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Abstract

A new technique is considered for parameter estimation in a linear measurement erroAticeel
B,A=Aq+ A, B=Bg+ B, AgXo= Bo with row-wise independent and non-identically distributed
measurement errors, B. Here,Ag and By are the true values of the measuremehtndB, andXg
is the true value of the parametgr The total least-squares method yields an inconsistent estimate of
the parameter in this case. Modified total least-squares problem, called element-wise weighted total
least-squares, is formulated so that it provides a consistent estimator, i.e., the eXticoatesrges
to the true valueXg as the number of measurements increases. The new estimator is a solution of an
optimization problem with the parameter estimatend the correctiohD = [AA AB], applied to
the measured dafa =[A B], as decision variables. An equivalent unconstrained problem is derived
by minimizing analytically over the correctichD, and an iterative algorithm for its solution, based
on the first order optimality condition, is proposed. The algorithm is locally convergent with linear
convergence rate. For large sample size the convergence rate tends to quadratic.
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1. Introduction

Mathematical models are often specified by a set of algebraic, differential, or difference
equations. The equations are obtained through a modeling process which is application
area dependent. In general, however, the model equations contain unspecified constants
that have to be determined from other measurable variables. This process of parameter
estimation tunes the model to the measurements (i.e., to the real-life phenomenon) and is
of primary interest in many scientific areas.

In this paper, we consider static linear models, i.e., models described by a linear algebraic
system of equationd X = B. HereD := [A B] € R™*"*+D contains the measured data
andX e R"*/ is the parameter matrix, to be estimated. With less parameters than equations
and with noisy data the model equations will not be exactly satisfied, so an approximate
solution forX is sought.

The parameter estimation problem is typically defined as an optimization problem: an
appropriate cost function depending on the data is minimized over the estimated param-
eters. The classical approach, the least-squares (LS) estimation technique, minimizes the
Frobenius norm of the residu&l = AX — B. The LS method can be viewed as applying
correctionAB to the right-hand sid® in order to make the corrected systdrk = B+ AB
solvable. The correction with the smallest Frobenius norm is sought. Indeed, the LS method
is the best linear unbiased estimator wiieis noise free an@® is corrupted by independent
and identically distributed (i.i.d.) errors. We make the assumption that there is a true but
unknown valueDg=[Aq Bo] of the measured data and a true valigeof the parameter that
satisfy the equatiod o Xo= Bg. Moreover, we assume that the measured fetaobtained
from the true value with an additive noige= [A B], i.e., D = Do + D. Models of this
type are known in the literatur&gller, 1987; Cheng and Van Ness, 1989 measurement
error (also called errors-in-variables) models.

The total least-squares (TLS) technig@&o(ub and Van Loan, 1980; Van Huffel and
Vandewalle, 199)lis proposed as a parameter estimation technique for the static linear
measurement error model when all elements of the data matexe perturbed by i.i.d.
errors. In the TLS method, a correctideD = [AA AB] is applied on the matribD, so
that the corrected system of equatigds+ AA)X = B + AB becomes solvable. Again the
smallest correction, measured by the Frobenius norm, is sought.

The TLS method became popular in the 1980s because the properties of the estimator
are well understood, see the monogr&ph Huffel and Vandewalle (199,1and robust and
efficient methods exist for its solution, based on the singular value decomposition (SVD).
The TLS solutionX is given analytically in terms of thesmallest right singular vectors of
the data matrixD. It provides a consistent estimator for the true parameter Véuender
mild additional assumptions. Consistency means that the estﬁ‘rmaverges tXp as the
numberm of the measurements increases.

In the 1990s, a number of extensions of the TLS method have been developed, in order
to extend consistency of the TLS estimator to more general noise conditions. Some of the
most important contributions are collected in the proceedivigs Kuffel, 1997 Van Huffel
and Lemmerling, 20020f two TLS meetings held in Leuven.

We outline the work connected to the topic of the present paper. In a number of applica-
tions, the errors on the elements®fare differently sized. This motivates an extension of
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the TLS method that relaxes the i.i.d. assumption for the errors. In the so-called general-
ized total least-squares (GTLS) estimator, the erfoere assumed row-wise independent
and correlated within the rows with identical covariance matfix= V' > 0. The GTLS
problem can be reduced to the TLS problem by post-multiplying the data matkix b7,

the inverse of the matrix square root\6{In the actual computatiory/ /2 is replaced by

the computationally cheaper Cholesky facto#/gfi.e., the upper triangular matrix, such

thatV = U TU.) This transformation approach, however, is not recommended when the
covariance matri¥ is ill-conditioned because of the possible loss of accuracy in forming
the productDV Y2, In Van Huffel and Vandewalle (1989x special method is devel-
oped, based on the generalized SVD, that makes the scaling implicit and allows a reliable
computation of the GTLS estimator.

The GTLS method is still restrictive for some applications because of the assumption that
all rows of D have equal covariance matrix. A further generalization for the case when the
elements ofD are independent, but not identically distributed with element-wise different
error variances is proposedire Moor (1993, Section 4.1 he problem irbe Moor (1993,
Section 4.1)s univariate (i.e.[=1) and is called element-wise-weighted total least-squares
(EW-TLS). In Premoli and Rastello (20023n algorithm for the computation of the EW-
TLS estimator is proposed. The convergence properties of this algorithm, however, are not
analyzed. InKukush and Van Huffel (2004the EW-TLS problem is generalized to the
multivariate case (i.el,>1). In addition, the errors are assumed to be row-wise correlated
with known covariance matricég, i =1, ..., m. In the same paper, the multivariate EW-
TLS estimator is proven to be statistically consistent.

The formulation of the EW-TLS method is similar to that of the TLS method. Again a
correctionA D that makes the systet + AA)X = B + AB solvable is introduced, but
the cost function is a “weighted Frobenius norm” of the correctionﬂd-ﬁ be theith row
of AD,i.e.,AD" := [Ad1 --- Ad,]. The EW-TLS cost function iETZlHVi_l/ZAd,-H%.
WhenV; = I, for all i, the EW-TLS cost function reduces to the TLS cost function, and
whenV; =V, for all i, the EW-TLS cost function reduces to the GTLS cost function.

The EW-TLS estimator generalizes the TLS estimator and improves its statistical ac-
curacy under more general noise assumptions, but makes the problem computationally
more difficult. Indeed, while the TLS problem has a closed-form analytical solution and
can be computed reliably via the singular value decomposition, the EW-TLS problem has
no closed-form solution and its computation involves solving a non-convex optimization
problem. For its computation, we propose an iterative algorithm, based on the first-order
optimality condition. The convergence depends on the initial approximation. As initial ap-
proximation, we propose the GTLS estimator obtained with= ) "7 ; V;/m. The GTLS
estimator is inconsistent in statistical sense, so an improvement is expected by applying the
iterative algorithm starting from this initial approximation.

The contribution of the present paper is a new, more general, formulation of the EW-TLS
estimation problem. We allow correlation among the errors within each rol wfith
possibly singular covariance matrices. (A singularity of the covariance matrix implies error
free elements.) We simplify the resulting optimization problem by minimizing analytically
over part of the decision variables, those in the correction matfix The equivalent
problem is an unconstrained optimization problem with less decision variables, namely
those in the estimat¥.
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Another contribution of the paper is the proposed iterative algorithm for the solution of
the equivalent optimization problem. It is a generalization of the algorithRrefoli and
Rastello (2002for the present more general EW-TLS problem. We prove local convergence
with linear convergence rate. For large sample size the convergence rate tends to quadratic.
Comparison with standard optimization methods for local optimization (Nelder—Mead sim-
plex method, BFGS quasi—Newton method, and Levenberg—Marquardt method) shows that
the proposed algorithm is computationally more efficient for all tested examples.

In order to further motivate the applicability of the presented problem, we show three
examples in which the TLS and the GTLS methods are not adequate and a more general
problem formulation is called for.

Example 1 (Relative error TL$ The correction matriA D is an estimate of D. The TLS

cost function|AD| I% =>", Z’}zl Ad,.z., is a measure of the estimated absolute ekmr

The relative error TLS problem is deﬁned as: find the minimum correction relative to the
given data that makes the system solvable, i.e.,

. m n Adij 2 X 3
)TAI%ZZ<T;;) st. (D—l—AD)[_I]_O. 1)

i=1 j=1

This problem is an EW-TLS problem Witlvf;/2 = diagdi1, ..., dipn+n). Itis a TLS
problem only wheri/d~’_ = ¢21, for all i and for certairg?, and it is a GTLS problem only
whenVJi =V, foralli and for certainV.

Example 2 (Numerical solution of Fredholm integral equations of the first kindl Fred-
holm integral equation of the first kind is

1
/ ’ ko(s, Hug(t) dt = go(s) for s € [sq, sp]. (2)
1

a

The functiongo and the kerneko are given and the functiong is unknown. Integral
equations of the form (2) appear in many scientific and engineering areas, e.g. electrostatics,
remote sensing, mathematical biology, and image restoration. An analytic solution is rarely
possible, so a numerical approach is typically needed.

In real-life applications, the true data andkg are not exactly known. The functiqn
is measured with additive noige so given is the noisy counterpgrt go + &. The kernel
function ko is also uncertain with uncertainty modeled by= ko + k. In this case, the
problem of solving (2) becomes an estimation problem.

Suppose thain measurements are taken for valuess ofss, ..., s} C [sq, sp], and
defined; (t) := k(s;, 1), 0;(¢) := k(s;, t) fori =1, ..., m, where in general the covariance
structure ofd; (1) depends omni. Suppose also that the solutians sought in the form of a
linear combination of known basis functiofig;}’;_,. i.e.,u(r) = > i—1xjfj@®). Thenthe
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estimation problem becomes the problem of solving a linear system of equations
SR 010 fr@yde - [P 010) fu(0) At g g(s1)
) . N P : 3)

ft;bem(tifl(t)dt ft;bem(z}ﬁl(t)dt Xn g(sm)

with additive errors in both right-hand side and coefficient matrix. If the er@prand

2(s;) are independent for differenti.e., the errors are independent from measurement to
measurement, then solving (3) in the maximum-likelihood sense is an EW-TLS problem.
Clearly, the TLS and GTLS estimates are maximum-likelihood ones only in special cases.
They can be used, however, in the general case, to find suboptimal solutions.

Example 3 (Application in mineralogy. Another realistic example appears in mineralogy,
seeFisher (1989)Fisher applies the TLS technique for analysis of metamorphic assem-
blages. He uses diagonal scaling to take into account differently sized errors but, as quoted
below Fisher, 1989, p. 74 he recognized that a more general method is needed.

Though simple to apply, this technique for weighting the composition matrix is not

ideal; only rarely will the matrix of estimated uncertainties have the structure of a

product of two diagonal matrices. Further research into techniques of weighting the
composition matrix seems desirable.

The paperis organized as follows. In Section 2, a notation for setindexing used throughout
the paper is introduced. In Section 3, the EW-TLS problem is defined. It is an optimization
problem with decision variables, the parameter estimate and the correction. In Section 4, we
eliminate the correction and derive an equivalent unconstrained optimization problem. The
latter is considered in Section 5. An iterative algorithm is proposed based on the first-order
optimality condition. The gradient of the cost function is derived in Appendix A. We state
and prove local convergence results. The proofs are given in Appendix B and C. In Section
6, we present simulation examples that illustrate the consistency of the EW-TLS estimator
and the relative error TLS problem of Example 1. Conclusions are given in Section 7.

2. Notation for set indexing

For a set?, a subset ofZ, 7 is the complement of/ relative to%. The universal set
¢ will be understood from the context.

Given a set of indices C {1,...,m} and a vectou € R, a(.#) (alternativelya »)
denotes the vector derived framby deleting the elements with indices.ih Letiy, ..., ix
be the ordered elements of the g&t

dm =k, S={i1,...,ir}, i1<io<---<if.
Define the matrix of unit vectors

T(j) = [1i1 c 1ik]7
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wherel; € R™ denotes théth unit vector. We have,
ay=a(f)=T() a.

Similarly, given a pairofsety C {1,...,m}and ¢ C {1,...,n}and amatrixd € R"™*",
A(S, #) (alternativelyA 4 ) denotes the matrix formed fror by deleting the rows with
indices in the set/ and the columns with indices in the sgt Let.# =: {i1, ..., i},
i1<ipg<---<ir,and ¢ =:{j1,..., i}, i< j2<---<ji;. Then

Agy =AW, J) =T AT(P).

A colon () is used instead of eithef or # to denote, respectively, the set of row indices
{1, ..., m} or the set of column indiced, . . ., n}. For exampleA(, :) is theith row of A
andA(:, j) is the jth column ofA.

The transposedth row of A, (A(i,:))", is denoted bys;, so that we havedAT =
[a1 --- an]. The following conventions and rule are used for interchanging set indexing
and transposition

AL, N =AU, N =AF. N =(A)) 4.

3. Problem formulation

Consider the linear measurement error model
AX~B, A=Ao+A, B=Bo+B with AeR"™", BeR" (4)

The matricesA and B are measurements of the true but unobservapland By, and X
is a parameter of interesd. and B are measurement errors, respectively. We suppose that
there exists a matriXo € R"*/, the true value of the parameter, that satisfies (4) exactly,

AoXo = Bo.

The measurement errors apdl? are random matrices, such that:= [A B] has zero
mean and independent rowswith known row covariance matrices

V; = cov(d;) fori=1,....,m.
An alternative formulation for the model (4), which we use later, is
DXext~0, D=Dg+D with DeR™0*D x4 e RO (5)

Here D := [A B] contains the measured dafg := [Ag Bg] the true data, an® gyt :=
[_Xl] is the extended parameter matrix. The true va¥pgsy = [}_“;] of the extended
parameter satisfies (5) exactly,

DOXO,ext =0.

Given the available measured data and the error covariance informatiqnfjl_ A
corresponding to each row, we aim to estimate the true VEjuef the parameter and the
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true dataDyg. First, we define the EW-TLS problem assuming that all matri%gsare
non-singular, which implies that all elements@fare noisy:

m 1
. —3 A 12 X |
Xr’ngr}) E_l ||V[Z_ Ad;||5 st. (D+ AD) |:—I:| =0. (6)

Here,AD is a correction on the measured data introduced to compensate for the measure-
ment errorD. The optimization variables avé andAD. Let (X, AD) be an optimal point
of the EW-TLS problem (6)X is an EW-TLS estimate of the true valig of the parameter
andD + AD is an EW-TLS estimate of the true dalta.

The proposed estimation method is the maximume-likelihood estimator for the defined
model and under mild additional assumptions is statistically consistenKidaesh and
Van Huffel (2004)

Remark 4 (Covariance known up to a constantn the EW-TLS estimation setup, the
exact covariancel/; }i ; are not needed, knowledge%j up to a constant factor suffices.
Suppose that mstead of the covariance matrtC(;e,smatnces{W }i2 1 are given such that

Vi =70W; fori=1,...,m and for some unknown constam. ThenW; can be used
in place ode in what follows The cost function of (6) is proportlonal tgyy and the
minimum point is not affected.

Remark 5 (TLSasa special case of the EW-JL&or the case where all,i =1, ..., m,
are perturbed with errord with unit covariance matrixy - 5= =Ily,i=1,...,m known
up to a factor of proportionalityy, the EW-TLS problem (6) reduces to the TLS problem,
ie.,

m

. . X
min Ad;||5= min ||AD||% st. (D+AD =0. 7
MD;u 2= min IADI7 st (D + )[_,} (7)

Next, we consider a more general EW-TLS problem formulation where some of the
elements ofD are allowed to be noise free. In this case, some covariance mawgcaee
singular. Let#; € {1, ...,n-+1[} be asetof column indices such thiag, ¢;) is measured
with noise andD (i, %), is noise free,

#0 if je 7

20 otherwise T©Fi=1....m.

var(c?,»j) {
If 7, is non-empty, thew; (.#;, .#;)=0andV; is singular. We defin&; as the covariance
matrix of the non-deterministic part af,

Vi == cov(di (S) = Vi (Ji, Ji)-

Fori =1,...,m, V; has full rank. The noise free measurements initheow D(i, ji)
do not need any correction, implying thAD (i, .#;) = 0. We introduce new variables
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¢i € RI™ 7 for the nonzero sub-vector of the corresponding correctlahs
ci=Adi(F)=T(F) " Ad; fori=1,...,m. (8)

The EW-TLS problem in the presence of a mixture of noise free and noisy measurements
is defined as

N ClTXext(flv )

min Y1V 2l st DXeq+ : =0 Xeu=|
X i “cillz St DXext : B E A
ctomem i=1 cmXext(F im0

(9)

Remark 6 (Noise-free rows The presence of noise-free rows in the data md¥an be

used in a pre-processing step in order to reduce the size of the estimation problem. Suppose
thatk rows of D are noise free. Ik >n, the estimation problem becomes trivial, so we
suppose in addition that< n. Rearranging the rows db, so that the lagt rows are noise

free, we havé):[g;], with Dy € R¥*+D noise free. While; =0fori=m—k+1, ..., m,

(9) can be written as

) m—k
min Y |V,
X i=1

€l Cp—k

_1 2
zci ||2

cf Xext(J1,7) M
st. DoXext=0, DiXext+ : =0, Xext= |: :| .

: —1
c;,,r_kXext(fm—ks ) (10)

Let D> := [A2 B>]. The constrain,X = B, is equivalent toX = NX + Xp for some

X e R®=0x! 'whereN is a matrix of which the columns form a basis for the null space
of A; andXp is a particular solution ofi; X = Bo. SubstitutingV X + Xp for X in (10)

and considering{ as a new variable, we obtain an equivalent EW-TLS problem without
noise-free rows

CIXext(fL 2

m—k
1
min - > IV, 2cil st DiXea+ : =0,
X 4 :
CLoeCm—k l=]_' C;ln—,kXeXt(jmflw )
NX+ X
Xext= [ _7 p} -

The new problem is of smaller dimension, both in terms of number of constraints and
number of variables.
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4. Minimization with respect to the correction

The first stage in solving the EW-TLS problem is to minimize analytically the cost
function with respect to the correctign;}" ;, i.e., we find a functioryy : R - R,

m _1
o)== min 3|V, %l
CloeesCm i
cf Xext(1, ) Y (11)
St DXext+ . :0, Xextz I:—I]

C;Xext(fm, )

for all X € R"*!. As a result the EW-TLS problem (9) becomes the unconstrained opti-
mization problem

n}(in fo(X). (12)

ForafixedX € R"*!, Xy is a fixed given matrix and the constraint of (11) is a linear equa-
tion in the optimization variableg:;}" ;. It can be represented as a set of linear equations
in {C,'}lr-"=l.
cf Xext(f1,2)
DXext + : =0 & ¢ Xex(fi)=—(DXex)is i=1....m

C;Xext(fm» )
& XextG, £ ¢i = —(DXex)i.)

Define
Gi(X) = Xext(s J) | = XguT (J1)
and the residual matrix
R(X) := DXext= AX — B.
Denote byr," (X) theith row of R(X), i.e.,
RT(X) =[r1(X) - rm(X)].
With this notation, the constraint of (11) is equivalent to
Gi(X)ci=-ri(X), i=1...,m,

which shows that the optimization problem (11) is separablg.iAs a consequence, we
have to solven-independent optimization problems

_1
fiX)y=min |V, 2|3 st Gi(X)e;=—ri(X), i=1....m.
The solution of (11) is given byp(X) = Y7 ; f; (X). The common problem

min [[V=2¢)2 st G(X)e = —r(X) (13)
C
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is a least-norm problem, so that its solution is
copt(X) = =VG (X (GX)VGT (X)) (X)
and the optimal value is
CoptX)V " Leopt(X) = r T (X)GX)VGT (X)) (X).

Then the solution of (11) becomes

foX) =Y 1 (X)(Gi(X)ViG] (X)) ri(X)

i=1
(this function is well known, see, e.gprent, 196Band the optimal correction is
ciopt=—ViG] X)(Gi(X)ViG] (X)) 'ri(X), i=1...,m.
While d; (,#;) is deterministicT (.#;) " V; T(#;) =0 and

T(IDViT(ID)' =V,
Using this fact and (8) the solution can be written as

SoX) =) 11 (X)(XayVg Xexd) Hri(X) (14)
i=1
and
ri (X)(XgaV, 1Xexo*1xlxtv[zl
ADOpt=_ N . (15)
r (X)) (XdVy Xex)™ XV

Remark 7. The weighting matrices in (14) are the covariance matrices of the residuals,
ie.,

XeTxthi Xext=var(ri(X)) fori=1,....,m

Remark 8. The sets¢;,i =1, ..., m do not participate in the solution (14). The optimiza-
tion problem (12) automatically “recognizes” the noise-free elemenis am the basis of

the covariance informatiof; }' ;. The solution of the purely noisy formulation (6), is
given again by (14), which shows that the reformulation to the more general error-free case
(9) is only needed to avoid the problem of inversion of singular matrices in the derivation.

Remark 9 (Correction elimination in the TLS cageRestricting the solution (14), to the
TLS caseW; =1 for all i, we have that (7) is equivalent to

rr}(in fris(X), (16)
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where

fris(X) = > 1T (X) (X g Xex) i (X)
i=1
= trace R (X) (X gy Xex) *R' (X))

and the optimal correction is

L (X)) (X Xex) ™ X &y
ADtis=— § = —R(X) (X g Xex) Xy

o (XD (X X ex) Xyt

Remark 10 (Non-convexity of the EW-TLS problenThe EW-TLS cost functionfy is
non-convex. A simple counter example is the functj@ar) = (x — 1)2/(1 + x2), which

is a special case of (14). Due to the non-convexity of the problem, we consider iterative
methods for local optimization.

5. lterative algorithm

In the rest of the paper we consider the resulting optimization problem (12). For the
special case of the TLS problem, (12) becomes (16) and can be solved analytically in terms
of the SVD of the data matrixA B]. In the more general case, however, there is no analytic
solution and we rely on a numerical solution method. In Section 5.1, we derive an iterative
algorithm. It is based on an approximation of the first-order optimality condition of (12).

In Section 5.2, we outline the algorithm and derive a special version for the case when all
errors are uncorrelated. In Section 5.3, we state the local convergence results.

5.1. Derivation of the algorithm
The first-order optimality condition of (12) is
fo(X)=0. (17)
The derivative offy with respect taX is (see Appendix A)
foo=2)" (a,-r,T(X>Q;1<X) ~Va Vi)
i=1

x [ _X,} Q,-_l(X)ri(X)V,'T(X)Qi_l(X)> ,
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where for convenience we set
(X)) =XV X
Ql( ) ext’d; ext

and the covariance matrfo({;,l_ is partitioned as

Ve = |: var~(&,-) COV(&,‘: [;l)j| . [ Vfli Vaigi:|

| covb,a;)  varb) || V.o Vi 1

Eq. (17)is anecessary condition for a minimum of (12), i.e., a solution of (17) corresponds to
the desired global minimum of (12). Solving (17), however, is a difficult nonlinear problem.
The idea we use is to approach a solution of (17) by applying an iterative procedure. Let
X® pe the approximation on theh step. The approximatiok **1 on the next step is
defined as the solution of the equation

F(x®D x®y =g, (18)

Here F is an approximation offy(X *+D), obtained by fixingX to X, in some places
whereX appears in (17). The choice where to fxs motivated by the desire to obtain an
easier to solve equation. A choice that leads to a linear equation is

F(X(k+l), X(k))

—9 Z (ai(X(k-i-l)Tai . bi)TQi—l(X(k))
i=1
— (Vg XD — Vai,;l.)Ql-_l(X(k))ri(X“‘))rl-T(X“‘))Q,-_l(X("))> : (19)

The approximation (19) is proposed Rremoli and Rastello (2002for the special case
=1 anch;i =diag(o;1, . .., Gin+1)), for alli.

On thekth step of the iterative algorithm, we solve Eq. (18). The process is repeated until
[| XKD — x® )5 /|| X®*D || < ¢, i.e., until the norm of the relative difference between
the new estimate and the previous one is smaller than a given tolerance

The algorithm is a successive approximation type algorithm. It is heuristic because Eq.
(17) is only a necessary condition for optimality of (12), and the iterative procedure is not
guaranteed to converge globally to a solution of (17). We prove, however, local convergence
of the iterative procedure and compare its performance numerically with this of standard
optimization methods.

Remark 11. The proposed algorithm isot a Gauss—Newton-type algorithm for solving
Eq. (17) because the proposed approximatias not the first-order truncated Taylor series

of fg, itis another linear approximation. Our choice makes the derivation of the algorithm
simpler but it turns out that the convergence analysis is more difficult than that for the
Gauss—Newton algorithm.
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5.2. Algorithm

We give an outline of the algorithm described in Section 5.1.

Algorithm 1 Computation of the EW-TLS estimatdiew.TLs.

Stepl: Given the measuremems=R"*" BeR"*!: the error covariance information
V; € ROHDX0D i =1, m; and a convergence tolerance

Step2:  Find an initial approximatiox ©.

Step3: Initialize the iteration counter := 0.

Step4: repeat

Steps:  LetQ;(X®) =" 1TV (X 1 fori=1,....m.

Step6: LetR(X®) := AX(") B.

Step7:  Solve the linear systemfi(x *+D, x®)) = 0 for x %+,

Step8: Increment the iteration counter= k + 1.

Step9: until [|X® — X&)/ x® | <¢

Step10: The computed EW-TLS estimatorXew.tis :i= X®.

The computations on Steps 2 and 7 are specified next. The GTLS estimate with weighting
matrix V := )" ; V;/m can be used for the initial approximatiofi?. This involves the
generalized singular value decomposition/of seeVan Huffel and Vandewalle (1991)
Alternatively, the computationally cheaper weighted least-squares (WLS) estimate can be
used. The choice depends on the noise covariance information: if the size of the eBors in
is relatively larger than the size of the errorsdnthen the WLS estimate outperforms the
GTLS estimate and should be used as initial approximation.

The computationin Step 7 is the kernel of the algorithm. We consider separately two cases:
univariate problems, i.el. = 1, and multivariate problems, i.é > 1. In the univariate case,

Qi (x®), r;(x®), andb; are scalars and Step 7 is reduced as follows. Solve

i (@@ Y — )07t ®)

i=

~Vax P = v ) 07 O P (x99 1) ) =
which is equivalent to a standard linear system of equatibng® )x *+1 = p(x®)),

“ r2(x® m " 2/ (k)
(-x ) k+1 alb, _ } ri (_x )
,Z <Q (x®)) - Va 02 (x(k))) - ; (Qi—(x(k>) Vais; —Qiz(x(’ﬂ))' (20)

G(x®)) h(x®))
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In the multivariate case, the equatipriX **9, x®) = 0 is vectorized and then solved as
a standard linear system of equatianeX ©)veq X “+Dy = p(x®).

If the elements ofD are uncorrelated, i.e.VJi = diag(aizl, -'-7‘71'2(,1+1>) for all i, a
more compact description of the error covariance information is the matex(o;;]
R™*#+1D ofthe element-wise standard deviations. In this case, Step 5 simplifilegtp :=
Y1 OxT + 074y

5.3. Local convergence

We list the assumptions used in the theoreirsx(V) denotes the maximum eigenvalue
andAmin(V) denotes the minimum eigenvalue of the symmetric matrix

(i) The random vectord;, i = 1,...,m, are independent with zero mean and finite
second moments.
(i) #Zi=4¢,fori=1,..., m,i.e. ifthedata matribD has noise-free elements, then they

appear only in noise-free columns.
(iif) There exists a numbet > 0, such thallmin(V;) >k, fori =1,2, ..., m.
(iv) rank(Xo(#,:)) =1.
(v) Lets :=dim_¢ — (I + 1)/2. For a fixed real numbe¥, 6>2, > s,

sup E|&ij|25 < 0Q.
(iz1 jes)

(Vi) Zmin(Ag Ao)//m — 00, asm — oo.

(Vi) 7Zin(AJ A0)/2max(Ad Ag) — o0, asm — . e

(viii) For a fixed real numbed, §>2,6 > s, 6 > nl, SUR; > 1, je 5 Eldij % < oc.
(ix) 1im sup,,_, o Amax(Ag A0)/Amin(Ag Ao) < co.

Assumptions (vi) and (vii) are Gallo’s conditions for statistical consistency in the univariate
model, se&allo (1982) Condition (vi) meansthainnin(Ang) tendsto infinity fast enough.
ThusAng is away from singularity. In particuladg is a full rank matrix, for large enough

m. Assumption (vii) can be interpreted as follows. AIthouig,h)ix(Ang) tends to infinity
together withimin, it does not tend to infinity “too fast”. For example, both conditions hold
under the following stability condition

Apm=AJAg/m — Axe>0 asm — oo,
or in a slightly more general setting, if

Iim_)igof Amin(A) >0 and lim supmax(A,) < oo.

m— 00

The stability condition means that,, either converges to a non-singular matrix or it stays
away from singularity and is bounded. For examplg,stabilizes when the rows cfg are
randomly chosen from a distribution with a non-singular covariance matrix. This example
could be regarded as typical for the applications considered in the paper.
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Since the original problem is defined for random data, the convergence statementis alsoin
probabilistic terms. Hereafter,J0l) denotes a sequence of stochastically bounded random
variables.

Remark 12. In the next two statements, the EW-TLS estimaties.1.s is defined by
problem (6) with the additional constraint rat(_#, :)) = /. We mention that the true
value X satisfies this constraint due to condition (iv).

Theorem 13 (Uniqueness of the estimajor
(1) Assume thati) to (vii) hold, then

I XEw-TLS — XollF = i, - Op(1)

with
ity T4y Ao (21)
Ly, = .
" M2(AT A9 Amin(Ag Ao)

(2) Assume thafi)—(iv), (vi), (viii), and(ix) hold. Then

(a) the problen{12)has a unique solutiotand thereforeX pw.11_s exists and is unique
with probability tending to one

(b) there exists a neighborhodd, (Xo) such that the equatiof)(X)=0,X € U,(Xo)
has a unique solutigrwith probability tending to oneand this solution coincides
with the estimatoX pw.Ls.

Proof. See Appendix B. [J

Remark 14. As the condition number oo grows,u,, also grows. This shows that for ill
conditioned problems a larger sample size is needed for accurate estimation.

Theorem 15(Local convergence of the computational algorithrAssume thafi)—(iv),
(vi), (viii), and(ix) hold. Then for each confidence probability- y, there exists a neigh-
borhoodU,, (Xo) (p, < p, p comes from TheorefiB),a positive numbe€, and an integer
m., such that for alln > m.,

PrIIAX P11 <Cy(py + IAXS I NAXE V) E for k=1,2,..)21—7,

where the initial approximatiox © = X© (m) Uy, (Xo) with probability greater than
1—yp/2,andAX® = x® _ X andp, (tending to zerpis given in Theorem3. In
particular, if X©© — Xg, asm — oo, in probability, then

lim Pr{ lim ||AX(k)||F:O} =1
m— 00 k—o00

Proof. See Appendix C. I
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Theorem 15 states that if the initial approximation is sufficiently close to the EW-TLS
estimatotXgw-TLs, i-€., to the global minimum point of the minimized cost functjnthen
the algorithm almost surely convergestpw.Ts. For a fixed sample size, the convergence
is linear. Note, however that for large sample sizgvanishes, so that the convergence is
almost quadratic.

6. Simulation examples

This section shows simulation examples with the EW-TLS estimator. In Section 6.1, we
illustrate the consistency of the EW-TLS estimator, and in Section 6.2, we compare the
results obtained by TLS, GTLS, and EW-TLS for Example 1 of the introduction.

6.1. Asymptotic behavior of the estimates

We set up a simulation example corresponding to the measurement error model (4) with
n = 2,1 =1, andm ranging from 75 to 750. The random matiix:= [A b] has normal,
independent elements with variances(\é;g-) =‘7i2j- The true data matrixAg bo] is random
with independent, uniformly distributed elements in the intefOal].

Forafixedn € [75, 750], N =500 noise realizations are generated and the corresponding
EW-TLS estimates (m, N) are computed. The relative errors of estimatigm, N) :=
[|IX(m, N) — xol|/||xol|, are averaged. Letm) := Zf’zle(m, i)/N. The functione(m) is
plotted (sed-ig. 1) for four noise scenarios defined below.

The matrix of the element-wise specified error standard deviafibns: [g;;] char-
acterizes the experiment. We selécin four different ways corresponding to four noise
scenarios. Lety : i bethe sefit, i1 +1,...,i2—1,i»}, 1be avectorofoned --- 1]T,
andU (u, u) be a matrix of independent and uniformly distributed elements in the interval
[u, u]. (The dimensions of andU (u, u) are understood from the context.) The four noise
scenarios are:

(1) EW-TLS setup—=(:,1:2) =U(0.01,0.26), and2(:, 3) = U (0.01, 0.035).
(2) WLS setup—=(:,1: 2) =0andX(:;,3) = U(0.01, 0.52).

(3) TLS setup—s;; =0.1foralli=1,...,mandj=1,2,3.

(4) GTLS setup—= = 1u ", whereu € R"*3isu = U(0.02, 0.52).

The computation of the EW-TLS estimator is performed with the proposed algorithm. As
initial approximation, in all cases, we use the GTLS estimate.

Convergence of the relative error of estimation to zero as the sample size is increased,
indicates consistency of the estimator. The simulation results confirm that the EW-TLS
estimator is consistent in the simulated noise setups. In the special cases of the WLS, TLS,
and GTLS noise setup, the EW-TLS estimator coincides with the corresponding estimator,
which is known to be a consistent for that noise setup. Thus the EW-TLS method is indeed
a generalization of the previously known methods.
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Fig. 1. Relative error of estimation in four noise scenarios, averaged for 500 repetitions.

6.2. Relative error total least-squares

Consider Example 1 from the introduction. In this section, we show simulation results
that illustrate the applicability of the problem and compare the TLS, GTLS, and EW-TLS
approximations.

The data matribD is constructed as followsr=10,n=2,/=1,A=U(0,1),x=U(0, 1)

(the notationl/ (0, 1) is defined in Section 6.1p(2 : m) = A(2 : m, :)x, andb1 = 10. Note

that the elements of are in the interval0, 1] and the elements df(2 : m) are in the
interval [0, 2]. Therefore, the elements of the data maitfix except forDq 3, are small
compared taD; 3 = 10. In this case, the TLS method tends to approximate well the large
elementD; 3 and ignore the others. This undesirable effect, is avoided by proper scaling,
e.g., proportional with the reciprocal of the size of the elements, which results in the relative
error criterion (1).

The weight matrixV has to be chosen in order to apply the GTLS method. We Yake
diagonal with theth diagonal element equal to the average of the elementsiththelumn
of the data matripD. This results in the most reasonable approximation of the relative error
criterion (1) that we aim to minimize.
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For a particular simulation example, the matrices of the element-wise relative errors

for the TLS, GTLS, and EW-TLS solutions are

- 15618 00261 Q0001
0.5668 28818 01037
0.3876 05493 Q0350
25035 02807 00246

AD _| 87380 03281 00294
reltls 0.1139 Q0768 Q0058
0.5722 31580 01081
126720 03352 Q0301
118342 03340 00300

| 0.2219 00910 Q0073

r1.4357 01017 Q00387
0.0921 19847 Q7345
0.0446 02678 01753
0.7221 03431 03091
AD _ | 23755 03780 03481

rel.gtls= | 0.0280 00800 00620
0.0935 21879 07701
3.4188 03832 03540
3.1966 03824 03531
L 0.1170 02035 01688

and

-0.0002 00386 Q9580
0.0013 00009 Q0022
0.0011 00026 Q0037
0.0002 00070 Q0071
AD _ | 00001 00073 00073

rel,ew-tIs= | 0.0009 00048 00057
0.0016 00010 Q0026
0.0001 Q0074 Q0073
0.0001 00074 Q0073
| 0.0007 Q0058 Q0064

Note thatA Dyg tj5,13=0.0001 andA Dyg| gtls,13=0.0038 are small but the other elements

in these matrices are much larger. This is a numerical demonstration of the above mentioned
undesirable effect in using the TLS and GTLS methods for approximation of data with
very small and very large elements. (Of course, the example is deliberately chosen to

show the effect. For nearly equal size of the element®|jnt is not pronounced.) The
corresponding “total” relative errofADyg|| |12,, i.e., the values of the cost function of (1),
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are||ADyg| tisl|% = 405,||A Dy gtid |7 =41, and|ADye ew-tig|F = 0.92. The example
illustrates the advantage of introducing element-wise scaling in the approximation criterion,
in order to achieve adequate approximation.

7. Conclusion

We have formulated a new total least-squares problem that is appropriate for solving
overdetermined system of equations with row-wise independent and differently sized errors.
Moreover, correlation of the errors in the rows of the extended data matrix and noise-
free elements are allowed. The problem is defined as a constrained optimization problem
with the parameter estimate and the noise correction as decision variables. We derived an
equivalent unconstrained problem in the parameter estimates only. An iterative algorithm is
proposed for the latter problem that solves the first-order optimality condition by successive
approximations with a linear equation. The algorithm is proven to be locally convergent
with linear convergence rate.
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Appendix A. Derivation of fj(X)

Denote byZ the differential operator. It acts on a differentiable functjpn U — R,
whereU is an open set ifit"*! and gives as a result another function, the differentigloof
Y(fo) : U x R R. 9(fo) is linear in its second argument, i.e.,

2(f) :==d fo(X, H) =trac& fo(X)H ), (A1)
wheref;: U — R"*! is the derivative offp, and has the property
fo(X + H) = fo(X) +d fo(X, H) + o(||H||F) (A.2)

forall X € U and for all H € R"*'. (The notation ¢/|H||r) has the usual meaning:
g(H)=o(||H||r) if and only if lim ;5,0 g (H)/||H||F = 0.)
Let

Qi(X) := XaxVj, Xext
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so that

m

foX)=>_r ()07 (X0 (X).

i=1

We find the derivativefy(X) by first deriving the differentiafZ( fo) and then representing
it in the form (A.1) from whichfy(X) is extracted. The differential of is

d fo(X, H)

=" (a7 HOT X (X0 + 1] COQT O H a4+ 1T (X020 X)) (X))
i=1

- (2trace1a,~r,T(X)Q;1(X)HT) + trace(@(Qi_l(X))ri(X)rl-T(X))) .
i=1

Using the rule for differentiation of an inverse matrix-valued function, we have
Z(Q7H (X)) = =07 HX)Z(Qi (X)) 07 (X).
Using the defining property (A.2), we have

WQi(X) =T ([X —1nv, [_X,D

:trace([HT 01V, [_XI} +[X —11V; [I(_)ID

- 2trace<[HT 0]V, [—XID .

The covariance matriYJi is partitioned as

- _[ cov@) cowa, b _.[ Va Vs,
di | cov(b;,a;) cowb;) | Viia 3 ’

Then
Z(0Q:(X)) = 2tracéH " (V;, X — Vi)

Substituting backwards, we have

m

dfoX, H)= Y (Ztrace{airiT X)o7 x)HT)

i=1
—2tracé O; M (X)H ' (V. X — V, ;)07 H(X)ri (X)r?(xn)

=trace((2 i (al-r,T(X)Qi_l(X)

i=1

—(Va, X =V, 5007 (X)ri (X)r,T<X)Q,.1<X))> HT> :
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Thus

f600 =2 (a7 (007X = (Va X = V) 07 COR(OR (007100

i=1

Appendix B. Proof of Theorem 13

First, we prove partl of the theoremFromKukush and Van Huffel (2004}5ee the proof
of Theorem 2, we have fakX := X — X, and for eaclf > 0, that

A 1
Pr{||AX||F > C}gconst(l—i— g_> 12,
wherey,, is given in (21). Therefore, for eaeh> 0, we have

A 1
PrIAR I > cuy) <const<um + 3)

By assumptions (vi) and (vii) we haye, — 0, asm — oo, therefore

lim sup Pr

m—00

{HA)?HF

m

1
>c ¢ <const—
} = 20

and

>+ m—o0

AX
lim lim sup Pr{u >c} =0.
Hp

This proves thal| AX || /u,, = Op(1).

Next we prove parf: Hereafter “w.p.t.0.” stands fomith probability tending toone”.
The derivativefy(X) is a symmetric bilinear form ofit”*?. We will show that in a cer-
tain neighborhood/,, (Xo), w.p.t.o., fo(X)(H, H) >const|H||%, H e R"*? with certain
positive constant “const”. This implies the uniqueness of the solution of (17), w.p.t.0. From
the weak consistency result, déekush and Van Huffel (2004)we have that a minimum
point of fo(X) belongs tolU,(Xo), w.p.t.0., and it is a root of (17). Therefore the solu-
tion of equation (17) is not only unique, but it exists and coincides Withv. p.t.o. Since
Pr{X¢ Uy(Xo)} — 0, asm — oo, w.p.t.o. X e U,(Xo), andX is unigue w.p.t.o.

Therefore to prove the statements it is enough to constipicX o) such that w.p.t.o., for
a certain positive constant “const”,

F'(X)(H, H)>const|H||2, X € Uy(Xo), H e R"™. (B.1)



202 I. Markovsky et al. / Computational Statistics & Data Analysis 50 (2006) 181—-209

After straightforward but tedious calculations, sKaKush et al., 2002, Section 3.fbr the
complete derivation, we have,

m

tracaH ' f}H) = Ztrace(a,'aiT HQ'HT —V; HO; 'S0 HT
i=1
—2a;(a] X —bH)OTHHTW + W, H) Q7 THT

+207 W, HO 1S 07 W, H + 207w, HO LS, Q;lHTW,») ,

where

-
N (T X T| X
Wii=V;X—-V,; and §:= (dl- [_ID (d,- [_ID.

Now, we compute the expectation of trage’ foH). For some positive constants “cosist
and for||AX||F <p1, AX := X — X0, see Kukush et al., 2002, Section 7,2

Etracg H ' f{H) > (CONSiimin — CONSh/max/|AX || F
— constAmaxl |AX||5)[| H || (B.2)

Hereafter, for brevity we denotémin(AJ Ao) by Zmin and Amax(Aj Ao) by Zmax. Due to
assumption (ix), (B.2) yields fatAX||r < p, that

EtracaH ' f{H) > consk/min||[H||% (B.3)

and the bound (B.1) is obtained.
Now, we analyzei " f;H — E(H " f;H). We have for instance

T Ty_~ T “T 4 (7T .
aja; —E(a;a; ) =aiag; +aoid; + (aia; —Vz) =P

and the corresponding summandi fJH — E(H " f{H) is

m
S1X)=> PLHQ'H'.
i=1

To bound this sum we use a matrix version of Rosenthal inequality, see, e.g., Lemma 2 in
Kukush and Van Huffel (2004As ¢ in (viii) is greater than or equal to 2, we have

El1S1(Xo)lI% <const| H||Z (ipiZ+ m°/?)
and forXy, Xo € @ :={X : ||X — Xo||r <p,} we have
E|1S1(X1) — S1(X2)||° < const| H| |2 (A5 + m®/?)|| X1 — X2|1°.
By condition (viii), 6 > nd, and we apply Lemma 1 frotdukush and Van Huffel (2004p

the compact se®. We have for any > 0,

H 1120 ()2 + ml/2y9
Pr sup  |IS1(X)||>¢ <const|| 17 ¢ ma;x ) .
[IX—Xollr < p2 c
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This implies that

sup  IS1X)| = [|H||Z2(UH2 + mY?)Op(D).
[IX—Xollr < po

The same bounds can be obtained for the other summands' gfH — E(H ' f{H).
Therefore, see (B.3),

inf tracH " f§(X)H) > (Conshimin — (Apax+m?)Op(1)|| H||%
[1X—XollF < p2

Y2 4 2 ,
= [ const — a"—_op(l) [|H||%.

)vmln

By assumptions (vi) and (ix)2/2, + m%/2) / imin — 0, asm — oo, therefore (B.1) holds

in Uy, (Xo), w.p.to. [

Appendix C. Proof of Theorem 15

We analyze the partial derivatives Bfgiven in(19),whenX varies in a certairl/, (Xo):
We have

trace(H2 —Hl) Ztrace(a,a H1Q_1 ValHlQ_lSy,Q_lH ) (C.1)

with Sy; := (Y Ta; — b;)(a'Y — b). But (C.1) is a symmetric bilinear form oR"*“.
Therefore we can identify /X with a self-adjoint operator of®”*?, it is uniquely
characterized by the corresponding quadratic form. Then

trace(HT—H> Z tracea;a] HQ TH' — Vi HQ 7S, i Q THT)
and withAY =Y — Xo,
Etrace(HTa—FH> z:trace{ao,aolHQ_lHT
0X

— V&iHqu}AYTao,aolAYQ_lHT)

As in Appendix B, we have folfAY || < p that
oD
Etrace(HTa—XH) > constminl|H||% — cons||AY [|2 2maxl| H||%,
and under assumption (ix), fAY || 7 < p3, we have

0D
Etrace(HT&H) > consmin| | H||%.
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Similarly to Appendix B, we have

OF oF
HT—XH —H'E—H

2 ,11/2 1/2
X =||H||2(E2 + mY?)0p(2).

F

sup
[IY =Xoll<p3

Then

: OF IY2 4+ m/?
inf trace(HT7H> > Jmin [ const — rax M7 Op(D) | 11HI%.
[1Y —=Xoll < p3 0X Amin

Therefore the linear equation (19) has a unique soluXiea ¥ (Y), where||Y — Xol|| < p3,
w.p.t.o.
The functionF has the following structure:

F(X,Y)=MX)X + O(Y). (C.2)

Here,M(Y) = 0F /X is a linear operator ift"*¢ at a fixed poin® € R"*¢, andQ(Y) €
R Note that we have redefine@ introduced before.
The solution of (19) is

X=-MY)tow) =¥%Y). (C.3)

Here M1 is an inverse operator iR"*“. We study the behavior dfl, Q, its derivatives
and finally of %’(Y) in a neighborhood oX .
Due to the analysis above fAY || < p3, we have

m
MY)X = Z (a0iag; X Qy 7 — 24, X 0, TAY Tap ag,
i=1

AYQ, D)+ Ri(Y)X  (C.4)

1

with [|R1(Y)]] = (AH2 4+ mY/2)Op(D).
Let Wy, := Vg Y — V, ;. We have, seeKukush et al., 2002, Section §,2hat

O(M(Y)X) < _ _
E 6—yH == aoiaqXQ F(H Wy + W, H)0,

+ ;e;(Y)(X, H) + R3(Y)(X, H)
with
1R3(Y)(X, H)I| = Ciax+m™ )1 X[ H|Op(2)
and
|R2(Y) (X, H)|| < maxl| X ||| H||||AY ||const
Also, see Kukush et al., 2002, Section §,3

m
Q(Y) ==Y aoiag;XoQ, | + Ra(¥)
i=1
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and inUp,(Xo)

IRa(V)|| < UH2 4+ mY2)Op(1) + Zmaxl|AY |2 const
Finally,

E <0Q(Y)) H=Y" aoiag; XoQ; (H Wi + W, H)0;* + Re(Y)H
oY i=1 ’
with

[|Rs(Y)|| < Amaxl|AY||const
Then

0(Y)

m
—H = > a0iag XoQ, (H Wi+ W, H)Q, 1 + Rs(Y)H + Rs(Y)H
i=1

(C.5)
with
IRe(Y)|| = (ila + mY?)0p(2).

Next, we analyze the derivative &, given in (C.3). We have foH € R"*¢

aw H=-M"1 © H+M*t 0MZ) H.
6Y 6Y 6Y Z:M—lQ
Now, we use (C.4) and (C.5) to obtain
X o mt —O—QH+6(MZ) HJ.
5Y 5Y aY Z=M_1Q
Denote

m m
Txy := Z ao,,'ac-l]:iXQ,;:iL, SxyH = Z aO,iaE)r,iXQu_l(HTWy + WyTH)Q)_’l'
i=1 i=1

Then

0
O)=—Txqy + Ra, F Sxov + RE,

(C.6)
AM(Y)Z
M(Y)X = Txy + R}, % = —Szy + R} (C.7)
Here forY € U,,(Xo),

IRa(V)|| = M2 + mY?)Op(D) + 2maxl|AY|2.0(1),
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1RSI = G+ mY?)0p(1) + Amaxl|AY [[FO(D),

IR, 0N X1 (Gt mYD0p(D) + Zmarl|AY [FO(D)

1RS(Y, Z)INZI (Gl mYD0p(D) + Zmaxl AY 11 FOD))

We explain why|0W /dY H || is small enoughlf we neglect the residuals, then

ow 9
O_YH ~ M (=SxoyH — Szv H),

hereZ is found fromM (Y)Z ~ Q(Y), or Tzy ~ —Tx,, Z ~ —Xo. Then

aT -1

— H=~M (—SxoyH—S(_Xoﬁy)H)ZO.

oY
Now;, we give a bound fol{d¥/0Y ||: The operatoM (Y)=0F /0X is a positive self-adjoint
operator inR?*¢, w.p.t.0., and due to (19)

inf p It m? o
in Amin(M (Y)) = Jmin | consy — /28— .
\\Y—Xo||<p3 mln( ( )) min ? /lmin p( )
Therefore forY € B(Xo, p3) W.p.t.0.,
MLy = _—
. gl Zmin(M(Y))
Then we have
oV 1 0 oMZ
[ S 2 €
aY F }Vmin(M(Y)) 8Y 5Y Z=M71Q
and due to the bounds for the residuals, we have
H@_WH  FmadIAY 117Op(D) + Ui+ m)0p(1) )
Y Jmin

The last inequality can be explained in more detail. Consider the norm on the right-hand
side of (C.8).
L 0Q | dM2Z)
oY oY

= — Sxov + R5— Szy + R)

Z=M-10
=S_7_xv + Ré + R/Z' (C.10)

Now,

MZ=0Q, Tzy+ Ri(Z)=—Tx,r + Ra(Y),
T_7_xov + R1(—Z — X0) = —Ra(Y) — R1(X0),
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Here R/ (X) is linear inX; it depends also o¥, but we suppress that dependence.
M(Y)(~Z — Xo) = —Ra(Y) — Ri(X0), —Z— Xo=—M *(Ra(Y) + R (X0))
and then

| = Z — Xollr < —— (2 + mY?)0p(1) + /maxl|AY ||20(D)).

;Lmln

Therefore
152 x0 711 272 (G334 mY2)0p(1) + imad IAY30(D).
‘min

From the last inequality, (C.10) and (C.8), we obtain (C.9).
Due to assumption (ix), we have

H oy H SUIAY 1P + p,)Op(D). (C.11)

Here, we used the equationt/2, + m*/2)/ imin = 1, O(1).
We obtain the rate of convergentet 1— y be a confidence probability. Then there exists
a positive reat, such that for Q(1) in (C.11),

sup Pr{Op(D) > ¢y} <y.

m>=mo

Heremqis large enough but a fixed number. Then for evey mg, with probability greater
than or equal to t y,

[ P
S m Cy.
oY F KU Y

Now, p., is chosen from the condition

II—‘

y

Then for allm >m,, with certainm,,, we havey,,c, < %. Therefore eaclt € U, (Xo),

mzmsy,

‘G‘PH 3
<

- l<z (C.12)

HereU,, (Xo) := (X : [IX — Xollr <p,}.
We want to ensure thd is a mapping fronﬁp” (Xp) into itself. We may and do assume
that ’

X e Upy(Xo), mz=msy.
Due to¥(X) = X and (C.12)
1P — XIIF <31y — X||F.
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Thus
1Y — X|IF + [|X — XollF

<3
<3||Y — Xollr + £I1X — Xollr
<3p,+ X - Xollr

/

I1¥(Y) — Xollr

and form =i, Pr(||1X — Xol|[F < 1p
we have

) = 1—7. With probability at least 1 2y, form >m,,

y

0
I|P(Y) — XollFéz'.

Then with probability at least % 2y, ¥ is a contraction o/, (Xo). If X© e U, , then
im0 X® = X, with probability at least - 2y. Moreover,

IX® — X|1r <cy(, + 11X — Xol | IX*D — X|| 7
<y (y + 1 Op(D) + 1 X4 — X[ 1X D — X

Here, Theorem 13 part 1 is used. Then Theorem 15 follows.
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