - can be modified for hybrid models in the same manner in which the forward
recursion is modified; see Section 4.1.
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7 Concluding remarks

Macro-states should not be considered as a valid alternative to semi-Markovian
states for the modeling of short or medium size homogeneous zones as shown in
Section 3. For long zones, Markovian states are mandatory because of algorithmic
complexity constraints. Nevertheless, the shape of the implicit geometric state occu-
pancy distribution may be too constraining and to remedy this shortcoming, macro-
states combining Markovian states with semi-Markovian states may be included in
hidden hybrid Markov/semi-Markov chains. A zone of highly variable length - for
instance corresponding to introns in DNA sequences; see Kulp et al. (1996) and
Burge and Karlin (1997) - can be modeled by a series-parallel network of Markov-
ian and semi-Markovian states with common observation distribution. This point
is illustrated by the example in Fig. 8 where the macro-state is composed of a ‘de-
generated’ semi-Markovian state with a fixed sojourn time (to model the minimum
sojourn time spent in the macro-state) followed by two elementary states in parallel,
a Markovian state for long zones and a semi-Markovian state for shorter zones.

Hence, Markovian states, semi-Markovian states and macro-states (for combining
Markovian states with semi-Markovian states) are the building blocks of flexible
state processes with precise guidelines and algorithmic solutions for their combina-
tion. The algorithms described in Sections 4.1 and 5 still apply in the case of macro-
states, the only minor modification being the management of tying constraints within
macro-states for the reestimation of the observation distributions. This point of view
is in accordance with the development of very flexible hidden Markov models which
can also incorporate various sub-models as output processes; see Burge (1997) and
Burge and Karlin (1997).

The principle of the computation of the normalizing factors (see Section 4.1) can
be directly transposed to the computation of the marginal state distributions as a
function of the index parameter. In the case of a semi-Markov chain, the computation
of the probabilities of being in a given state at time ¢ requires the prior computation
of the probabilities of leaving a given state at time ¢. Thus, the auxiliary quantities
a; (t) = P (Si+1 # j,S: = j) are computed for each successive time ¢ and each state
J by the following ‘forward’ recursion (Guédon, 1999),

a; (t) =P (Se1 # J,5 = J)
t
=D d;i (u) Y _pyoi (t —u) +d; (t+1)m;.
u=1 i2j

For computing the probability of being in state j at time ¢, Guédon (1999) proposed,
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u=1 i#]

In a way similar to the computation of the normalizing factors in the forward re-
cursion (see (9)), we propose here the following alternative solution in order to save
computation time

P(SOZJ) =Ty,

P(S=j)=P (S =J,S17j) = P(St # J, S-1 = J) + P (51 = j)

:Zpijai (t—=1)—a;(t—=1)+P(S-1=1j).
i#£]

This algorithm can be adapted to the case of hybrid models incorporating Markovian
states in the same manner in which the forward recursion of hidden semi-Markov
chains is adapted to hybrid models; see Section 4.1. The output distributions can
be directly deduced since

The fits of state or output probabilities as a function of the index parameter are
valuable validation tools as illustrated in Guédon et al. (2001) and Guédon (2003).

Computational methods for hidden hybrid Markov/semi-Markov chains are fully
implemented in the AMAPmod software (Godin et al. 1997, 1999) which is freely
available at http: //amap.cirad.fr.
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Appendix: Pseudo-code of the forward-backward algorithm

The following convention is adopted in the presentation of the pseudo-code of the
forward-backward algorithm: The operator ‘:=’ denotes the assignment of a value
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to a variable (or the initialization of a variable with a value) and the working vari-
ables Norm; (t), Forward; (¢), Observ, Stateln; (¢ + 1), Transition;;, Backward; (¢)
and Aux; (t + 1) are introduced for this implementation. Note that Forward; (t)
is used to compute Fj (t) for a semi-Markovian state and Fj (t) for a Markovian
state, Backward; () is used to compute L1; (¢) for a semi-Markovian state and L; (¢)
for a Markovian state while Aux; (¢ + 1) is used to compute G; (¢ + 1) for a semi-
Markovian state and G, (t 4 1) for a Markovian state. Transition,; corresponds to
pi; for a semi-Markovian state and to p;; for a Markovian state. This highlights the
natural mixing of the forward (respectively backward) recursion for semi-Markovian
and Markovian states. The other variables correspond to the quantities already in-
troduced in Section 4.1.

Forward recursion

fort:=0to7—1do
Nt::()
for j:=0to J—1do

if state j is semi-Markovian then

if t =0 then

Norm;(0) := b;(xo) 7;
else {t > 0}

Norm;(t) := bj(x;){Stateln;(t) — Forward;(t — 1) + Norm,(t — 1)}
end if

Ny := N; + Norm;(t)

else {state j is Markovian}
if t =0 then
Forward;(0) := b;(xo) 7;
else {t > 0}
Forward,;(t) := b;j(x;) Stateln;(t)
end if
N, := Ny + Forward;(t)
end if
end for

for j:=0to J—1do
if state j is semi-Markovian then
Norm;(t) := Norm;(t)/N,
else {state j is Markovian}
Forward;(t) := Forward;(t)/N,
end if
end for

for j:=0toJ—1do
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if state j is semi-Markovian then
Forward,(t) := 0
Observ :=1

if t <7 —1 then
for u :=1 to min(t+ 1, M;) do
Observ := Observ b, (z;—y+1)/Nt—ut1
if u<t+1 then
Forward;(t) := Forward,(t) + Observ d;(u) Stateln;(t —u + 1)
else {u =t+1}
Forward;(t) := Forward,(t) + Observd;(t + 1) 7,
end if
end for

else {t =7—-1}
for u := 1 to min(7, M;) do
Observ := Observ b;(x,;_y)/N:—,
if v < 7 then
Forward; (7 — 1) := Forward;(7 — 1) + Observ D;(u) Stateln,; (7 — u)
else {u =7}
Forward; (7 — 1) := Forward,;(7 — 1) 4+ Observ D;(7) 7;
end if
end for
end if
end if
end for

if t <7 —1 then
for j:=0toJ—1do
Stateln;(t +1):=0
fori:=0toJ—1do
Stateln;(t + 1) := Stateln,;(¢ + 1) 4+ Transition;; Forward, ()
end for
end for
end if
end for

For semi-Markovian states, the auxiliary quantities Norm; (¢) are introduced to com-
pute the normalizing factor N;. In a first step, the quantities P (S; = j, X; = x|
Xt = :chfl) are computed (using the variable Norm; (¢) for a semi-Markovian state
j or the variable Forward; (¢) for a Markovian state j). In a second step, the quan-
tities P (S: = j| X{ = «f) (which are the forward probabilities F} (¢) in the case of
Markovian states) are extracted as P (S; = j, X; = ;| X{ ™ = xg_l) /N:. In a third
step, the quantities Forward; (t) = P (Sp1 # J, St = J,| X{ = 2f)) are computed
for each semi-Markovian state. In a fourth step, the quantities Stateln; (¢ + 1) are
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extracted. For a semi-Markovian state j, Stateln; (t +1) = P (Si1 =J, St # J|
X{ = «b) while for a Markovian state j StateIn; (t +1) = P (Si1 = j| X = f)
(predicted probability in the vocabulary of state space models). The forward prob-
abilities F} (t) and the companion quantities Stateln; (¢ + 1) should be stored for
each time ¢ and each state j and the normalizing quantities N; should be stored
for each time t. The auxiliary quantities Norm; () need only be stored for each
semi-Markovian state j.

Backward recursion

for j:=0to J—1do
L;(t — 1) := Forward; (7 — 1)
if state j is Markovian then
Backward;(t — 1) :== L;j(t — 1)
end if
end for

fort:=7—2to0do
for j:=0toJ—1do

if state j is semi-Markovian then
Observ :=1
for w :=1 to min(r —1—¢,M;) do
Observ := Observ b, (z4+y)/Nitu
ifu<7—1—1then
Aux;(t + 1) := Aux;(t + 1) + Backward, (¢t + u) Observ d;(u)/
Forward; (t + u)
else {u=7-1-1t}
Aux;(t + 1) := Aux;(t + 1) + Observ D;(7 — 1 — t)
end if
end for

else {state j is Markovian}

Aux;(t+1) := Backward;(¢+1)/StateIn;(t+1) (see the remark below)
end if

end for

for j:=0toJ—1do
Backward;(t) := 0
for k:=0toJ—1do
Backward,(t) := Backward;(t) + Auxy (¢ + 1) Transition
end for
Backward,(t) := Backward;(t) Forward;(t)

28



if state j is semi-Markovian then
L;(t) := Backward,;(¢) + L;(t + 1) — Aux;(t + 1) StateIn;(t + 1)
else {state j is Markovian}
L;(t) := Backward;(t)
end if
end for
end for

For a Markovian state j, Ej (t + 1) Nyy1 /b; (2441) = P (Spy1 = j1XE = ab) = 5, pi; Fi (t);
see (7).

In a first step, the auxiliary quantities Aux; (¢ + 1) are computed. Then in the
second step, the quantities Backward; (¢) and L; (t) are extracted. The quantities
Backward; (¢) should be stored for each time ¢ and each state j while the smoothed
probabilities L; (t) and the auxiliary quantities Aux; (¢ + 1) need only be stored for
each state j.
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