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Abstract
7

A Bayesian approach is used to estimate a nonparametric regression model. The main features
of the procedure are, first, the functional form of the curve is approximated by a mixture of local9
polynomials by Bayesian model averaging (BMA), second, the model weights are approximated by
the BIC criterion and third, a robust estimation procedure is incorporated to improve the smoothness of11
the estimated curve. The models considered at each sample points are polynomial regression models
of order smaller than four, and the parameters are estimated by a local window. The predictive value13
is computed by BMA, and the posterior probability of each model is approximated by the exponential
of the BIC criterion. Robustness is achieved by assuming that the noise follows a scale contaminated15
normal model, so that the effect of possible outliers is downweighted. The procedure provides a smooth
curve and allows a straightforward prediction and quantification of the uncertainty. The method is17
illustrated with several examples and Monte Carlo experiments.
© 2004 Published by Elsevier B.V.19

Keywords: Bayesian model averaging; BIC criterion; Robustness; Nonparametric curve fitting; Local polynomial
regression21

1. Introduction

A Bayesian approach is used to estimate nonparametrically a regression model23

yi = m(xi) + �i , i = 1, . . . , n,

given the bivariate data (x1, y1), . . . , (xn, yn). We are interested in estimating the functional25
relationship, m, between the variable y and the explanatory variable x, and to predict the
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response for new values of the covariate. The functional form of m(·) is unknown and it is1
approximated by a mixture of local polynomials estimators.

Both parametric and nonparametric techniques are commonly used to find the regression3
function m(·). The first parametric approach was to use polynomial regression by selecting
the best order of the polynomial to fit the data, see Anderson (1962), Guttman (1967), Hager5
and Antle(1968), Brooks (1972) and Halpern (1973). The limitations of this approach are
due to its global nature, that is, we may need a high order polynomial to approximate the7
data over the whole range and, even then, the approximation can be poor in wiggly curves.
Second, this procedure is very non robust and a simple observation can exert a big influence9
on the estimated curve.

There is extensive literature for nonparametric techniques, see for example Eubank11
(1988), Wahba (1990), Hastie and Tibshirani (1990) and Green and Silverman (1994) for a
complete survey. Some often used alternatives are piecewise polynomials, splines smoothers13
and local polynomial regression. The first two methods require selecting the number and
positions of the knots. This is not an easy task: a small number of knots reduces the degrees15
of freedom of the fitted curve and a large number of knots produces overfitting. An excellent
review of this topic can be found in Hansen and Kooperberg (2002). Some procedures have17
been proposed for the automatic selection of the knots, see Wahba (1975), Smith (1982)
and Friedman and Silverman (1989). Stone et al. (1997) propose a stepwise approach in19
which knots can be introduced and deleted and are evaluated by the log-likelihood. From
the Bayesian point of view this process can be carried out by using reversible jump Markov21
chain Monte Carlo (Green, 1995), where the number and the position of the knots are
determined by the data, treating both quantities as random variables. See Denison et al.23
(2002) for a general discussion of this curve-fitting with free-knot procedure. Smith and
Kohn (1996) used this Bayesian approach to select the number of knots over a large set25
for additive regression models. Denison et al. (1998) have applied this method for general
univariate and additive models using piecewise polynomials instead of splines, because the27
first are more flexible for fitting curves that are not smooth. Mallick (1998) proposed esti-
mating the function by taking the order of the polynomial as a random variable and making29
inference of the joint distribution of both the order of the polynomial and the polynomials
coefficients. Liang et al. (2001) introduced an automatic prior setting for the multiple linear31
regression and they applied the method to Bayesian curve fitting with regression splines.
DiMatteo et al. (2001) also applied a free-knot splines approach to data coming from the33
exponential family by using the BIC criterion as an approximation to the integrated likeli-
hood ratios for the acceptance probabilities. Holmes and Mallick (2003) have applied the35
free-knot regression to generalized nonlinear modelling. Yau et al. (2003) have proposed
a Bayesianvariable selection and model averaging approach to multinomial nonparametric37
regression which can handle a large number of variables and their interactions. They use
a multinomial probit regression model with data augmentation (Albert and Chib, 1993) to39
turn the multinomial regression problem into a sequence of smoothing problems with Gaus-
sian errors. In general all these procedures require a high computational cost. For instance41
fitting thin-plate splines to two or more variables requires O(n3) computations (see Wahba,
1984) and this complexity will increase with the free-knot approach. On the other hand they43
have a large flexibility, as tightly-spaced knots can produce peaks and widely-spaced knots
smooth functions.45
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Local polynomial regression fits simple parametric models in neighborhoods defined by1
the regressors. It usually requires a low computational cost and was developed in the works
of Stone (1977), Katkovnik (1979), Stone (1980) and Cleveland (1979). See also Loader3
(1979). Cleveland (1979) and Cleveland and Devlin (1988) proposed a popular procedure,
the loess (locally weighted regression), which uses local regression with a kernel around5
the point of interest and is made robust by using weighted regression. This procedure is fast
to compute (of order O(n)) but has two main problems. First, it fits the same local model7
over all the range of the data and thus it has no spatial adaptability and makes the result
very dependent on the neighborhood used. Second, it uses M estimators for robustness and9
it is well know that these estimates are not robust for high leverage observations (see for
instance Peña and Yohai, 1999).11

In this work we also use local polynomial regression, because of its simplicity and
low computational cost, but we introduce two main modifications over previous methods.13
First, instead of using a fixed degree local polynomial the functional form of the curve
is approximated by a mixture of local polynomials by Bayesian model averaging (BMA).15
Bayesian model averaging leads to forecasts which are a weighted average of the predictive
densities obtained by considering all possible polynomial degrees with weights equal to the17
posterior probabilities of each degree. BMA takes into account the uncertainty about the
different models, as was pointed out in the seminal work of Leamer (1978). See George19
(1999), Raftery et al. (1997), Fernández et al. (2001) and Liang et al. (2001) for interesting
applications. In our case, BMA is implemented by fitting local polynomial regression models21
of degree going from zero to d to the data in a window around each observation, and
estimating the unknown regression function by a weighted sum of the values corresponding23
to the polynomials, with weights equal to the posterior probabilities of each polynomial
model. These weights are approximated by the exponential of the BIC criterion (Schwarz,25
1978), which approximates the Bayes factor. Second, we made our procedure robust by
assuming that the noise may be contaminated. Then the Bayesian estimation provides an27
automatic downweighting of outliers which takes into account their leverage.

These two modifications keep the main advantages of local polynomial regression meth-29
ods but provide a more flexible and robust procedure. The use of BMA introduces some
spatial adoptability to our procedure, because although we use a fixed window for the local31
estimation, we allow for a changing polynomial degree. This spatial adoptability is one of
the main advantages of the free-knot approach, which is able to change the smoothing ap-33
plied by taking into account the curvature of the regression function. As shown by Fan and
Gijbels (1995), an adaptive bandwidth can be obtained by an adaptive polynomial degree35
and by using BMA we introduce this adaptive behavior in our procedure. Then, the use of
the BIC approximation keeps its simplicity and low computational cost and guarantees that37
if the true model is a polynomial model of degree smaller than d, then for large sample size
the true model will be used. Also, when the true model is not a polynomial, the use of BMA39
allows us to build credible intervals which take into account the uncertainty about the model
and lead to better predictive capability than those built using a single model (Madigan and41
Raftery, 1994). The use of mixtures of normals for robust estimation has several advantages
over classical methods. See for instance Denison et al. (2002). First, we can take into account43
the leverage of the observations in addition to the residual sizes and avoid the limitation
of M estimation in regression. Second, we obtain posterior probabilities for the suspicious45
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observations to be outliers. These mixture estimation methods in general require a high1
computational cost but we will show in Section 3.1 that, in this problem, we can take into
account the information obtained in one local window to simplify the computations for the3
next window, making the procedure fast and efficient.

The rest of the paper is organized as follows. Section 2 describes the proposed method5
and presents its main properties. Section 3 develops the modification of the method to make
it robust to outliers. Section 4 analyzes some real data sets to illustrate the behavior of7
the procedure and provides a Monte Carlo comparison with other methods using several
simulated benchmark examples proposed in the literature. Finally, Section 5 presents some9
concluding remarks.

2. The proposed method11

Suppose that we have n observations (xi, yi) which are a sample of independent and iden-
tically distributed data from a random variable (X, Y ). We assume that these observations13
are related by

yi = m(xi) + �i , i = 1, . . . , n, (1)15

where E(�i )=0, V ar(�i )=�2, and X and � are independent. Further, we suppose that m(·)
is a smooth function. It is well known that the family of polynomials of degree smaller than17
d, for d large enough, can capture the local structure of any curve. Given a value of d, to be
discussed below, we consider local polynomial models MJ of the form19

yi =
J∑

j=0

�Jj (xi − x)j + �i , J = 0, . . . , d, (2)

for some neighborhood of (xi, yi), where x is the mean of the x variable in the neighborhood.21
Note that in order to simplify the notation, we write �Jj instead of �(i)

Jj , as the regression
parameters are going to depend on the neighborhood. To define this neighborhood, suppose23
that the x observations are all different and ordered, that is, x1 < x2 < · · · < xn, (if they were
not different we define the neighborhood over the set of different observations of x). Then,25
for a given observation xi, the neighborhood around this point is defined by

SNN(xi, w) = {xk : xi−w �xk �xi+w},27

where w is the bandwidth of the window. The number of observations in the window is at
least 2w + 1. We assume that w is chosen so that the number of different values of xk in29
SNN(xi, w) is at least d + 1, so that the polynomial of degree d can be fitted using the data
in the window. To take into account the left and right endpoints, where the windows contain31
fewer observations, we redefined the first and the last windows as SNN(xi, w) = {xk :
xmax(1,i−w) �xk �xmin(n,i+w)}.33

In this work we make all the inference for the predicted value of a future observation
yfi

= m(xi) corresponding to a given value xi, although the same analysis can be applied35
for a new observation x0 belonging to the range of the data, x0 ∈ (x1, xn), by defining
SNN(x0, w) = SNN(xi, w) where xi = mink‖xk − x0‖.37
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The procedure is applied as follows. Let Di ={(xk, yk) : xk ∈ SNN(xi, w)}, for each xi1
in the sample, we locally approximate the general form m(xi) in Di by a linear combination
of the polynomials (2). Thus, using data Di we compute the posterior probabilities for3
different polynomial degrees and then estimate m(xi) at each point by its forecast using
BMA. The predictive distribution for a new observation, yfi

, is given by5

p(yfi
|Di) =

d∑
J=0

pJ p(yfi
|Di, MJ ),

where pJ = P(MJ |Di) is the posterior probability for the polynomial model of degree7
J, MJ , given data Di . The prediction under quadratic loss will be given by m̂(xi |Di) =
E(yfi

|Di), and we have that9

m̂(xi |Di) =
d∑

J=0

pJ m̂(xi |Di, MJ ), (3)

where m̂(xi |Di, MJ )=E(yfi
|Di, MJ ) is the expected value of the predictive distribution11

conditional to model MJ .
To make the inference about the polynomial models (2), we consider a reference prior13

distribution by taking a priori the elements of �J = (�J0, . . . ,�JJ )′ and �J independently
and uniformly distributed,15

p(�J ,�J ) ∝ 1

�J

.

Then, the predictive distribution for a new observation, p(yfi
|Di, MJ ), is a t-Student17

distribution with v = n0 − (J + 1) degrees of freedom, where n0 is the sample size of
SNN(xi), mean E(yfi

|Di, MJ )=xi �̂J , where �̂J = (̂�J0, . . . , �̂JJ )′ is the vector of usual19
least-squares estimators for the parameters of the polynomial of degree J for data in Di, xi =(
1, (xi − xi), . . . , (xi − xi)

J
)

andxi=
{∑

xk/n0 : xk ∈ SNN(xi)
}
, and variance given by21

V ar(yfi
|Di, MJ ) = v

v−2 s2
J

(
1 + (xi − xi)(X′

J XJ )−1(xi − xi)
)
where vs2

J is the standard
sum of the squared residuals and XJ is the design matrix of the polynomial model (2) of23
degree J fitted to the data in Di . Note that this estimation is applied for each neighborhood,
although, to simplify, we do not include this dependence in the notation.25

The posterior probability for model MJ is approximated by the exponential of the BIC
criterion, which, as Kass and Raftery (1995) pointed out, approximates the Bayes factor27
with a relative error O(1). The Schwarz criterion (Schwarz, 1978) for MJ is defined as

S(MJ ) = log p
(

y | �̂J

)
− 1

2
(J + 1) log n0,29

where p
(

y | �̂J

)
is the likelihood of the model MJ , �̂J is the MLE of the parameter vector

under model MJ for data in Di, n0 is the sample size of SNN(xi) as before and (J + 1) is31
the dimension of the vector �̂J . The Bayesian information criterion (BIC) of a model MJ

is BIC(MJ )=−2S(MJ ), and exp(S(MJ1)−S(MJ2)) approximates the Bayes factor BJ1J233
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with a relative error O(1). Thus, we can approximate the Bayes factors by1

BBIC
J1J2

= exp(S(MJ1) − S(MJ2)) = exp(−0.5BIC(MJ1))

exp(−0.5BIC(MJ2))

and obtain the posterior probability for a model by3

p(MJ |Di) ∝ p(MJ )
{

log p(y | �̂J ) − 1
2 (J + 1) log n0

}
,

where p(MJ ) is the prior probability for the polynomial model. The likelihood for a normal5
linear model evaluated at the MLE estimator is easily seen to be

p
(

y | �̂J

)
= (2�)−n0/2

(
vs2

J

n0

)−n0/2

exp
{
−n0

2

}
7

and the posterior probability of MJ may be approximated, after absorbing common con-
stants, by p(MJ |Di) = KBICp(MJ )(vs2

J )−n0/2n
−(J+1)/2
0 , where KBIC is obtained by the9

condition
∑d

J=0p(MJ |Di) = 1. Then we approximate the posterior probability of the
models by11

p(MJ |Di) ∝ s
−n0
J n

−(J+1)/2
0 . (4)

Note that we are applying Bayesian inference locally, so that we do not assume a fixed joint13
likelihood function for the data, as it is standard in nonparametric statistics. From this point
of view our approach can be seen as a Bayesian nonparametric approach in which the prior15
and the likelihood are specified locally. This provides a flexible approach in situations in
which a global model would be very complicated to specify.17

In order to apply this method several decisions must be made. First we have to decide
about the maximum degree d of the polynomials to be fitted. We propose to take d = 3. We19
have found that this value is large enough to fit any curve locally very well and it avoids
the problem of overfitting. Second, we have to decide on the a priori probabilities of the21
models. Two possible choices are uniform, p(MJ ) = (d + 1)−1 or decreasing with the
polynomial degree. We propose the uniform prior for simplicity. The third choice is the23
bandwidth parameter w. A classical solution is to choose this parameter by cross-validation
as follows. Let ŷw

i be the estimated value of m(xi) with bandwidth w, where the observed25
value yi is omitted in the estimation of ŷw

i . Then, the value for w is chosen to minimize the
mean squared error27

MSEw = 1

n

n∑
i=1

(
m(xi) − ŷw

i

)2
.

We have checked by simulation that the results are not very sensitive to the choice of the29
parameter w. This fact can be explained by the work of Fan and Gijbels (1995). They
proposed a method which replaces an adaptive bandwidth by an adaptive order of the31
polynomial to be fitted, and observed that if the bandwidth parameter is large, then the
order chosen for the polynomial order is high, whereas when a small bandwidth is used the33
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order chosen was low. This same effect has been observed in the proposed method, and this1
compensation effect makes the procedure fairly robust to the bandwidth parameter chosen.

The consistency of the proposed method can be obtained from the consistency of the3
polynomial model approach.Also, we can obtain the expressions of the bias and the variance
based on the Theorem 3.1, page 62, in Fan and Gijbels (1996)5

E[m̂(x) − m(x) | X] = E

[{
3∑

i=0

pim̂i(x)

}
− m(x) | X

]

=
(

p0 + p1

2

)
w2

3
m′′(x)+

(
p2 + p3

2

)
w4

140
miv(x)+op(w4),

V ar[m̂(x)] = V ar

[
3∑

i=0

pim̂i(x)

]

=
{(

p2
0 + p2

1

2

)
+ 9

(
p2

2 + p2
3

2

)}(
�2

c

1

nw

)
+ op

(
1

nw

)
,

where �2 is the residual variance, pJ are the posterior probability of the polynomials models,7
w is the bandwidth, n is the sample size and mi(x) indicates the ith derivative of the m(x)

function. We are supposing that the marginal density of the observations x, f (x), is uniform9
over the range of the data, f (x) = c and f ′(x) = 0.

In order to have a smoother curve the procedure can be iterated.As iterating the procedure11
does not have a clear Bayesian justification, this stage can be skipped, although we have
found in practice (see Section 4) that it often leads to better results. The iteration can be13
carried out as follows. Let ỹ(1) by the predicted value obtained by (3) in the first application
of the procedure or the first iteration. Then the observed values (x, y) are replaced by the15
output of the first iteration, (x, ỹ(1)), and the procedure is applied to this modified data set
to obtain ỹ(2), which is the output in the second iteration. In the same way the values in the17
kth iteration, ỹ(k), can be computed by using the output of the (k−1)th iteration (x, ỹ(k−1))

as input data. In practice, we have found that a single iteration is enough to produce a good19
result.

A possible problem when applying this procedure is that a single outlier observation can21
have a large effect on the estimated models. In the next section we propose a robustified
version of the method.23

3. Robustifying the method

The method can be made robust to reduce the influence of the outliers in the local25
estimation by modelling the residuals by a mixture of normals. This model was introduced
by Tukey (1960) and studied by Box and Tiao (1968). Suppose that observations y are27
generated by the model (1), where now the errors �i are random variables with the mixture
distribution29

�i ∼ (1 − �)N
(

0,�2
)

+ �N
(

0, k2�2
)

,
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where � is the prior probability that one observation comes from the N(0, k2�2) distribution1
and k > 1. To make inference about this model, a set of dummy variables �i are defined
by �i = 1 if V ar(�i ) = k2�2 and �i = 0 otherwise. Let �k = (�1 = l1, . . . , �n = ln) be a3
possible configuration of the data, where li =0, 1. Then there are 2n possible classifications
of the observations into the two components of the mixture. Let V be a diagonal matrix5
with elements (i, i), vii equal to 1 if �i = 0 and vii = 1/k2 if �i = 1. Then, by making the
transformation Yh = V1/2Y, Xh = V1/2X, standard inference results for linear models can7
be applied. The BMA predictive distribution for the future observation yfi

given the data
Di, will be given by9

p(yfi
|Di) =

2n∑
h=0

d∑
J=0

p(yfi
|Di, MJ ,�h)pJh, (5)

which is a mixture of (d +1)×2n distributions, p(yfi
|Di, MJ ,�h), where the weights, for11

each model and each configuration of the data, are given bypJh=p(MJ |�h, Di)p(�h |Di).

We compute the predicted value m̂(xi |Di) as the expected value of the predictive distribu-13
tion p(yfi

|Di),

m̂(xi |Di) =
d∑

J=0

2n∑
h=0

pJhm̂(xi |Di, MJ ,�h).
15

Given the model and the configuration, the predictive distribution p(yf |Df , MJ ,�h) for a
new observation xf , is a t-student distribution t (v, xf �̂Jh, h) with v=n−(J +1) degrees of17
freedom. The expected values m̂(xf |Df , MJ ,�h)=xf �̂Jh is the mean of the distribution,
xf = (

1, (xf − xf ), . . . , (xf − xf )J
)

, xf = {∑ xk/n0 : xk ∈ SNN(xf )}, and �̂Jh are19
the estimated parameters given the �h configuration and the model MJ ,

�̂Jh = (X′
JhXJh)

−1X′
JhYh = (X′

J VXJ )−1X′
J VY21

and the variance of the predictive distribution is

v

v − 2
ŝ2
Jh

(
1 + (xf − xf )(X′VX)−1(xf − xf )

)
,23

where

v̂s2
Jh =

(
Yh − XJh�̂h

)′ (
Yh − XJh�̂h

)
= Y′[V − VXJ

(
X′

J VXJ

)−1X′
J V]Y25

is the standard sum of the squared residuals.
The weights of the mixture are given by pJh = p(MJ |�h, Df )p(�h |Df ), where the27

first term, p(MJ |�h, Df ), is the posterior probability of the models given a configuration
�h. We approximate this term by the exponential of the BIC, given by (4), where ŝ2

J is29
replaced by ŝ2

Jh which depends on the model and on the configuration. The integration
constant is computed by using the restriction that the sum of the posterior probabilities of31
the four polynomials models, given each configuration, �h, is one.
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The second term for the weights, is computed by1

p(�h | y) = K2p(y |�h)p(�h) = K2

d∑
J=0

p(y |�h, MJ )p(�h |MJ )p(MJ ),

where p(y |�h, MJ ) is the marginal distribution of the data, given a model MJ and a3
configuration �h, p(�h |MJ ) is the prior probability of a configuration, which does not
depend on the model MJ , p(�h |MJ ) = p(�h) = �nh(1 − �)n−nh and nh is the number5
of elements with high variance in the configuration �h, nh = ∑

�i . Finally, p(MJ ), the
prior probabilities, are equal for all the models and this term is absorbed by the integration7
constant.

In order to compute the marginal density, p(y |�h, MJ ) the likelihood of the model for9
the parameters �J = (�J ,�J ) can be written as

f (y | X, �J , MJ ,�h)

= (2�)−nh/2�−nh

Jh k−nh exp

{
− 1

2�2
Jhk

2

(
Ynh

− XJnh
�J

)′ (Ynh
− XJnh

�J

)}
× (2�)−(n−nh)/2�−(n−nh)

Jh

× exp

{
− 1

2�2
Jh

(
Y(n−nh) − XJ (n−nh)�J

)′ (Y(n−nh) − XJ (n−nh)�J

)}
= (2�)−n/2�−n

Jh k−nh

× exp

{
− 1

2�2
Jhk

2

(
V1/2Y − V1/2XJ �J

)′ (
V1/2Y − V1/2XJ �J

)}
,

11

where XJnh
indicates the rows of XJ corresponding to the observations with variance k2�2

Jh,

and XJ (n−nh) those corresponding to observations with variance �2
Jh. The marginal density13

is obtained by integrating �J , p(y |�h, MJ ) ∝ (̂
s2
Jh

)−(n−J+1)/2 | X′
J VXJ | −1/2 and we

can obtain the expression for the marginal probability of the configuration,15

p(�h | y) = K2

d∑
J=0

p(y |�h, MJ )p(�h)

= K2

d∑
J=0

(̂
s2
Jh

)−(n−J+1)/2 | X′
J VXJ | −1/2�nh(1 − �)n−nh,

where the constant K2 is computed by using the condition
∑2n

h=0p(�h | y) = 1.17

3.1. Implementation

The scale contaminated normal model has the problem that the inference is made over19
the 2n possible configurations of the data and it requires intensive computation. Although
in our case we have many local estimation problems with small sample size, the number21
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of computations grows in exponential form. For example, for window size n0 = 20, the1
procedure requires computing approximately 106 posterior probabilities for the models, for
each one of the n − n0 windows.3

The problem has been solved in the literature using the Gibbs sampler, (see Verdinelli
and Wasserman, 1991 and Justel and Peña, 1996) but the local character of the estimation5
implies solving approximately n−n0 local problems which requires intensive computation.
Note that in this problem we may take advantage of the fact that the inference in a given7
window gives us information about the inference in the next window, because they will
only differ in a few observations. Suppose we have computed the posterior probabilities9
for all the configurations of the data corresponding to the set of observations belonging to
window Di. The next window, Di+1, is obtained from the previous one by deleting some11
observations in the left extreme of Di and adding some new observations in the right hand
of the Di+1. Thus, we can obtain the configurations with highest probability in the first13
windows and use this information to obtain the configurations with highest probabilities in
the next window, Di+1.15

For this first window, if the sample size is small enough, the simplest solution is to carry
out an exhaustive study of the configurations. Otherwise, an alternative fast method which17
allows an automatic implementation was proposed by Peña and Tiao (1992). Suppose that
we have a sample of size n and that we can classify the observations in two groups. The19
first includes n1 observations of potential outliers and the second the remaining n2 =n−n1
observations which we believe have a high probability of not being an outlier. Then, as21

(
n

h

)
=

h∑
j=0

(
n1
j

)(
n2

h − j

)
=
(

n1
h

)
+

h−1∑
j=0

(
n1
j

)(
n2

h − j

)

instead of studying all the combinations of h outliers out of n we can compute all the combi-23
nations of h outliers out of the n1 potential set of outliers and a sample of the combinations
which include j = 1, 2, . . . , h − 1 outliers and a small sample of all the combinations25
of h points out of n2. In order to do so we need to divide the observations in these two
groups. Peña and Tiao (1992) proposed studying the differences between the probabilities27
P
(
AiAj

)
, and P (Ai) P

(
Aj

)
, where Ai is the event that xi is an outlier, and consider as

potential outliers those observations in which both probabilities were different.29

To apply this idea to the problem, the set of potential outliers is identified as follows:

(1) Compute the posterior probabilities for all the configurations which have the number31
of outliers less or equal to 2. Let �0 be the configuration without outliers, �i the
configuration with only one outlier, the observation xi and �ij the configuration in33
which only the elements (xi, xj ) are outliers.

(2) Include in the set of potential outliers the isolated outliers defined by the set A =35 {
xi : P(�i | D)

P (�0 | D)
�3

}
.

(3) Include also the partially masked outliers as those belonging to the set B =37 {
xj : P(�i,j | D)

P (�i | D)
�3, xi ∈ A

}
.
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(4) Include also the completely masked outliers, defined by the elements of the set C =1 {
(xi, xj ) : P(�i,j | D)

P (�0 | D)
�3, (xi, xj ) /∈ (A ∪ B)

}
.

The set of potential outliers is formed by elements belonging to (A ∪ B ∪ C).3
Once the configurations of outliers and good points with highest probability are detected

for the first window, D1, we use this information to select the configurations in the next5
window, D2. In the same way we use the information of Di to select the configurations of
Di+1 in a recursive form. In order to do so we introduce some notation: let LDi =Di\Di+1,7
the left part of Di, the set of observations belonging to Di which do not belong to Di+1,

mL
i the cardinal of LDi, similarly let RDi the right part of Di and mR

i the cardinal of RDi.9

Suppose that we have the posterior probabilities p
(
�i

h | y
)

for all the configurations

in the window Di which do not have negligible probability. We select the set of M con-11

figurations ∇Di
=
{
�i

1, . . . ,�
i
M

}
with highest posterior probability. Now, we move to

the next window, Di+1, and let ∇RDi
=
{
�R

1 , . . . ,�R

2mR
i

}
be the 2mR

i possible configu-13
rations for the mR

i new observations with are incorporated in Di+1. In addition we have
to delete from ∇Di

the terms corresponding to the observations which are not in Di+1.15
Let �∗i

k be the configuration obtained from �i
k ∈ ∇Di

by deleting the first mL
i terms.

Then, the configurations with highest probabilities in the next window Di+1 will belong17

to the set

{[
�∗i

1 ∪ �R
1

]
, . . . ,

[
�∗i

1 ∪ �R

2mR
i

]
, . . . ,

[
�∗i

M ∪ �R
1

]
, . . . ,

[
�∗i

M ∪ �R

2mR
i

]}
where[

�∗i
k ∪ �R

l

]
represents the �∗i

j configuration for the observations which belong to Di and19

the configuration �R
l for the new observation incorporated. If there are not repeated ob-

servations in the data set and mR
i = 1, for all the windows Di, then we can choose M big21

enough to guarantee that the best configurations are selected. In data sets with repeated
observations, M should be chosen moderate to avoid expensive computations.23

4. Examples

To illustrate the methods developed, we consider three data set frequently analyzed in25
the nonparametric curve fitting. The first one is the Helmets data. The data consists of ac-
celerometer readings taken through time in an experiment on the efficacy of crash helmets27
in simulated motor-cycle crashes, described in detail by Schmidt et al. (1981). The second
one is the Ethanol data. The data includes 88 measurements of two variables from an exper-29
iment in which ethanol was burned in a single cylinder automobile test engine (Brinkman,
1981). The two variables measured are the concentration of nitric oxide (NO) and nitrogen31
dioxide (NO2) in engine exhaust and the equivalence ratio at which the engine was run (a
measure of the richness of the air-ethanol mix). The third example is the Diabetes data. It33
includes two variables measured in children with insulin-dependent diabetes. The variables
are the age of the children and the level of serum C-peptide, and were obtained from Sockett35
et al. (1987). We have analyzed the same subset of 43 observations that appear in Hastie and
Tibshirani (1990) which use this data to show the effect of several smoothers in Chapter 237
of their book.



UNCORRECTED P
ROOF

12 D. Peña, D. Redondas / Computational Statistics & Data Analysis ( ) –

COMSTA2963

ARTICLE IN PRESS

0 10 20 30 40 50 60
-150

-100

-50

0

50

100

0 10 20 30 40 50 60
-150

-100

-50

0

50

100

Fig. 1. Curves fit for Helmets data. The left figure shows the curve for the standard method (solid line), the robust
method with parameters (� = 0.05, k2 = 3) (dotted line) and the robust method with (� = 0.1, k2 = 5) (dashed
line). The right figure shows the second iteration of the procedure for these three cases.
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Fig. 2. Curves fit for Ethanol data. The left figure shows the curve fitted by the standard method (solid line), the
robust method with parameters (� = 0.05, k2 = 3) (dotted line) and the robust method with (� = 0.1, k2 = 5)

(dashed line). The right figure shows the second iteration of the procedure for these three cases.

Fig. 1 shows the estimated curve for the Helmets data, with w = 12 estimated by cross1
validation. The figure in the left-hand side shows the estimated curve with the procedure
presented in Section 2 and two robust curve estimates with parameters (� = 0.01, k2 = 3)3
and (� = 0.1, k2 = 5). It can be seen that the smoothness of the curve increases with the
prior proportion of outliers. On the right hand a second iteration for each of these three5
cases are shown and it can be seen that these curves are very smooth and the differences
among them are very small.7

Fig. 2 shows the estimated curve for the Ethanol data. In this data set the value of the
parameter w obtained by minimizing the MSE for cross validation is w = 10. The three9
curves shown are the ones obtained by the standard estimation and two obtained by a robust
approach with the same values of the parameters as in the previous example (�=0.01, k2=3)11
and (� = 0.1, k2 = 5). We can observe that there are small differences among the three
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Fig. 3. Curves fit for diabetes data. The left figure shows the curve fitted by the standard method (solid line), the
robust method with parameters (�=0.01, k2 =3) (dotted line) and robust method with (�=0.05, k2 =7) (dashed
line). The right figure shows the second iteration of the procedure for these three cases.

curves and none of them is completely smooth. Note that as the data is homogeneous the1
robustification does not modify the standard estimation. In the right hand figure we show
the second iteration of the procedure in the three cases, the three curves obtained are smooth3
and very similar.

Fig. 3 shows the fitting curve for the diabetes data in the first two iterations of the5
algorithm. The window which minimizes the MSE for cross validation is now w = 22, and
the sample size is 43. The lack of smoothness observed in the curve fitted by the standard7
procedure corresponds to the incorporation of the extreme observations around xi =13. The
robust estimate of the curve reduces this effect. Apart from the variability at this point there9
are small differences among the fitted curves due to the large window used. The second
iteration of the procedures leads to similar fitted curves.11

4.1. Monte Carlo experiment

We compare the behavior of the proposed method to the popular loess method of Cleveland13
(1979) which is implemented in many computer programs, and to the Bayesian free-knot
splines approach by DiMatteo et al. (2001) as implemented in the BARS code which can be15
downloaded from http:// www.stat.cmu.edu/∼jliebner/. The comparison is made by using
four simulated functions proposed by Donoho and Johnstone (1994) which have been used17
often in the literature for comparison purposes (see Denison et al., 1998). The four simulated
functions are:19

Heavisine f (x) = [4 sin(4�x) − sgn(x − 0.3) + �3 − sgn(0.72 − x)],
Blocks f (x) =

∑
h

(2)
j K(x − xj ) + �4 K(x) = (1 + sgn(x))/2,

Bumps f (x) =
∑

h
(1)
j K((x − xj )/wj ) + �5 K(x) = (1 + | x | )−4,

Doppler f (x) =√
x(1 − x) sin(2.1�/(x + 0.05)) + �6,

http://www.stat.cmu.edu/jliebner/
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Fig. 4. The four simulated functions used to compare the proposed method: Heavisine, Blocks, Bumps and Doppler.

where xj = {0.1, 0.13, 0.15, 0.23, 0.25, 0.4, 0.44, 0.65, 0.76, 0.78, 0.81}, h
(1)
j = {4, 5, 3,1

4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2}, h
(2)
j = {4, −5, 3, −4, 5, −4.2, 2.1, 4.3, −3.1, 5.1, −4.2}

and wj = {0.005, 0.005, 0.006, 0.01, 0.01, 0.03, 0.01, 0.01, 0.005, 0.008, 0.005}. These3
functions are standardized to V ar(f ) = 72. The errors are generated by �i ∼ N(0,�2),

where �2 is chosen so that the root of the signal-noise ratio

(
RSNR =

√
var(f )

�2

)
are 3, 5, 75

and 10. The simulation are based on 1000 points. The four simulated functions are showed
in Fig. 4.7

In the tables the mean of the squared errors, MSE= 1
n

∑n
i=1(m̂(xi) − m(xi))

2, is presented
with m̂(xi) computed by eight different procedures. BMA1 and BMA2 both use the method9
proposed in Sections 2 and 3 of this paper with 1 and 2 iterations, respectively. This iterations
are made as explained in Section 2, that is, the predicted value obtained in the first application11
of the procedure is used as data in the second application of the procedure. LB1, LB3, LT1
and LT3 use the loess method as proposed by Cleveland (1979). LB1 and LB3 with a13
bisquare weight function, B(x) = (

1 − x2
)2

for |x| < 1, and polynomial of degrees d = 1

or d = 3, respectively and LT1 and LT3 with the tricube kernel, T (x) = (
1 − | x|3)3, and15

again degrees 1 and 3, respectively. In both kernels x is rescaled by (x − xi)/hi where hi

is the distance |x − xi | from x to the rth nearest neighbor. Finally, BARS is the approach17
of DiMatteo et al. (2001). We also include a column with the number of knots (mean and



UNCORRECTED P
ROOF

COMSTA2963

ARTICLE IN PRESS
D. Peña, D. Redondas / Computational Statistics & Data Analysis ( ) – 15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

-15

-10

-5

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

-15

-10

-5

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

-15

-10

-5

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

-15

-10

-5

0

5

10

15

20

Fig. 5. Heavisine function with different root of signal-noise ratio: 3, 5, 7, 10.

standard error) used to fit the curve by this last procedure. The results are the mean of1
1000 replications. The simulated curves with the four levels of root signal-to-noise ratio,
RSNR = {3, 5, 7, 10}, are shown in Figs. 5–8.3

Table 1 shows the mean and the standard deviation, in small letter size, of the MSE of the
1000 replications of the function Heavisine. We can observe that when the ratio signal-to-5
noise is small, RSNR = 3, the smallest MSE is obtained by BMA2, the proposed method
with two iterations of the algorithm, but when this ratio increases the best performance is7
obtained by BARS, which uses between 9 and 13.5 knots to fit the curve. The number of
knots grows when the RSNR grows. With regards to the loess method, the bisquare kernel9
is slightly better than the tricube, and the linear fit works better than the cubic fit.

Table 2 shows the result obtained for the function Blocks. The results are similar to11
the previous ones. When the signal-to-noise ratio is small, RSNR = 3, BMA2, the second
iteration of the proposed algorithm, has the best performance. However, when this ratio13
increases the best results are obtained by BARS. Again for the loess procedure the linear
fit is better than the cubic and the bisquare kernel slightly better than the tricube. We also15
observe that although the Blocks function presents eleven discontinuity points, and it is
constant between them, the BARS procedure uses 50 knots for the highest level of RSNR,17
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Fig. 6. Blocks function with different root of signal-noise ratio: 3, 5, 7, 10.

Table 1
MSE obtained for the Heavisine data with four different signal-to-noise ratio

RSNR BMA1 BMA2 LB1 LB3 LT1 LT3 BARS #Knots

3 0.2869
0.0445

0.2634
0.0443

0.2709
0.0437

0.3690
0.0544

0.2745
0.0436

0.3739
0.0548

0.3210
0.0821

9.09
1.06

5 0.1566
0.0183

0.1458
0.0173

0.1629
0.0173

0.2264
0.0409

0.1653
0.0172

0.2249
0.0371

0.0992
0.0267

12.05
0.78

7 0.1075
0.0108

0.1016
0.0095

0.1137
0.0092

0.1411
0.0160

0.1160
0.0093

0.1411
0.0143

0.0449
0.0153

13.06
0.45

10 0.0748
0.0060

0.0707
0.0051

0.0791
0.0050

0.1279
0.0093

0.0809
0.0050

0.1464
0.0169

0.0224
0.0064

13.49
0.58

The procedures compared are the proposed BMA with 1 and 2 iterations (BMA1 and BMA2), four implemen-
tation of loess (LB1, LB2, LT1, LT3) and the free-knots splines BARS.

RSNR = 10. For the functions Bumps and Doppler (see Tables 3 and 4 ) the results are1
different as now in all cases the best results are obtained by the BARS procedure. In these
cases, the BMA1, the first iteration of the algorithm presents better results than BMA2. This3
is not surprising as these functions are not smooth and a second iteration smooths the picks,
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Fig. 7. Bumps function with different root of signal-noise ratio: 3, 5, 7, 10.

Table 2
MSE obtained for the Blocks data with four different signal-to-noise ratio

RSNR BMA1 BMA2 LB1 LB3 LT1 LT3 BARS #Knots

3 2.0494
0.0907

1.9042
0.0808

2.0050
0.0811

2.2307
0.0767

2.0674
0.0811

2.2730
0.0769

2.3972
0.3352

26.41
2.35

5 1.6817
0.0509

1.5643
0.0379

1.6366
0.0376

1.8625
0.0324

1.7019
0.0377

1.9003
0.0325

1.3003
0.4955

34.06
5.88

7 1.5821
0.0356

1.4763
0.0232

1.5405
0.0237

1.7673
0.0196

1.6068
0.0238

1.8043
0.0199

0.6827
0.6269

43.31
9.43

10 1.5271
0.0251

1.4278
0.0151

1.4879
0.0155

1.7148
0.0117

1.5548
0.0155

1.7512
0.0116

0.3791
0.5820

51.07
10.51

The procedures compared are the proposed BMA with 1 and 2 iterations (BMA1 and BMA2), four implemen-
tation of loess (LB1, LB2, LT1, LT3) and the free-knots splines BARS.

for the bumps data, or the extremes, for the Doppler data. With regards to loess the results1
are the same as before: the linear fit with the bisquare kernel has the best performance. Also,
we can observe that for the wiggly curve (see Tables 2 and 3), the BARS method uses a3
large quantity of knots, and this may be the reason for the huge standard deviation of the
estimated MSE for the blocks and bumps functions.5



UNCORRECTED P
ROOF

18 D. Peña, D. Redondas / Computational Statistics & Data Analysis ( ) –

COMSTA2963

ARTICLE IN PRESS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

-15

-10

-5

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

-15

-10

-5

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

-15

-10

-5

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

-15

-10

-5

0

5

10

15

20

Fig. 8. Doppler function with different root of signal-noise ratio: 3, 5, 7, 10.

Table 3
MSE obtained for the Bumps data with four different signal-to-noise ratio

RSNR BMA1 BMA2 LB1 LB3 LT1 LT3 BARS #Knots

3 6.6577
0.2094

6.7748
0.1491

6.8940
0.1297

8.3255
0.1136

7.2484
0.1288

8.5622
0.1144

4.2794
4.5466

49.93
14.20

5 6.2017
0.1294

6.3904
0.0862

6.5223
0.0718

7.9670
0.0608

6.8808
0.0717

8.2016
0.0615

3.4574
4.7053

56.10
17.53

7 6.0877
0.0913

6.3014
0.0611

6.4385
0.0511

7.8787
0.0438

6.7981
0.0510

8.1110
0.0446

2.4413
4.2878

63.35
18.16

10 6.0097
0.0630

6.2435
0.0383

6.3788
0.0335

7.8223
0.0295

6.7384
0.0332

8.0543
0.0300

2.4897
4.7674

66.95
20.19

The procedures compared are the proposed BMA with 1 and 2 iterations (BMA1 and BMA2), four implemen-
tation of loess (LB1, LB2, LT1, LT3) and the free-knots splines BARS.

4.2. Simulation with outliers1

To show the behavior of the method when there are outliers in the sample, we repeat the
simulation for the first two functions of the previous section, Heavisine and Blocks, but now3
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Table 4
MSE obtained for the Doppler data with four different signal-to-noise ratio

RSNR BMA1 BMA2 LB1 LB3 LT1 LT3 BARS #Knots

3 1.0856
0.0809

1.1069
0.0765

1.2312
0.0815

1.3782
0.0832

1.2655
0.0814

1.4068
0.0838

0.7952
0.1533

23.95
1.84

5 0.7284
0.0349

0.8025
0.0308

0.8713
0.0355

1.0230
0.0332

0.9085
0.0354

1.0476
0.0336

0.3514
0.0643

30.28
1.94

7 0.6284
0.0215

0.7155
0.0193

0.7701
0.0250

0.9213
0.0203

0.8078
0.0248

0.9446
0.0200

0.2053
0.0395

35.16
2.36

10 0.5717
0.0137

0.6693
0.0116

0.7187
0.0157

0.8695
0.0125

0.7569
0.0156

0.8921
0.0125

0.0993
0.0160

41.19
2.51

The procedures compared are the proposed BMA with 1 and 2 iterations (BMA1 and BMA2), four implemen-
tation of loess (LB1, LB2, LT1, LT3) and the free-knots splines BARS.
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Fig. 9. A replication of the simulated outliers with RSNR = 3.

Table 5
MSE obtained for the Heavisine data with outliers

RSNR BMA1 BMA2 LB1 LB3 BARS #Knots

3 3.0956
0.2893

1.1771
0.1431

24.3396
4.4235

7.6680
2.6390

5.5503
3.3667

15.80
1.17

5 2.6917
0.2412

1.1110
0.1061

46.2537
3.5707

20.3535
3.2370

8.8345
3.5595

25.89
1.59

7 2.4896
0.1753

1.0880
0.0768

53.5682
2.6243

27.9767
2.6776

10.7109
3.1900

31.97
1.25

10 2.2456
0.1420

1.0371
0.0605

57.0434
1.7318

31.6018
2.2795

11.3895
3.0064

33.85
0.98

adding 3% of outliers. They have been added in groups of three consecutive outliers equal-1
spaced in the interval [0,1] and always with y = 20. One sample of the data configuration
obtained with this distribution of the outliers and with a RSRN = 3 is presented in Fig. 9.3

The results obtained in the comparison of the methods are shown in Tables 5 and 6 . The
methods included are the proposed procedure, BMA1 and BMA2, the loess method with5
bisquare kernel and polynomial degrees 1 and 3, LB1 and LB3, and the BARS method. We
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Table 6
MSE obtained for the Blocks data with outliers

RSRN BMA1 BMA2 LB1 LB3 BARS #Knots

3 4.0725
0.1504

4.1641
0.1391

6.6320
0.2058

6.2982
0.4627

5.1663
0.7927

36.51
1.55

5 3.7817
0.1200

3.9714
0.1043

9.3803
0.5900

5.4019
0.1845

5.7939
0.9939

51.66
1.95

7 3.6300
0.0843

3.8811
0.0688

13.5658
0.7973

5.6632
0.7042

6.1844
0.9925

63.59
1.95

10 3.5143
0.0491

3.8182
0.0445

17.9794
0.6079

5.8036
0.2424

6.3139
0.8695

67.62
1.67

have not included in this table the loess method with kernel tricube, LT1 and LT3, because1
of their bad results. These results illustrate the danger of using a model based approach,
such as BARS, blindly when there are outliers in the sample. The first conclusion from3
Tables 5 and 6 is that the performance of the BARS method, as it can be expected, is now
much worse than before, and this procedure seems to be very sensitive to outliers. Both the5
proposed procedure and the loess method include some robust estimation and thus although
their MSE increases for the larger variability due to the outliers, they are much less affected7
by it than the BARS method. For both functions, Heavisine and Blocks, the best result are
obtained by BMA2, the second iteration of the proposed algorithm. We can observed that,9
when the RSNR grows, the MSE increases for the BARS method. This is due to the fact that
when the residual noise decreases, the outliers have a larger relative size and their effect11
in introducing biased in the estimation of the curve increases. This effect also appears in
general in loess, although more in the Heavisine function than in the Blocks function. On13
the other hand, with the proposed procedure the MSE decreases with the variance of the
noise, as it should be for a robust procedure which is able to identify and downweight the15
outliers.

5. Concluding remarks17

In this article a new method for fitting a curve by local polynomials is proposed. It
introduces more flexibility in the local fitting by using BMA, and robustness by using19
mixtures of normals for the noise. The proposed method is simple to apply and to programme
and completely automatic. We have shown in a Monte Carlo study that this method works21
better than others of similar computational complexity.

The main ideas of the method can be generalized to vector valued regressors x ∈ Rp in23
a straightforward way. First, we need to define a neighborhood in the space of independent
variables and a distance function. Second, to avoid the curse of dimensionality problem,25
we have to control the number of parameters of the surface when p increases so that the
number of parameters are a small fraction of the sample size. This can be done in a number27
of ways. The first is to assume an additive mode (see Hastie and Tibshirani, 1990), in order
to reduce the p dimensional function m(x) to a sum of p univariate functions in which the29
linear effects enter independently into the model. See Gustafson (2000) for some Bayesian
generalizations of this approach. A second alternative is to use regression trees, as in the31
Treed procedure (seeAlexander and Grimshaw, 1996) in which the sample is divided using a
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variable at each step. A third alternative is to use index models, in which m(x) is written as a1
sum of functions of some index or components variables zi=g′

ix. Finally, a fourth possibility
is to use projection pursuit regression (Friedman and Stuetzle, 1981). The extension of this3
approach comparing these alternative ways to avoid the curse of dimensionality will be the
subject of further research.5
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