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Abstract

A new technique is considered for parameter estimation in a linear measurement error modelAX ≈
B,A=A0 + Ã,B =B0 + B̃,A0X0 =B0 with row-wise independent and non-identically distributed
measurement errors̃A, B̃. Here,A0 andB0 are the true values of the measurementsA andB, andX0
is the true value of the parameterX. The total least-squares method yields an inconsistent estimate of
the parameter in this case. Modified total least-squares problem, called element-wise weighted total
least-squares, is formulated so that it provides a consistent estimator, i.e., the estimateX̂ converges
to the true valueX0 as the number of measurements increases. The new estimator is a solution of an
optimization problem with the parameter estimateX̂ and the correction�D = [�A �B], applied to
the measured dataD= [A B], as decision variables. An equivalent unconstrained problem is derived
by minimizing analytically over the correction�D, and an iterative algorithm for its solution, based
on the first order optimality condition, is proposed. The algorithm is locally convergent with linear
convergence rate. For large sample size the convergence rate tends to quadratic.
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1. Introduction

Mathematical models are often specified by a set of algebraic, differential, or difference
equations. The equations are obtained through a modeling process which is application
area dependent. In general, however, the model equations contain unspecified constants
that have to be determined from other measurable variables. This process of parameter
estimation tunes the model to the measurements (i.e., to the real-life phenomenon) and is
of primary interest in many scientific areas.

In this paper, we consider static linear models, i.e., models described by a linear algebraic
system of equationsAX = B. HereD := [A B] ∈ Rm×(n+l) contains the measured data
andX ∈ Rn×l is the parameter matrix, to be estimated. With less parameters than equations
and with noisy data the model equations will not be exactly satisfied, so an approximate
solution forX is sought.

The parameter estimation problem is typically defined as an optimization problem: an
appropriate cost function depending on the data is minimized over the estimated param-
eters. The classical approach, the least-squares (LS) estimation technique, minimizes the
Frobenius norm of the residualR = AX − B. The LS method can be viewed as applying
correction�B to the right-hand sideB in order to make the corrected systemAX=B+�B
solvable. The correction with the smallest Frobenius norm is sought. Indeed, the LS method
is the best linear unbiased estimator whenA is noise free andB is corrupted by independent
and identically distributed (i.i.d.) errors. We make the assumption that there is a true but
unknown valueD0=[A0 B0] of the measured data and a true valueX0 of the parameter that
satisfy the equationA0X0=B0. Moreover, we assume that the measured dataD is obtained
from the true value with an additive noisẽD = [Ã B̃], i.e.,D = D0 + D̃. Models of this
type are known in the literature (Fuller, 1987; Cheng and Van Ness, 1999) as measurement
error (also called errors-in-variables) models.

The total least-squares (TLS) technique (Golub and Van Loan, 1980; Van Huffel and
Vandewalle, 1991) is proposed as a parameter estimation technique for the static linear
measurement error model when all elements of the data matrixD are perturbed by i.i.d.
errors. In the TLS method, a correction�D = [�A �B] is applied on the matrixD, so
that the corrected system of equations(A+�A)X=B +�B becomes solvable. Again the
smallest correction, measured by the Frobenius norm, is sought.

The TLS method became popular in the 1980s because the properties of the estimator
are well understood, see the monographVan Huffel and Vandewalle (1991), and robust and
efficient methods exist for its solution, based on the singular value decomposition (SVD).
The TLS solutionX̂ is given analytically in terms of thel smallest right singular vectors of
the data matrixD. It provides a consistent estimator for the true parameter valueX0 under
mild additional assumptions. Consistency means that the estimateX̂ converges toX0 as the
numberm of the measurements increases.

In the 1990s, a number of extensions of the TLS method have been developed, in order
to extend consistency of the TLS estimator to more general noise conditions. Some of the
most important contributions are collected in the proceedings (Van Huffel, 1997;Van Huffel
and Lemmerling, 2002) of two TLS meetings held in Leuven.

We outline the work connected to the topic of the present paper. In a number of applica-
tions, the errors on the elements ofD are differently sized. This motivates an extension of
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the TLS method that relaxes the i.i.d. assumption for the errors. In the so-called general-
ized total least-squares (GTLS) estimator, the errorsD̃ are assumed row-wise independent
and correlated within the rows with identical covariance matrixV = V 
 >0. The GTLS
problem can be reduced to the TLS problem by post-multiplying the data matrix byV −1/2,
the inverse of the matrix square root ofV (In the actual computation,V 1/2 is replaced by
the computationally cheaper Cholesky factor ofV , i.e., the upper triangular matrixU , such
thatV = U
U .) This transformation approach, however, is not recommended when the
covariance matrixV is ill-conditioned because of the possible loss of accuracy in forming
the productDV −1/2. In Van Huffel and Vandewalle (1989), a special method is devel-
oped, based on the generalized SVD, that makes the scaling implicit and allows a reliable
computation of the GTLS estimator.

The GTLS method is still restrictive for some applications because of the assumption that
all rows ofD̃ have equal covariance matrix. A further generalization for the case when the
elements ofD̃ are independent, but not identically distributed with element-wise different
error variances is proposed inDe Moor (1993, Section 4.1). The problem inDe Moor (1993,
Section 4.1)is univariate (i.e.,l=1) and is called element-wise-weighted total least-squares
(EW-TLS). In Premoli and Rastello (2002), an algorithm for the computation of the EW-
TLS estimator is proposed. The convergence properties of this algorithm, however, are not
analyzed. InKukush and Van Huffel (2004), the EW-TLS problem is generalized to the
multivariate case (i.e.,l�1). In addition, the errors are assumed to be row-wise correlated
with known covariance matricesVi , i = 1, . . . , m. In the same paper, the multivariate EW-
TLS estimator is proven to be statistically consistent.

The formulation of the EW-TLS method is similar to that of the TLS method. Again a
correction�D that makes the system(A + �A)X = B + �B solvable is introduced, but
the cost function is a “weighted Frobenius norm” of the correction. Let�d


i be theith row

of �D, i.e.,�D
 := [�d1 · · · �dm]. The EW-TLS cost function is
∑m

i=1||V −1/2
i �di ||22.

WhenVi = I , for all i, the EW-TLS cost function reduces to the TLS cost function, and
whenVi = V , for all i, the EW-TLS cost function reduces to the GTLS cost function.

The EW-TLS estimator generalizes the TLS estimator and improves its statistical ac-
curacy under more general noise assumptions, but makes the problem computationally
more difficult. Indeed, while the TLS problem has a closed-form analytical solution and
can be computed reliably via the singular value decomposition, the EW-TLS problem has
no closed-form solution and its computation involves solving a non-convex optimization
problem. For its computation, we propose an iterative algorithm, based on the first-order
optimality condition. The convergence depends on the initial approximation. As initial ap-
proximation, we propose the GTLS estimator obtained withV := ∑m

i=1Vi/m. The GTLS
estimator is inconsistent in statistical sense, so an improvement is expected by applying the
iterative algorithm starting from this initial approximation.

The contribution of the present paper is a new, more general, formulation of the EW-TLS
estimation problem. We allow correlation among the errors within each row ofD̃ with
possibly singular covariance matrices. (A singularity of the covariance matrix implies error
free elements.) We simplify the resulting optimization problem by minimizing analytically
over part of the decision variables, those in the correction matrix�D. The equivalent
problem is an unconstrained optimization problem with less decision variables, namely
those in the estimatêX.
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Another contribution of the paper is the proposed iterative algorithm for the solution of
the equivalent optimization problem. It is a generalization of the algorithm ofPremoli and
Rastello (2002)for the present more general EW-TLS problem. We prove local convergence
with linear convergence rate. For large sample size the convergence rate tends to quadratic.
Comparison with standard optimization methods for local optimization (Nelder–Mead sim-
plex method, BFGS quasi–Newton method, and Levenberg–Marquardt method) shows that
the proposed algorithm is computationally more efficient for all tested examples.

In order to further motivate the applicability of the presented problem, we show three
examples in which the TLS and the GTLS methods are not adequate and a more general
problem formulation is called for.

Example 1 (Relative errorTLS). The correction matrix�D is an estimate of−D̃. The TLS
cost function||�D||2F =∑m

i=1
∑n

j=1 �d2
ij , is a measure of the estimated absolute error�D.

The relative error TLS problem is defined as: find the minimum correction relative to the
given data that makes the system solvable, i.e.,

min
X,�D

m∑
i=1

n∑
j=1

(
�dij
dij

)2

s.t. (D + �D)

[
X

−I

]
= 0. (1)

This problem is an EW-TLS problem withV 1/2
d̃i

:= diag(di1, . . . , di(n+l)). It is a TLS

problem only whenV
d̃i

= �2I , for all i and for certain�2, and it is a GTLS problem only
whenV

d̃i
= V , for all i and for certainV .

Example 2 (Numerical solution of Fredholm integral equations of the first kind). A Fred-
holm integral equation of the first kind is

∫ tb

ta

k0(s, t)u0(t)dt = g0(s) for s ∈ [sa, sb]. (2)

The functiong0 and the kernelk0 are given and the functionu0 is unknown. Integral
equations of the form (2) appear in many scientific and engineering areas, e.g. electrostatics,
remote sensing, mathematical biology, and image restoration. An analytic solution is rarely
possible, so a numerical approach is typically needed.

In real-life applications, the true datag0 andk0 are not exactly known. The functiong0
is measured with additive noisẽg, so given is the noisy counterpartg = g0 + g̃. The kernel
function k0 is also uncertain with uncertainty modeled byk = k0 + k̃. In this case, the
problem of solving (2) becomes an estimation problem.

Suppose thatm measurements are taken for values ofs, {s1, . . . , sm} ⊂ [sa, sb], and
define�i (t) := k(si, t), �̃i (t) := k̃(si , t) for i = 1, . . . , m, where in general the covariance
structure of�̃i (t) depends oni. Suppose also that the solutionu is sought in the form of a
linear combination of known basis functions{fj }nj=1, i.e.,u(t)=∑n

j=1 xjfj (t). Then the
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estimation problem becomes the problem of solving a linear system of equations

∫ tb
ta

�1(t)f1(t)dt · · · ∫ tb
ta

�1(t)fn(t)dt
...

...∫ tb
ta

�m(t)f1(t)dt · · · ∫ tb
ta

�m(t)fn(t)dt




x1

...

xn


 ≈


 g(s1)

...

g(sm)


 (3)

with additive errors in both right-hand side and coefficient matrix. If the errors�̃i and
g̃(si) are independent for differenti, i.e., the errors are independent from measurement to
measurement, then solving (3) in the maximum-likelihood sense is an EW-TLS problem.
Clearly, the TLS and GTLS estimates are maximum-likelihood ones only in special cases.
They can be used, however, in the general case, to find suboptimal solutions.

Example 3 (Application inmineralogy). Another realistic example appears in mineralogy,
seeFisher (1989). Fisher applies the TLS technique for analysis of metamorphic assem-
blages. He uses diagonal scaling to take into account differently sized errors but, as quoted
below (Fisher, 1989, p. 74), he recognized that a more general method is needed.

Though simple to apply, this technique for weighting the composition matrix is not
ideal; only rarely will the matrix of estimated uncertainties have the structure of a
product of two diagonal matrices. Further research into techniques of weighting the
composition matrix seems desirable.

The paper is organized as follows. In Section 2, a notation for set indexing used throughout
the paper is introduced. In Section 3, the EW-TLS problem is defined. It is an optimization
problem with decision variables, the parameter estimate and the correction. In Section 4, we
eliminate the correction and derive an equivalent unconstrained optimization problem. The
latter is considered in Section 5. An iterative algorithm is proposed based on the first-order
optimality condition. The gradient of the cost function is derived in Appendix A. We state
and prove local convergence results. The proofs are given in Appendix B and C. In Section
6, we present simulation examples that illustrate the consistency of the EW-TLS estimator
and the relative error TLS problem of Example 1. Conclusions are given in Section 7.

2. Notation for set indexing

For a setS, a subset ofU, S̄ is the complement ofS relative toU. The universal set
U will be understood from the context.

Given a set of indicesI ⊆ {1, . . . , m} and a vectora ∈ Rm, a(I) (alternativelyaI)
denotes the vector derived fromaby deleting the elements with indices inĪ. Let i1, . . . , ik
be the ordered elements of the setI,

dim I = k, I = {i1, . . . , ik}, i1< i2< · · ·< ik.

Define the matrix of unit vectors

T (I) := [1i1 · · ·1ik ],
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where1i ∈ Rm denotes theith unit vector. We have,

aI = a(I) = T (I)
a.

Similarly, given a pair of setsI ⊆ {1, . . . , m} andJ ⊆ {1, . . . , n} and a matrixA ∈ Rm×n,
A(I,J) (alternativelyAIJ) denotes the matrix formed fromA by deleting the rows with
indices in the set̄I and the columns with indices in the setJ̄. Let I =: {i1, . . . , ik},
i1< i2< · · ·< ik, andJ =: {j1, . . . , jl}, j1<j2< · · ·<jl . Then

AIJ = A(I,J) = T (I)
AT (J).

A colon (:) is used instead of eitherI or J to denote, respectively, the set of row indices
{1, . . . , m} or the set of column indices{1, . . . , n}. For example,A(i, :) is theith row ofA
andA(:, j) is thej th column ofA.

The transposedith row of A, (A(i, :))
, is denoted byai , so that we haveA
 =
[a1 · · · am]. The following conventions and rule are used for interchanging set indexing
and transposition

(A(I,J))
 := A(I,J)
 = A(J,I)
 =: (A
)JI.

3. Problem formulation

Consider the linear measurement error model

AX ≈ B, A = A0 + Ã, B = B0 + B̃ with A ∈ Rm×n, B ∈ Rm×l . (4)

The matricesA andB are measurements of the true but unobservableA0 andB0, andX
is a parameter of interest.̃A andB̃ are measurement errors, respectively. We suppose that
there exists a matrixX0 ∈ Rn×l , the true value of the parameter, that satisfies (4) exactly,

A0X0 = B0.

The measurement errors̃A and B̃ are random matrices, such thatD̃ := [Ã B̃] has zero
mean and independent rowsd̃i with known row covariance matrices

V
d̃i

:= cov(d̃i) for i = 1, . . . , m.

An alternative formulation for the model (4), which we use later, is

DXext ≈ 0, D = D0 + D̃ with D ∈ Rm×(n+l), Xext ∈ R(n+l)×l . (5)

HereD := [A B] contains the measured data,D0 := [A0 B0] the true data, andXext :=
[ X
−I

] is the extended parameter matrix. The true valueX0,ext := [X0−I
] of the extended

parameter satisfies (5) exactly,

D0X0,ext = 0.

Given the available measured dataD and the error covariance information{V
d̃i

}mi=1,
corresponding to each row, we aim to estimate the true valueX0 of the parameter and the
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true dataD0. First, we define the EW-TLS problem assuming that all matricesV
d̃i

are
non-singular, which implies that all elements ofD are noisy:

min
X,�D

m∑
i=1

‖V − 1
2

d̃i
�di‖2

2 s.t. (D + �D)

[
X

−I

]
= 0. (6)

Here,�D is a correction on the measured data introduced to compensate for the measure-
ment errorD̃. The optimization variables areX and�D. Let (X̂,�D̂) be an optimal point
of the EW-TLS problem (6).̂X is an EW-TLS estimate of the true valueX0 of the parameter
andD + �D̂ is an EW-TLS estimate of the true dataD0.

The proposed estimation method is the maximum-likelihood estimator for the defined
model and under mild additional assumptions is statistically consistent, seeKukush and
Van Huffel (2004).

Remark 4 (Covariance known up to a constant). In the EW-TLS estimation setup, the
exact covariances{V

d̃i
}mi=1 are not needed; knowledge ofV

d̃i
up to a constant factor suffices.

Suppose that instead of the covariance matricesV
d̃i

, matrices{W
d̃i

}mi=1 are given such that
V
d̃i

= �0Wd̃i
for i = 1, . . . , m and for some unknown constant�0. ThenW

d̃i
can be used

in place ofV
d̃i

in what follows. The cost function of (6) is proportional to 1/�0 and the
minimum point is not affected.

Remark 5 (TLS as a special case of the EW-TLS). For the case where alldi , i=1, . . . , m,
are perturbed with errors̃di with unit covariance matrixW

d̃i
= In+l , i = 1, . . . , m, known

up to a factor of proportionality�0, the EW-TLS problem (6) reduces to the TLS problem,
i.e.,

min
X,�D

m∑
i=1

||�di ||22 = min
X,�D

||�D||2F s.t. (D + �D)

[
X

−I

]
= 0. (7)

Next, we consider a more general EW-TLS problem formulation where some of the
elements ofD are allowed to be noise free. In this case, some covariance matricesV

d̃i
are

singular. LetJi ⊆ {1, . . . , n+ l} be a set of column indices such thatD(i,Ji ) is measured
with noise andD(i, J̄i ), is noise free,

var(d̃ij )

{ �= 0 if j ∈ Ji

= 0 otherwise
for i = 1, . . . , m.

If J̄i is non-empty, thenV
d̃i
(J̄i , J̄i )=0 andV

d̃i
is singular. We defineVi as the covariance

matrix of the non-deterministic part of̃di ,

Vi := cov(d̃i(Ji )) = V
d̃i
(Ji ,Ji ).

For i = 1, . . . , m, Vi has full rank. The noise free measurements in theith rowD(i, J̄i )

do not need any correction, implying that�D(i, J̄i ) = 0. We introduce new variables
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ci ∈ RdimJi , for the nonzero sub-vector of the corresponding corrections�di ,

ci := �di(Ji ) = T (Ji )

�di for i = 1, . . . , m. (8)

The EW-TLS problem in the presence of a mixture of noise free and noisy measurements
is defined as

min
X

c1,...,cm

m∑
i=1

‖V − 1
2

i ci‖2
2 s.t. DXext +


 c


1 Xext(J1, :)
...

c

mXext(Jm, :)


= 0, Xext =

[
X

−I

]
.

(9)

Remark 6 (Noise-free rows). The presence of noise-free rows in the data matrixD can be
used in a pre-processing step in order to reduce the size of the estimation problem. Suppose
that k rows ofD are noise free. Ifk�n, the estimation problem becomes trivial, so we
suppose in addition thatk <n. Rearranging the rows ofD, so that the lastk rows are noise
free, we haveD=[D1

D2
], withD2 ∈ Rk×(n+l), noise free.Whileci=0 for i=m−k+1, . . . , m,

(9) can be written as

min
X

c1,...,cm−k

m−k∑
i=1

‖V − 1
2

i ci‖2
2

s.t. D2Xext = 0, D1Xext +

 c


1 Xext(J1, :)
...

c

m−kXext(Jm−k, :)


= 0, Xext =

[
X

−I

]
.

(10)

Let D2 := [A2 B2]. The constraintA2X = B2 is equivalent toX = NX̄ + Xp for some
X̄ ∈ R(n−k)×l , whereN is a matrix of which the columns form a basis for the null space
of A2 andXp is a particular solution ofA2X = B2. SubstitutingNX̄ + Xp for X in (10)
and considerinḡX as a new variable, we obtain an equivalent EW-TLS problem without
noise-free rows

min
X̄

c1,...,cm−k

m−k∑
i=1

‖V − 1
2

i ci‖2
2 s.t. D1Xext +


 c


1 Xext(J1, :)
...

c

m−kXext(Jm−k, :)


= 0,

Xext =
[
NX̄ + Xp

−I

]
.

The new problem is of smaller dimension, both in terms of number of constraints and
number of variables.
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4. Minimization with respect to the correction

The first stage in solving the EW-TLS problem is to minimize analytically the cost
function with respect to the correction{ci}mi=1, i.e., we find a functionf0 : Rn×l → R,

f0(X) := min
c1,...,cm

m∑
i=1

‖V − 1
2

i ci‖2
2

s.t. DXext +

 c


1 Xext(J1, :)
...

c

mXext(Jm, :)


= 0, Xext =

[
X

−I

] (11)

for all X ∈ Rn×l . As a result the EW-TLS problem (9) becomes the unconstrained opti-
mization problem

min
X

f0(X). (12)

For a fixedX ∈ Rn×l ,Xext is a fixed given matrix and the constraint of (11) is a linear equa-
tion in the optimization variables{ci}mi=1. It can be represented as a set of linear equations
in {ci}mi=1.

DXext +

 c


1 Xext(J1, :)
...

c

mXext(Jm, :)


= 0 ⇔ c


i Xext(Ji , :) = −(DXext)i,:, i = 1, . . . , m

⇔ Xext(:,Ji )

ci = −((DXext)i,:)
.

Define

Gi(X) := Xext(:,Ji )

 = X


extT (Ji )

and the residual matrix

R(X) := DXext = AX − B.

Denote byr

i (X) theith row ofR(X), i.e.,

R
(X) = [r1(X) · · · rm(X)] .
With this notation, the constraint of (11) is equivalent to

Gi(X)ci = −ri(X), i = 1, . . . , m,

which shows that the optimization problem (11) is separable inci . As a consequence, we
have to solvem-independent optimization problems

fi(X) = min
ci

||V − 1
2

i ci ||22 s.t. Gi(X)ci = −ri(X), i = 1, . . . , m.

The solution of (11) is given byf0(X) =∑m
i=1fi(X). The common problem

min
c

||V − 1
2 c||22 s.t. G(X)c = −r(X) (13)
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is a least-norm problem, so that its solution is

copt(X) = −VG
(X)(G(X)VG
(X))−1r(X)

and the optimal value is

c

opt(X)V

−1copt(X) = r
(X)(G(X)VG
(X))−1r(X).

Then the solution of (11) becomes

f0(X) =
m∑
i=1

r

i (X)(Gi(X)ViG



i (X))

−1ri(X)

(this function is well known, see, e.g.,Sprent, 1966) and the optimal correction is

ci,opt = −ViG


i (X)(Gi(X)ViG



i (X))

−1ri(X), i = 1, . . . , m.

While d̃i (J̄i ) is deterministic,T (J̄i )

V

d̃i
T (J̄i ) = 0 and

T (Ji )ViT (Ji )

 = V

d̃i
.

Using this fact and (8) the solution can be written as

f0(X) =
m∑
i=1

r

i (X)(X



extVd̃i

Xext)
−1ri(X) (14)

and

�Dopt = −


r

1 (X)(X



extVd̃1

Xext)
−1X


extVd̃1
...

r

m(X)(X



extVd̃m

Xext)
−1X


extVd̃m


 . (15)

Remark 7. The weighting matrices in (14) are the covariance matrices of the residuals,
i.e.,

X

extVd̃i

Xext = var(ri(X)) for i = 1, . . . , m.

Remark 8. The setsJi , i=1, . . . , m do not participate in the solution (14). The optimiza-
tion problem (12) automatically “recognizes” the noise-free elements inD on the basis of
the covariance information{V

d̃i
}mi=1. The solution of the purely noisy formulation (6), is

given again by (14), which shows that the reformulation to the more general error-free case
(9) is only needed to avoid the problem of inversion of singular matrices in the derivation.

Remark 9 (Correction elimination in the TLS case). Restricting the solution (14), to the
TLS case,W

d̃i
= I for all i, we have that (7) is equivalent to

min
X

fTLS(X), (16)
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where

fTLS(X) :=
m∑
i=1

r

i (X)(X



extXext)

−1ri(X)

= trace(R(X)(X

extXext)

−1R
(X))

and the optimal correction is

�DTLS = −

 r


1 (X)(X


extXext)

−1X

ext

...

r

m(X)(X



extXext)

−1X

ext


= −R(X)(X


extXext)
−1X


ext.

Remark 10 (Non-convexity of the EW-TLS problem). The EW-TLS cost functionf0 is
non-convex. A simple counter example is the functionf0(x) = (x − 1)2/(1 + x2), which
is a special case of (14). Due to the non-convexity of the problem, we consider iterative
methods for local optimization.

5. Iterative algorithm

In the rest of the paper we consider the resulting optimization problem (12). For the
special case of the TLS problem, (12) becomes (16) and can be solved analytically in terms
of the SVD of the data matrix[A B]. In the more general case, however, there is no analytic
solution and we rely on a numerical solution method. In Section 5.1, we derive an iterative
algorithm. It is based on an approximation of the first-order optimality condition of (12).
In Section 5.2, we outline the algorithm and derive a special version for the case when all
errors are uncorrelated. In Section 5.3, we state the local convergence results.

5.1. Derivation of the algorithm

The first-order optimality condition of (12) is

f ′
0(X) = 0. (17)

The derivative off0 with respect toX is (see Appendix A)

f ′
0(X) = 2

m∑
i=1

(
air



i (X)Q

−1
i (X) −

[
Vãi V

ãi b̃i

]

×
[
X

−I

]
Q−1

i (X)ri(X)r


i (X)Q

−1
i (X)

)
,
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where for convenience we set

Qi(X) := X

extVd̃i

Xext

and the covariance matrixV
d̃i

is partitioned as

V
d̃i

=
[

var(ãi) cov(ãi , b̃i )
cov(b̃i , ãi ) var(b̃i)

]
=:
[
Vãi V

ãi b̃i
V
b̃i ãi

V
b̃i

]
.

Eq. (17) is a necessary condition for a minimum of (12), i.e., a solution of (17) corresponds to
the desired global minimum of (12). Solving (17), however, is a difficult nonlinear problem.
The idea we use is to approach a solution of (17) by applying an iterative procedure. Let
X(k) be the approximation on thekth step. The approximationX(k+1) on the next step is
defined as the solution of the equation

F(X(k+1), X(k)) = 0. (18)

HereF is an approximation off ′
0(X

(k+1)), obtained by fixingX to X(k), in some places
whereX appears in (17). The choice where to fixX is motivated by the desire to obtain an
easier to solve equation. A choice that leads to a linear equation is

F(X(k+1), X(k))

:= 2
m∑
i=1

(
ai(X

(k+1)T ai − bi)

Q−1

i (X(k))

−(VãiX
(k+1) − V

ãi b̃i
)Q−1

i (X(k))ri(X
(k))r


i (X
(k))Q−1

i (X(k))
)
. (19)

The approximation (19) is proposed inPremoli and Rastello (2002), for the special case
l = 1 andV

d̃i
= diag(�i1, . . . ,�i(n+1)), for all i.

On thekth step of the iterative algorithm, we solve Eq. (18). The process is repeated until
||X(k+1) − X(k)||F /||X(k+1)||F < ε, i.e., until the norm of the relative difference between
the new estimate and the previous one is smaller than a given toleranceε.

The algorithm is a successive approximation type algorithm. It is heuristic because Eq.
(17) is only a necessary condition for optimality of (12), and the iterative procedure is not
guaranteed to converge globally to a solution of (17). We prove, however, local convergence
of the iterative procedure and compare its performance numerically with this of standard
optimization methods.

Remark 11. The proposed algorithm isnot a Gauss–Newton-type algorithm for solving
Eq. (17) because the proposed approximationF is not the first-order truncated Taylor series
of f ′

0; it is another linear approximation. Our choice makes the derivation of the algorithm
simpler but it turns out that the convergence analysis is more difficult than that for the
Gauss–Newton algorithm.
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5.2. Algorithm

We give an outline of the algorithm described in Section 5.1.

Algorithm 1 Computation of the EW-TLS estimator̂XEW-TLS.

Step1: Given the measurementsA∈Rm×n, B∈Rm×l ; the error covariance information
V
d̃i

∈ R(n+l)×(n+l), i = 1, . . . , m; and a convergence toleranceε.
Step2: Find an initial approximationX(0).
Step3: Initialize the iteration counterk := 0.
Step4: repeat

Step5: LetQi(X
(k)) := [ x(k)−I

]
Vi[X(k)

−I
], for i = 1, . . . , m.

Step6: LetR(X(k)) := AX(k) − B.
Step7: Solve the linear systemF(X(k+1), X(k)) = 0 forX(k+1).
Step8: Increment the iteration counterk := k + 1.
Step9: until ||X(k) − X(k−1)||/||X(k)||<ε

Step10: The computed EW-TLS estimator iŝXEW-TLS := X(k).

The computations on Steps 2 and 7 are specified next. The GTLS estimate with weighting
matrixV := ∑m

i=1Vi/m can be used for the initial approximationX(0). This involves the
generalized singular value decomposition ofD, seeVan Huffel and Vandewalle (1991).
Alternatively, the computationally cheaper weighted least-squares (WLS) estimate can be
used. The choice depends on the noise covariance information: if the size of the errors inB

is relatively larger than the size of the errors inA, then the WLS estimate outperforms the
GTLS estimate and should be used as initial approximation.

The computation in Step 7 is the kernel of the algorithm.We consider separately two cases:
univariate problems, i.e.,l= 1, and multivariate problems, i.e.,l >1. In the univariate case,
Qi(x

(k)), ri(x(k)), andbi are scalars and Step 7 is reduced as follows. Solve

m∑
i=1

(
ai(a



i x

(k+1) − bi)Q
−1
i (x(k))

−(Vãi x
(k+1) − V

ãi b̃i
)Q−1

i (x(k))ri(x
(k))ri(x

(k))Q−1
i (x(k))

)
= 0,

which is equivalent to a standard linear system of equationsG(x(k))x(k+1) = h(x(k)),

m∑
i=1

(
aia



i

Qi(x(k))
− Vãi

r2
i (x

(k))

Q2
i (x

(k))

)
︸ ︷︷ ︸

G(x(k))

xk+1 =
m∑
i=1

(
aibi

Qi(x(k))
− V

ãi b̃i

r2
i (x

(k))

Q2
i (x

(k))

)
︸ ︷︷ ︸

h(x(k))

. (20)
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In the multivariate case, the equationF(X(k+1), X(k))= 0 is vectorized and then solved as
a standard linear system of equationsG(X(k))vec(X(k+1)) = h(X(k)).

If the elements ofD̃ are uncorrelated, i.e.,V
d̃i

= diag(�2
i1, . . . ,�

2
i(n+1)) for all i, a

more compact description of the error covariance information is the matrix� = [�ij ] ∈
Rm×(n+1) of the element-wise standard deviations. In this case, Step 5 simplifies toQi(x) :=∑n

j=1 �2
ij x

2
j + �2

i(n+1).

5.3. Local convergence

We list the assumptions used in the theorems.�max(V ) denotes the maximum eigenvalue
and�min(V ) denotes the minimum eigenvalue of the symmetric matrixV .

(i) The random vectors̃di , i = 1, . . . , m, are independent with zero mean and finite
second moments.

(ii) Ji =J, for i=1, . . . , m, i.e., if the data matrixD has noise-free elements, then they
appear only in noise-free columns.

(iii) There exists a number�>0, such that�min(Vi)��, for i = 1,2, . . . , m.
(iv) rank(X0(J, :)) = l.
(v) Let s := dimJ − (l + 1)/2. For a fixed real number�, ��2, �>s,

sup
(i�1, j∈J)

E|d̃ij |2� <∞.

(vi) �min(A


0 A0)/

√
m → ∞, asm → ∞.

(vii) �2
min(A



0 A0)/�max(A



0 A0) → ∞, asm → ∞.

(viii) For a fixed real number�, ��2, �>s, �>nl, sup(i�1, j∈J)E|d̃ij |2� <∞.

(ix) lim supm→∞�max(A


0 A0)/�min(A



0 A0)<∞.

Assumptions (vi) and (vii) are Gallo’s conditions for statistical consistency in the univariate
model, seeGallo (1982). Condition (vi) means that�min(A



0 A0) tends to infinity fast enough.

ThusA

0 A0 is away from singularity. In particularA0 is a full rank matrix, for large enough

m. Assumption (vii) can be interpreted as follows. Although�max(A


0 A0) tends to infinity

together with�min, it does not tend to infinity “too fast”. For example, both conditions hold
under the following stability condition

Am = A

0 A0/m → A∞ >0 asm → ∞,

or in a slightly more general setting, if

lim inf
m→∞ �min(Am)>0 and lim sup

m→∞
�max(Am)<∞.

The stability condition means thatAm either converges to a non-singular matrix or it stays
away from singularity and is bounded. For example,Am stabilizes when the rows ofA0 are
randomly chosen from a distribution with a non-singular covariance matrix. This example
could be regarded as typical for the applications considered in the paper.
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Since the original problem is defined for random data, the convergence statement is also in
probabilistic terms. Hereafter, Op(1) denotes a sequence of stochastically bounded random
variables.

Remark 12. In the next two statements, the EW-TLS estimateX̂EW-TLS is defined by
problem (6) with the additional constraint rank(X(J, :)) = l. We mention that the true
valueX0 satisfies this constraint due to condition (iv).

Theorem 13(Uniqueness of the estimator).

(1) Assume that(i) to (vii) hold, then

||X̂EW-TLS − X0||F = �m · Op(1)

with

�m := m1/4

�1/2
min(A



0 A0)

+ �1/2
max(A



0 A0)

�min(A


0 A0)

. (21)

(2) Assume that(i)–(iv), (vi), (viii), and(ix) hold. Then

(a) the problem(12)has a unique solution(and thereforeX̂EW-TLSexists and is unique)
with probability tending to one;

(b) there exists a neighborhoodU	(X0) such that the equationf ′
0(X)=0,X ∈ U	(X0)

has a unique solution, with probability tending to one, and this solution coincides
with the estimatorX̂EW-TLS.

Proof. See Appendix B. �

Remark 14. As the condition number ofA0 grows,�m also grows. This shows that for ill
conditioned problems a larger sample size is needed for accurate estimation.

Theorem 15(Local convergence of the computational algorithm). Assume that(i)–(iv),
(vi), (viii), and(ix) hold. Then for each confidence probability1 − �, there exists a neigh-
borhoodU	�

(X0) (	��	, 	 comes from Theorem13),a positive numberC� and an integer
m�, such that for allm�m�,

Pr{||�X(k)||F �C�(�m + ||�Xk−1||F ) ||�X(k−1)||F f or k = 1,2, . . .}�1 − �,

where the initial approximationX(0) = X(0)(m) ∈ U	�
(X0) with probability greater than

1 − �/2, and�X(k) := X(k) − X̂, and�m (tending to zero) is given in Theorem13. In
particular, if X(0) → X0, asm → ∞, in probability, then

lim
m→∞ Pr

{
lim
k→∞ ||�X(k)||F = 0

}
= 1.

Proof. See Appendix C. �
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Theorem 15 states that if the initial approximation is sufficiently close to the EW-TLS
estimatorXEW-TLS, i.e., to the global minimum point of the minimized cost functionf0, then
the algorithm almost surely converges toXEW-TLS. For a fixed sample size, the convergence
is linear. Note, however that for large sample size�m vanishes, so that the convergence is
almost quadratic.

6. Simulation examples

This section shows simulation examples with the EW-TLS estimator. In Section 6.1, we
illustrate the consistency of the EW-TLS estimator, and in Section 6.2, we compare the
results obtained by TLS, GTLS, and EW-TLS for Example 1 of the introduction.

6.1. Asymptotic behavior of the estimates

We set up a simulation example corresponding to the measurement error model (4) with
n = 2, l = 1, andm ranging from 75 to 750. The random matrix̃D := [Ã b̃] has normal,
independent elements with variances var(D̃ij )=�2

ij . The true data matrix[A0 b0] is random
with independent, uniformly distributed elements in the interval[0,1].

For a fixedm ∈ [75,750],N=500 noise realizations are generated and the corresponding
EW-TLS estimateŝx(m,N) are computed. The relative errors of estimatione(m,N) :=
||x̂(m,N) − x0||/||x0||, are averaged. Lete(m) := ∑N

i=1e(m, i)/N . The functione(m) is
plotted (seeFig. 1) for four noise scenarios defined below.

The matrix of the element-wise specified error standard deviations� := [�ij ] char-
acterizes the experiment. We select� in four different ways corresponding to four noise
scenarios. Leti1 : i2 be the set{i1, i1 +1, . . . , i2 −1, i2}, 1be a vector of ones[1 · · · 1]
,
andU(u, u) be a matrix of independent and uniformly distributed elements in the interval
[u, u]. (The dimensions of1 andU(u, u) are understood from the context.) The four noise
scenarios are:

(1) EW-TLS setup—�(:,1 : 2) = U(0.01,0.26), and�(:,3) = U(0.01,0.035).
(2) WLS setup—�(:,1 : 2) = 0 and�(:,3) = U(0.01,0.51).
(3) TLS setup—�ij = 0.1 for all i = 1, . . . , m andj = 1,2,3.
(4) GTLS setup—� = 1u
, whereu ∈ Rm×3 is u = U(0.02,0.52).

The computation of the EW-TLS estimator is performed with the proposed algorithm. As
initial approximation, in all cases, we use the GTLS estimate.

Convergence of the relative error of estimation to zero as the sample size is increased,
indicates consistency of the estimator. The simulation results confirm that the EW-TLS
estimator is consistent in the simulated noise setups. In the special cases of the WLS, TLS,
and GTLS noise setup, the EW-TLS estimator coincides with the corresponding estimator,
which is known to be a consistent for that noise setup. Thus the EW-TLS method is indeed
a generalization of the previously known methods.



I. Markovsky et al. / Computational Statistics & Data Analysis 50 (2006) 181–209 197

100 200 300 400 500 600 700
0

0.02

0.04

0.06

0.08

0.1

0.12

e
(m

)
e
(m

)

e
(m

)
e
(m

)

WLS

TLS

GTLS

EW - TLS

100 200 300 400 500 600 700
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

WLS and EW - TLS

GTLS and EW - TLS

TLS,GTLS and EW - TLS

GTLS

TLS

TLS

WLS

WLS

100 200 300 400 500 600 700
0

0.01

0.02

0.03

0.04

0.05

0.06

m

TLS setup

m

GTLS setup

m

WLS setup

m

TLS setup

100 200 300 400 500 600 700
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fig. 1. Relative error of estimation in four noise scenarios, averaged for 500 repetitions.

6.2. Relative error total least-squares

Consider Example 1 from the introduction. In this section, we show simulation results
that illustrate the applicability of the problem and compare the TLS, GTLS, and EW-TLS
approximations.

The data matrixD is constructed as follows:m=10,n=2, l=1,A=U(0,1), x=U(0,1)
(the notationU(0,1) is defined in Section 6.1),b(2 : m)=A(2 : m, :)x, andb1 = 10. Note
that the elements ofA are in the interval[0,1] and the elements ofb(2 : m) are in the
interval [0,2]. Therefore, the elements of the data matrixD, except forD1,3, are small
compared toD1,3 = 10. In this case, the TLS method tends to approximate well the large
elementD1,3 and ignore the others. This undesirable effect, is avoided by proper scaling,
e.g., proportional with the reciprocal of the size of the elements, which results in the relative
error criterion (1).

The weight matrixV has to be chosen in order to apply the GTLS method. We takeV

diagonal with theith diagonal element equal to the average of the elements in theith column
of the data matrixD. This results in the most reasonable approximation of the relative error
criterion (1) that we aim to minimize.
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For a particular simulation example, the matrices of the element-wise relative errors

�Drel :=
[

|dij − d̂ij |
dij

]

for the TLS, GTLS, and EW-TLS solutions are

�Drel,tls=




1.5618 0.0261 0.0001
0.5668 2.8818 0.1037
0.3876 0.5493 0.0350
2.5035 0.2807 0.0246
8.7380 0.3281 0.0294
0.1139 0.0768 0.0058
0.5722 3.1580 0.1081

12.6720 0.3352 0.0301
11.8342 0.3340 0.0300
0.2219 0.0910 0.0073



,

�Drel,gtls=




1.4357 0.1017 0.0038
0.0921 1.9847 0.7345
0.0446 0.2678 0.1753
0.7221 0.3431 0.3091
2.3755 0.3780 0.3481
0.0280 0.0800 0.0620
0.0935 2.1879 0.7701
3.4188 0.3832 0.3540
3.1966 0.3824 0.3531
0.1170 0.2035 0.1688



,

and

�Drel,ew-tls=




0.0002 0.0386 0.9580
0.0013 0.0009 0.0022
0.0011 0.0026 0.0037
0.0002 0.0070 0.0071
0.0001 0.0073 0.0073
0.0009 0.0048 0.0057
0.0016 0.0010 0.0026
0.0001 0.0074 0.0073
0.0001 0.0074 0.0073
0.0007 0.0058 0.0064



.

Note that�Drel,tls,13=0.0001 and�Drel,gtls,13=0.0038 are small but the other elements
in these matrices are much larger. This is a numerical demonstration of the above mentioned
undesirable effect in using the TLS and GTLS methods for approximation of data with
very small and very large elements. (Of course, the example is deliberately chosen to
show the effect. For nearly equal size of the elements inD, it is not pronounced.) The
corresponding “total” relative errors||�Drel||2F , i.e., the values of the cost function of (1),
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are||�Drel,tls||2F = 405,||�Drel,gtls||2F = 41, and||�Drel,ew-tls||2F = 0.92. The example
illustrates the advantage of introducing element-wise scaling in the approximation criterion,
in order to achieve adequate approximation.

7. Conclusion

We have formulated a new total least-squares problem that is appropriate for solving
overdetermined system of equations with row-wise independent and differently sized errors.
Moreover, correlation of the errors in the rows of the extended data matrix and noise-
free elements are allowed. The problem is defined as a constrained optimization problem
with the parameter estimate and the noise correction as decision variables. We derived an
equivalent unconstrained problem in the parameter estimates only. An iterative algorithm is
proposed for the latter problem that solves the first-order optimality condition by successive
approximations with a linear equation. The algorithm is proven to be locally convergent
with linear convergence rate.
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Appendix A. Derivation of f ′
0(X)

Denote byD the differential operator. It acts on a differentiable functionf0 : U → R,
whereU is an open set inRn×l and gives as a result another function, the differential off0,
D(f0) : U × Rn×l → R. D(f0) is linear in its second argument, i.e.,

D(f ) := df0(X,H) = trace(f ′
0(X)H


), (A.1)

wheref ′
0 : U → Rn×l is the derivative off0, and has the property

f0(X + H) = f0(X) + df0(X,H) + o(||H ||F ) (A.2)

for all X ∈ U and for allH ∈ Rn×l . (The notation o(||H ||F ) has the usual meaning:
g(H) = o(||H ||F ) if and only if lim||H ||F→0 g(H)/||H ||F = 0.)

Let

Qi(X) := X

extVd̃i

Xext,
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so that

f0(X) =
m∑
i=1

r

i (X)Q

−1
i (X)ri(X).

We find the derivativef ′
0(X) by first deriving the differentialD(f0) and then representing

it in the form (A.1) from whichf ′
0(X) is extracted. The differential off0 is

df0(X,H)

=
m∑
i=1

(
a

i HQ−1

i (X)ri(X) + r

i (X)Q

−1
i (X)H
ai + r


i (X)D(Q−1
i (X))ri(X)

)

=
m∑
i=1

(
2trace(air



i (X)Q

−1
i (X)H
) + trace

(
D(Q−1

i (X))ri(X)r


i (X)

))
.

Using the rule for differentiation of an inverse matrix-valued function, we have

D(Q−1
i (X)) ≡ −Q−1

i (X)D(Qi(X))Q
−1
i (X).

Using the defining property (A.2), we have

D(Qi(X)) ≡ D

(
[X − I ] V

d̃i

[
X

−I

])

= trace

(
[H
 0] Vd̃i

[
X

−I

]
+ [X − I ]V

d̃i

[
H

0

])

= 2trace

(
[H
 0] Vd̃i

[
X

−I

])
.

The covariance matrixV
d̃i

is partitioned as

V
d̃i

=
[

cov(ãi) cov(ãi , b̃i )
cov(b̃i , ãi ) cov(b̃i)

]
=:
[
Vãi V

ãi b̃i
V
b̃i ãi

V
b̃i

]
.

Then

D(Qi(X)) ≡ 2trace(H
(VãiX − V
ãi b̃i

)).

Substituting backwards, we have

df0(X,H) =
m∑
i=1

(
2trace(air



i (X)Q

−1
i (X)H
)

−2trace(Q−1
i (X)H
(VãiX − V

ãi b̃i
)Q−1

i (X)ri(X)r


i (X))

)
= trace

((
2

m∑
i=1

(
air



i (X)Q

−1
i (X)

−(VãiX − V
ãi b̃i

)Q−1
i (X)ri(X)r



i (X)Q

−1
i (X)
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H


)
.
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Thus

f ′
0(X) = 2

m∑
i=1

(
air



i (X)Q

−1
i (X) − (VãiX − V

ãi b̃i
)Q−1

i (X)ri(X)r


i (X)Q

−1
i (X)

)
.

Appendix B. Proof of Theorem 13

First,we prove part1of the theorem: FromKukush and Van Huffel (2004), see the proof
of Theorem 2, we have for�X̂ := X̂ − X0, and for each
>0, that

Pr{||�X̂||F > 
}�const

(
1 + 1


2�

)
�2�
m ,

where�m is given in (21). Therefore, for eachc >0, we have

Pr{||�X̂||F > c�m}�const

(
�2�
m + 1

c2�

)
.

By assumptions (vi) and (vii) we have�m → 0, asm → ∞, therefore

lim sup
m→∞

Pr

{
||�X̂||F

�m
>c

}
�const

1

c2�

and

lim
c→+∞ lim sup

m→∞
Pr

{
||�X̂||F

�m
>c

}
= 0.

This proves that||�X̂||F /�m = Op(1).
Next, we prove part2: Hereafter “w.p.t.o.” stands for “with probability tending toone”.

The derivativef ′
0(X) is a symmetric bilinear form onRn×d . We will show that in a cer-

tain neighborhoodU	(X0), w.p.t.o.,f ′
0(X)(H,H)�const||H ||2F , H ∈ Rn×d , with certain

positive constant “const”. This implies the uniqueness of the solution of (17), w.p.t.o. From
the weak consistency result, seeKukush and Van Huffel (2004), we have that a minimum
point of f0(X) belongs toU	(X0), w.p.t.o., and it is a root of (17). Therefore the solu-
tion of equation (17) is not only unique, but it exists and coincides withX̂, w.p.t.o. Since
Pr{X̂ /∈U	(X0)} → 0, asm → ∞, w.p.t.o.X̂ ∈ U	(X0), andX̂ is unique w.p.t.o.

Therefore to prove the statements it is enough to constructU	(X0) such that w.p.t.o., for
a certain positive constant “const”,

F ′(X)(H,H)�const||H ||2F , X ∈ U	(X0), H ∈ Rn×d . (B.1)
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After straightforward but tedious calculations, see (Kukush et al., 2002, Section 7.1) for the
complete derivation, we have,

trace(H
f ′
0H) =

m∑
i=1

trace
(
aia



i HQ−1

i H
 − VãiHQ−1
i SiQ

−1
i H


− 2ai(a


i X − b


i )Q
−1
i (H
Wi + W


i H)Q−1
i H


+2Q−1
i W


i HQ−1
i SiQ

−1
i W


i H + 2Q−1
i W


i HQ−1
i SiQ

−1
i H
Wi

)
,

where

Wi := VãiX − V
ãi b̃i

and S :=
(
d

i

[
X

−I

])
 (
d

i

[
X

−I

])
.

Now, we compute the expectation of trace(H
f ′
0H). For some positive constants “consti”

and for||�X||F �	1, �X := X − X0, see (Kukush et al., 2002, Section 7.2),

E trace(H
f ′
0H)�(const1�min − const2�max||�X||F

− const3�max||�X||2F )||H ||2F . (B.2)

Hereafter, for brevity we denote�min(A


0 A0) by �min and�max(A



0 A0) by �max. Due to

assumption (ix), (B.2) yields for||�X||F �	2 that

E trace(H
f ′
0H)�const4�min||H ||2F (B.3)

and the bound (B.1) is obtained.
Now, we analyzeH
f ′

0H − E(H
f ′
0H). We have for instance

aia


i − E(aia


i ) = ãia


0,i + a0,i ã



i + (ãi ã



i − Vãi ) =: P1

and the corresponding summand inH
f ′
0H − E(H
f ′

0H) is

S1(X) =
m∑
i=1

P1,iHQ−1
i H
.

To bound this sum we use a matrix version of Rosenthal inequality, see, e.g., Lemma 2 in
Kukush and Van Huffel (2004). As � in (viii) is greater than or equal to 2, we have

E||S1(X0)||�F �const||H ||2�F (��/2
max + m�/2)

and forX1, X2 ∈ � := {X : ||X − X0||F �	2 } we have

E||S1(X1) − S1(X2)||��const||H ||2�F (��/2
max + m�/2)||X1 − X2||�.

By condition (viii),�>nd, and we apply Lemma 1 fromKukush and Van Huffel (2004)to
the compact set�. We have for anyc >0,

Pr

{
sup

||X−X0||F �	2

||S1(X)||>c

}
�const

||H ||2�F (�1/2
max + m1/2)�

c�
.
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This implies that

sup
||X−X0||F �	2

||S1(X)|| = ||H ||2F (�1/2
max + m1/2)Op(1).

The same bounds can be obtained for the other summands ofH
f ′
0H − E(H
f ′

0H).
Therefore, see (B.3),

inf||X−X0||F �	2

trace(H
f ′′
0 (X)H)�(const4�min − (�1/2

max + m1/2)Op(1))||H ||2F

=
(

const4 − �1/2
max + m1/2

�min
Op(1)

)
||H ||2F .

By assumptions (vi) and (ix),(�1/2
max +m1/2)/�min → 0, asm → ∞, therefore (B.1) holds

in U	1
(X0), w.p.t.o. �

Appendix C. Proof of Theorem 15

Weanalyze the partial derivatives ofF given in(19),whenX varies in a certainU	(X0):
We have

trace

(
H


2
�F
�X

H1

)
=

m∑
i=1

trace(aia


i H1Q

−1
y,iH



2 − VãiH1Q

−1
y,iSy,iQ

−1
y,iH



2 ) (C.1)

with Sy,i := (Y
ai − bi)(a


i Y − b


i ). But (C.1) is a symmetric bilinear form onRn×d .
Therefore we can identify�F/�X with a self-adjoint operator onRn×d , it is uniquely
characterized by the corresponding quadratic form. Then

trace

(
H
 �F

�X
H

)
=

m∑
i=1

trace(aia


i HQ−1

y,iH

 − VãiHQ−1

y,iSy,iQ
−1
y,iH


)

and with�Y := Y − X0,

E trace

(
H
 �F

�X
H

)
=

m∑
i=1

trace(a0,ia


0,iHQ−1

y,iH



− VãiHQ−1
y,i�Y


a0,ia


0,i�YQ

−1
y,iH


).

As in Appendix B, we have for||�Y ||F �	 that

E trace

(
H
 ��

�X
H

)
�const5�min||H ||2F − const6||�Y ||2F �max||H ||2F ,

and under assumption (ix), for||�Y ||F �	3, we have

E trace

(
H
 ��

�X
H

)
�const7�min||H ||2F .
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Similarly to Appendix B, we have

sup
||Y−X0||�	3

∣∣∣∣
∣∣∣∣H
 �F

�X
H − H
E �F

�X
H

∣∣∣∣
∣∣∣∣
F

= ||H ||2F (�1/2
max + m1/2)Op(1).

Then

inf||Y−X0||�	3

trace

(
H
 �F

�X
H

)
��min

(
const7 − �1/2

max + m1/2

�min
Op(1)

)
||H ||2F .

Therefore the linear equation (19) has a unique solutionX=
(Y ), where||Y −X0||�	3,
w.p.t.o.

The functionF has the following structure:

F(X, Y ) = M(Y)X + Q(Y). (C.2)

Here,M(Y)= �F/�X is a linear operator inRn×d at a fixed pointY ∈ Rn×d , andQ(Y) ∈
Rn×d . Note that we have redefinedQ introduced before.

The solution of (19) is

X = −M(Y)−1Q(Y) = 
(Y ). (C.3)

HereM−1 is an inverse operator inRn×d . We study the behavior ofM, Q, its derivatives
and finally of
′(Y ) in a neighborhood ofX0.

Due to the analysis above for||�Y ||F �	3, we have

M(Y)X =
m∑
i=1

(a0,ia


0,iXQ

−1
u,i − �aiXQ

−1
u,i�Y


a0,ia


0,i�YQ

−1
u,i ) + R1(Y )X (C.4)

with ||R1(Y )|| = (�1/2
max + m1/2)Op(1).

LetWy,i := Vãi Y − V
ãi b̃i

. We have, see (Kukush et al., 2002, Section 8.2), that

E
�(M(Y )X)

�Y
H = −

m∑
i=1

a0,ia


0,iXQ

−1
u,i (H


Wu,i + W

u,iH)Q−1

u,i

+ R2(Y )(X,H) + R3(Y )(X,H)

with

||R3(Y )(X,H)|| = (�1/2
max + m1/2)||X||||H ||Op(1)

and

||R2(Y )(X,H)||��max||X||||H ||||�Y ||const.

Also, see (Kukush et al., 2002, Section 8.3),

Q(Y) = −
m∑
i=1

a0,ia


0,iX0Q

−1
u,i + R4(Y )
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and inU	3
(X0)

||R4(Y )||�(�1/2
max + m1/2)Op(1) + �max||�Y ||2F const.

Finally,

E
(

�Q(Y)

�Y

)
H =

m∑
i=1

a0,ia


0,iX0Q

−1
u (H
Wu + W


u H)Q−1
u + R5(Y )H

with

||R5(Y )||��max||�Y ||const.

Then

�Q(Y)

�Y
H =

m∑
i=1

a0,ia


0,iX0Q

−1
u,i (H


Wu,i + W

u,iH)Q−1

u,i + R5(Y )H + R6(Y )H

(C.5)

with

||R6(Y )|| = (�1/2
max + m1/2)Op(1).

Next, we analyze the derivative of
, given in (C.3). We have forH ∈ Rn×d

�


�Y
H = −M−1 �Q

�Y
H + M−1 �(MZ)

�Y

∣∣∣∣
Z=M−1Q

H.

Now, we use (C.4) and (C.5) to obtain

�


�Y
H = M−1

(
−�Q

�Y
H + �(MZ)

�Y

∣∣∣∣
Z=M−1Q

H

)
.

Denote

TXY :=
m∑
i=1

a0,ia


0,iXQ

−1
u,i , SXYH :=

m∑
i=1

a0,ia


0,iXQ

−1
u (H
Wy + W


y H)Q−1
y .

Then

Q(Y) = −TX0Y + R4,
�Q
�Y

= SX0Y + R′
5, (C.6)

M(Y)X = TXY + R′
1,

�(M(Y )Z)

�Y
= −SZY + R′

2. (C.7)

Here forY ∈ U	3
(X0),

||R4(Y )|| = (�1/2
max + m1/2)Op(1) + �max||�Y ||2FO(1),
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||R′
5(Y )|| = (�1/2

max + m1/2)Op(1) + �max||�Y ||FO(1),

||R′
1(Y,X)||� ||X||

(
(�1/2

max + m1/2)Op(1) + �max||�Y ||2FO(1)
)
,

||R′
2(Y, Z)||� ||Z||

(
(�1/2

max + m1/2)Op(1) + �max||�Y ||FO(1)
)
.

We explain why||�
/�YH || is small enough: If we neglect the residuals, then

�


�Y
H ≈ M−1(−SX0YH − SZYH),

hereZ is found fromM(Y)Z ≈ Q(Y), or TZY ≈ −TX0, Z ≈ −X0. Then

�


�Y
H ≈ M−1(−SX0YH − S(−X0,Y )H) = 0.

Now,we give a bound for||�
/�Y ||: The operatorM(Y)=�F/�X is a positive self-adjoint
operator inRd×d , w.p.t.o., and due to (19)

inf||Y−X0||�	3

�min(M(Y ))��min

(
const7 − �1/2

max + m1/2

�min
Op(1)

)
.

Therefore forY ∈ B(X0,	3) w.p.t.o.,

||M−1(Y )|| = 1

�min(M(Y ))
.

Then we have∣∣∣∣
∣∣∣∣�


�Y

∣∣∣∣
∣∣∣∣
F

� 1

�min(M(Y ))

∣∣∣∣∣
∣∣∣∣∣−�Q

�Y
+ �(MZ)

�Y

∣∣∣∣
Z=M−1Q

∣∣∣∣∣
∣∣∣∣∣ (C.8)

and due to the bounds for the residuals, we have∣∣∣∣
∣∣∣∣�


�Y

∣∣∣∣
∣∣∣∣ � �max||�Y ||FOp(1) + (�1/2

max + m1/2)Op(1)

�min
. (C.9)

The last inequality can be explained in more detail. Consider the norm on the right-hand
side of (C.8).

−�Q
�Y

+ �(MZ)

�Y

∣∣∣∣
Z=M−1Q

= − SX0Y + R′
5 − SZY + R′

2

= S−Z−X0,Y + R′
5 + R′

2. (C.10)

Now,

MZ = Q, TZY + R′
1(Z) = −TX0Y + R4(Y ),

T−Z−X0,Y + R′
1(−Z − X0) = −R4(Y ) − R′

1(X0),
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HereR′
1(X) is linear inX; it depends also onY, but we suppress that dependence.

M(Y)(−Z − X0) = −R4(Y ) − R′
1(X0), −Z − X0 = −M−1(R4(Y ) + R′

1(X0))

and then

|| − Z − X0||F � 1

�min
((�1/2

max + m1/2)Op(1) + �max||�Y ||2FO(1)).

Therefore

||S−Z−X0,Y ||� �max

�min

(
(�1/2

max + m1/2)Op(1) + �max||�Y ||2FO(1)
)
.

From the last inequality, (C.10) and (C.8), we obtain (C.9).
Due to assumption (ix), we have∣∣∣∣

∣∣∣∣�


�Y

∣∣∣∣
∣∣∣∣ �(||�Y ||F + �m)Op(1). (C.11)

Here, we used the equation(�1/2
max + m1/2)/�min = �mO(1).

Weobtain the rate of convergence: Let 1−� be a confidence probability. Then there exists
a positive realc� such that for Op(1) in (C.11),

sup
m�m0

Pr{Op(1)> c�}��.

Here,m0 is large enough but a fixed number. Then for everym�m0, with probability greater
than or equal to 1− �,∣∣∣∣

∣∣∣∣�


�Y

∣∣∣∣
∣∣∣∣ �(||�Y ||F + �m)c�.

Now, 	� is chosen from the condition

	��	3, 	�c�� 1
2 and 	�� 1

2c�
.

Then for allm�m�, with certainm�, we have�mc�� 1
4. Therefore eachY ∈ Ū	�

(X0),
m�m�,∣∣∣∣

∣∣∣∣�


�Y

∣∣∣∣
∣∣∣∣ � 3

4
. (C.12)

HereŪ	�
(X0) := {X : ||X − X0||F �	�}.

We want to ensure that
 is a mapping fromŪ	�
(X0) into itself. We may and do assume

that

X̂ ∈ Ū	�
(X0), m�m�.

Due to
(X̂) = X̂ and (C.12)

||
(Y ) − X̂||F � 3
4||Y − X̂||F .
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Thus

||
(Y ) − X0||F � 3
4||Y − X̂||F + ||X̂ − X0||F

� 3
4||Y − X0||F + 7

4||X̂ − X0||F
� 3

4	� + 7
4||X̂ − X0||F

and form�m̃�, Pr(||X̂−X0||F � 1
4	�)�1− �. With probability at least 1−2�, form�m̃�

we have

||
(Y ) − X0||F �
	�

4
.

Then with probability at least 1− 2�, 
 is a contraction on̄U	�
(X0). If X(0) ∈ U	�

, then

limk→∞ X(k) = X̂, with probability at least 1− 2�. Moreover,

||X(k) − X̂||F �c�(�m + ||X(k−1) − X0||F )||X(k−1) − X̂||F
�c�(�m + �mOp(1) + ||X(k−1) − X̂||F )||X(k−1) − X̂||F .

Here, Theorem 13 part 1 is used. Then Theorem 15 follows.
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